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Abstract. We study a higher-dimensional version of the standard notion of a gap
formed by a finite sequence of ideals of the quotient algebra P(ω)/fin. We examine different
types of such objects found in P(ω)/fin both from the combinatorial and the descriptive
set-theoretic side.

1. Introduction. Gaps in the quotient algebra P(ω)/fin are a phe-
nomenon discovered by Hausdorff more than a century ago. Their study has
always been a prominent theme in set theory and its applications. For ex-
ample, Kunen’s study of gaps of P(ω)/fin in models of Martin’s axiom has
led Woodin to a proof that the Proper Forcing Axiom implies Kaplansky’s
conjecture about automatic continuity of norms in certain Banach algebras
(see [5]). Gaps in P(ω)/fin were also the main motivation behind the intro-
duction of the set-theoretic principle about the chromatic number of open
graphs on separable metric spaces (see [18]), a principle with many applica-
tions (see, for example, [9], [10]). In [19], the second author has initiated the
study of gaps in P(ω)/fin from the descriptive set-theoretic side, a study also
of independent interest and with important applications (see, for example,
[20]).

The purpose of this paper is to extend this theory to higher dimensions,
or in other words, to build a theory that involves gaps formed by more than
two ideals of P(ω)/fin. While this theory is not something that immediately
suggests itself when one mentions gaps formed by more than two ideals
(see, for example, [8], [17]) it is nevertheless quite natural and it could have
been discovered long ago. We came to it while trying to understand the
reasons behind the fact that the Banach space `∞/c0 is not injective, a
result originally due to Amir [2]. While the characterization of 1-injective
spaces due to Kelley [13] suggests that gaps of P(ω)/fin should play a role
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in Amir’s result, we were surprised to realize that the classical theory of
gaps in P(ω)/fin is actually not useful in its proof. What is relevant in
this context is a notion of an n-gap formed by a sequence Ii (i < n) of
ideals of P(ω)/fin so that the corresponding sequence of open subsets of
ω∗ = βω \ ω has a common boundary point. We give a precise explanation
of this in Section 8 where we use Ditor’s analysis of lower bounds of norms
of averaging operators. This also suggests various refinements of the notion
of an n-gap that we study below. As said above we study the new notion
both from the combinatorial and descriptive set-theoretic side. For example,
we show that there is no Hausdorff phenomenon for n-gaps where n > 2, or
more precisely, unlike in the case n = 2, the usual axioms of set theory are
insufficient to construct n-gaps consisting of ℵ1-generated ideals for n > 2.
On the other hand, we show that the descriptive set theory of 2-gaps initiated
in [19] extends naturally to all higher dimensions.

2. Notation. For a Boolean algebra B, we denote by ∨, ∧ and ≤ the
join operation, meet operation and order in B, and by 0 and 1 its maximum
and minimum. Two subsets I and J of B are called orthogonal if a ∧ b = 0
for all a ∈ I and b ∈ J . Other symbols that we shall use are: I ∨J = {a∨ b :
a ∈ I, b ∈ J} and similarly I ∧ J ; I⊥ = {b ∈ B : ∀a ∈ I a ∧ b = 0};
I|a = {b ∈ I : b ≤ a}; c ≥ I if c ≥ a for all a ∈ I. Also, n = {0, 1, . . . , n− 1}.

Although we give definitions for arbitrary Boolean algebras, which is the
natural context, most of the paper deals only with the algebra P(ω)/fin
and the results refer to this algebra unless otherwise explicitly stated. The
elements of P(ω)/fin are equivalence classes of the power set P(ω) of the
natural numbers under the relation of equality modulo finite sets: a =∗ b
if (a \ b) ∪ (b \ a) is finite. However, manipulating equivalence classes is
inconvenient for it makes considerable noise in notation. Instead, we prefer
to work in P(ω) while referring to properties of P(ω)/fin. So we use the
following conventions along the text:

Ideals of P(ω)/fin are identified with ideals of P(ω) that contain the
ideal fin of finite sets. Hence, if I is such an ideal and we write a ∈ I, we
understand that a ∈ P(ω) and a belongs to the corresponding ideal of P(ω)
that contains fin. On the other hand, when we state properties of such ideals
like being orthogonal, being a multiple gap, a jigsaw, clover, etc., we always
refer to properties of ideals in the Boolean algebra P(ω)/fin, never of ideals
in P(ω). One exception is when we say that an ideal I is analytic or Borel:
then we view I as a subset of P(ω) = 2ω.

For a, b ∈ P(ω) when we write a ⊂ b we mean actual inclusion in P(ω)
while a ⊂∗ bmeans that b\a is finite. The symbols pertaining to the structure
of a general Boolean algebra, like ≤ and ⊥, always refer to P(ω)/fin, never
to P(ω). For instance if a, b ∈ P(ω) and I is an ideal of P(ω)/fin, then a ≤ b
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means a ⊂∗ b, a ⊥ b means a ∩ b =∗ ∅, I ≤ a means x ⊂∗ a for all x ∈ I,
a ∈ I⊥ means that a ∩ x =∗ ∅ for all x ∈ I, etc. We denote by ω∗ = βω \ ω
the dual compact space of P(ω)/fin under Stone’s duality.

Given a set S, we denote by S<ω the set of all finite sequences of elements
of S. Given s = (si)i<n and t = (ti)i<m in S<ω, we write s ≤ t when n ≤ m
and si = ti for all i < n. We denote s_t = (s0, . . . , sn−1, t0, . . . , tm−1). The
set S<ω is a tree when endowed with the partial order ≤. A tree is a partially
ordered set (T ≤) with a minimum element (its root) such that for every
t ∈ T the set {s ∈ T : s < t} is well ordered. A linearly ordered subset
of T is called a chain. A branch of T is a maximal chain. An antichain is
a subset of T where no two elements satisfy s < t. The set of branches of
T is denoted by [T ]. Given t ∈ T , we write Tt = {s ∈ T : t ≤ s} and
[Tt] = {x ∈ [T ] : t ∈ x}. When T = S<ω we can identify [T ] = Sω.

Often, instead of working in P(ω)/fin we work in P(E)/fin where E is
a countable set with some particular structure, like a countable tree or a
countable subset of a compact metric space. The same conventions as for
P(ω)/fin apply.

3. Basic notions and preliminaries. A gap in a Boolean algebra B
is a couple of orthogonal ideals that cannot be separated by two disjoint
elements of B. We introduce a multidimensional generalization:

Definition 1. We say that a finite family {Ii : i ∈ n} of mutually
orthogonal ideals of a Boolean algebra B constitutes a multiple gap, or an
n-gap, if for every function c : n → B such that c(i) ≥ Ii for all i ∈ n, we
have

∧
i∈n c(i) 6= 0.

There is a simple topological interpretation of this definition. Let St(B)
be the Stone dual compact space of the Boolean algebra B, that is, the space
of all ultrafilters of B with the topology generated by the sets {U : a ∈ U}
for a ∈ B. For an ideal I, let U(I) = {U : U ∩ I 6= ∅} be the associated
open subset of St(B). The ideals {Ii : i ∈ n} form an n-gap if and only if⋂
i∈n U(I) 6= ∅. Thus, a multiple gap is nothing other than a finite family of

pairwise disjoint open sets whose closures have nonempty intersection.
The multiple gap is called dense if (

∨
i∈n Ii)

⊥ = 0. Topologically, this
means that the union of the open sets considered is dense in St(B). When
n > 2, we can distinguish a variety of types of n-gaps depending on how
subgaps of lower dimension interact. We point out two extreme types that
we found of special interest, and called clovers and jigsaws.

Definition 2. Let {Ii : i ∈ n} be a multiple gap and B a nonempty
proper subset of n. We call the multiple gap a B-clover if there exists no
b ∈ B such that {Ij |b : j ∈ B} is a multiple gap while b ∈ I⊥i for all i 6∈ B.
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The multiple gap is called a clover if it is a B-clover for all nonempty
proper subsets B of n. In topological terms, being a B-clover is equivalent
to the equality

⋂
i∈B U(Ii) \

⋃
i 6∈B U(Ii) = ∅. Hence, for instance the picture

of a triple clover would look like this:

U1

U2

U3

where the intersection of any two closures equals the intersection of all clo-
sures (that may consist of more than one point, in spite of the picture).

The second type, opposite to clovers, is that of jigsaws.

Definition 3. Let {Ii : i ∈ n} be an n-gap, and let B be a nonempty
proper subset of n. We call the multiple gap a B-jigsaw if for every A ⊃ B
and every a ∈ B, if {Ii|a : i ∈ A} is a multiple gap, then there exists b ⊂ a
such that {Ii|b : i ∈ B} is a multiple gap while b ∈ I⊥i for all i ∈ A \B.

The multiple gap is called a jigsaw if it is a B-jigsaw for all nonempty
proper subsets B of n. In topological terms, being a B-jigsaw is equivalent
to
⋂
i∈B U(Ii)\

⋃
i 6∈B U(Ii) being dense in

⋂
i∈B U(Ii). The picture of a triple

jigsaw is then the following:

U1

U2U3

where every point in the intersection of the three closures (in the picture,
the central point) can be approached by points that lie in the intersection
of exactly two closures.

The concept of countable separation plays a central role in our study.
Countably separated gaps are introduced in [19]: Two orthogonal ideals I0

and I1 are countably separated if there exists a sequence {cn : n ∈ ω} of
elements in the Boolean algebra such that for every x ∈ I0 and y ∈ I1

there exists n with x ≤ cn and y ⊥ cn. Regarding this notion, the following
dichotomy is proven in [19]:
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Theorem 4. Let I0 and I1 be two orthogonal analytic ideals in P(ω)/fin.
Then either

(1) they are countably separated in P(ω)/fin, or
(2) there exist {as : s ∈ 2ω} ⊂ I0 and {bs : s ∈ 2ω} ⊂ I1 such that

as ∩ bs = ∅, (as ∩ bt) ∩ (at ∩ bs) 6= ∅ for t 6= s, and the maps s 7→ as
and s 7→ bs are continuous.

