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Generating countable sets of surjective functions
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J. D. Mitchell and Y. Péresse (St Andrews)

Abstract. We prove that any countable set of surjective functions on an infinite
set of cardinality ℵn with n ∈ N can be generated by at most n2/2 + 9n/2 + 7 surjective
functions of the same set; and there exist n2/2+9n/2+7 surjective functions that cannot be
generated by any smaller number of surjections. We also present several analogous results
for other classical infinite transformation semigroups such as the injective functions, the
Baer–Levi semigroups, and the Schützenberger monoids.

1. Introduction. If X is a topological space, then we denote by C(X)
the semigroup under composition of continuous functions from X to X. If
X is a locally compact Hausdorff space, then C(X) with the compact-open
topology is a topological semigroup.

In 1934 Schreier and Ulam [38] proved that C([0, 1]m), m ≥ 1, has a
dense subsemigroup generated by 5 elements. In the same issue of Funda-
menta Mathematicae that contained Schreier and Ulam’s paper, Sierpiński
[39] proved that C([0, 1]) has a dense 4-generated subsemigroup. In fact,
Sierpiński proved something stronger: for every countable sequence f0, f1, . . .
∈ C([0, 1]) there exists a 4-generated subsemigroup of C([0, 1]) containing
f0, f1, . . . . Since C([0, 1]) is separable, Schreier and Ulam’s result, in the
case m = 1, follows immediately from Sierpiński’s. In 1935, Jarńık and
Knichal [21] proved that Sierpiński’s four functions can be generated by two
(this result was unwittingly reproduced by Subbiah in [42] and the present
authors in [31]). If f ∈ C([0, 1]), then the semigroup 〈f〉 generated by f
and the (topological) closure of 〈f〉 are commutative. However, as C([0, 1])
is not commutative, 2 is the least number of generators for a dense sub-
semigroup of C([0, 1]). The paper immediately following that of Jarńık and
Knichal in Fundamenta Mathematicae is another work of Sierpiński [40]
(see also Banach [2]). In this paper it is shown that if Ω is an infinite
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set and f0, f1, . . . : Ω → Ω, then there exist g0, g1 : Ω → Ω such that
f0, f1, . . . ∈ 〈g0, g1〉.

In view of these early papers of Sierpiński, we will say that a semi-
group S has Sierpiński rank m ∈ N if m is the least number such that
for all f0, f1, . . . ∈ S, there exist g0, . . . , gm−1 ∈ S such that f0, f1, . . . ∈
〈g0, . . . , gm−1〉. If no such m exists, then we will say that S has infinite
Sierpiński rank. Thus C([0, 1]) and the semigroup ΩΩ of all functions from Ω
to Ω have Sierpiński rank 2.

The following theorem is the main result of this paper.

Main Theorem. Let Ω be an infinite set and let Surj(Ω) denote the
semigroup of surjective functions from Ω to Ω. Then:

(i) if |Ω| = ℵn for n ∈ N, then Surj(Ω) has Sierpiński rank n2/2 +
9n/2 + 7;

(ii) if |Ω| ≥ ℵω, then Surj(Ω) has infinite Sierpiński rank.

In Section 4, we present several analogous results for other classical infi-
nite transformation semigroups. For example, the injective functions on a set
of cardinality ℵn for n ∈ N have Sierpiński rank n+ 4, the Baer–Levi semi-
groups on any infinite set have infinite Sierpiński rank, and the Sierpiński
rank of the Schützenberger monoid on a set of regular cardinality is 2.

There are several examples of semigroups with finite Sierpiński rank in
the literature. It is pointed out in [17] that Banach’s proof in [2] can be easily
adapted to show that the semigroups of partial mappings, binary relations or
partial bijections on an infinite set have finite Sierpiński rank. Examples of
semigroups having infinite Sierpiński rank include all non-finitely generated
countable semigroups. An uncountable example is that of R under multipli-
cation, as the natural numbers are not contained in any finitely generated
subsemigroup.

Cook and Ingram [8], and independently Subbiah [42], prove that if X
is any of: the euclidean m-cell [0, 1]m, m ≥ 1, the Hilbert cube [0, 1]N, the
Cantor space 2N, the rational numbers Q, or the irrational numbers, then
C(X) has Sierpiński rank 2. The Sierpiński rank and the minimum number
of generators of dense subsemigroups of C(X) and related semigroups for
various spaces X were considered in [25, 27, 31, 41, 42]. A survey of some
of these results can be found in [33].

Magill [26] proved that the Sierpiński rank of the semigroup of linear
mappings of a vector space V over a field F is 2 if and only if V is infinite-
dimensional or dimV = 1 and F is finite. Magill’s theorem was generalized
slightly in [1]. The second author showed in [36, Theorem 3.10.4] that the
Sierpiński rank of the endomorphism semigroup of the Rado graph is 2 or 3,
although the exact value has not been determined. The Rado graph is the
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Fräıssé limit of the class of finite graphs; see [6, Section 5.1] for further
details. It would be interesting to know the Sierpiński rank of some fur-
ther endomorphism semigroups of Fräıssé limits. Galvin [15] proved that
any countable subset of the symmetric group Sym(Ω) on an infinite set is
contained in a 2-generator subgroup. Galvin’s proof can be adapted to show
that if G is the group of homeomorphisms of the Cantor space, the ratio-
nals, or the irrationals, then any countable subset of G is contained in a
2-generator subgroup. It was also shown in [5] that the homeomorphisms
of the euclidean m-sphere have finite Sierpiński rank. Mesyan [29] showed
that the multiplicative semigroup of the endomorphism ring of the direct
sum of infinitely many copies of a non-zero left R-module over a ring R has
Sierpiński rank 2.

Perhaps unsurprisingly, having finite Sierpiński rank is a rather strong
property that has several consequences, which we now highlight. For in-
stance, as we have seen, if S is a separable topological semigroup with
Sierpiński rank m ∈ N, then S has an m-generated dense subsemigroup.
However, the converse does not hold. For example, if End(N,≤) denotes the
order-preserving mappings on N, then End(N,≤) has infinite Sierpiński rank
([31, Theorem 4.1]). On the other hand, it is straightforward to show that
End(N,≤) contains a finitely generated dense subsemigroup.

A straightforward consequence of Galvin’s theorem is an alternative
proof to that of Higman, Neumann and Neumann [18] showing that every
countable group can be embedded in a 2-generator group. The analogous
results for semigroups and rings follow from Sierpiński [40] and Mesyan [29],
respectively, reproducing results of Evans [14] and Maltsev (see [34]).

Many of the examples of semigroups with finite Sierpiński rank given
above, in fact, have a stronger property. Let Σ be a finite alphabet, let Σ+

denote the free semigroup over Σ, let w ∈ Σ+, and let S be a semigroup.
Then w is universal for S if for all s ∈ S there exists a homomorphism
F : Σ+ → S such that s = (w)F . The set of words {w0, w1, . . .} over a
finite alphabet Σ is universal for S if for all s0, s1, . . . ∈ S there exists a
homomorphism F : Σ+ → S such that si = (wi)F for all i ∈ N. Replacing
‘free semigroup’ with ‘free group’ in the previous sentences, it is clear what
is meant by a universal word for a group. Universal words for groups and
semigroups have been extensively investigated; see, for example, [10, 12, 13,
24, 32, 35].

If S has an infinite universal set of words over a finite alphabet Σ, then
it is clear that S has Sierpiński rank at most |Σ|. Sierpiński [40] and Banach
[2] proved that ΩΩ has Sierpiński rank 2 by showing that the sets of words
a2b3(abab3)i+1ab2ab3 and abai+1b2, respectively, with i ∈ N are universal
for ΩΩ. Note that throughout the paper we write functions to the right of
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their arguments and compose from left to right. Many of the semigroups
given above that have finite Sierpiński rank also have an infinite set of uni-
versal words over a finite alphabet, and, in fact, it is the stronger property
that is shown to hold in the proofs given in the references above. For ex-
ample: Sym(Ω), ΩΩ, C([0, 1]m) (m ≥ 1), C([0, 1]N), C(2N), C(Q), C(R\Q),
the linear mappings on an infinite-dimensional vector space, the endomor-
phisms of the Rado graph. However, we will show that the semigroups of
surjective and injective functions have no infinite universal sets of words by
showing that they do not have the following weaker property.

A semigroup S is called strongly distorted if there exist m, a0, a1, . . . ∈ N
such that for all f0, f1, . . . ∈ S there exist g0, . . . , gm ∈ S such that fi is a
product of g0, . . . , gm with length at most ai for all i ∈ N. The notion of
strong distortion for groups was introduced by Khelif [23] (under the name
Property P). If G is a non-finitely generated group such that G is strongly
distorted, then G is not the union of a countable chain of proper subgroups
and for all generating sets U for G there exists m ≥ 1 such that G = Um

(see [5, Remark A.3] or [23]). The latter is referred to as G having Bergman’s
property, after [3]. The analogous properties and results for semigroups were
given in [28]. Many groups and semigroups have Bergman’s property; see, for
example, [11, 22, 28, 37]. As noted above, most of the semigroups known to
have finite Sierpiński rank are strongly distorted and hence have Bergman’s
property.

Clearly, if S has an infinite universal set of words over a finite alphabet,
then S is strongly distorted. Also if S is strongly distorted, then S has
finite Sierpiński rank. However, none of these notions is equivalent to any of
the others. We will prove that Inj(Ω) and Surj(Ω) do not have Bergman’s
property and hence are not strongly distorted and have no infinite universal
sets of words. Khelif [23] claims that it is possible to construct an example of
a group that is strongly distorted but does not have an infinite universal set
of words (the latter is referred to as Property P∗ in [23]). A simple example
of a semigroup that is strongly distorted but that does not have an infinite
universal set of words is given below.

