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Abstract. We show that, assuming PFA, the class of all Aronszajn lines is well-
quasi-ordered by embeddability.

1. Introduction. A rough classification result for a given class K of
mathematical structures usually depends on a reflexive and transitive rela-
tion �, i.e. a quasi-ordering, where for A and B in K the relation A � B
means that, in some sense, A is simpler than B. The strength of the rough
classification result depends not only on how fine the corresponding equiv-
alence relation is (A ≡ B iff A � B and B � A) but also on the informa-
tion about the quasi-ordering (K,�) it gives. One of the most prominent
global conditions, generally considered as giving a satisfactory rough clas-
sification result, is the requirement of being well-quasi-ordered. Recall that
a class (K,�) is well-quasi-ordered (or wqo) if for every infinite sequence
An (n ∈ ω) of elements of K there exists n < m such that An � Am. The
sense of strength of such a rough classification result comes from the fact
that whenever (K,�) is well-quasi-ordered then the complete invariants of
the equivalence relation ≡ on K are only slightly more complicated than the
ordinals.

In this note we are interested in proving such a rough classification result
for a class K of linear orderings. Recall that in this context the quasi-ordering
� is usually taken to be isomorphic embedding, i.e., A � B iff there is a
strictly increasing map f : A→ B. The first result of this sort is a result of
Laver [13] who showed, verifying an old conjecture of Fräıssé [8], that the
class of countable linear orderings is well-quasi-ordered. Some restrictions
on the linear orderings in Laver’s result are needed in view of a classical
result of Dushnik and Miller [7] who proved that the class of separable
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linear orderings of size continuum (more precisely, suborders of the real
line) fails badly to be well-quasi-ordered. The idea behind Dushnik and
Miller’s construction combined with the more recent constructions using
the weak-diamond principle of Devlin and Shelah (see [6]) shows that under
CH there is basically no room for extending Laver’s theorem to a larger
class of linear orderings. It is still an open problem whether Laver’s result
is sharp (see [11] and [15]). It is for this reason that one is naturally led
to examine this possibility using some alternative to CH. It turns out that
the right alternative to CH is a strong form of the Baire category theorem
known as the Proper Forcing Axiom, PFA.

However, even assuming PFA the situation is not so simple as there
are natural restrictions that do not depend on CH or any other additional
axioms. For example, in [3], Baumgartner showed that the class of non-σ-
scattered linear orderings A of size ℵ1 with the property that every uncount-
able subset of A contains an uncountable well-ordered set (an isomorphic
copy of ω1) is not well-quasi-ordered. Thus one is led to consider only re-
stricted classes of uncountable linear orderings. One such class is Rℵ1 which
consists of the suborders of the real line of cardinality ℵ1. These were com-
pletely classified by Baumgartner [4].

Theorem 1.1 ([4]). (PFA) Any two ℵ1-dense suborders of R are order-
isomorphic. In particular, any two elements of Rℵ1 are equivalent.

Another class which arises naturally in this context is the class A of those
linear orderings which do not contain uncountable separable suborders or
ω1 or ω∗1. These linear orders are known as Aronszajn lines (or A-lines) and
were first discovered by Kurepa [12] using Aronszajn trees constructed by
Aronszajn in the same paper (see also [21]). They were originally motivated
by Suslin’s problem [20]. The following theorem is the main result of the
present article.

Theorem 1.2. (PFA) The class A of Aronszajn lines is well-quasi-
ordered by embeddability.

In fact, there is a very close relationship between Aronszajn trees and
Aronszajn lines: any lexicographical ordering of an Aronszajn tree is an
Aronszajn line, and conversely, any binary partition tree of an Aronszajn
line is an Aronszajn tree (see [21]). It is therefore surprising that there is
a discrepancy between Aronszajn trees and Aronszajn lines when it comes
to the wqo-theory. Our Theorem 1.2 is in contrast with a result of Todor-
cevic from [23], where it is proved that the class of Aronszajn trees is not
wqo under embeddability. The question of whether A is well-quasi-ordered
appears in print in the survey article by Moore [16].
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Besides the ideas of Nash-Williams and Laver from the wqo-theory, while
proving Theorem 1.2, we shall also rely on some ideas behind the deep results
obtained by Todorcevic [23] and Moore [17].