Countable separation can be generalized to multiple gaps in several ways:

Definition 5. Let X be a family of subsets of n, and let {Ii : i ∈ n}
be ideals in a Boolean algebra. We say that a multiple gap {Ii : i < n}
is X-countably separated if there exist elements {cki : i ∈ n, k ∈ ω} in the
Boolean algebra such that

(1)
∧
i∈A c

k
i = 0 for every k ∈ ω and every A ∈ X,

(2) for every x0 ∈ I0, . . . , xn−1 ∈ In−1, there exists k ∈ ω such that
xi ≤ cki for all i.

The two extreme cases of this definition are of special interest for us (we
use the notation [x]k = {z ⊂ x : |x| = k}):

• We say that the ideals {Ii : i ∈ n} are weakly countably separated if
they are X-countably separated for X = [n]n.
• We say that the ideals {Ii : i ∈ n} are strongly countably separated if

they are X-countably separated for X = [n]2.

In Section 4 we prove a generalization of Theorem 4 to multiple gaps.
We define for every n a concrete analytic n-gap in P(ω)/fin, {Ii : i ∈ n},
which is not weakly countably separated. Roughly speaking, the main result
states that an analytic multiple gap {Ii : i ∈ n} in P(ω)/fin is either weakly
countably separated or there is a copy of the object {Ii : i ∈ n} with Ii ⊂ Ii.
The aforementioned n-gap {Ii : i ∈ n} turns out to be a jigsaw. We also
provide an example of an analytic multiple gap which is not a jigsaw. More
results on the theory of analytic multiple gaps will appear in [3] and further
works.

In Section 5 we deal with multiple gaps which are weakly countably
separated. In contrast with the results established in the previous section,
now given a weakly countably separated multiple gap {Ii : i ∈ n} in P(ω)/fin
we find ideals of a particular form {I ′i : i ∈ n} such that Ii ⊂ I ′i (that is, above
instead of below Ii). The most informative case is when the gap is indeed
strongly countably separated, since then these new ideals above constitute
a multiple gap. We show that every strongly countably separated multiple
gap in P(ω)/fin is below a strongly countably separated multiple gap which
is moreover a dense jigsaw. In particular every dense strongly countably
separated multiple gap in P(ω)/fin is a jigsaw. We also provide an example
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of a strongly countably separated clover. This example is neither analytic
nor dense.

In Section 6 we show that there is no analogue of Hausdorff’s gap when
we deal with n-gaps for n ≥ 3. Namely, from Hausdorff’s gap one finds that
there exists a 2-gap {I0, I1} in P(ω)/fin such that I0 and I1 are generated
by sets of size ℵ1. We prove that if MAθ holds for a cardinal θ, then for
n ≥ 3 there exists no n-gap made of θ-generated ideals in P(ω)/fin. Indeed
we show that for every n ≥ 2 it is consistent that there exists an n-gap
of θ-generated ideals in P(ω)/fin but there are no such n + 1-gaps. The
technique used allows us to prove some other results on small sets both in
P(ω)/fin and in the Banach space `∞/c0.

In Section 7 we construct, for every family X of subsets of n, a dense
multiple gap which is a B-jigsaw for B ∈ X and a B-clover for B 6∈ X.
The construction is based on the existence of completely separable almost
disjoint families. It is an open problem whether such almost disjoint families
exist in ZFC, though they are known to exist under several hypotheses.

In Section 8, we relate jigsaws to injectivity properties of Banach spaces.
Let B be a Boolean algebra and K its dual compact space in Stone’s duality.
We show that if B has a dense n-jigsaw for every n, then the Banach space
C(K) of continuous functions is uncomplemented in a superspace of the
same density. Since we have found dense jigsaws in P(ω)/fin of every size,
this provides an alternative proof of a result of Amir [2] that the Banach
space `∞/c0 is not injective.

We found that many notable examples of multiple gaps in P(ω)/fin hap-
pen to be jigsaws, and jigsaws play an important role in the general theory.
However we do not know that much about clovers. In particular we do
not know whether analytic clovers—or any mixed version of clovers and
jigsaws—exist at all, and we do not know if the results of Section 7 hold in
ZFC, except for the existence of dense jigsaws.

4. Multiple gaps that are not countably separated

4.1. An example of an analytic jigsaw that is not weakly count-
ably separated. Let n < ω and T = n<ω be the n-ary tree. For every
branch x ∈ [T ] and i ∈ n, we set

aix = {s ∈ T : s_i ∈ x}.

Let Ji be the ideal of P(T )/fin generated by {aix : x ∈ [T ]}. Notice that
each of these ideals is analytic, since its set of generators is an analytic set.

Theorem 6. The ideals {Ji : i ∈ n} constitute an n-jigsaw which is not
weakly countably separated.
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Proof. It is obvious that the ideals are mutually orthogonal since aix∩a
j
y

=∗ ∅ whenever i 6= j. We prove first that they are not weakly countably
separated, hence in particular they are a multiple gap. Denote by T (m)
the set of all elements of t of length less than m. Suppose that the ideals
are weakly countably separated, so that we have elements cki ⊂ T , i ∈ n,
k < ω, such that

⋂
i∈n c

k
i = ∅ for each k, and whenever we pick bi ∈ Ji there

exists k with bi ⊂∗ cki for every i ∈ n. In particular, for every x ∈ [T ] and
every i ∈ n there exist k(x),m(x) ∈ ω such that aix \ T (m(x)) ⊂ c

k(x)
i . Let

X(m, k) = {x ∈ [T ] : ∀i ∈ n aix \ T (m) ⊂ cki }. Notice that each X(m, k)
is a closed subset of [T ], and

⋃
m,k<ωX(m, k) = [T ]. By the Baire category

theorem, there exist m0, k0 < ω such that X(m0, k0) has nonempty interior.
This means that we can find t ∈ T (which we can choose of length greater
than m0) such that {x ∈ [T ] : t ∈ x} ⊂ X(m0, k0). But this actually implies
that {s ∈ T : s > t} ⊂

⋂
i∈n c

k0
i , a contradiction.

We pass now to the proof that the ideals actually constitute a jigsaw.
Let B ⊂ A ⊂ n, and let a ⊂ T be such that {Ji|a : i ∈ A} is a multiple
gap. We have to find b ⊂ a such that b ⊥ Ji for i ∈ n \ B, while the ideals
{Jj |b : j ∈ B} are a multiple gap.

A nonempty subset R ⊂ T is called a complete A-tree if for every r ∈ R
and every i ∈ A there exists s ∈ R such that r_i < s.

Claim. There exists a complete A-tree R ⊂ a.

Proof of the claim. Let us say that a set u ⊂ T is i-WF (for i-well
founded) if it contains no infinite sequence {sk : k < ω} with s_k i < sk+1.
Notice that an i-WF set is orthogonal to the ideal Ji, therefore its comple-
ment is an upper bound of Ji. It follows that a cannot be a union

⋃
i∈A ui

with each ui being i-WF. Otherwise, we could take ci = a \ ui ≥ Ji|a
and

⋂
ci = ∅, contradicting that {Ji|a : i ∈ A} is a multiple gap. We de-

fine a derivation procedure on subsets of T . Given a set v ⊂ T we define
v[i] = {s ∈ v : @t ∈ v s_i < t} for i ∈ A, and then the derived set
v′ = v \

⋃
i∈A v[i]. By induction consider the iterated derivatives a(α) of the

set a for ordinals α. Choose an ordinal β with a(β) = a(β+1). This means
that a(β) is a complete A-tree provided it is nonempty. But notice that⋃
α<β a

(α)[i] is an i-WF set, so since a cannot be the union of i-WF sets for
i ∈ A, it follows that a(β) 6= ∅. This finishes the proof of the claim.

Let R be the complete A-tree given by the Claim. We can find b ⊂ R
which is a complete B-tree and moreover i-WF for all i ∈ n\B. We construct
b inductively: start with b[0] ⊂ R a singleton, and then construct b[n + 1]
by adding one element above s_j for every s ∈ b[n] and j ∈ B. At the end,
b =

⋃
n<ω b[n]. The set b is orthogonal to Ji for i 6∈ B since it is i-WF. So it

remains to show that the ideals {Jj |b : j ∈ B} are a multiple gap. But this
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is the same proof as we already used, in the first paragraph of this proof, to
show that the {Ji : i ∈ n} are a multiple gap, but for the integer |B| instead
of n. The reason is that we can identify the set b with the |B|-adic tree
B<ω and then the ideals Ji|b are identified with the originally considered
ideals Ji.

4.2. The dichotomy. We show that if an analytic multiple gap is not
weakly countably separated, then it contains a copy of the analytic jigsaw
{Ji : i ∈ n} presented above.

Theorem 7 (Analytic multiple gap dichotomy). Let {Ii : i ∈ n} be
analytic ideals of P(ω) which constitute a multiple gap of P(ω)/fin. Then
either

(1) the ideals are weakly countably separated in P(ω)/fin, or
(2) there exists a one-to-one function u : T → ω, where T = n<ω is the

n-ary tree, such that u(Ji) ⊂ Ii for all i ∈ n.

Proof. Let Υ = ω<ω be the Baire tree. Let Σ = {(ei)i∈n ∈
∏
i∈n Ii :

ei ∩ ej = ∅ for i 6= j}. Since Σ is an analytic set, there exists a continuous
surjection f : [Υ ] → Σ. We write f(x) = (fi(x))i∈n. We distinguish two
cases.

In the first case, we suppose that there exists a countable decomposition
[Υ ] =

⋃
k<ωXk such that

(?) for every k and every {xi : i ∈ n} ⊂ Xk we have
⋂
i∈n fi(xi) = ∅.

In this case we are in alternative (1) of the dichotomy. The elements cki =⋃
x∈Xk

fi(x) witness countable separation.
For the second case, we assume that the first case does not hold. Let

Υ ′ ⊂ Υ be the family of all s ∈ Υ such that [Υs] cannot be decomposed into
countably many pieces Xk, k < ω, with the property (?) specified in the first
case. Notice that Υ ′ is closed under initial segments.

Claim 1. If t ∈ Υ ′, then [Υ ′t ] cannot be decomposed into countably many
pieces with property (?).