Example 1.1. Let T = ΩΩ for some infinite set Ω and let x, y be two
elements not in T . Then define S to be the semigroup with elements T∪{x, y}
and multiplication extending that on T such that x and y act as the identity
on T and xy = yx = y2 = x2 = y. Then, since T is strongly distorted and
S \ T is finite, it follows by Theorem 2.6 below that S is strongly distorted.
Seeking a contradiction suppose that there exists an infinite universal set
of words W ⊆ Σ+ for S over some finite alphabet Σ. Then there exists a
homomorphism F : Σ+ → S such that (w)F = x for all w ∈ W . But no
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product in S of length greater than 1 equals x and so |w| = 1 for all w ∈W .
Thus W is finite, a contradiction.

2. Preliminaries and generalities. In this section we introduce the
background material and notation required to prove our Main Theorem. We
also give some general results relating to semigroups and their Sierpiński
rank.

Lemma 2.1. Let S be a semigroup such that every countable subset is
contained in a finitely generated subsemigroup. Then S has finite Sierpiński
rank.

Proof. Suppose that for all m ∈ N there exists a countable Cm ⊆ S
such that Cm is not contained in any m-generated subsemigroup of S. Then⋃
m∈NCm is countable, but not contained in any finitely generated subsemi-

group of S, a contradiction.

In the previous section, we mentioned that if S is a semigroup with
Sierpiński rank 1, then S is commutative. The following proposition shows
that, up to isomorphism, there is only one infinite semigroup with Sierpiński
rank 1.

Lemma 2.2. Let S be an infinite semigroup with Sierpiński rank 1. Then
S is isomorphic to the natural numbers N \ {0} under addition.

Proof. It suffices to prove that S is 1-generated as every infinite 1-
generated semigroup is isomorphic to the natural numbers without zero
under addition. Seeking a contradiction assume that S is not 1-generated.
Let s0 ∈ S be arbitrary. Then 〈s0〉 6= S and so there exists u ∈ S such that
u 6∈ 〈s0〉. But S has Sierpiński rank 1 and so there exists s1 ∈ S such that
〈s0〉 � 〈s0, u〉 ≤ 〈s1〉. Continuing in this way there exist s0, s1, . . . ∈ S such
that

〈s0〉 � 〈s1〉 � · · · .

Since S has Sierpiński rank 1, there exists t ∈ S such that s0, s1, . . . ∈ 〈t〉.
In particular, for all i ∈ N there exists mi > 0 such that tmi = si. Hence for
all i ∈ N,

{tqmi : q ≥ 1} = 〈si〉 � 〈si+1〉 = {tqmi+1 : q ≥ 1}.

Thus for all i ∈ N we see that mi+1 divides mi and mi+1 6= mi. It follows
that m0 > m1 > · · · , a contradiction.

By a similar argument to that given in the proof of Lemma 2.2 it follows
that if G is any group such that every countable subset is contained in a
1-generated subgroup, then G is isomorphic to the integers under addition.



72 J. D. Mitchell and Y. Péresse

If S is a semigroup and T is a subsemigroup of S, it is natural to ask
how the Sierpiński rank of S relates to that of T and vice versa. Of course,
the answer is, in general, that they are not related. However, if the subsemi-
groups are restricted to those that are ‘large’ in some sense, then more can
be said.

If T is a subsemigroup of a semigroup S, then we denote by rank(S : T )
the least cardinality of a subset U of S such that T ∪U generates S. Clearly,
if S has Sierpiński rank m ∈ N and T is any subsemigroup of S, then
rank(S : T ) ≤ m or rank(S : T ) > ℵ0. The cardinal rank(S : T ) is referred
to as the relative rank of T in S; see [7, 20, 30]. The following lemma gives an
upper bound for the Sierpiński rank of a semigroup in terms of the relative
rank and Sierpiński rank of its subsemigroups.

Lemma 2.3. Let S be a semigroup and let T be a subsemigroup of S
such that rank(S : T ) is finite and T has Sierpiński rank m ∈ N. Then the
Sierpiński rank of S is at most rank(S : T ) +m.

Proof. Let f0, f1, . . . ∈ S be arbitrary and let U be a subset of S \T such
that 〈T,U〉 = S and |U | = rank(S : T ). Then for all i ∈ N, since fi is a finite
product of elements in T and U , there exists a finite subset Vi of T such
that fi ∈ 〈U, Vi〉. Since V =

⋃
i∈N Vi is countable and T has Sierpiński rank

m ∈ N, there exist g0, g1, . . . , gm−1 ∈ T such that V ⊆ 〈g0, g1, . . . , gm−1〉.
Thus

f0, f1, . . . ∈ 〈U, V 〉 ⊆ 〈U, g0, g1, . . . , gm−1〉

as required.

If S is a semigroup with finite Sierpiński rank and T is a subsemigroup
of S with rank(S : T ) finite, then it is not necessarily true that T has finite
Sierpiński rank. For example, rank(NN : End(N,≤)) = 1 ([17, Proposition
1.8]) but End(N,≤) has infinite Sierpiński rank ([31, Theorem 4.1]).

If S is a semigroup and T is a strongly distorted subsemigroup of S
with rank(S : T ) finite, then S is not always strongly distorted. For ex-
ample, rank(Inj(N) : Sym(N)) is finite (Proposition 4.2 below) and Sym(N)
is strongly distorted [15] but Inj(N) is not (see the comments after the proof
of Theorem 4.1).

If the subsemigroup T from Lemma 2.3 has the property that S \ T is
an ideal in S, then the following lemma shows that the upper bound given
by Lemma 2.3 is the exact value of the Sierpiński rank of S.

Lemma 2.4. Let S be a semigroup and let T be a subsemigroup of S such
that rank(S : T ) is finite, S \ T is an ideal of S, and T has Sierpiński rank
m ∈ N. Then the Sierpiński rank of S is rank(S : T ) +m.
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Proof. By Lemma 2.3, it suffices to show that the Sierpiński rank of S is
at least rank(S : T ) +m. We will prove that there exists a countable subset
of S that cannot be generated by fewer than rank(S : T ) +m elements of S.

Let U be a subset of S \ T such that 〈T,U〉 = S and |U | = rank(S : T ).
By the definition of Sierpiński rank, there exists a countable V ⊆ T that
cannot be generated by fewer than m elements of T .

As U ∪ V is a countable subset of S, it follows, by Lemma 2.3, that
there exists a finite subset F of S such that U ∪ V ⊆ 〈F 〉. Since U ⊆ 〈F 〉,
it follows that 〈T, F 〉 = S and hence |F \ T | ≥ rank(S : T ). On the other
hand, S \ T is an ideal of T and so V is contained in 〈F ∩ T 〉. Since V is
not generated by fewer than m elements of T , it follows that |F ∩ T | ≥ m.
Thus |F | ≥ rank(S : T ) +m, as required.

Let G be a group and let H be a subgroup of G with finite index. Clearly,
rank(G : H) is at most the index of H in G. It follows, by Lemma 2.3, that if
H has finite Sierpiński rank, then so does G. We define a notion of index for
arbitrary semigroups, and prove in Theorem 2.5 that if T is a subsemigroup
of finite index in a semigroup S, then T has finite Sierpiński rank if and
only if S does. In particular, if a group G has finite Sierpiński rank, then so
does any finite index subgroup H.

When considering semigroups in general rather than groups, there are
several competing notions of index. The Rees index of a subsemigroup T of
a semigroup S is just |S \ T |+1. Although there are some parallels between
the usual notion of index in group theory and Rees index, the latter does
not, in any sense, generalize the former, since infinite groups have no proper
finite Rees index subgroups. Perhaps a more useful notion, that generalizes
both Rees index and the group-theoretic index, was defined in [16] using
the classical notion of Green’s relations from semigroup theory; see [19] for
further details relating to Green’s relations and semigroup theory in general.

Let S be a semigroup, let T be a subsemigroup of S, and let T 1 denote
the subsemigroup T with a new identity 1 adjoined. Green’s relative RT -
relation and relative LT -relation on S are defined by sRT t if sT 1 = tT 1 and
sLT t if T 1s = T 1t where s, t ∈ S. Green’s relative HT -relation is defined
by HT = RT ∩LT . These relations are equivalence relations on S and their
equivalence classes are referred to as RT -, LT -, and HT -classes, respectively.
If C is an RT -, LT -, or HT -class, then it is straightforward to verify that
either C ⊆ T or C ⊆ S\T ; for further details regarding other basic properties
of relative Green’s relations see [16]. The Green index of T in S as defined
in [16] is the number of HT -classes contained in S \ T plus 1. Let H be a
subgroup of a group G. Then H has finite index in G if and only if H has
finite Green index in G; for further details see [16].
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The following theorem shows that a semigroup has finite Sierpiński rank
if and only if all of its finite Green index subsemigroups have finite Sierpiński
rank. Unlike Lemmas 2.3 and 2.4, which are used in the proofs of the Main
Theorem and Theorem 4.1, Theorem 2.5 is not used elsewhere in the paper.
It seems likely that few of the examples of semigroups with finite Sierpiński
rank in this paper have subsemigroups with finite Green index. For example,
the Green index of any proper subsemigroup of NN is 2ℵ0 . To see this, let T be
a subsemigroup of NN with Green index strictly less than 2ℵ0 . If f, g ∈ NN are
such that fLT g, then fLg in NN and so, by [19, Exercise 2.6.16], Nf = Ng.
Likewise, if fRT g, then the kernel {(i, j) ∈ N×N : if = jf} of f equals the
kernel of g. It follows from the definitions that there are at most as many
LT -classes and RT -classes as HT -classes in NN \ T . Hence T contains AN

for some infinite coinfinite A ⊆ N. If g : A → N, then there are 2ℵ0 many
R-classes in NN containing extensions of g. Hence T contains an extension
of every function in NA. Clearly, every element of NN can be written as a
product of an element from AN and an element from NA. Thus T = NN.

The following theorem and a preliminary version of its proof was sug-
gested to us by V. Maltcev. The proof of the direct implication of the theo-
rem is very similar to those of Lemma 3.2 and Theorem 4.3 in [4]. However,
Theorem 2.5 does not appear to follow immediately from [4].