In 1970 Countryman [5] made a brief but important contribution to the
subject by asking whether there is an uncountable linear order C whose
square is the union of countably many chains. Such an order is called Coun-
tryman (or C-line). It can be seen that every C-line is Aronszajn and that
if C is a C-line and C∗ denotes its reverse, then no uncountable linear order
can be embedded simultaneously into both C and C∗. Shelah [19] proved
that Countryman orders exists in ZFC, and Todorcevic [22] produced a
number of concrete representations of C-lines. Moore [14] proved, solving a
longstanding conjecture of Shelah, the following deep result.

Theorem 1.3 ([14]). (PFA) The class of A-lines contains a two-element
basis consisting of C and C∗ where C is any Countryman line.

Furthermore, in [17] Moore proved that, assuming PFA, there is a uni-
versal A-line ηC .

Theorem 1.4 ([17]). (PFA) Every A-line is isomorphic to a suborder
of ηC .

Moreover, ηC can be easily described in terms of a fixed C-line C. Let
D = C∗+1+C; then ηC consists of all elements of Dω which are eventually
zero, ordered lexicographically.

It is worth mentioning that in view of the following result of Abraham
and Shelah [1] some extra assumptions, such as PFA, are needed in our main
result.

Theorem 1.5 ([1]). (2ℵ0 < 2ℵ1) There is a collection F of pairwise
incomparable A-lines of cardinality 2ℵ1.

Furthermore, this theorem can be easily modified, by using the tree T (ρ1)
(see [23]), to obtain a family F of pairwise incomparable C-lines of cardi-
nality 2ℵ1 .

The paper is organized as follows. Section 2 provides some background
on the theory of well-quasi-orderings. Section 3 gives a review of the basic
properties of Aronszajn lines as well as the deep results of Moore [14] and
[16]. The main results of the article are proved in Section 4.

2. Well-quasi-orderings. It will be helpful to fix some notation and
review some basic facts from the theory of well-quasi-orderings. First, recall
that a quasi-order is a structure of the form (Q,�) where � is a transitive
and reflexive binary relation.
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Definition 2.1. A quasi-order (Q,�) is a well-quasi-order (or wqo) if
it satisfies any of the following two equivalent conditions:

(1) For any function f : ω → Q there exist i < j such that f(i) � f(j).
(2) Any strictly decreasing sequence of members of Q is finite, and every

antichain of members of Q is finite.

The equivalence between the two definitions is an immediate consequence
of Ramsey’s theorem.

Definition 2.2. Given a quasi-ordering (A,≺) we define its reverse
A∗ = (A,≺∗) by a ≺∗ b iff b ≺ a.

Definition 2.3. Let (A,≺A), (B,≺B) be quasi-orderings.

(1) Define A×B as the lexicographical ordering on the cartesian product,
i.e., (a1, b1) ≺ (a2, b2) if (a1 ≺A a2) or (a1 = a2 and b1 ≺B b2).

(2) Define A+B as the quasi-ordering on (A×{0})∪ (B×{1}) given by
a ≺A+B b if (π1(a) ≺ π1(b)) or (π1(a) = π1(b) and π0(a) ≺ π0(b)).

(3) Let (I,≺I) be a quasi-ordering and let (Ai,≺Ai) (i ∈ I) be a col-
lection of quasi-orderings. We define the sum

∑
i∈I Ai to be the

quasi-ordering (C,≺C) where C =
⋃
i∈I Ai × {i} and x ≺C y if

(π1(x) ≺I π1(y)) or (π1(x) = π1(y) and π0(x) ≺Aπ1(x)
π0(y)).

In order to make the induction hypothesis in our main theorem go
through we will need a generalization of a quasi-ordering called Q-type. Intu-
itively a Q-type is a quasi-ordered set whose points are labeled by members
of Q.

Definition 2.4. Let Q be a quasi-ordering. A pair (A, f) is a Q-type if
A is a linearly ordered set and f is a function from A into Q.