Proof of the claim. Consider the set F of all s > t such that s 6∈ Υ ′.
Then [Υt] = [Υ ′t ] ∪

⋃
s∈F [Υs]. All the sets [Υs] on the right admit countable

decompositions with (?), so since [Υt] does not have such a decomposition,
neither has [Υ ′t ].

Claim 2. If t ∈ Υ ′, and F ⊂ ω is a finite set, then there exist branches
{xi : i ∈ n} ⊂ [Υ ′t ] such that

⋂
i∈n fi(xi) \ F 6= ∅.

Proof of the claim. Suppose that there exists a finite set F such that⋂
i∈n fi(xi) ⊂ F for all {xi : i ∈ n} ⊂ [Υ ′t ]. Then we can find a countable

(even finite) decomposition [Υ ′t ] =
⋃
m<ωXm and finite sets Fi(m) ⊂ F for
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i ∈ n and m ∈ ω such that fi(x) ∩ F = Fi(m) for every x ∈ Xm. Since⋂
i∈n fi(x) = ∅ for every x, it follows that

⋂
i∈n Fi(m) = ∅ for every m < ω.

Hence for every {xi : i ∈ n} ⊂ Xm, we have
⋂
i∈n fi(xi) = ∅. This means

that every Xm has property (?), contrary to Claim 1.

Claim 3. Let s ∈ Υ ′ and let F ⊂ ω be finite. Then there exist in-
comparable elements {si : i ∈ n} ⊂ Υ ′ above s and k ∈ ω \ F such that
k ∈

⋂
i∈n fi(xi) whenever si ∈ xi for every i.

Proof of the claim. By Claim 2, there exist {yi : i ∈ n} ⊂ [Υ ′s] such that⋂
i∈n fi(yi) \ F 6= ∅. Fix k ∈

⋂
i∈n fi(yi) \ F . Now, using the fact that f is

continuous we can find elements si ∈ Υ ′t such that s < si ∈ yi and which
satisfy the requirement of the claim.

We construct inductively two functions v : T → Υ ′ and u : T → ω.
First, v(∅) is just the root of Υ ′. Once v(t) is defined, we apply Claim 3
to s = v(t) and F being the set of all u(t′)’s that have been previously
chosen in the inductive procedure (in order to make u one-to-one). We set
v(t_i) = si and u(t) = k given by Claim 3. In this way, we have the
property that for every t ∈ T , if x ∈ [Υ ′] and v(t_i) ∈ x, then u(t) ∈ fi(x).
To conclude the proof, we have to check that u(Ji) ⊂ Ii. So let x ∈ [T ] and
let a = axi = {t ∈ T : t_i ∈ x} be one of the generators of Ji. We want to
see that u(a) ∈ Ii. The set {v(t) : t ∈ x} is an infinite chain in Υ ′, hence
cofinal in some branch y ∈ [Υ ′]. If t ∈ a, then v(t_i) ∈ y, hence u(t) ∈ fi(y).
It follows that u(a) ⊂ fi(y) ∈ Ii.

4.3. Example of an analytic gap that is not a jigsaw. Let T = 2<ω

be the dyadic tree. Again, for i = 0, 1, we define elements aix = {s ∈ T :
s_i ∈ x} and the ideal Ii of P(T )/fin as generated by all aix for x ∈ [T ]. On
the other hand, let J be the ideal generated by the antichains of T .

Proposition 8. The ideals {I0, I1, J} are analytic ideals which are a
multiple gap which is not weakly countably separated and neither a jigsaw
nor a clover.

Proof. The fact that they are analytic is easily checked as they have
analytic sets of generators. We see that they are not weakly countably sepa-
rated (in particular, they are a 3-gap). Let us write J = I2 for convenience.
Suppose we have cki with

⋂
i∈3 c

k
i =∗ ∅ for every k < ω, and for every xi ∈ Ii

(i ∈ 3) there is k < ω with xi ≤ cki . The proof is similar to that of Theorem 6.
We denote by T (m) the set of elements of T of length less than m. For every
x ∈ [T ] there exist integers k(x) and m(x) such that aix ⊂ c

k(x)
i \ T (m(x))

for i = 0, 1 and

{s_0 : s ∈ a1
x} ∪ {s_1 : s ∈ a0

x} ⊂ c
k(x)
2 \ T (m(x)).
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By a Baire category argument, there exist k,m < ω and t ∈ T of length
greater than m such that the properties above hold for all x ∈ [Tt] with
k(x) = k and m(x) = m. It follows that t′ ∈

⋂
i∈3 c

k
i for every t′ > t. This

shows that {I0, I1, J} are not weakly countably separated.

Claim. If b ∈ J⊥, then b is contained in a finite number of chains.

Proof of the claim. Let A = {x ∈ [T ] : b∩x 6=∗ ∅}. Notice that b\
⋃
A is

an antichain, so b ⊂∗
⋃
A. If we suppose that A is infinite, then it contains

either an increasing or a decreasing sequence {xn} in the lexicographical
order of [T ] = 2ω. If tn ∈ xn∩b is chosen high enough so that tn > xn∧xn+1,
then {tn : n < ω} ⊂ b is an antichain. This finishes the proof of the Claim.

The 3-gap is not a jigsaw, because if b ∈ J⊥, then by the Claim above,
I0|b and I1|b are finitely generated and therefore separated. Neither is the
3-gap a clover: Consider the set c of all (k0, k1, . . . , km−1) ∈ T such that
m is even and kj = 1 for all k even. Then c is a dyadic subtree of T ,
c ∈ I⊥0 and {I1|c, J |c} is a gap (this follows from the Claim, because I1|c is
the ideal generated by the chains of c, and I2|c the ideal generated by the
antichains).

5. Multiple gaps that are countably separated. Let D be a count-
able subset of a compact metric space L and let K = acc(D) be the set of
accumulation points of D, those points such that every neighborhood meets
infinitely many elements of D. For a subset G ⊂ K, we define

IG = {a ⊂ D : acc(a) ⊂ G}.
Note that IG is an ideal of P(D)/fin. Note also that IG is orthogonal

to IG′ if and only if G ∩G′ = ∅. Theorem 10 below shows that this kind of
ideals characterize countable separation.

Lemma 9. Let L be a compact space, X a family of subsets of n, B a basis
for the topology of L which is closed under finite unions and intersections,
and {Zi : i ∈ n} closed subsets of L such that

⋂
i∈A Zi = ∅ whenever A ∈ X.

Then there exist sets Zi ⊂ Vi ∈ B with
⋂
i∈A Vi = ∅ whenever A ∈ X.

Proof. First we prove the case in which X consists only of the full subset
of n. This is done by induction on m, the case m = 2 being just the standard
compactness argument for separation. For m > 2, the sets Z =

⋂
i∈m−1 Zi

and Zm−1 are disjoint closed subsets of L, so by the case m = 2, there are
V,W ∈ B with Zm−1 ⊂ V , Z ⊂W and V ∩W = ∅. The inductive hypothesis
provides {Ui : i ∈ m − 1} ⊂ B with

⋂
i∈m−1 Ui = ∅ and Zi \W ⊂ Ui for

i ∈ m−1, and then we define Vm−1 = V and Vi = Ui∪W for i ∈ m−1. Now,
for a general family X of subsets of n, the previous case allows us to find, for
every A, Zi ⊂ V A

i ∈ B such that
⋂
i∈A V

A
i = ∅, and take Vi =

⋂
A∈X V

A
i .



Multiple gaps 25

Theorem 10. Let {Ii : i ∈ n} be ideals of P(ω)/fin and let X be a family
of subsets of n. The following are equivalent:

(1) The ideals are X-countably separated.
(2) There exists a continuous function (1) φ : ω∗→2ω with

⋂
i∈A φ(U(Ii))

= ∅ for every A ∈ X.
(3) There exists a bijection f : ω → D, where D is a countable subset of

a compact metric space L, and sets Gi ⊂ K = acc(D), i ∈ n, such
that

(a)
⋂
i∈AGi = ∅ for every A ∈ X,

(b) f(Ii) = {f(a) : a ∈ Ii} ⊂ IGi for every i ∈ n.

(4) Condition (3) holds for D = {ξ ∈ 2ω : ∃m0 ∀m > m0 ξm = 0}.
Proof. We prove (4)⇒(3)⇒(1)⇒(2)⇒(4). The first implication is obvi-

ous, so we start by showing that (3)⇒(1). We prove that the ideals {IGi :
i ∈ n} are X-countably separated. Let B be a countable basis for the topol-
ogy of L which is closed under finite unions and intersections. Consider the
family of all n-tuples of subsets of D of the form (Vi ∩ D)i∈n such that
Vi ∈ B and

⋂
i∈A Vi = ∅ for all A ∈ X. This is a countable family of n-tuples

of elements of P(D). We see that it witnesses X-countable separation. The
first condition to check is obvious:

⋂
i∈A Vi ∩ D =∗ ∅ for A ∈ X whenever

(Vi∩D)i∈n is in the family. For the second condition, we pick ai ∈ IGi . Since
acc(ai) ⊂ Gi for each i, we have

⋂
i∈A acc(ai) = ∅ for A ∈ X. By Lemma 9,

we can find Vi ∈ B such that acc(ai) ⊂ Vi and
⋂
i∈A Vi = ∅ for all A ∈ X. It

follows that ai ⊂∗ Vi ∩D and the tuple (Vi ∩D)i∈n belongs to our family.
We pass now to implication (1)⇒(2). Using Stone’s duality, X-countable

separation can be restated as the existence of clopen sets {Cim : i ∈ n,
m ∈ ω} of ω∗ such that

•
⋂
i∈AC

i
m = ∅ for every m ∈ ω and every A ∈ X,

• for any clopen sets xi ⊂ U(Ii), i ∈ n, there exists m such that xi ⊂ Cim
for every i ∈ n.