Theorem 2.5. Let S be a semigroup and let T be a subsemigroup of
finite Green index in S. Then S has finite Sierpiński rank if and only if T
has finite Sierpiński rank.

Proof. Without loss of generality we may assume that S contains an
identity 1 and that 1 ∈ T . Let C be the union of {1} and a set of represen-
tatives of all the HT -classes contained in S \ T . Then, by assumption, C is
finite.

(⇐) Since 〈T,C〉 = TC = S, it follows that rank(S : T ) ≤ |C| < ℵ0.
Hence, by Lemma 2.3, it follows that the Sierpiński rank of S is finite, as
required.

(⇒) If s ∈ S \T , then there exists a unique c(s) ∈ C such that sHT c(s).
Hence there exist l(s), r(s) ∈ T such that s = l(s)c(s) = c(s)r(s). Through-
out the remainder of the proof we fix one such l(s) and one such r(s) for all
s ∈ S \ T .

Let t0, t1, . . . ∈ T be arbitrary. It suffices, by Lemma 2.1, to prove that
there exists a finite W ⊆ T such that t0, t1, . . . ∈ 〈W 〉. Since S has finite
Sierpiński rank, there exists a finite U ⊆ S such that t0, t1, . . . ∈ 〈U〉. Let V
be any finite subset of T such that:

• 1 ∈ V ;
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• {cu ∈ T : c ∈ C, u ∈ U} = CU ∩ T is contained in V ;
• {l(s) : s ∈ CU \ T} is contained in V .

Then, since 1 ∈ C, it follows that U ∩ T ⊆ V and l(s) ∈ V for all s ∈ U \ T .
We begin by proving that for all u0, u1, . . . , uk ∈ U there exist v0, v1,

. . . , vk ∈ V and c ∈ C such that

u0u1 · · ·uk = v0v1 · · · vkc.

We proceed by induction on k. If k = 0, then either u0 ∈ U ∩ T or u0 ∈
U \ T ⊆ S \ T . In the first case, u0 = u0 · 1, and in the second case,
u0 = l(u0) · c(u0), as required.

Assume by induction that any product of elements in U with length at
most k can be given in the required form. Let u0, u1, . . . , uk ∈ U . Then, by
the inductive hypothesis, there exist v0, v1, . . . , vk−1 ∈ V and d ∈ C such
that u0 · · ·uk−1 = v0 · · · vk−1d. If duk ∈ T , then duk ∈ CU ∩ T ⊆ V and so

u0 · · ·uk = v0 · · · vk−1 · duk · 1,

as required. If duk ∈ S \ T , then duk ∈ CU \ T and so l(duk) ∈ V . Hence

u0 · · ·uk = v0 · · · vk−1duk = v0 · · · vk−1l(duk)c(duk),

as required.
Let W be any finite subset of T such that:

• 1 ∈W ;
• {vc ∈ T : c ∈ C, v ∈ V } = V C ∩ T is contained in W ;
• {r(s) : s ∈ V C \ T} is contained in W .

We will prove that t0, t1, . . . ∈ 〈W 〉. If i ∈ N is arbitary, then from the
above, there exist v0, v1, . . . , vk ∈ V ⊆ W and dk+1 ∈ C such that ti =
v0v1 · · · vkdk+1. If dk+1 = 1, then ti ∈ 〈W 〉, as required. Otherwise let N =
max{j : vj · · · vkdk+1∈T}. Of course, N exists since ti = v0v1 · · · vkdk+1∈T .
It follows that

dk+1, vkdk+1, vk−1vkdk+1, . . . , vN+1 · · · vkdk+1 ∈ S \ T.

Hence vkdk+1 = dkwk where dk = c(vkdk+1) ∈ C and wk = r(vkdk+1) ∈ W .
This implies that vk−1vkdk+1 = vk−1dkwk ∈ S \ T and so vk−1dk ∈ S \ T . It
follows that vk−1dk = dk−1wk−1 where dk−1 = c(vk−1dk) ∈ C and wk−1 =
r(vk−1dk) ∈W .

Continuing in this way we obtain

wN+1 = r(vN+1dN+2), wN+2 = r(vN+2dN+3), . . . , wk = r(vkdk+1) ∈W

and

dN+1 = c(vN+1dN+2), dN+2 = c(vN+2dN+3), . . . , dk = c(vkdk+1) ∈ C
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such that vkdk+1 = dkwk, vk−1dk = dk−1wk−1, . . . , vN+1dN+2 = dN+1wN+1

and di = c(vidi+1)HT vidi+1 for all i. Hence

vNdN+1 ∈ vNdN+1T = vNvN+1dN+2T = · · · = vNvN+1 · · · vkdk+1T.

But, by the definition of N , vNvN+1 · · · vkdk+1 ∈ T and so vNdN+1 ∈ W .
Thus

ti = v0v1 · · · vN−1(vNdN+1)wN+1 · · ·wk ∈ 〈W 〉

and so T has finite Sierpiński rank.

The proof of Theorem 2.5 can be modified to show that a semigroup is
strongly distorted if and only if all of its finite Green index subsemigroups
are.

Theorem 2.6. Let S be a semigroup and let T be a subsemigroup of
finite Green index in S. Then S is strongly distorted if and only if T is
strongly distorted.

Proof. Without loss of generality we may assume that S contains an
identity 1 and that 1 ∈ T . Let C be as in the proof of Theorem 2.5.

(⇐) By assumption, T is strongly distorted with respect to some numbers
m, a0, a1, . . . ∈ N. Let s0, s1, . . . ∈ S. Then for all i ∈ N there exist ti ∈ T
and ci ∈ C such that si = tici. But there exists U ⊆ T such that |U | = m
and vi is a product of elements of U with length at most ai for all i ∈ N.
Therefore si is a product of length at most ai + 1 of elements in U ∪ C.
Hence S is strongly distorted with respect to |C|+m, a0 + 1, a1 + 1, . . . ∈ N.

(⇒) Again, by assumption, S is strongly distorted with respect to some
m, a0, a1, . . . ∈ N. Let t0, t1, . . . ∈ T be arbitrary and let U ⊆ S be such that
|U | = m, and ti is a product of elements of U with length at most ai for all
i ∈ N.

Let i ∈ N be arbitrary and let u0, u1, . . . , uk∈U such that ti=u0u1 · · ·uk
and k ≤ ai. If V ⊆ T is defined as in the proof of Theorem 2.5, then
|V | ≤ |C| · |U |+ 1 = m|C|+ 1 and for all i ∈ N there exist v0, v1, . . . , vk ∈ V
and d ∈ C such that ti = v0v1 · · · vkd. Likewise, if W ⊆ T is defined as in
the proof of Theorem 2.5, then |W | ≤ |V | · |C|+ 1 ≤ m|C|2 + |C|+ 1 and ti
is a product of length at most ai over W . Therefore T is strongly distorted
with respect to (m|C|2 + |C|+ 1), a0, a1, . . . ∈ N.

The following is an immediate corollary of Theorems 2.5 and 2.6 and of
the fact that a subgroup of a group has finite index if and only if it has finite
Green index.

Corollary 2.7. Let G be a group and let H be a subgroup of finite
index in G. Then:
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(i) G has finite Sierpiński rank if and only if H has finite Sierpiński
rank;

(ii) G is strongly distorted if and only if H is strongly distorted.

If S is the semigroup from Example 1.1, then the subsemigroup T has
finite Rees index and hence finite Green index. But as shown in Example
1.1, S does not have an infinite universal set of words whereas T = ΩΩ does
by Sierpiński [40]. Hence the analogue of Theorem 2.5 does not hold in the
case where ‘finite Sierpiński rank’ is replaced with ‘an infinite universal set
of words’. It is natural to ask: if S is a semigroup with an infinite universal
set of words, does every subsemigroup of finite Green index also have an
infinite universal set of words? However, we do not know the answer to this
question.

We conclude this section by mentioning an application of Corollary 2.7.
It was shown in [9, Theorem 1] that if G is a subgroup of Sym(N) with
index less than 2ℵ0 , then there exists a finite Σ ⊆ N such that G contains
the pointwise stabilizer S(Σ) of Σ in Sym(N) and G is contained in the
setwise stabilizer S{Σ} of Σ in Sym(N). Since the index of S(Σ) in S{Σ} is
|Σ|!, it follows that S(Σ) has finite index in G. But S(Σ) is isomorphic to
Sym(N) and so S(Σ) is strongly distorted, by Galvin [15]. Hence Corollary
2.7(ii) implies that G is strongly distorted, as required.

3. The proof of the Main Theorem. In this section, we prove the
main result of the paper:

Main Theorem. Let Ω be an infinite set and let Surj(Ω) denote the
semigroup of surjective functions from Ω to Ω. Then:

(i) if |Ω| = ℵn for n ∈ N, then Surj(Ω) has Sierpiński rank n2/2 +
9n/2 + 7;

(ii) if |Ω| ≥ ℵω, then Surj(Ω) has infinite Sierpiński rank.

It is routine to show that Surj(Ω)\Sym(Ω) is an ideal in Surj(Ω). Thus,
by Lemma 2.4, the Sierpiński rank of Surj(Ω) is the sum of the Sierpiński
rank of Sym(Ω) and rank(Surj(Ω) : Sym(Ω)) if the latter is finite. As men-
tioned above, the Sierpiński rank of Sym(Ω) is 2 for any set Ω. In the case
that |Ω| = ℵn for some n ∈ N, we prove the Main Theorem by calculating
the relative rank of Sym(Ω) in Surj(Ω) and applying Lemma 2.4.

Proposition 3.1. Let Ω be an infinite set such that |Ω| = ℵn for some
n ∈ N. Then rank(Surj(Ω) : Sym(Ω)) = n2/2 + 9n/2 + 5.