We quasi-order the class of Q-types by the following embeddability rela-
tion: (A1, f1) � (A2, f2) if there is a strictly increasing function f : A1 → A2

such that
f1(x) � f2(f(x)) for all x ∈ A1.

One way to motivate this definition is as follows: Given two linear order-
ings A,B formed by sums of linear orderings, say

A =
∑
x∈X

Ax and B =
∑
y∈Y

By,

associate to A,B a natural Q-type structure given by (A, x 7→ Ax) and
(B, y 7→ By), respectively. We take Q = {Ax : x ∈ X} ∪ {By : y ∈ Y } quasi-
ordered by embeddability. Observe that if (A, x 7→ Ax) � (B, y 7→ By) as
Q-types then A embeds into B.

Definition 2.5. IfM is a class of linear orders and Q is a quasi-order,
let QM = {(A, f) : A ∈M, f : A→ Q}
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In order to prove our result we will need a generalization of the theory
of well-quasi-orderings called better-quasi-orderings (bqo), a concept intro-
duced by Nash-Williams [18].

Remember that [ω]ω represents the set of infinite subsets of natural num-
bers. We will consider [ω]ω as a topological space with the Ellentuck topol-
ogy, which has the basic open sets of the form

[s,A] = {X ∈ [ω]ω : s @ X ⊂ A}
for A ∈ [ω]ω and s ∈ [ω]<ω.

We are now in a position to state the concept of better-quasi-order.

Definition 2.6. Let Q be a quasi-order. Q is a better-quasi-ordering (or
bqo) if for every Borel map f : [ω]ω → Q there exists X ∈ [ω]ω such that
f(X) � f(X \ {min(X)}).

Even though the concept of bqo might appear unintuitive at first, it is
more natural in the sense that the property of being bqo is preserved by
almost all operations on quasi-orders as opposed to the case of well-quasi-
orders.

It is worth mentioning that our definition of better-quasi-ordering is not
the original one given by Nash-Williams [18]. Our definition comes from [2].

It is easy to see that every better-quasi-ordered set is well-quasi-ordered
but the reverse implication does not necessarily hold as shown by the next
example:

Example 2.7 (Rado). Let Q denote the set of all pairs (i, j) with i ≤ j
quasi-ordered by (i, j) ≺ (k, l) if either i = k and j < l or j < k. It can be
easily seen that Q is an example of a well-quasi-order which is not a better-
quasi-order. Moreover, the set Qω is not well-quasi-ordered by embeddability
as a Q-type.

Using the concept of better-quasi-order we can state the main theorem
of Laver.

Theorem 2.8 ([13]). Let S denote the class of σ-scattered linear order-
ings, and let Q be a better-quasi-order. Then QS is better-quasi-ordered by
embeddability as a Q-type. In particular QC is bqo where C denotes the class
of countable linear orders.

Observe that in view of Example 2.7 the requirement of being better-
quasi-ordered in Laver’s theorem is essential.

3. A-lines. In this section we collect some standard facts about the
class of A-lines.

The notion of a tree in this paper is to be interpreted in its order-theoretic
sense, i.e., it is a partially ordered set (T,≤T ) with the property that for
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every node t ∈ T the set {s ∈ T : s <T t} is a well-order. The height of a
node t in T , written ht(t), is the order-type of {x ∈ T : x <T t}. The αth
level of T is the set Tα = {t ∈ T : ht(t) = α}. We shall identify (T,≤T ) with
its domain T . The height of the tree, ht(T ), is the ordinal min{α : Tα = ∅}.
For any node t ∈ T and any ξ < ht(t) let t�ξ denote the unique node s ∈ Tξ
so that s ≤T t. For any two incompatible nodes s, t in T let

∆(t, s) = ot{ξ < ω1 : ξ < ht(t) and ξ < ht(s)}.

Definition 3.1. Let A denote the class of Aronszajn lines.

Let T be an A-tree. For every α < ω1, we fix a linear ordering ≤α of Tα.
Then the lexicographical ordering �l of T induced by{≤α: α < ω1} is defined
by t �l s iff

(i) t ≤T s or
(ii) t, s are incomparable and t∆(s,t) ≤∆(t,s) s∆(t,s).