For every (m, i) ∈ ω × n define φ(m,i) : ω∗ → 2 to be the characteristic
function of the clopen set Cim. All these functions together provide a con-
tinuous function φ : ω∗ → 2ω×n. Suppose now for contradiction that there
exists ξ ∈

⋂
i∈A φ(U(Ii)) with A ∈ X. Then for every i ∈ A, ξ = φ(ti) with

ti ∈ U(Ii). There must exist m ∈ ω such that ti ∈ Cim for every i ∈ A. For
every i, j ∈ A we have

1 = φ(m,i)(ti) = ξ(m,i) = φ(m,i)(tj).

It follows that tj ∈
⋂
i∈AC

i
m = ∅, a contradiction.

(1) We recall that we denote by ω∗ the Stone space of P(ω)/fin.
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We prove now that (2)⇒(4). Given φ, we construct inductively a tree of
subsets of ω, {as : s ∈ 2<ω}, with

• φ−1({ξ ∈ 2ω : ξ|length(s) = s}) = clopen(as), where clopen(a) denotes
the clopen subset of ω∗ associated to the set a ∈ P(ω),
• a∅ = ω,
• as = as_0 ∪ as_1,
• ∅ = as_0 ∩ as_1,
• if we set ms = min(as \ {mt : t < s}), then ms ∈ ar whenever s < r

and rk = 0 for all k ≥ length(s).

Notice that the function s 7→ ms is a bijection from 2<ω onto ω. Let
g : ω → 2<ω be its inverse, so that mg(m) = m for all m. We define f : ω → D
by f(m) = g(m)_1_(0, 0, 0, . . .). Let Gi = φ(U(Ii)). We have to prove that
if x ∈ Ii, then acc{f(m) : m ∈ x} ⊂ Gi. So fix x ∈ Ii and suppose that
ξ ∈ acc{f(m) : m ∈ x}. There exists {m1,m2, . . .} ⊂ x such that the
sequence {f(mk)}k<ω converges to ξ in the space 2ω. This means that for
every k ∈ ω all but finitely many p ∈ ω satisfy (ξ0, . . . , ξk) < g(mp). This
implies that, for every k,

{m0,m1, . . .} ⊂∗ a(ξ0,...,ξk).

This is because if t < g(m) then m ∈ at (notice that ms ∈ as, which implies
m = mg(m) ∈ ag(m) ⊂ at). Now, by Stone’s duality

clopen{m0,m1, . . .} ⊂ clopen(a(ξ0,...,ξk))

= φ−1({ζ ∈ 2ω : ζi = ξi, i = 0, . . . , k}).

It follows that clopen{m0,m1, . . .} ⊂ φ−1(ξ). But

clopen{m0,m1, . . .} ⊂ clopen(x),

and clopen(x) ⊂ U(Ii) since x ∈ Ii. Hence ξ ∈ φ(U(Ii)) = Gi as desired.

In Theorem 10, notice that if the ideals {Ii : i ∈ n} are strongly countably
separated, then the sets Gi are pairwise disjoint, and then the ideals {IGi :
i ∈ n} are mutually orthogonal. Hence, in that case, if {Ii : i ∈ n} are a
multiple gap, then so are the larger ideals {IGi : i ∈ n}.

Proposition 11. In Theorem 10, if the ideals Ii are analytic, then the
sets Gi can be taken to be Borel.

Proof. Let us compute the complexity of the sets Gi obtained in the
proof of (2)⇒(4) of Theorem 10. The third equality below follows from the
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fact that nonempty Gδ subsets of ω∗ have nonempty interior. We have

Gi = φ(U(Ii)) = {ξ ∈ 2ω : ∃t ∈ U(Ii) φ(t) = ξ}
= {ξ ∈ 2ω : ∃c ⊂ U(Ii), c clopen, φ|c = ξ}
= {ξ ∈ 2ω : ∃a ∈ Ii φ|clopen(a) = ξ}
= {ξ ∈ 2ω : ∃a ∈ Ii ∀k ∃m a \m ⊂ a(ξ0,...,ξk)}.

Hence, if the ideals Ii are analytic, then the sets Gi are analytic. Using a
generalized version of Lusin’s separation theorem (which is proved in the
same manner as Lemma 9), we can find Borel sets G′i with Gi ⊂ G′i and still⋂
i∈AG

′
i = ∅ for all A ∈ X.

Notice that the fact that G is Borel does not mean that the ideal IG is
Borel. Indeed one can check that IQ is true coanalytic. However, when G is
Gδ we have:

Proposition 12. If G is a Gδ set, then IG is Borel, indeed an Fσδ set.

Proof. Let G=
⋂
m<ω Um with Um open. For every m, let Um=

⋃
k<ω V

k
m

where each V k
m is open, V 1

m ⊂ V 2
m ⊂ · · · and V k

m ⊂ Um. Then

IG =
⋂
m<ω

⋃
k<ω

⋃
F⊂ω finite

{a ⊂ D : a \ F ⊂ V k
m}

and the sets on the right are closed. Let us check each inclusion. For [⊂],
assume that a ∈ IG. Then acc(a) ⊂ Um for every m. Fix such an m. By
compactness of acc(a), there exists k such that acc(a) ⊂ V k

m. Since V k
m is

open and L is compact, there exists a finite F ⊂ ω such that a \ F ⊂ V k
m.

For [⊃], assume that for every m there exist k and a finite F ⊂ ω such that
a \ F ⊂ V k

m. Then acc(a) ⊂ V k
m ⊂ Um for every m, so acc(a) ⊂ G.

For the rest of this section, L is a compact metric space, D ⊂ L is
countable and K = acc(D).

Lemma 13. Let Z ⊂ L and let {Vi : i ∈ n} be relatively open subsets of
Z with

⋂
i∈n Vi = ∅. Then there exist open subsets {Ui : i ∈ n} of L such

that Ui ∩ Z = Vi and
⋂
i∈n Ui = ∅.

Proof. It is enough to prove the case when Z is closed in L (if it is not, we
can deal with relatively open subsets of Z). Let fi : Z → [0, 1] be continuous
functions such that f−1

i (0) = Z \Vi. Let f : Z → [0, 1]n be given by putting
together the functions fi, i < n. Then f(Z) ⊂ H = {(ti)i∈n : ∃i ti = 0} ⊂
[0, 1]n. Notice that H is a retract of [0, 1]n, the retraction being r((ti)i∈n) =
(ti−min[tj : j ∈ n])i∈n. Hence, there exists a continuous function f̂ : L→ H

such that f̂ |Z = f . The sets Uj = f̂−1({(ti)i∈n ∈ H : tj > 0}) are the ones
we are looking for.
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Given a countable compact set S, we denote by S′ its Cantor–Bendixson
derivative, that is, the set of all points of S which are not isolated in S.
Inductively, we define S(n) = [S(n−1)]′, assuming that S(0) = S. The space
S has height n if S(n) = ∅ but S(n−1) 6= ∅.

Theorem 14. Let {Gi : i ∈ n} be pairwise disjoint subsets of K. The
following are equivalent:

(1) {IGi : i ∈ n} is an n-gap.
(2) For any open subsets {Ui : i ∈ n} of L such that Gi ⊂ Ui for every

i ∈ n, we have
⋂
i∈n Ui 6= ∅.

(3) There exists a countable compact S ⊂ K of height n and a bijection
σ : n→ n such that

• S(j) \ S(j+1) ⊂ Gσ(j) for j ∈ n.

Proof. For (1)⇒(2), suppose that there exist open sets Ui ⊂ L with
Gi ⊂ Ui and

⋂
i∈n Ui = ∅. Let ai = D∩Ui. Then

⋂
i∈n ai = ∅ and if x ∈ IGi ,

then x ⊂∗ ai. Hence the ideals {IGi : i ∈ n} are separated by the ai’s
and they are not an n-gap. For (2)⇒(1), suppose that the ideals are not
a multiple gap, so there exist ai ⊂ D such that

⋂
i∈n ai = ∅ and x ⊂∗ IGi

whenever x ∈ IGi . Let Vi = K\acc(D\ai). These are relatively open subsets
of K. On the one hand,⋂

i∈n
Vi = K \

⋃
i∈n

acc(D \ ai) = K \ acc
(⋃
i∈n

D \ ai
)

= K \ acc
(
D \

⋂
i∈n

ai

)
= K \ acc(D) = ∅.

On the other hand, Gi ⊂ Vi because if ξ 6∈ Vi, then there is a convergent
sequence (dn) contained in D \ai that converges to ξ. If, in addition ξ ∈ Gi,
then x = {dn : n < ω} ∈ IGi , hence x ⊂∗ ai, a contradiction. We use
Lemma 13 to get the open sets Ui from the relatively open sets Vi.

For (3)⇒(2), we proceed by induction on n. Suppose that Gi ⊂ Ui with
Ui open, i ∈ n. Then Gσ(n−1) ⊂ Uσ(n−1), hence Uσ(n−1) contains a point ξ1 of
the level S(n−1) of the scattered space S. Being open, Uσ(n−1) contains a copy
of a countable compact space R of height n−1 contained in S\S(n−1), which
is a clopen subset of S. Notice that R(j)\R(j+1) = (S(j)\S(j+1))∩R for every
j ∈ n− 1. Hence R(k) \R(k+1) ⊂ Uσ(k) ∩Uσ(n−1) for k ∈ n− 1. We can then
apply the inductive hypothesis to conclude that

⋂
k∈n−1 Uσ(k)∩Uσ(n−1) 6= ∅.

The implication (2)⇒(3) requires more work. We suppose that (3) does
not hold and we will find open sets Vi ⊃ Gi with

⋂
i∈n Vi = ∅. We proceed

by induction on n. In case n = 2, the failure of (3) simply means that there
is no sequence of elements of G0 converging to a point of G1 or vice versa.
Then G0 ⊂ V0 = G0 ∪G1 \ G1 and G1 ⊂ V1 = G0 ∪G1 \ G0. The sets V0
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and V1 are relatively open in G0 ∪G1 and V0 ∩V1 = ∅, hence by Lemma 13,
G0 and G1 are separated by open sets. Now we prove the implication for a
fixed integer n assuming it holds for all integers less than n. We start with
a claim showing that separation by open sets holds locally:

Claim. If ξ ∈
⋃
i∈nGi then there exists an open neighborhood W of ξ

and open sets Vj ⊂W for j ∈ n such that Gj ∩W ⊂ Vj and
⋂
j 6=n Vj = ∅.