To prove Proposition 3.1 we require the following technical result.
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Proposition 3.2. Let Ω be an infinite set with |Ω| = ℵn for some
n ∈ N. Then there exists a set K of non-empty subsets of Surj(Ω) \ Sym(Ω)
such that:

(i) if A ∈ K, then Surj(Ω) \A is a subsemigroup of Surj(Ω);
(ii) if A,B ∈ K, then A ∩B = ∅;

(iii) |K| = n2/2 + 9n/2 + 5.

It follows from Proposition 3.1 that n2/2 + 9n/2 + 5 is the largest size of
a set K of non-empty subsets of Surj(Ω) \ Sym(Ω) satisfying the conditions
of Proposition 3.2(i)&(ii).

Throughout the remainder of this section we assume, unless stated oth-
erwise, that Ω is an infinite set with |Ω| = ℵn for some n ∈ N. To prove
Propositions 3.1 and 3.2 we require the following parameters of elements of
Surj(Ω). Let f ∈ Surj(Ω) and let λ ∈ N ∪ {ℵ0,ℵ1, . . . ,ℵn+1}. Then define

a(f) = min{λ : (∀α ∈ Ω)(|αf−1| < λ)},
b(f, λ) = |{α ∈ Ω : |αf−1| = λ}|,
c(f) = max{λ : (∀m ∈ N) (|{α ∈ Ω : |αf−1| ≥ m}| ≥ λ)},
d(f) = |{α ∈ Ω : |(αf)f−1| ≥ 2}|.

It is routine to verify that

a(f) ∈ {2, 3, . . . ,ℵ0,ℵ1, . . . ,ℵn+1},
b(f, λ), c(f) ∈ N ∪ {ℵ0,ℵ1, . . . ,ℵn},

d(f) ∈ {0, 2, 3, . . . ,ℵ0,ℵ1, . . . ,ℵn}.
We will make repeated use of the following straightforward observations
without reference:

• if b(f,ℵi) > 0, then a(f) ≥ ℵi+1;
• a(f) < ℵ0 if and only if c(f) = 0;
• if a(f) = ℵ0, then c(f) ≥ ℵ0;
• if a(f) = ℵ0 and b(f,m) < ℵ0 for all but finitely many m ∈ N, then
c(f) = ℵ0;
• if a(f) = ℵ0 and b(f,m) ≥ ℵ0 for infinitely many m ∈ N, then
c(f) = ℵi where 0 ≤ i ≤ n is the largest number such that {m ∈ N :
b(f,m) = ℵi} is infinite;
• d(f) = 0 if and only if f ∈ Sym(Ω).

Lemma 3.3. Let f, g ∈ Surj(Ω) and let i ∈ N be such that 0 ≤ i ≤ n.
Then:

(i) max{a(f), a(g)} ≤ a(fg) ≤ a(f) a(g);
(ii) if max{a(f), a(g)} = ℵi+1, then

b(g,ℵi) ≤ b(fg,ℵi) ≤ b(f,ℵi) + b(g,ℵi);
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(iii) if max{a(f), a(g)} = ℵi+1 and b(f,ℵi) ≥ max{a(g),ℵ0}, then

b(f,ℵi) ≤ b(fg,ℵi);
(iv) if max{a(f), a(g)} = ℵ0, then

c(fg) = max{c(f), c(g)};
(v) max{d(f), d(g)} ≤ d(fg) ≤ d(f) + d(g).

Proof. (i) Let α ∈ Ω be arbitrary. Then clearly |αg−1| ≤ |α(fg)−1| and
so a(g) ≤ a(fg). Also |αf−1| ≤ |(α)g(fg)−1| and so a(f) ≤ a(fg).

On the other hand, α(fg)−1 =
⋃
β∈αg−1 βf−1 and∣∣∣ ⋃

β∈αg−1

βf−1
∣∣∣ < a(f) |αg−1| ≤ a(f) a(g).

(ii) It follows from (i) that a(fg) = ℵi+1. If α ∈ Ω with |αg−1| = ℵi,
then ℵi ≥ |α(fg)−1| = |αg−1f−1| ≥ ℵi, giving equality throughout. Thus
b(g,ℵi) ≤ b(fg,ℵi).

Let α ∈ Ω with |α(fg)−1| = ℵi. Then either |αg−1| = ℵi or there exists
β ∈ αg−1 with |βf−1| = ℵi. Hence

{α ∈ Ω : |α(fg)−1| = ℵi} ⊆ {α ∈ Ω : |αg−1| = ℵi}∪{β ∈ Ω : |βf−1| = ℵi}g.
Therefore b(fg,ℵi) ≤ b(f,ℵi) + b(g,ℵi).

(iii) As 0 < a(g) ≤ b(f,ℵi), it follows that a(f) = ℵi+1 and |{α ∈ Ω :
|αf−1| = ℵi}g| = b(f,ℵi). Let α ∈ Ω with |αf−1| = ℵi. Then, since a(fg) =
ℵi+1 by (i), |αg(fg)−1| = ℵi. Thus b(f,ℵi) ≤ b(fg,ℵi), as required.

(iv) Let k ∈ N and let α ∈ Ω with |αg−1| ≥ k. Then |α(fg)−1| ≥ k. Thus
{β ∈ Ω : |βg−1| ≥ k} ⊆ {β ∈ Ω : |β(fg)−1| ≥ k} and so c(g) ≤ c(fg).

On the other hand, if α ∈ Ω with |αf−1| ≥ k, then |(αg)g−1f−1| ≥ k.
Hence {β ∈ Ω : |βf−1| ≥ k}g ⊆ {β ∈ Ω : |β(fg)−1| ≥ k}. If {β ∈ Ω :
|βf−1| ≥ k} is infinite, then since a(g) ≤ ℵ0, we have

|{β ∈ Ω : |βf−1| ≥ k}| = |{β ∈ Ω : |βf−1| ≥ k}g|
≤ |{β ∈ Ω : |β(fg)−1| ≥ k}|.

It follows that c(f) ≤ c(fg). If {β ∈ Ω : |βf−1| ≥ k} is finite, then a(f) < ℵ0

and so c(f) = 0 ≤ c(fg). Therefore max{c(f), c(g)} ≤ c(fg).
From the comments immediately before the lemma, if ℵj > c(f), then

{m ∈ N : b(f,m) = ℵj} is finite. Hence there exists k ∈ N such that
b(f,m) ≤ c(f) for all m ≥ k. It follows that |{α ∈ Ω : |αf−1| ≥ k}| = c(f)
and |{α ∈ Ω : |αg−1| ≥ k}| = c(g). Let α ∈ Ω with |α(fg)−1| ≥ k2.
Then either |αg−1| ≥ k or there exists β ∈ αg−1 with |βf−1| ≥ k. Thus
|{α ∈ Ω : |α(fg)−1| ≥ k2}| ≤ c(f) + c(g) = max{c(f), c(g)}, since either
c(f) or c(g) is infinite. Thus c(fg) ≤ max{c(f), c(g)}, as required.
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(v) Let

A = {α ∈ Ω : |(αf)f−1| ≥ 2},
B = {α ∈ Ω : |(αg)g−1| ≥ 2},
C = {α ∈ Ω : |(αfg)(fg)−1| ≥ 2}.

Of course, for any α ∈ Ω we see that (αfg)(fg)−1 is the union of βf−1 for
all β ∈ (αfg)g−1. Hence |(αfg)(fg)−1| ≥ 2 if and only if |(αfg)g−1| ≥ 2 or
α(fg)g−1 = {αf} and |(αf)f−1| ≥ 2. Thus |(αfg)(fg)−1| ≥ 2 if and only
if α ∈ A ∪ Bf−1. It follows that C = A ∪ Bf−1. Also, |Bf−1| ≥ |B| since
f ∈ Surj(Ω). Thus

max{d(f), d(g)} = max{|A|, |B|} ≤ max{|A|, |Bf−1|}
≤ |A ∪Bf−1| = |C| = d(fg).

On the other hand, C is the disjoint union of A and Bf−1 \ A. Since
f is injective on Ω \ A, it is in particular injective on Bf−1 \ A. Hence
|(Bf−1 \A)f | = |Bf−1 \A|. So,

d(fg) = |C| = |A|+ |Bf−1 \A| = |A|+ |(Bf−1 \A)f | = |A|+ |B \Af |
≤ |A|+ |B| = d(f) + d(g),

as required.

Proof of Proposition 3.2. Let K be the set consisting of the following
subsets of Surj(Ω) \ Sym(Ω):

(3.1)

Ui,j = {f ∈ Surj(Ω) : a(f) = ℵi+1 and b(f,ℵi) = ℵj},
Vi = {f ∈ Surj(Ω) : a(f) = ℵi+1 and 1 ≤ b(f,ℵi) < ℵi},
Wi = {f ∈ Surj(Ω) : a(f) = ℵ0 and c(f) = ℵi},
Xi = {f ∈ Surj(Ω) : a(f) ∈ N and d(f) = ℵi},
Y = {f ∈ Surj(Ω) : a(f) ∈ N and 1 < d(f) < ℵ0},

for all 0 ≤ i ≤ j ≤ n. Then |K| = n2/2 + 9n/2 + 5, and if A,B ∈ K, then
A ∩B = ∅.

To conclude the proof, it suffices to prove that if A ∈ K, then Surj(Ω)\A
is a subsemigroup of Surj(Ω).

Let f, g ∈ Surj(Ω)\Ui,j . We will prove that fg ∈ Surj(Ω)\Ui,j by showing
that either a(fg) 6= ℵi+1 or b(fg,ℵi) 6= ℵj . If max{a(f), a(g)} 6= ℵi+1, then,
by Lemma 3.3(i), a(fg) 6= ℵi+1. Assume that max{a(f), a(g)} = ℵi+1. If
b(f,ℵi) = ℵj , then a(f) = ℵi+1 and so f ∈ Ui,j . Hence b(f,ℵi) 6= ℵj and
likewise b(g,ℵi) 6= ℵj . If b(g,ℵi) > ℵj , then, by Lemma 3.3(ii), b(fg,ℵi) ≥
b(g,ℵi) > ℵj . If b(g,ℵi) < ℵj and b(f,ℵi) > ℵj , then, in particular, b(f,ℵi) ≥
a(g). Hence, by Lemma 3.3(iii), ℵj < b(f,ℵi) ≤ b(fg,ℵi). Finally, if b(f,ℵi)
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< ℵj and b(g,ℵi) < ℵj , then, by Lemma 3.3(ii), b(fg,ℵj) ≤ b(f,ℵi) +
b(g,ℵi) < ℵj . Hence, in any case, fg ∈ Surj(Ω) \ Ui,j .