The following are standard facts about A-lines and A-trees (see [21]).

Fact 3.2. Every lexicographical ordering of an Aronszajn tree is an
Aronszajn line.

Let us now define an inverse operation which connects A-lines and A-
trees. This operation is called a process of atomization of an A-line (A,≤A),
and it is an inductive construction of families Tα, α ∈ ON, of non-empty
convex subsets of A such that:

(i) If α = 0, then Tα = {A}.
(ii) If α = β + 1, then for each non-trivial interval I ∈ T β there exist

disjoint I0, I1 ∈ Tα such I0 ∪ I1 = I, and

Tα = {{I0, I1} : I ∈ T β and |I| ≥ 2}.

(iii) If α is a limit ordinal, then

Tα =
{⋂

b : b ⊂
⋃
β<α

T β, b ∩ T β 6= ∅ for all β < α, and
⋂
b 6= ∅

}
.

It is clear that for some α, Tα = ∅, hence we may define

ht(T ) = min{α : Tα = ∅} and T =
⋃

α<ht(T )

Tα.

Then (T,⊇) is a tree and Tα is the αth level of T for all α < ht(T ). Any
tree which is a result of an atomization process of A is called a partition tree
of A.

Fact 3.3. Every partition tree of an Aronszajn line is an Aronszajn tree.
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As we can see from Facts 3.2 and 3.3 there is a strong duality relation
between the Aronszajn lines and the Aronszajn trees. At this point we recall
the following definitions.

Definition 3.4. A Suslin tree is a tree T such that |T | = ℵ1 and every
chain and every antichain of T has countable cardinality.

Definition 3.5. A Suslin line is a non-separable linear ordering A with
the countable chain condition (or ccc), i.e., every family of pairwise disjoint
non-empty open intervals of A is countable,

Fact 3.6.
(i) Every lexicographical ordering of a Suslin tree is a Suslin line. More-

over, every Suslin line A is isomorphic to a lexicographical ordering of a
Suslin tree.

(ii) Every partition tree of a Suslin line is a Suslin tree.

Definition 3.7. A linear ordering A is ℵ1-dense if it has cardinality ℵ1,
it has no end-points, and between any two elements of A there are exactly
ℵ1 elements of A.

Definition 3.8. An uncountable linear ordering C is a Countryman
line (C-line, for short) if its lexicographical square is a countable union of
chains. C2 is quasi-ordered by (a1, b1) � (a2, b2) if a1 � a2 and b1 � b2. Note
that this order differs from the lexicographical ordering of Definition 2.4.

The C-lines play a prominent role in the structure theory of the class of
A-lines, under PFA, as they constitute the building blocks of the class of
A-lines. This will be explained in detail in Section 4.

Fact 3.9. If C is Countryman, then C does not contain a Suslin subor-
der.

Proof. Observe that if C is Countryman then C remains Countryman
in any forcing extension which preserves ℵ1. It suffices to show that any
Suslin line A fails to be Countryman in some ccc forcing extension. Let A
be a Suslin line. Using Fact 3.6 we can find a Suslin tree (T,≤T ) so that A
is isomorphic to a lexicographical ordering of T . Forcing with the ccc poset
(T,≥T ) we add a copy of ω1 to A, which implies that A is not Countryman
in V [G].

For the rest of the paper we fix an ℵ1-dense Countryman line which we
denote by C. For example, to be specific, we fix an ℵ1-dense subordering C
of C(ρ0) (see [24, p. 25]).

Let us recall that A ≡ B iff A � B and B � A.

Fact 3.10 ([24]). (MAω1) C is equivalent to any uncountable suborder
A of C.
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Fact 3.11. (MAω1) C is equivalent to C × C.

Proof. It should be clear that C � C×C. So let us show that C×C � C.
By Fact 3.9, C is not Suslin so we can find a family Iα (α ∈ ω1) of pairwise
disjoint non-empty open intervals of C. For each α < ω1, we fix an element
xα ∈ Iα and set X = {xα : α < ω1}. By Fact 3.10 and since C is ℵ1-dense,
we can find a strictly increasing map fα : C → Iα for all α < ω1 and a
strictly increasing map f : C → X. Define a map F : C × C → C by

F (x, y) = fα(y) where f(x) = xα.