Proof of the claim. Fix i ∈ n such that ξ ∈ Gi. We will prove that the
claim holds with the additional fact that Vi = W . If, reasoning towards
a contradiction, we were unable to find {Vj : j 6= i} as required for any
neighborhood W of ξ, then the sets {Gj ∩W : j 6= i} cannot be separated
by open sets for any neighborhood W of ξ. By inductive hypothesis, this
means that we can find a bijection σ : n − 1 → n \ {i} and a countable
compact S of height n − 1 such that S(k) \ S(k+1) ⊂ Gσ(k) ∩W for every
k ∈ n − 1. Since we can do this for every neighborhood of ξ, we can find a
sequence {Sm : m < ω} of pairwise disjoint (2) countable compact spaces of
height n− 1 such that

• S(k)
m \ S(k−1)

m ⊂ Gσ(k) for every k ∈ n− 1 and every m < ω,
•
⋃
m<ω Sm = {ξ} ∪

⋃
m<ω Sm.

Now, the space S∞ = {ξ} ∪
⋃
m<ω Sm is a countable compact space such

that S(k)
∞ \ S(k+1)

∞ ⊂ Gσ(k) and S
(n−1)
∞ \ S(n)

∞ = {ξ} ⊂ Gi. This means that
condition (3) holds, and we are supposing that it does not. This finishes the
proof of the claim.

Now let F0 be the family of all open subsets W of K such that there
exist open sets Vi(W ) ⊂ W with

⋂
i∈n Vi(W ) = ∅ and Gi ∩W ⊂ Vi(W ).

Let F1 be the family of all open subsets W1 of K such that there exists
W0 ∈ F0 such that W1 ⊂ W0. Let Z =

⋃
F0 =

⋃
F1. By the Claim above,⋃

i∈nGi ⊂ Z. Since Z is a metric space, it is paracompact [16], so there
exists a locally finite open refinement F2 of F1 which covers Z. For every
W ∈ F2, we fix W0 ∈ F0 such that W ⊂W0. For every i ∈ n, let

Vi =
⋂
{Vi(W0) ∪ (Z \W ) : W ∈ F2}.

We have the following properties:

• Each Vi is an open set because it is locally a finite intersection of open
sets. Indeed, since F2 is locally finite, every point ξ has a neighborhood
U ⊂ Z that meets only finitely many sets W ∈ F2. Let U0 be an open
neighborhood of ξ with U0 ⊂ U . Then U0 ⊂ Z\W wheneverW∩U = ∅,
hence

(2) Inductively, we find Sm inside Wm \
S

m′<m Sm, where {Wm : m < ω} is a
neighborhood basis of ξ.
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U0 ∩ Vi = U0 ∩
⋂
{Vi(W0) ∪ (Z \W ) : W ∩ U 6= ∅}

is open because it is a finite intersection of open sets.
• Gi ⊂ Vi for every i ∈ n. Indeed, if ξ ∈ Gi and W ∈ F2 then we have

two options. First, if ξ ∈ W0, then ξ ∈ Gi ∩W0 ⊂ Vi(W0). Second, if
ξ 6∈W0, then ξ ∈ Z \W since W ⊂W0.
•
⋂
i∈n Vi = ∅. Indeed, suppose ξ ∈

⋂
i∈n Vi. Since ξ ∈ Z, consider

W ∈ F2 such that ξ ∈ W . Then ξ 6∈ Z \W , so since ξ ∈
⋂
i∈n Vi, it

follows that ξ ∈
⋂
i∈n Vi(W0) = ∅, a contradiction.

This together with Lemma 13 finishes the proof.

Theorem 15. Let {Gi : i ∈ n} be disjoint subsets of K such that {IGi :
i ∈ n} are an n-gap. Then the ideals {IGi : i ∈ n} are a jigsaw. Moreover,
in the definition of jigsaw, the element b can always be chosen so that the
ideals IGi |b are Borel Fσδ.

Proof. Let a ⊂ D and A ⊂ n be such that {IGi |a : i ∈ A} form a
multiple gap. Let B ⊂ A. We have to find b ⊂ a such that {IGi |b : i ∈ B}
is a multiple gap and b ∈ I⊥Gi

for i ∈ A \ B. We can suppose, without loss
of generality, that D = a, acc(a) = K and A = n, because {IGi |a : i ∈ A}
is just {IGi∩acc(a) : i ∈ A} (taking in the latter case a instead of D as the
ground countable set). By Theorem 14 there exists a countable compact
S ⊂ K of height n and a bijection σ : n→ n such that S(j) \ S(j+1) ⊂ Gσ(j)

for all j ∈ n. Let us enumerate the set B as B = {σ(ij) : j < r} with
i0 < i1 < · · · . Elementary manipulation of countable compact spaces shows
that we can find a compact subset R ⊂ S of height r such that

R(j) \R(j+1) ⊂ S(ij) \ S(ij+1) ⊂ Gσ(ij)

for all j ∈ r. Also, it is possible to find b ⊂ D such that acc(b) = R (for
example consider a distance ρ metrizing L, enumerate R = {ξp : p < ω}, let
ξmp ∈ D be such that ρ(ξmp , ξp) < 1/m and set b = {ξmp : m > p}). The set b
is the one we are looking for. On the one hand,

acc(b) ⊂ R ⊂
⋃
j<r

Gσ(ij) =
⋃
i∈B

Gi,

hence b ∈ I⊥Gi
for i 6∈ B. On the other hand {IGi |b : i ∈ B} is the same

as {IGi∩R : i ∈ B}, and this is a multiple gap by Theorem 14, since
R(j) \ R(j+1) ⊂ Gσ(ij). Moreover, the ideals IGi∩R are Borel Fσδ sets by
Proposition 12: since R is countable, all its subsets are Gδ.

Corollary 16. If {Ii : i ∈ n} is a strongly countably separated multiple
gap in P(ω)/fin, then there exists a strongly countably separated dense jigsaw
{Ji : i ∈ n} such that Ii ⊂ Ji for every i ∈ n.
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Proof. By Theorem 10 we have Ii ⊂ IGi where the Gi’s are pairwise
disjoint. We can suppose that

⋃
Gi = K, so that {IGi : i ∈ n} is dense.

This is obviously a multiple gap since the smaller ideals Ii were already a
multiple gap. By Theorem 15 it is indeed a jigsaw.

Corollary 17. If {Ii : i ∈ n} is a strongly countably separated dense
n-gap in P(ω)/fin, then it is a jigsaw.

Proof. By Corollary 16, we have Ii ⊂ Ji with {Ji : i ∈ n} being a jigsaw.
But this together with density implies that {Ii : i ∈ n} is also a jigsaw.
Indeed, suppose {Ii|a : i ∈ A} is a multiple gap, and consider B ⊂ A. Then
{Ji|a : i ∈ A} is also a multiple gap, hence there exists b ⊂ a such that
{Ji|b : i ∈ B} is a multiple gap and b ∈ J⊥i for i 6∈ B. Then b ∈ I⊥i for i 6∈ B
since Ii ⊂ Ji. Also {Ii|b : i ∈ B} is a multiple gap. Indeed, if ai ≥ Ii|b, then
ai ≥ Ji|b. For suppose x 6≤ ai with x ∈ Ji, x ≤ b. Then by density, there
exist j and z ∈ Ij with z ⊂ x\ai. Then z ∈ Ji so we must have j = i. Hence
z ∈ Ii and z 6≤ ai, a contradiction.

Corollary 18. If {Ii : i ∈ n} is a strongly countably separated dense
n-gap in P(ω)/fin, then there exists a ⊂ ω and a strongly countably separated
jigsaw {Ji : i ∈ n} made of Borel Fσδ ideals such that Ii|a ⊂ Ji for every
i ∈ n.

5.1. Example of a strongly countably separated clover. Let T =
2<ω be the dyadic tree. We work in P(T )/fin. Every element x ∈ 2ω is
viewed as a branch of T , in particular it is an infinite subset of T . Given
S ⊂ 2ω, we denote by IS the ideal of P(T )/fin generated by S. A Bernstein
set is a subset S ⊂ 2ω that uncountably meets every uncountable Borel
subset of 2ω. Bernstein sets can be constructed by transfinite induction by
enumerating 2ω and its Borel subsets by the ordinal c. Bernstein’s classical
result states that 2ω can be divided into two Bernstein sets, but the same
argument can provide a decomposition into any finite number of Bernstein
sets.

Proposition 19. Let {Si : i ∈ n} be pairwise disjoint Bernstein subsets
of 2ω. Then the ideals {ISi : i ∈ n} constitute a clover n-gap which is strongly
countably separated.

Proof. It is clear that the ideals are mutually orthogonal since x∩y =∗ ∅
for any branches x 6= y. If the ideals were not a multiple gap, then we
would have elements ci ≥ Ii with

⋂
i∈n ci =∗ ∅. Consider the sets Zi =

{x ∈ [T ] : x ⊂∗ ci} ⊂ 2ω (remember that [T ] is naturally identified
with 2ω). The sets Zi are Borel and Si ⊂ Zi. Hence each Zi is co-countable
and in particular

⋂
i∈n Zi 6= ∅. On the other hand

⋂
i∈n Zi = ∅ because⋂

i∈n ci =∗ ∅, a contradiction. The ideals are strongly countably separated
because if we put on [T ] = 2ω the Cantor set topology and we identify
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each t = (t0, . . . , tk) ∈ T with the branch (t0, t1, . . . , tk, 0, 0, . . .), then for
any S ⊂ [T ] we have IS ⊂ IS , so we can use Theorem 10. To show that
the ideals are a clover, suppose that d ⊂ T with d ∈ I⊥Sj

for some j. Then
X = {x ∈ [T ] : x ∩ d 6=∗ ∅} is a Borel set disjoint from Sj . Since Sj is
a Bernstein set, it follows that X is countable. Therefore each ideal ISi |d
is countably generated for i 6= j. Countably generated orthogonal ideals in
P(ω)/fin can always be separated.