Let f, g ∈ Surj(Ω) \Vi. We prove that fg ∈ Surj(Ω) \Vi by showing that
either a(fg) 6= ℵi+1 or b(fg,ℵi) ≥ ℵi. As above, if max{a(f), a(g)} 6= ℵi+1,
then, by Lemma 3.3(i), a(fg) 6= ℵi+1. Hence we may assume that
max{a(f), a(g)} = ℵi+1. So, either b(f,ℵi) ≥ ℵi or b(g,ℵi) ≥ ℵi. In the
latter case, it follows by Lemma 3.3(ii) that b(fg,ℵi) ≥ b(g,ℵi) ≥ ℵi. On
the other hand, if b(f,ℵi) ≥ ℵi and b(g,ℵi) < ℵi, then b(g,ℵi) = 0 since
g 6∈ Vi. Therefore a(g) ≤ ℵi = b(f,ℵi). By Lemma 3.3(iii) it follows that
b(fg,ℵi) ≥ b(f,ℵi) ≥ ℵi. Hence, in any case, fg ∈ Surj(Ω) \ Vi.

Let f, g ∈ Surj(Ω)\Wi. We prove that fg ∈ Surj(Ω)\Wi by showing that
either a(fg) 6= ℵ0 or c(fg) 6= ℵi. If max{a(f), a(g)} 6= ℵ0, then, by Lemma
3.3(i), a(fg) 6= ℵ0. Hence we may assume that max{a(f), a(g)} = ℵ0. If
c(f) = ℵi, then a(f) = ℵ0, and so f ∈ Wi. Hence c(f) 6= ℵi and likewise
c(g) 6= ℵi. If c(f) > ℵi or c(g) > ℵi, then Lemma 3.3(iv) implies that
c(fg) > ℵi. If c(f) < ℵi and c(g) < ℵi, then, again by Lemma 3.3(iv),
c(fg) < ℵi. Hence, in any case, fg ∈ Surj(Ω) \Wi.

Let f, g ∈ Surj(Ω) \ Xi. We prove that fg ∈ Surj(Ω) \ Xi by showing
that either a(fg) 6∈ N or d(fg) 6= ℵi. If a(f) 6∈ N or a(g) 6∈ N, then, by
Lemma 3.3(i), a(fg) 6∈ N. Hence we may assume that a(f), a(g) ∈ N and so
d(f) 6= ℵi and d(g) 6= ℵi. Then, by Lemma 3.3(v), d(fg) 6= ℵi. Hence, in
any case, fg ∈ Surj(Ω) \Xi.

It follows that Surj(Ω) \ Y is a semigroup by the same argument as in
the previous paragraph.

The following three lemmas are used to reduce the problem of generating
Surj(Ω) to the problem of generating a particular subset of Surj(Ω). The
first lemma is straightforward and its proof omitted.

Lemma 3.4. Let Ω be any infinite set and let f, g ∈ Surj(Ω). Then there
exist h, k ∈ Sym(Ω) such that hfk = g if and only if b(f, λ) = b(g, λ) for all
λ ≤ |Ω|.

Lemma 3.5. Let f ∈ Surj(Ω). Then there exist g, h ∈ Surj(Ω) with
b(g, 1) = b(h, 1) = ℵn such that f = gh.

Proof. It suffices, by Lemma 3.4, to prove that there exist g, h ∈ Surj(Ω)
with b(g, 1) = b(h, 1) = ℵn such that b(gh, λ) = b(f, λ) for all λ ∈ N ∪
{ℵ0,ℵ1, . . . ,ℵn}.

Since f is surjective, Ω can be partitioned into sets A and B such that
Af ∩ Bf = ∅ and |A| = |B| = |Af | = |Bf | = |Ω|. Let g′ : Af → A
and h′ : Bf → B be arbitrary bijections. Then define g = f |Ag′ ∪ 1B and
h = f |Bh′ ∪ 1A. Clearly, g, h ∈ Surj(Ω) with b(g, 1) = b(h, 1) = |A| =
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|B| = ℵn. Moreover, gh = f |Ag′ ∪ f |Bh′ satisfies b(gh, λ) = b(f, λ) for all
λ ∈ N ∪ {ℵ0,ℵ1, . . . ,ℵn}.

Lemma 3.6. Let f, g ∈ Surj(Ω) with b(f, 1) = b(g, 1) = ℵn. Then there
exists h ∈ Sym(Ω) such that b(fhg, 1) = ℵn and

b(fhg, λ) = b(f, λ) + b(g, λ)

for all λ ∈ {2, 3, . . . ,ℵ0,ℵ1, . . . ,ℵn}.

Proof. Let F0 = {α ∈ Ω : |αf−1| ≥ 2} and G0 = {α ∈ Ω : |αg−1| ≥ 2}.
Then |Ω \ F0| = b(f, 1) = ℵn and so we may partition Ω \ F0 into sets F1

and F2 such that |F1| = ℵn and |F2| = |G0g
−1|. Likewise, we can partition

Ω \ G0 into G1 and G2 where |G1| = ℵn and |G2| = |F0| = |G2g
−1|. The

required h ∈ Sym(Ω) is any element such that F0h = G2g
−1, F1h = G1g

−1,
and F2h = G0g

−1.
If α ∈ G1, then |αg−1| = 1 and |αg−1h−1| = 1 since h is a bijection.

Also αg−1h−1 ∈ F1 and so |αg−1h−1f−1| = |α(fhg)−1| = 1. Thus ℵn ≥
b(fhg, 1) ≥ |G1| = ℵn, giving equality throughout.

If α ∈ G0, then |α(fhg)−1| = |αg−1| since (fh)−1 maps G0g
−1 bijec-

tively to F2f
−1. Let α ∈ G2. Then, since (hg)−1 maps G2 bijectively to F0,

|α(fhg)−1| = |βf−1| where β = α(hg)−1 ∈ F0.
It follows that if λ ∈ {2, 3, . . . ,ℵ0,ℵ1, . . . ,ℵn}, then

b(fhg, λ) = |{α ∈ Ω : |α(fhg)−1| = λ}| = |{α ∈ G0 ∪G2 : |α(fhg)−1| = λ}|
= |{α ∈ G0 : |α(fhg)−1| = λ}|+ |{α ∈ G2 : |α(fhg)−1| = λ}|
= |{α ∈ G0 : |αg−1| = λ}|+ |{β ∈ F0 : |βf−1| = λ}|
= b(g, λ) + b(f, λ),

as required.

We next specify a subset of Surj(Ω) with n2/2 + 9n/2 + 5 elements that
together with Sym(Ω) generates Surj(Ω). Let ui,j , vi, wi, xi, y ∈ Surj(Ω),
where 0 ≤ i ≤ j ≤ n, be any functions satisfying:

• b(ui,j , 1) = b(vi, 1) = b(wi, 1) = b(xi, 1) = b(y, 1) = ℵn;
• a(ui,j) = ℵi+1, b(ui,j ,ℵi) = ℵj and b(ui,j , λ) = 0 for all λ 6∈ {1,ℵi};
• a(vi) = ℵi+1, b(vi,ℵi) = 1 and b(vi, λ) = 0 for all λ 6∈ {1,ℵi};
• a(wi) = ℵ0 and b(wi,m) = ℵi for all m > 1;
• a(xi) = 3 and b(xi, 2) = ℵi;
• a(y) = 3 and b(y, 2) = 1.

Then ui,j ∈ Ui,j , vi ∈ Vi, wi ∈Wi, xi ∈ Xi, and y ∈ Y , where Ui,j , Vi,Wi, Xi

and Y denote the sets comprising K defined in (3.1) in the proof of Propo-
sition 3.2.
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We proceed by a sequence of lemmas that will finally be combined to
prove Proposition 3.1.

Lemma 3.7. If m ∈ N, then there exists g ∈ 〈Sym(Ω), vi〉 such that
b(g, 1) = ℵn, b(g,ℵi) = m, and b(g, λ) = 0 for all λ 6∈ {1,ℵi}.

Proof. If m = 0, then any element g of Sym(Ω) has the required prop-
erties. Assume that m > 0. By definition, b(vi,ℵi) = 1 and so, by applying
Lemma 3.6 (m − 1 times), there exists g ∈ 〈Sym(Ω), vi〉 with the required
properties.

Lemma 3.8. If 0 ≤ j < i, then there exists g ∈ 〈Sym(Ω), ui,i, vi〉 such
that b(g, 1) = ℵn, b(g,ℵi) = ℵj, and b(g, λ) = 0 for all λ 6∈ {1,ℵi}.

Proof. Let β ∈ Ω be the unique element such that |βv−1
i | = ℵi and let

A = {α ∈ Ω : |αu−1
i,i | = ℵi}.

Then |A| = ℵi and so there exists B ⊆ A with |B| = ℵj . If p ∈ Sym(Ω)
is any element such that (A \ B)p = βv−1

i , then |α(ui,ipvi)−1| = ℵi for
all α ∈ Bpvi ∪ {β}. Moreover, |α(ui,ipvi)−1| = 1 for all α 6∈ Bpvi ∪ {β}
and |Bpvi ∪ {β}| = |B| = ℵj . Thus g = ui,ipvi ∈ 〈Sym(Ω), ui,i, vi〉 satisfies
b(g, 1) = ℵn, b(g,ℵi) = ℵj , and b(g, λ) = 0 for all λ 6∈ {1,ℵi}, as required.