6. Multiple gaps made of small ideals. Given a cardinal θ, we say
that an ideal is θ-generated if it is generated by a set of cardinality θ. Given
k ∈ ω, a partially ordered set (poset, for short) P is σ-k-linked if P =⋃
m<ω Pm where for every m, any k elements of Pm are compatible (that is,

for every {pi : i < k} ⊂ Pm there exists p ∈ P such that p ≤ pi for every
i ∈ k). We write MAθ(σ-k-linked) for Martin’s axiom for the cardinal θ and
σ-k-linked posets: In a σ-k-linked poset, every family of θ many dense subsets
has a generic filter. This is weaker than the usual MAθ, the same statement
but for ccc partial orders. Let X be a family of subsets of n which is upwards
closed, that is: if A ∈ X and B ⊃ A, then B ∈ X. We denote by X[k] the
family of all A ⊂ n such that whenever A =

⋃
j∈k Bj then there exists j ∈ k

such that Bj ∈ X. One example is given by X = {A ⊂ n : |A| ≥ 2} and
X[k] = {A ⊂ n : |A| > k}. All along this section, θ is a cardinal and k ≥ 1
an integer. We notice that the results of this section hold in ZFC when we
take k = 1 and θ = ℵ0.

Theorem 20 (MAθ(σ-k-linked)). Let {Ii : i ∈ n} be θ-generated ide-
als of P(ω)/fin and X an upwards closed family of subsets of n such that⋂
i∈A xi =∗ ∅ whenever A ∈ X and xi ∈ Ii for every i. Then there exist

ci ⊂ ω, i ∈ n, such that Ii ≤ ci for i ∈ n, and
⋂
i∈A ci = ∅ for A ∈ X[k].

Proof. To apply MAθ(σ-k-linked) we consider a poset P, whose elements
are of the form p = (xip, i ∈ n) where xip ∈ Ii for every i ∈ n and

⋂
i∈A x

i
p = ∅

for every A ∈ X[k]. The order relation is given by p ≤ q if and only if xip ⊃ xiq
for all i ∈ n.

Claim. P is σ-k-linked.

Proof of the claim. Given a family {uB : B ∈ X} of finite subsets of ω,
let Q be the set of all p ∈ P such that uB =

⋂
i∈B x

i
p for B ∈ X. We prove

that p[0], . . . , p[k−1] ∈ Q are compatible for each k. For this we show that if
we define ri =

⋃
j∈k x

i
p[j], then r = (ri)i∈n ∈ P and r ≤ p[j] for every j ∈ k.

The second part is obvious, so we only have to check that r ∈ P. So we fix
A ∈ X[k] and we prove that

⋂
i∈A ri = ∅. Suppose that m ∈

⋂
i∈A ri. Set

Bj = {i ∈ A : m ∈ xip[j]}. Then A =
⋃
j∈k Bj , so since A ∈ X[k], there exists

j0 such that Bj0 ∈ X. For simplicity we suppose j0 = 0. Keep in mind that,
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since X is upwards closed, this implies that B0 ∪ · · · ∪Bl ∈ X for all l. Then

m ∈
⋂
i∈B0

xip[0] ∩
⋂
i∈B1

xip[1] ∩ · · · ∩
⋂

i∈Bk−1

xip[k−1]

= uB0 ∩
⋂
i∈B1

xip[1] ∩ · · · ∩
⋂

i∈Bk−1

xip[k−1]

=
⋂
i∈B0

xip[1] ∩
⋂
i∈B1

xip[1] ∩
⋂
i∈B2

xip[2] ∩ · · · ∩
⋂

i∈Bk−1

xip[k−1]

= uB0∪B1 ∩
⋂
i∈B2

xip[2] ∩
⋂
i∈B3

xip[3] ∩ · · · ∩
⋂

i∈Bk−1

xip[k−1]

= · · · = uB0∪···∪Bk−1 = uA = ∅.

This contradiction finishes the proof of the claim.
Now, for every x = (xi, i ∈ n) ∈

∏
i∈n Ii, the set

Dx = {p ∈ P : xi ⊂∗ xip, i ∈ n}

is a dense subset of P. Since the ideals are θ-generated, we have cofinal
subsets Si ⊂ Ii with |Si| = θ. By MAθ(σ-k-linked), there is a filter G in P
which is generic for all the dense sets Dx, x ∈

∏
i∈n Si. This implies that G

is generic for all the dense sets Dx, x ∈
∏
i∈n Ii. The sets ci =

⋃
{xip : p ∈ G}

for i ∈ n are as desired.

Corollary 21 (MAθ(σ-k-linked)). For n > k, there exist no n-gaps of
θ-generated ideals in P(ω)/fin.

Proof. Let {Ii : i ∈ n} be mutually orthogonal ideals. Then the hy-
potheses of Theorem 20 hold for X = {A ⊂ n : |A| ≥ 2}, hence there exist
elements ci ≥ Ii with

⋂
i∈A ci = ∅ for all A ∈ X[k] = {A ⊂ n : |A| > k}.

The next corollary is just a topological interpretation of Theorem 20. An
open subset of a topological space X is called Fθ if it is the union of θ many
closed sets. We point out that, by Lemma 9, the conclusion of Corollary 22
is equivalent to saying that

⋂
i∈A Ui = ∅ for all A ∈ X[k].

Corollary 22 (MAθ(σ-k-linked)). Let {Ui : i ∈ n} be open Fθ subsets
of ω∗, and X an upwards closed family of subsets of n such that

⋂
i∈A Ui = ∅

for all A ∈ X. Then there exist clopen sets Ci ⊃ Ui such that
⋂
i∈ACi = ∅

for all A ∈ X[k].

We present a result for the Banach lattice C(ω∗) of real-valued contin-
uous functions on ω∗ (that is, the Banach lattice `∞/c0), which is a con-
sequence of Theorem 20. We use the following notation: Given F ⊂ C(ω∗)
and g ∈ C(ω∗), g ≤ F means that g ≤ f for all f ∈ F .
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Theorem 23 (MAθ(σ-k-linked)). Let {Fi ≥ 0 : i < n} be n subsets of
C(ω∗) of cardinality θ such that

∑
i∈n fi ≤ 1 whenever fi ∈ Fi. Then there

exist functions gi ∈ C(ω∗) such that gi ≥ Fi and
∑

i∈n gi ≤ k.

Proof. As a first step, we prove the following claim:

Claim. Given ε > 0 there exist functions gi ≥ Fi such that
∑

i∈n gi ≤
k + ε.

Proof of the claim. Consider m such that n/2m < ε. Let ∆ = {j/2m :
j = 0, . . . , 2m − 1}. For every δ ∈ ∆ and i ∈ n, let

U iδ = {x ∈ ω∗ : ∃f ∈ Fi f(x) > δ}.
These are Fθ open subsets of ω∗. Given δ∗ = (δ0, . . . , δn−1) ∈ ∆n, we define
Xδ∗ = {A ⊂ n :

∑
i∈A δi ≥ 1}. Notice that Xδ∗ [k] ⊃ {A ⊂ n :

∑
i∈A δi ≥ k}.

By Corollary 22 we obtain clopen sets Ciδ∗ ⊃ U iδi such that
⋂
i∈AC

i
δ∗

= ∅
whenever A ∈ Xδ∗ [k]. For δ ∈ ∆ and i ∈ n, set Di

δ =
⋂
{Ciδ∗ : δi = δ}.

Observe that Di
δ ⊃ U iδ. Define then

gi(x) = 2−m + max{δ ∈ ∆ : x ∈ Di
δ}.

We define that maximum to be 0 if x 6∈
⋃
δ∈∆D

i
δ. We check the desired

properties:

• The functions gi are continuous because the Di
δ are finitely many

clopen sets.
• gi ≥ Fi. Let f ∈ Fi and x ∈ ω∗ with f(x) > 0. Pick δ ∈ ∆ such that
δ < f(x) ≤ δ+2−m. Then x ∈ U iδ ⊂ Di

δ, hence gi(x) ≥ 2−m+δ ≥ f(x).
•
∑

i∈n gi ≤ k+ ε. Pick x ∈ ω∗. Write gi(x) = 2−m + δi, so that x ∈ Di
δi

for i ∈ A = {j : δj 6= 0}. Consider δ∗ = (δ0, . . . , δn−1). We have

x ∈
⋂
i∈A

Di
δi
⊂
⋂
i∈A

Ciδ∗ ,

so in particular the intersection is nonempty, so A 6∈ Xδ∗ [k], hence∑
i∈n δi =

∑
i∈A δi < k. Therefore

∑
i∈n gi(x) < n2−m + k < ε+ k.

This finishes the proof of the Claim.

The Claim allows us to find functions gmi for i ∈ n and m ∈ ω such
that gmi ≥ Fi and

∑
i∈n g

m
i ≤ k+ 2−m. We can take these functions so that

g0
i ≥ g1

i ≥ g2
i ≥ · · · . Moreover, the hypotheses of the theorem imply that

0 ≤ Fi ≤ 1 for each i, so we can suppose that gmi : ω∗ → [0, 1] (we could
replace gmi by min(gmi , 1)). To finish the proof, we find functions gi ∈ C(ω∗)
such that gi ≥ Fi and gi ≤ gmi for all m. This is a consequence of the fact
that under MAθ(σ-centered) there are no (ℵ0, θ)-gaps in P(ω)/fin, since gaps
in P(ω)/fin are related to gaps in C(ω∗). Anyway, we provide a direct proof.
We show that if F ≥ 0 has cardinality θ and g1 ≥ g2 ≥ · · · ≥ F , then there
exists g such that g1 ≥ g2 ≥ · · · ≥ qg ≥ F . We consider continuous functions
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ĝm : βω → [0, 1] such that ĝm|ω∗ = gm. Notice that for φ, ψ ∈ C(βω) we
have φ|ω∗ ≤ ψ|ω∗ if and only if φ(k) ≤ ψ(k) for all but finitely many k ∈ ω.
Consider a poset P whose elements are pairs of the form p = (hp, sp) where
hp : βω → [0, 1] is continuous and sp ∈ ω<ω with the following properties:

• hp|ω∗ ≤ gm for every m < ω,
• hp(k) ≤ ĝm(k) for every m < length(sp) and every k > spm.