Lemma 3.9. If m ∈ N and m ≥ 2, then there exists g ∈ 〈Sym(Ω), xi〉
such that b(g, 1) = ℵn, b(g,m) = ℵi, and b(g, λ) = 0 for all λ 6∈ {1,m}.

Proof. Let Σλ be countable subsets of Ω for all λ < ℵi such that Σλ∩Σµ
= ∅ if λ 6= µ; write Σλ = {σλ,1, σλ,2, . . .}. Then define h ∈ Surj(Ω) by

(3.2) αh =

{
σλ,j−1 if α = σλ,j , j > 1,
α otherwise.

As b(h, λ) = b(xi, λ) for all λ, it follows by Lemma 3.4 that h ∈ 〈Sym(Ω), xi〉.
Hence g = hm−1 ∈ 〈Sym(Ω), xi〉 and

αg−1 =


{σλ,1, . . . , σλ,m} if α = σλ,1, λ < ℵi,
{σλ,j+m−1} if α = σλ,j , j 6= 1, λ < ℵi,
{α} otherwise.

Therefore b(g, 1) = ℵn, b(g,m) = ℵi, and b(g, λ) = 0 if λ 6∈ {1,m}, as
required.

Lemma 3.10. If m, r ∈ N, m ≥ 2, and r ≥ 1, then there exists g ∈
〈Sym(Ω), y〉 such that b(g, 1) = ℵn, b(g,m) = r, and b(g, λ) = 0 for all
λ 6∈ {1,m}.

Proof. By applying Lemma 3.6 to y (r−1 times), we find k ∈ 〈Sym(Ω), y〉
such that b(k, 1) = ℵn, b(k, 2) = r, and b(k, λ) = 0 if λ 6∈ {1, 2}.



84 J. D. Mitchell and Y. Péresse

Replacing ℵi with r in the proof of Lemma 3.9, we obtain sets Σ0, Σ1,
. . . , Σr−1 and a function h defined analogously to that in (3.2) such that
b(h, λ) = b(k, λ) for all λ. It follows by Lemma 3.4 that h ∈ 〈Sym(Ω), y〉.
As in the proof of Lemma 3.9, if g = hm−1, then g satisfies b(g, 1) = ℵn,
b(g,m) = r, and b(g, λ) = 0 for all λ 6∈ {1,m}, as required.

Lemma 3.11. If 0 ≤ i ≤ n and h ∈ Surj(Ω) with a(h) = ℵ0, b(h, 1) = ℵn,
c(h) = ℵi, and b(h,m) ≤ ℵi for all m > 1, then h ∈ 〈Sym(Ω), wi, xi〉.

Proof. Let Σ = {α ∈ Ω : |αh−1| > 1}. Then, since c(h) = ℵi and
b(h,m) ≤ ℵi for all m > 1, it follows that |Σ| = ℵi and

(3.3) |{α ∈ Σ : |αh−1| > m}| = ℵi
for all m ∈ N. Also since b(h, 1) = ℵn we have |Ω \ Σ| = ℵn. Let w, x ∈
Surj(Ω) be any elements such that Σ is fixed setwise, Ω\Σ is fixed pointwise,
a(w) = ℵ0, a(x) = 3,

(3.4) |{β ∈ Σ : |βw−1| = m}| = ℵi
for all 1 ≤ m < ℵ0, and |αx−1| = 2 for all α ∈ Σ. Then b(w, λ) = b(wi, λ) and
b(x, λ) = b(xi, λ) for all λ. Hence, by Lemma 3.4, w, x ∈ 〈Sym(Ω), wi, xi〉
and so it suffices to prove that h ∈ 〈Sym(Ω), w, x〉.

We construct p ∈ Sym(Ω) such that b(wpx, λ) = b(h, λ) for all λ. We
identify Σ with the least ordinal of cardinality ℵi and proceed by transfinite
induction over Σ. Let α ∈ Σ be arbitrary. Assume that for all β < α we have
defined bijections pβ from subsets of Σ into

⋃
γ≤β γx

−1 such that pβ1 ⊆ pβ2

for all β1 ≤ β2 < α. Let qα =
⋃
β<α pβ.

Since |dom(qα)| < ℵi and |αh−1| > 1, it follows from (3.4) that

{β ∈ Σ : |βw−1| < |αh−1|} \ dom(qα) 6= ∅.

Let βα denote the least element of this set. Likewise, by (3.4) there exists
γα ∈ Σ \ dom(qα) ∪ {βα} such that

(3.5) |γαw−1| = |αh−1| − |βαw−1|.

Let pα be an extension of qα that maps {βα, γα} bijectively to αx−1.
Let q =

⋃
α∈Σ pα. Then q is a bijection from a subset of Σ to Σx−1 = Σ.

We will prove that q ∈ Sym(Σ). It suffices to show that γ ∈ dom(q) for all
γ ∈ Σ. If

A = {α ∈ Σ : |αh−1| > |γw−1|},

then |A| = ℵi by (3.3). If α ∈ A, then |γw−1| < |αh−1| and so γ ∈ {β ∈
Σ : |βw−1| < |αh−1|}. Hence if α ∈ A and γ 6∈ dom(pα), then, in particular,
γ ∈ {β ∈ Σ : |βw−1| < |αh−1|} \ dom(qα) and so γ > βα. Thus

{α ∈ A : γ 6∈ dom(pα)} ⊆ {α ∈ A : βα < γ}.
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But α 7→ βα is an injective function, and so

|{α ∈ A : βα < γ}| ≤ |{δ ∈ Σ : δ < γ}| < ℵi.
Therefore |{α ∈ A : γ ∈ dom(pα)}| = |A \ {α ∈ A : γ 6∈ dom(pα)}| = ℵi. In
particular, γ ∈ dom(q), as required.

Let p ∈ Sym(Ω) be the identity on Ω \ Σ and equal to q on Σ. If
α ∈ Ω \Σ, then α(wpx)−1 = {α} and so b(wpx, 1) = ℵn = b(h, 1). If α ∈ Σ,
then α(wpx)−1 = (αx−1)p−1w−1 = {βα, γα}w−1 since p maps {βα, γα} to
αx−1. Hence |α(wpx)−1| = |βα| + |γα| = |αh−1| by (3.5). In particular, if
m > 1, then b(wpx,m) = b(h,m), as required.

Proof of Proposition 3.1. We start by showing that rank(Surj(Ω) :
Sym(Ω)) ≥ n2/2+9n/2+5. Seeking a contradiction assume that there exists
F ⊆ Surj(Ω) such that 〈Sym(Ω), F 〉 = Surj(Ω) and |F | < n2/2 + 9n/2 + 5
= |K|. Then there exists A ∈ K such that A ∩ F = ∅. Hence 〈Sym(Ω), F 〉
is contained in the subsemigroup Surj(Ω) \ A of Surj(Ω). In particular,
〈Sym(Ω), F 〉 6= Surj(Ω), a contradiction.

To show that rank(Surj(Ω) : Sym(Ω)) ≤ n2/2 + 9n/2 + 5, let F be
the set consisting of ui,j , vi, wi, xi, y for all 0 ≤ i ≤ j ≤ n. Then |F | =
n2/2 + 9n/2 + 5. We will show that 〈Sym(Ω), F 〉 generates Surj(Ω). By
Lemmas 3.4 and 3.5, it suffices to prove that for all f ∈ Surj(Ω) satisfying
b(f, 1) = ℵn there exists f ′ ∈ 〈Sym(Ω), F 〉 such that b(f, λ) = b(f ′, λ) for
all λ ∈ N ∪ {ℵ0,ℵ1, . . . ,ℵn}.

Let f ∈ Surj(Ω) with b(f, 1) = ℵn. By the definition of ui,j and Lem-
mas 3.7 and 3.8, for all 0 ≤ i ≤ n there exists gi ∈ 〈Sym(Ω), F 〉 such
that b(gi, 1) = ℵn, b(gi,ℵi) = b(f,ℵi), and b(gi, λ) = 0 for all λ 6∈ {1,ℵi}.
Hence, by Lemma 3.6, there exists g ∈ 〈Sym(Ω), F 〉 such that b(g, 1) = ℵn,
b(g,ℵi) = b(f,ℵi) for all i ∈ {0, 1, . . . , n}, and b(g,m) = 0 for all m > 1.

Hence, again by Lemma 3.6, it suffices to prove that there exists h ∈
〈Sym(Ω), F 〉 such that b(h,m) = b(f,m) for all m ∈ N and b(h, λ) = 0 for
all λ ∈ {ℵ0, . . . ,ℵn}.

Let h ∈ Surj(Ω) be such that b(h,m) = b(f,m) for all m ≥ 1 and
b(h, λ) = 0 for all λ ∈ {ℵ0, . . . ,ℵn}. From the definition of c(h), there exists
M ∈ N such that b(h,m) ≤ c(h) for all m > M . Let h2, h3, . . . , hM , t ∈
Surj(Ω) be such that b(h2, 1) = b(h3, 1) = · · · = b(hM , 1) = b(t, 1) = ℵn and
let:

• b(hi, i) = b(h, i), and b(hi, λ) = 0 if λ 6∈ {1, i},
• b(t, λ) = b(h, λ) if M < λ < ℵ0, and b(t, λ) = 0 if 1 < λ ≤ M or
λ ∈ {ℵ0, . . . ,ℵn},

for all i ∈ {2, 3, . . . ,M}. It follows from Lemmas 3.4, 3.9, and 3.10 that
h2, . . . , hM ∈ 〈Sym(Ω), F 〉. Likewise, it follows, by Lemmas 3.4 and 3.11
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where ℵi = c(h), that t ∈ 〈Sym(Ω), F 〉. We conclude, by Lemmas 3.4 and
3.6, that h ∈ 〈Sym(Ω), F 〉, as required.

Proof of the Main Theorem. (i) The set Surj(Ω) \ Sym(Ω) is an ideal in
Surj(Ω). Thus, by Lemma 2.4, the Sierpiński rank of Surj(Ω) is the sum of
the Sierpiński rank of Sym(Ω) and rank(Surj(Ω) : Sym(Ω)) when the latter
is finite. In particular, if |Ω| = ℵn, then the Sierpiński rank of Surj(Ω) is
n2/2 + 9n/2 + 7.

(ii) Lemma 3.3(i) was only stated for sets Ω of cardinality ℵn for n ∈ N.
However, the proof actually shows that:

(a) if Ω is any infinite set and f, g ∈ Surj(Ω), then

a(fg) ≥ max{a(f), a(g)};
(b) if Ω is any infinite set and f, g ∈ Surj(Ω) such that a(f) and a(g)

are regular cardinals, then a(fg) ≤ a(f) a(g),

If |Ω| ≥ ℵω, then there exist f0, f1, . . . ∈ Surj(Ω) such that a(fi) = ℵi for
all i ∈ N. Let U be any subset of Surj(Ω) such that f0, f1, . . . ∈ 〈U〉. If there
exists u ∈ U such that a(u) ≥ ℵω, then f0, f1, . . . ∈ 〈U \ {u}〉 by (a). Hence
we may assume without loss of generality that a(u) < ℵω for all u ∈ U .
Since ℵi is regular for all i ∈ N, it follows from (b) that for all i ∈ N there
exists g ∈ U such that a(g) = ℵi. Thus U is infinite.

We conclude by showing that if Ω is any infinite set, then there exists
a generating set U for Surj(Ω) such that Surj(Ω) 6= U ∪ U2 ∪ · · · ∪ Um for
any m ≥ 1. In other words, we prove that Surj(Ω) does not have Bergman’s
property, and so, by [28, Lemma 2.4], Surj(Ω) is not strongly distorted and
has no infinite universal set of words.

Let Ω be any infinite set. If f ∈ Surj(Ω), then d(f) was defined to be

|{α ∈ Ω : |(αf)f−1| ≥ 2}|.
In (3.1) we defined

Y = {f ∈ Surj(Ω) : a(f) ∈ N and 1 < d(f) < ℵ0}.
In the original definitions of d and Y we assumed that the set Ω had cardi-
nality ℵn for some n ∈ N. However, both d and Y are well-defined for any
infinite Ω. Likewise, the conclusion

max{d(f), d(g)} ≤ d(fg) ≤ d(f) + d(g)

of Lemma 3.3(v) holds when Ω is any infinite set, and the proof is identical
to that given above.

It is straightforward to verify that Y ⊆ 〈Sym(Ω), y〉. In particular, if
U = (Surj(Ω)\Y )∪{y}, then 〈U〉 = Surj(Ω). Since max{d(f), d(g)} ≤ d(fg)
for all f, g ∈ Surj(Ω), it follows that Surj(Ω) \ (Sym(Ω) ∪ Y ) is an ideal in
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Surj(Ω). Hence if f ∈ Y and g0, g1, . . . , gr ∈ U are such that f = g0g1 · · · gr,
then g0, g1, . . . , gr ∈ Sym(Ω) ∪ {y}. Therefore

d(f) ≤ d(g0) + d(g1) + · · ·+ d(gr) ≤ 2r + 2.

In particular, if m ∈ N is such that d(f) > 2m, then f 6∈ U ∪U2 ∪ · · · ∪Um.
Since Y contains elements f with arbitrarily large d(f) ∈ N, it follows that
Surj(Ω) does not have Bergman’s property, as required.

4. Further classical transformation semigroups. In this section,
we determine the Sierpiński rank of several further classical transforma-
tion semigroups including the injective functions, Baer–Levi semigroups,
and Schützenberger monoids.

Theorem 4.1. Let Ω be an infinite set and let Inj(Ω) be the semigroup
of injective functions from Ω to Ω. Then:

(i) if |Ω| = ℵn for some n ∈ N, then Inj(Ω) has Sierpiński rank n+ 4;
(ii) if |Ω| ≥ ℵω, then Inj(Ω) has infinite Sierpiński rank.

Let Ω be any set and let f, g ∈ Inj(Ω). Then it is straightforward to
verify that

(4.1) |Ω \Ωfg| = |Ω \Ωg|+ |Ω \Ωf |.

Consequently, Inj(Ω) \ Sym(Ω) is an ideal in Inj(Ω). Thus, by Lemma 2.4,
the Sierpiński rank of Inj(Ω) is the sum of the Sierpiński rank of Sym(Ω)
and rank(Inj(Ω) : Sym(Ω)) when the latter is finite.

Proposition 4.2. Let Ω be an infinite set such that |Ω| = ℵn for some
n ∈ N. Then rank(Inj(Ω) : Sym(Ω)) = n+ 2.

Proof. We start by showing that rank(Inj(Ω) : Sym(Ω)) ≥ n+ 2. Let U
be any subset of Inj(Ω) such that 〈Sym(Ω), U〉 = Inj(Ω). It follows by (4.1)
that for all 0 ≤ m ≤ n there exists f ∈ U such that |Ω \Ωf | = ℵm. Also by
(4.1) there exists f ∈ U such that |Ω \Ωf | = 1. Hence |U | ≥ n+ 2.

To prove that rank(Inj(Ω) : Sym(Ω)) ≤ n+ 2, let f ∈ Inj(Ω) \ Sym(Ω)
be arbitrary, let gm ∈ Inj(Ω) be any element with |Ω \ Ωgm| = ℵm for
all 0 ≤ m ≤ n, and let h ∈ Inj(Ω) be any element with |Ω \ Ωh| = 1.
If |Ω \ Ωf | = r for some r ∈ N, then let k = hr. If |Ω \ Ωf | = ℵm for
some 0 ≤ m ≤ n, then let k = gm where |Ω \ Ωf | = ℵm. In either case,
|Ω \ Ωk| = |Ω \ Ωf |. Hence there exists a bijection t : Ω \ Ωk → Ω \ Ωf .
Let l ∈ Sym(Ω) be defined by

αl =

{
αk−1f if α ∈ Ωk,
αt if α ∈ Ω \Ωk.
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Then f = hl and so f belongs to the semigroup generated by Sym(Ω) and
{h} ∪ {gm : 0 ≤ m ≤ n}. Thus rank(Inj(Ω) : Sym(Ω)) ≤ |{h} ∪ {gm :
0 ≤ m ≤ n}}| = n+ 2.

Proof of Theorem 4.1. (i) If |Ω| = ℵn for some n ∈ N, then, by Proposi-
tion 4.2, rank(Inj(Ω) : Sym(Ω)) = n+ 2. As the Sierpiński rank of Sym(Ω)
is 2 by Galvin [15], it follows by Lemma 2.4 that the Sierpiński rank of
Inj(Ω) is n+ 4.

(ii) If |Ω| ≥ ℵω, then there exist f0, f1, . . . ∈ Inj(Ω) such that |Ω \ Ωfi|
= ℵi for all i ∈ N. So, if U is any subset of Inj(Ω) such that f0, f1, . . . ∈ 〈U〉,
then, by (4.1), for all i ∈ N there exists g ∈ U such that |Ω \Ωg| = ℵi. Thus
U is infinite.

Let Ω be any infinite set, let f ∈ Inj(Ω) be such that |Ω \Ωf | = 1, and
let

I = {g ∈ Inj(Ω) : |Ω \Ωg| ≥ ℵ0}.
It is straightforward to prove that Inj(Ω) is generated by U = Sym(Ω) ∪
I ∪ {f}. Also, by (4.1), I is an ideal of Inj(Ω). Hence if g ∈ Inj(Ω) is such
that |Ω \Ωg| < ℵ0 and g0, g1, . . . , gr ∈ U are such that g = g0g1 · · · gr, then
g0, g1, . . . , gr ∈ Sym(Ω) ∪ {f}. Therefore

|Ω \Ωg| ≤ |Ω \Ωg0|+ |Ω \Ωg1|+ · · ·+ |Ω \Ωgr| ≤ r + 1.

In particular, if m ∈ N and |Ω \ Ωg| > m, then g 6∈ U ∪ U2 ∪ · · · ∪ Um.
Since Inj(Ω)\I contains elements g with |Ω \Ωg| arbitrarily large, it follows
that Inj(Ω) does not have Bergman’s property, is not strongly distorted, and
does not have an infinite universal set of words.

Let Ω be an infinite set and let λ be any infinite cardinal less than |Ω|.
Then the Baer–Levi semigroup BL(Ω, λ) is defined by

BL(Ω, λ) = {f ∈ Inj(Ω) : |Ω \Ωf | = λ}.

Theorem 4.3. Let Ω be an infinite set and let λ be any infinite cardinal
less than |Ω|. Then BL(Ω, λ) has infinite Sierpiński rank.

Proof. Let Ω0, Ω1, . . . be disjoint subsets of Ω with |Ωi| = λ for all i ∈ N
and for all i ∈ N let fi ∈ BL(Ω, λ) be any element with Ωfi = Ω\Ωi. Seeking
a contradiction, assume that there exists a finite subset F ⊆ BL(Ω, λ) such
that f0, f1, . . . ∈ 〈F 〉.

If g ∈ F , then let

Ag = {i ∈ N : (∃w ∈ 〈F 〉)(fi = wg)}.
By the pigeonhole principle, there exists g ∈ F such that Ag is infinite.
In particular, there exist i, j ∈ N such that i 6= j and fi, fj ∈ Ag. Hence
Ω = Ωfi ∪Ωfj ⊆ Ωg, a contradiction.
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The injectivity of elements of BL(Ω, λ) was not used to prove Theorem
4.3. A similar argument can be used to prove that the Sierpiński rank of
{f ∈ ΩΩ : |Ω \ Ωf | = λ} is infinite. If S is a semigroup such that S \ S2

is infinite, then S has infinite Sierpiński rank. For example, if S = Inj(Ω) \
Sym(Ω), S = Surj(Ω) \ Sym(Ω), or S = {f ∈ Inj(Ω) : Ωf ⊆ Ω \Σ} for any
fixed Σ ⊆ Ω, then S \ S2 is infinite and so these semigroups have infinite
Sierpiński rank.