The order relation is that p ≤ q if hq ≤ hp (as functions on βω) and sq ≤ sp
(as elements of the tree ω<ω). This partial order is σ-k-linked (even σ-
centered) since a finite number of conditions with a fixed sp are compatible.
We have a filter G that is generic for each of the dense sets Dm = {p :
length(sp) > m} for m ∈ ω and Df = {p : hp|ω∗ ≥ f} for f ∈ F . Let
g(k) = supp∈G hp(k) for k ∈ ω, and let g : βω → [0, 1] be a continuous
extension. The function g|ω∗ is as desired.

We notice that if there exists a k-gap of θ-generated ideals in P(ω)/fin,
then the constant k of Theorem 23 cannot be improved. Namely, consider a
multiple gap {Ii : i ∈ k}, and Fi ⊂ C(ω∗) the set of characteristic functions
of θ many clopens whose union is U(Ii). Suppose that gi ≥ Fi. Pick x ∈⋂
i∈k U(Ii). Then gi(x) ≥ 1 for every i, hence

∑
i∈k gi(x) ≥ k.

Theorem 24. Let M be a model of ZFC. Let ℵ0 < θ1 < θ2 < · · · be
cardinals in M and 1 < n1 ≤ n2 ≤ · · · be integers. Then there exists a ccc
generic extension M(G) of M such that for every j ∈ ω the following hold
in M(G):

(1) MAθj
(σ-nj-linked ), so there are no θj-generated n-gaps for n > nj.

(2) There exists an nj-gap of θj-generated ideals in P(ω)/fin.

Proof. Let M1 be the generic extension of M obtained by adding θω
many Cohen reals, where θω is any cardinal larger than all cardinals θj . For
every j, we can consider a set Xj ⊂ nωj of Cohen reals of cardinality θj . We
identify the set nωj with the set of branches of the nj-adic tree n<ωj . A set
X of Cohen reals is always a Lusin set, that is, every nowhere dense subset
of X is countable. This implies in particular that each of the sets Xj has
property A(ℵ1, nj) described as follows:

Definition. Let θ be a cardinal, n ∈ ω, and X ⊂ nω. We say that X
has property A(θ, n) if for every Y ⊂ X with |Y | = θ, there exists t ∈ n<ω
and elements {yi : i ∈ n} ⊂ Y such that t_i ∈ yi for every i ∈ n.

InM1 pick a cardinal κ ≥ θω such that κθω = κ. LetM2 be the generic ex-
tension of M1 obtained by a natural finite support iteration (Pα,Qα : α < κ)
of posets whose limit Pκ forces MAθj

(σ-nj-linked) for every j. Thus, for each
of the iterands Qα such there is j so that Pα forces both that |Qα| = θj
and that Qα is σ-nj-linked. The model M2 is the one we are looking for.
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It remains to find an nj-gap of θj-generated ideals in the model M2. For
every j we fix a regular cardinal λj such that θj−1 < λj ≤ θj (assume
θ0 = ℵ0).

Definition. Given a regular cardinal λ and n ∈ ω, we say that a poset
P has property K(λ, n) if every subset of P of cardinality λ has a further
subset of cardinality λ which is n-linked.

It is well-known and easily seen that these Knaster-type chain conditions
are preserved under finite support iterations. If a poset Q satisfies either
|Q| < λ or it is σ-n′-linked for n′ ≥ n, then Q has property K(λ, n). It
follows that the poset that forces the generic extension from M1 to M2 has
property K(λj , nj) for every j.

Claim 1. Let n ∈ ω and λ be a regular cardinal. Let X ⊂ nω have
property A(λ, n). Let P be a poset that satisfies K(λ, n). Then the set X still
has property A(λ, n) in the generic extension forced by P.

Proof of the claim. Suppose not. Then

M(G) |= ∃Y ⊂ X |Y | = λ and ∀t ∈ n<ω ∃ι(t) ∈ n ∀y ∈ Y t_ι(t) 6∈ y.
Let Ẏ and i be names for Y and the function ι : n<ω → n respectively. Let
Ỹ = {x ∈ X : ∃p ∈ P p 
 x ∈ Ẏ }. Then Ỹ is a set in the ground model with
Y ⊂ Ỹ ⊂ X. Since the forcing is K(λ, n), in particular λ-cc, the cardinal λ
is preserved, hence |Ỹ | ≥ λ. For every x ∈ Ỹ there exists p(x) ∈ P such that

p(x) 
 Ẏ ⊂ X, |Ẏ | = λ and x ∈ Ẏ ,
p(x) 
 ∀t ∈ T i(t) ∈ n,
p(x) 
 ∀t ∈ T t_i(t) 6∈ x.

Since P has property K(λ, n) and |Ỹ | ≥ λ is a regular cardinal, there
exists Z ⊂ Ỹ with |Z| = λ such that {p(x) : x ∈ Z} is n-linked. Since X
has property A(λ, n) there exist t ∈ n<ω and {xj : j ∈ n} ⊂ X such that
t_j ∈ xj for all j ∈ n. Since Z is n-linked, we can pick a condition p ≤ p(xj)
for j ∈ n. Then p 
 t_i(t) 6∈ xj , hence p 
 i(t) 6= j for every j ∈ n, which
contradicts the fact that p 
 i(t) ∈ n. This finishes the proof of Claim 1.

From Claim 1 and the remarks before it, we see that M2 |= Xj has
property A(λj , nj) for every j. It remains to show the following:

Claim 2. Let n ∈ ω and λ a regular cardinal. Let X ⊂ nω with property
A(λ, n). As in Section 4.1, for every x ∈ X and i ∈ n set aix = {s ∈ T :
s_i ∈ x}. Let Ji be the ideal generated by {aix : x ∈ X}. Then the ideals
{Ji : i ∈ n} form an n-gap that is not weakly countably separated (indeed
not even weakly (<λ)-separated).

Proof of the claim. We just follow the same argument as for Theorem 6.
Let us denote by T (m) the set of all elements of t ∈ T = nω of length
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less than m. Suppose that the ideals are weakly countably separated, so
that we have elements cki ⊂ ω, i ∈ n, k ∈ ω, such that

⋂
i∈n c

k
i = ∅ for

each k, and whenever we pick bi ∈ Ji there exists k with bi ⊂∗ cki . In
particular, for every x ∈ X and every i ∈ n there exist k(x),m(x) ∈ ω such
that aix \ T (m(x)) ⊂ c

k(x)
i for every i ∈ n. For every m, k ∈ ω and every

s ∈ nm+2, let

X(m, k, s) = {x ∈ X : x|m+2 = s and ∀i ∈ n aix \ T (m) ⊂ cki }.
There exist m0, k0, s0 such that |X(m0, k0, s0)| ≥ λ, and by property A(λ, n)
we can find t ∈ T (necessarily of length greater than m0) and {xi : i ∈ n} ⊂
X(m0, k0, s0) with t_i ∈ xi. This implies that t ∈

⋂
i∈n a

i
xi \ T (m0) ⊂⋂

i∈n c
k0
i = ∅, a contradiction.

7. Dense multiple gaps from completely separable almost dis-
joint families. An almost disjoint family is a family A of infinite subsets
of ω such that a ∩ b =∗ ∅ for all different a, b ∈ A.

Definition 25. An almost disjoint family A is called completely sepa-
rable if for every subset x ⊂ ω that is not in the ideal generated by A we
have |{a ∈ A : a ⊂∗ x}| = c.

The concept traces back to [11]. Completely separable almost disjoint
families exist under the assumption that a = c [14] or s = ω1 [4, Corollary
2.8]. A recent work of Shelah [15] shows their existence under other assump-
tions, in particular if s < a or c < ℵω. The consistency of the nonexistence
of such families is unknown.

Theorem 26. Assume there exists a completely separable almost disjoint
family. Let n ∈ ω and X be a family of proper nonempty subsets of n. Then
there exists a dense n-gap {Ii : i ∈ n} in P(ω)/fin that is a B-jigsaw for
B ∈ X but a B-clover for B 6∈ X (|B| ≥ 2).

Proof. We proceed by induction on n, so we fix n and we suppose the
theorem is proven for all m < n. For convenience we will assume that X
includes all singletons. For n = 1 we need an ideal and for n = 2 we need a
2-gap. LetA be a completely separable almost disjoint family. We decompose
it into disjoint subfamilies AB, B ∈ X, in such a way that if x ⊂ ω is not in
the ideal generated by A, then |{a ∈ AB : a ⊂∗ x}| = c for all B ∈ X. The
decomposition can be made as follows: Let {xα : α < c} be an enumeration
of all infinite subsets of ω that are not in the ideal generated by A in which
each set is repeated c many times. Inductively on α, we will choose elements
{aαB : α < c, B ∈ X} ⊂ A. At step α, since |{a ∈ A : a ⊂∗ x}| = c
and we have chosen only less than c elements in the previous steps, we can
pick aαB ⊂∗ xα and different from all previous choices. At the end, it is
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enough to declare aαB ∈ AB for all α < c and all B ∈ X and we will have a
decomposition as required.

Now we define the ideals {Ii : i ∈ n}. For B ∈ X with 2 ≤ |B| < n
and x ∈ AB, we will apply the inductive hypothesis to find a dense multiple
gap {Ixi : i ∈ B} in the Boolean algebra P(x)/fin that is a C-jigsaw for all
C ⊂ B with C ∈ X but a C-clover for all C ⊂ B with C 6∈ X. For every
i ∈ n, Ii is defined to be the ideal generated by

A{i} ∪
⋃{

Ixi : x ∈
⋃
{AB : B ∈ X, i ∈ B, 2 ≤ |B| < n}

}
.

Let us prove that this is a dense multiple gap. Density is clear. The
ideals are mutually orthogonal, because if u and v belong to the set of
generators of Ii and Ij respectively (i 6= j), then: either u ⊂ x and v ⊂ y for
different x, y ∈ A (and A is almost disjoint); or there exists x ∈ A such that
u ∈ Ixi and v ∈ Ixj . Finally, suppose that we have elements ci with ci ≥ Ii.
We prove inductively on k < n that

⋂
i∈k ci is not in the ideal generated

by A, in particular it is infinite. So suppose x =
⋂
i∈k ci is not in the ideal

generated by A, hence there are c many a ∈ A{k} such that a ⊂∗ x. On the
other hand, a ⊂∗ ck for all a ∈ A{k}, so there are c many a ∈ A{k} with
a ⊂∗ ck ∩ x =

⋂
i∈k+1 ci. This proves that the ideals form a multiple gap.

Let us check now that the ideals form a B-jigsaw for all B ∈ X. So assume
we have a ⊂ ω and A ⊃ B such that {Ii|a : i ∈ A} form a multiple gap.
There are two possibilities: either a is in the ideal generated by A or it is not.
If it is not, then a contains an element b ∈ AB. Then b ∈ I⊥i for i 6∈ B while
{Ii|b : i ∈ B} = {Ibi : i ∈ B} is a multiple gap, so we are done. The other case
is that a is in the ideal generated byA. Let F = {u ∈ A : u∩a 6=∗ ∅}. This set
is finite and a =

⋃
u∈F a∩u. Since we assume that {Ii|a : i ∈ A} is a multiple

gap, there must exist u ∈ F such that {Ii|a∩u : i ∈ A} = {Iui |a∩u : i ∈ A}
is a multiple gap. For that u, we must have u ∈ AC with C ⊃ A. Since we
assumed that the ideals {Iui : i ∈ A} are a B-jigsaw, we find b ⊂ a ∩ u such
that b ∈ I⊥i for i ∈ A \ B but {Ii|b : i ∈ B} is a multiple gap. This finishes
the proof that the ideals are a B-jigsaw for B ∈ X.

We now prove that the ideals are a B-clover for all B 6∈ X. Suppose for
contradiction that there exists an infinite set a ⊂ ω such that {Ii|a : i ∈ B}
is a multiple gap but a ∈ I⊥i for i 6∈ B. Again we distinguish two cases,
according to whether a is in the ideal generated by A or not. If a is not in
the ideal, then it contains c many elements from A{i} for every i ∈ n, which
contradicts a ∈ I⊥i for i 6∈ B. So suppose that a is in the ideal generated
by A and again consider the finite set F = {u ∈ A : u ∩ a 6=∗ 0}, so that
a =

⋃
u∈F a∩u. Since {Ii|a : i ∈ B} is a multiple gap, again it follows that for

some u ∈ F , {Ii|a∩u : i ∈ B} is a multiple gap, so u ∈ AC with C ⊃ B. Notice
that C 6= B since B 6∈ X. We find that {Ii|a∩u : i ∈ B} = {Iui |a∩u : i ∈ B}
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is a multiple gap but a ∩ u ∈ (Iui )⊥ for i ∈ C \ B. This contradicts the
hypothesis that the ideals {Iui : i ∈ C} are a B-clover.

8. Dense jigsaws and injective Banach spaces. In this section we
consider an application to the theory of Banach spaces. We refer to [1, 7]
for the basic facts and terminology on the subject.

The existence of a gap in a Boolean algebra is equivalent to the failure
of completeness. Namely, in a complete Boolean algebra orthogonal ide-
als can always be separated by their suprema, and conversely if a set S
lacks a supremum, the ideal generated by S forms a gap together with its
orthogonal ideal. At the same time, completeness is equivalent to injectiv-
ity (cf. for instance [21]), meaning that B is complete if and only if for
every superalgebra B′ ⊃ B there is a Boolean projection from B′ onto B.
If we look at the Banach space C(St(B)) of continuous functions we find
in a similar spirit that B is complete if and only if C(St(B)) is 1-injective,
meaning that for every superspace X ⊃ C(St(B)) there exists a projection
T : X → C(St(B)) of norm 1 (cf. for instance [1]). The situation becomes
more complicated if we deal with injectivity instead of 1-injectivity of Ba-
nach spaces. The definition of injectivity is the same as 1-injectivity but
we require the projection T to be just a bounded operator, not necessar-
ily of norm 1. A characterization of injective Banach spaces is an impor-
tant open problem. In this section we prove that while the existence of
a gap is necessary and sufficient for the failure of 1-injectivity, the exis-
tence of arbitrarily large dense jigsaws is sufficient for the failure of injec-
tivity.

Theorem 27. If B contains a dense n-jigsaw for every n, then C(St(B))
is uncomplemented in some superspace X of density character |B|.

This will be obtained as an application of a result by Ditor [6]. The-
orem 27 is a corollary of Theorem 29, whose proof is given at the end of
this section, after some lemmas. For B = P(ω)/fin, the assumption of The-
orem 27 above holds by Theorem 15 (when

⋃
i∈nGi = K). In this way,

we have a proof of a result of Amir [2] that C(ω∗) is uncomplemented in
some superspace of density character c. In this connection, we mention the
open problem whether C(ω∗) is uncomplemented in a superspace X with
dens(X/C(ω∗)) = ℵ1. Theorem 27 can be stated more generally, removing
the zero-dimensionality assumption. For this we define:

Definition 28. Let K be a compact space and {Fi : i ∈ n} closed
subspaces. We say that they form a jigsaw of closed sets if for any nonempty
proper subsets A ⊃ B of n, the set

⋂
i∈B Fi \

⋂
i∈A Fi is dense in

⋂
i∈B Fi.

Such a jigsaw is called dense if
⋃
i∈n Fi = K.



40 A. Avilés and S. Todorcevic

A finite family {Ii : i ∈ n} of ideals of B is a dense jigsaw if and only
if the sets {U(Ii)} form a dense jigsaw of closed sets in St(B). The more
general statement is:

Theorem 29. Let K be a compact space. Suppose that for every n there
exists a dense jigsaw of n closed sets in K. Then C(K) is uncomplemented
in some superspace of the same density character as C(K).

Let {Fi : i ∈ n} be a dense jigsaw of closed sets. We consider the com-
pact space L =

⋃
i∈n Fi × {i}, the disjoint sum of the compact spaces Fi,

and φ : L→ K the continuous surjection given by φ(x, i) = x. The compo-
sition operator φ0 : C(K) → C(L) given by φ0(f) = f ◦ φ is an isometric
embedding of Banach spaces. Let H(L) be the hyperspace of L consisting
of all nonempty closed subsets of L endowed with the Vietoris topology.
We define a derivation process on subsets of K, the derived set D(X) of
X ⊂ K being defined to be the set of all x ∈ X for which there exist two
disjoint closed nonempty sets R,S ⊂ φ−1(x) that both belong to the closure
in H(L) of the set {φ−1(y) : y ∈ X}. As usual, the iterated derived sets are
D(n+1)(X) = D(D(n)(X)). This derivation procedure is defined by Ditor
[6, Definition 5.3]; in his notation our D(n)(K) would be ∆(n)

φ (2, . . . , 2). He
proves the following [6, Corollary 5.4]:

Lemma 30. If D(k)(K) 6= ∅ and T : C(L) → C(K) is an operator with
Tφ0 = 1C(K), then ‖T‖ ≥ 1 + k.

Here 1C(K) denotes the identity map on C(K). In our particular situa-
tion, we have:

Lemma 31. D(k)(K) = {x ∈ K : |{i ∈ n : x ∈ Fi}| ≥ 2k}.

Proof. We prove the lemma by induction. It is obvious for k=0 (D(0)(K)
= K), so we suppose it holds for k and prove it for k + 1. Suppose |{i ∈ n :
x ∈ Fi}| ≥ 2k+1. Write {i ∈ n : x ∈ Fi} as the union A ∪ B of two disjoint
sets with |A|, |B| ≥ 2k. Notice that φ−1(x) = {(x, i) : i ∈ A ∪ B}. Because
the sets Fi form a jigsaw, x is in the closure of the sets V =

⋂
i∈A Fi\

⋃
i 6∈A Fi

and W =
⋂
i∈B Fi \

⋃
i 6∈B Fi, which are both contained in D(k)(K) by the

inductive hypothesis. Consider nets xα ⊂ V and yα ⊂W that converge to x,
with φ−1(xα) and φ−1(yα) being convergent nets in the Vietoris topology
to certain sets R and S respectively. Notice that R ⊂ {(x, i) : i ∈ A} and
S ⊂ {(x, i) : i ∈ B}. This shows that x ∈ D(k+1)(K). For the converse,
observe that for every y ∈ D(k)(K), |φ−1(y)| = |{(y, i) : y ∈ Fi}| ≥ 2k, and
for any R in the closure of {φ−1(y) : y ∈ D(k)(K)} in the Vietoris topology
we have |R| ≥ 2k. Therefore, if |φ−1(x)| < 2k+1, then x 6∈ D(k+1)(K).

Putting together the previous two lemmas, we get:
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Lemma 32. If we have a jigsaw of 2m closed sets in K, and L and φ
are as above, then for any T : C(L) → C(K) with Tφ0 = 1C(K) we have
‖T‖ ≥ 1 +m.

Proof of Theorem 29. By Lemma 32, for every m, we have a continuous
surjection φm : Lm → K such that Lm has the same weight as K, and for
any T : C(Lm)→ C(K) with Tφ0

m = 1C(K) we have ‖T‖ ≥ 1 +m. Consider

L =
{

(xm)m<ω ∈
∏
m<ω

Lm : ∀n,m < ω φm(xm) = φn(xn)
}
.

The weight of L equals the weight of K, and we have a continuous
surjection φ : L → K given by φ((xm)m<ω) = φn(xn) for any fixed n.
Then Y = C(L) will be the superspace that we look for, and we consider
C(K) ⊂ C(L) through the embedding φ0 : C(K) → C(L). For every m we
can express φ = φmπm as the composition of the mth coordinate projection
πm : L → Lm with φm, φ : L → Lm → K. Hence we can write C(K) ⊂
C(Lm) ⊂ C(L). Since any projection T : C(Lm) → C(K) must have norm
at least 1 +m, no projection T : C(L)→ C(K) exists.
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Université Paris Diderot Paris 7
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