The Schützenberger monoid on an infinite set Ω of regular cardinality is
defined as

Sch(Ω) = {f ∈ ΩΩ : |αf−1| < |Ω| ∀α ∈ Ω}.
Theorem 4.4. Let Ω be an infinite set where |Ω| is a regular cardinal.

Then Sch(Ω) has Sierpiński rank 2.

Proof. The proof has two steps. First, we show that any countable set of
elements of Sch(Ω) can be generated by five elements of Sch(Ω), and then
that any finite number of elements can be generated by two.

Step 1. Let f0, f1, . . . ∈ Sch(Ω) be arbitrary and let Ω0, Ω1, . . . be sets
partitioning Ω of cardinality |Ω| each. We define five functions in Sch(Ω)
that generate f0, f1, . . . . Let g0 ∈ ΩΩ be a bijection from Ω to Ω0, let g1 be
any extension of g−1

0 to an element of Sch(Ω), let g2 be any function that
maps Ωi bijectively to Ωi+1 for all i ∈ N, and let g3 be any extension of g−1

2

to an element of Sch(Ω).
Then g0gi2 is a bijection from Ω to Ωi and so (g0gi2)−1fig0g

i
2 is a function

from Ωi to Ωi for all i ∈ N. The fifth required function g4 ∈ ΩΩ is defined by

g4 =
∞⋃
i=0

(g0gi2)−1fig0g
i
2.

As g0 is a bijection and f0 ∈ Sch(Ω), it follows that

|Ωg4| ≥ |Ω0g4| = |Ω0g
−1
0 f0g0| = |Ωf0| = |Ω|.

Furthermore, if α ∈ Ω, then there exists i ∈ N such that α ∈ Ωi and so

|αg−1
4 | = |α((g0gi2)−1fig0g

i
2)−1| = |α(g0gi2)−1f−1

i g0g
i
2| = |βf−1

i | < |Ω|
where β = α(g0gi2)−1, since g0g

i
2 is a bijection and fi ∈ Sch(Ω). Hence

g4 ∈ Sch(Ω), as required.
To conclude, let i ∈ N and α ∈ Ω. Then, as gi3g1 is an extension of

(g0gi2)−1, we have

αg0g
i
2g4(g3)ig1 = αg0g

i
2g4(g0gi2)−1 = αg0g

i
2(g0gi2)−1fig0g

i
2(g0gi2)−1 = αfi.

Thus fi = g0g
i
2g4(g3)ig1 and so f0, f1, . . . ∈ 〈g0, g1, g2, g3, g4〉.

Step 2. Let f0, f1, . . . , fm ∈ Sch(Ω) be arbitrary and let Ω0, Ω1, . . . ,
Ωm+1 be sets partitioning Ω of cardinality |Ω| each. We will prove that there
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exist two functions in Sch(Ω) that generate f0, f1, . . . , fm. Let g0 ∈ Sch(Ω)
be any function that maps Ωi bijectively to Ωi+1 for all 0 ≤ i ≤ m− 1 and
that maps Ωm ∪Ωm+1 bijectively to Ωm+1. If h is any bijection from Ωm+1

to Ω0, then gm+1
0 hgi0 is a bijection from Ω to Ωi for all 0 ≤ i ≤ m. The

second required function is the extension g1 of h defined by

αg1 =

{
αh if α ∈ Ωm+1,

α(gm+1
0 hgi0)−1fi if α ∈ Ωi and 0 ≤ i ≤ m.

To show that g1 ∈ Sch(Ω), note that

|Ωg1| ≥ |Ωm+1g1| = |Ωm+1h| = |Ω0| = |Ω|.

Moreover, if α ∈ Ωg1 is arbitrary, then αg−1
1 is the union of αh−1 and

the sets α((gm+1
0 hgi0)−1fi)−1 for all 0 ≤ i ≤ m. Note that any, but not

all, of the sets αh−1 and α((gm+1
0 hgi0)−1fi)−1 can be empty. Since h and

(gm+1
0 hgi0)−1fi are bijections and fi ∈ Sch(Ω), it follows that |αh−1| = 1

and |α((gm+1
0 hgi0)−1fi)−1| = |αf−1

i | < |Ω| for all 0 ≤ i ≤ m. Thus αg−1
1 is a

finite union of sets of cardinality strictly less than |Ω| and so |αg−1
1 | < |Ω|.

To finish the proof, let 0 ≤ i ≤ m be arbitrary and let α ∈ Ω. Then

αgm+1
0 hgi0g1 = α(gm+1

0 hgi0)(gm+1
0 hgi0)−1fi = αfi.

Thus fi = gm+1
0 hgi0g1 and so f0, f1, . . . , fm ∈ 〈g, h〉, as required.

The set of bounded functions on the rationals is defined by

BSelf(Q) = {f ∈ QQ : (∃k ∈ Q)(∀q ∈ Q)(|(q)f − q| ≤ k)}.

Theorem 4.5. BSelf(Q) has Sierpiński rank 2.

Proof. The proof has two steps. First, we show that any countable set of
elements of BSelf(Q) can be generated by three elements of BSelf(Q), and
then that any finite number of elements can be generated by two. Through-
out the proof we denote {q ∈ Q : a ≤ q < b} by [a, b).

Step 1. Let f0, f1, . . . ∈ BSelf(Q) be arbitrary and let Ωi,0, Ωi,1, . . . be
infinite sets partitioning the interval [i, i+ 1) for all i ∈ Z. It is straightfor-
ward to verify that BSelf(Q) is generated by those of its elements f satisfying
|(q)f − q| ≤ 1 for all q ∈ Q. Hence we may assume without loss of generality
that |(q)fj− q| ≤ 1 for all q ∈ Q and for all j ∈ N. We define three functions
in BSelf(Q) that generate f0, f1, . . . . Let g0 : Ω → Ω be any function that
maps [i, i + 1) bijectively to Ωi,0 for all i ∈ Z and let g1 : Ω → Ω be any
function that maps Ωi,j bijectively to Ωi,j+1 for all i ∈ Z and for all j ∈ N.
Then g−j1 g−1

0 is a bijection from Ωi,j to [i, i + 1) for all i ∈ Z and for all
j ∈ N. The third function g2 is defined to be the union of the functions
(g0g

j
1)−1fj |[i,i+1) for all i ∈ Z and j ∈ N. Since [i, i+ 1)g0 = Ωi,0 ⊆ [i, i+ 1),
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[i, i + 1)g1 = [i, i + 1) \ Ωi,0, and [i, i + 1)g2 ⊆ [i − 1, i + 2), it follows that
g0, g1, g2 ∈ BSelf(Q).

Finally, for any q ∈ Q, there exists i ∈ Z such that q ∈ [i, i+ 1). Hence

qg0g
j
1g2 = g0g

j
1(g0g

j
1)−1fj |[i,i+1) = qfj

and so g0g
j
1g2 = fj for all j ∈ N.

Step 2. Let f0, f1, . . . , fm ∈ BSelf(Q) be arbitrary and let Ωi,0, Ωi,1, . . .
. . . , Ωi,m+1 be infinite sets partitioning [i, i+ 1) for all i ∈ Z. We will prove
that there exist two elements of BSelf(Q) that generate f0, f1, . . . , fm. Let
g0 : Ω → Ω be any function that maps Ωi,j bijectively to Ωi,j+1 for all
0 ≤ j ≤ m − 1 and that maps Ωi,m ∪ Ωi,m+1 bijectively to Ωi,m+1 for all
i ∈ Z.

If h :
⋃
i∈ZΩi,m+1 → Ω maps Ωi,m+1 bijectively to Ωi,0 for all i ∈ Z,

then gm+1
0 hgj0 is a bijection from [i, i + 1) to Ωi,j for all i ∈ Z and for all

j ∈ N. The second required function g1 is the extension of h defined by

qg1 =

{
qh if q ∈ Ωi,m+1, i ∈ Z,
q(gm+1

0 hgj0)−1fj if q ∈ Ωi,j , i ∈ Z, 0 ≤ j ≤ m.
We will show that g1 ∈ BSelf(Q). Let q ∈ Q be arbitrary. If q ∈ Ωi,m+1 ⊆

[i, i + 1) for some i ∈ Z, then qg1 ∈ Ωi,0 ⊆ [i, i + 1) and so |qg1 − q| ≤ 1.
Since there are only finitely many functions fj , there exists k ∈ N such that
|qfj − q| ≤ k for all q ∈ Q and for all 0 ≤ j ≤ m. If q ∈ Ωi,j for some
i ∈ Z and 0 ≤ j ≤ m, then qg1 ∈ [i, i + 1)fj ⊆ [i − k, i + k + 1) and so
g1 ∈ BSelf(Q).

Finally, if q ∈ Q, then

qgm+1
0 g1g

j
0g1 = qgm+1

0 hgj0g1 = qgm+1
0 hgj0(gm+1

0 hgj0)−1fj = qfj

for all 0 ≤ j ≤ m, as required.
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[4] A. J. Cain, R. Gray, and N. Ruškuc, Green index in semigroups: generators, pre-
sentations and automatic structures, arXiv:0912.1266v1 [math.GR], 2009.

[5] D. Calegari and M. H. Freedman, Distortion in transformation groups, Geom. Topol.
10 (2006), 267–293.

[6] P. J. Cameron, Permutation Groups, London Math. Soc. Student Texts 45, Cam-
bridge Univ. Press, Cambridge, 1999.
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[21] V. Jarńık et V. Knichal, Sur l’approximation des fonctions continues par les super-
positions de deux fonctions, Fund. Math. 24 (1935), 206–208.

[22] A. S. Kechris, V. G. Pestov, and S. Todorcevic, Fräıssé limits, Ramsey theory,
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