It is easy to check that F is a strictly increasing map.

The following result of Moore [17] is a generalization of the existence of
a two-element basis for the class of Aronszajn lines.

Theorem 3.12 ([17]). (PFA) If A is an A-line, then either A is equiv-
alent to ηC or else A contains an interval equivalent to C or C∗.

4. Fine structure theory of A-lines under PFA. Observe that if
A is an Aronszajn line which contains ηC , then A is equivalent to ηC . This
leads us to the following definition.

Definition 4.1. An A-line A is fragmented if ηC � A.

In order to show that the class A is wqo we need to introduce a no-
tion of rank. Theorem 3.12 gives us a hint on how to associate a rank to
each fragmented Aronszajn line: roughly speaking, the rank corresponds to
how many applications of a derivative operation are necessary in order to
trivialize it. This will be explained in detail below.

Given A ∈ AF consider the following relation:

x ∼ y iff [x, y] �
∑
i∈I

Ai

where I � Q and the linear orderings Ai (i ∈ I) belong to {C,C∗}. It
is clear that ∼ is an equivalence relation and that each equivalence class
is convex. For each x ∈ A let [x] denote the equivalence class of x, i.e.,
[x] = {y ∈ A : x ∼ y}.

There is a natural map associated to this equivalence relation:

c : A→ A1

where A1 = {[x] : x ∈ A} ordered by [x] < [y] if x < y. We call A1

a condensation of A. Thus a condensation map is a map from A into a
partition of A into convex intervals. Since every partition of a fragmented
A-line into convex intervals is itself a fragmented A-line we can iterate this
process as follows:
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Definition 4.2. For every ordinal α and any A-line A we construct a
condensation map cα : A→ Aα recursively as follows:

(1) For α = 0 let c0 = Id and let A0 = A.
(2) For α = β + 1 set cβ+1(x) = {y : c(cβ(x)) = c(cβ(y))} and Aβ+1 =

(Aβ)1.
(3) For a non-zero limit ordinal α, let cα(x) =

⋃
{cβ(x) : β < α} where

Aα = {cα(x) : x ∈ A}.
We have the following:

Theorem 4.3. Let A ∈ AF . Then there is an ordinal α < ω2 such that
cβ(x) = cα(x) for all x ∈ A and β ≥ α. The least such α will be called the
C-rank of A.

Proof. Note that cα(x) ⊆ cβ(x) for α ≤ β. Since A has size ℵ1 this
process must stop for some ordinal less than ω2.

Note that the condensation of an A-line is itself an A-line. If α is equal
to the C-rank of A then Aα is either 1 or does not contain a non-trivial
interval embeddable in either C or C∗. In the latter case we find, by virtue
of Theorem 3.12, that ηC � A.

Definition 4.4. For every α < ω2, recursively define the classes Aα as
follows. Suppose α < ω2 is given and Aβ has been defined for all β < α.

(1) For α = 0, let A0 denote the class of Countryman lines.
(2) For a non-zero ordinal α, let Aα be the class of all linear orderings

which are equivalent to ones of the form∑
i∈I

Ai,

where I � C or I � C∗ and the linear orderings Ai (i ∈ I) are from⋃
ξ<αAξ.

We obtain the following theorem which is an analogue of the well-known
result of Hausdorff [10] about (countable) scattered linear orders.

Theorem 4.5. (PFA) The class AF of fragmented A-lines admits a de-
composition

AF =
⋃
ξ<ω2

Aξ.

Proof. We will prove by induction on α that any A-line A of C-rank α
is in

⋃
ξ<α+2Aξ. Suppose α is given and that any A-line of C-rank β < α is

in
⋃
ξ<β+2Aξ. Let A be an A-line of C-rank α.

If α = 0, then C has cardinality one, which is impossible.
If α = β + 1, then cα(x) = A. Since Aβ = {cβ(x) : x ∈ A} is Aronszajn,

it has both countable cofinality and countable coinitiality. So let xn (n ∈ Z)
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be such that xn < xm for n < m and cofinal and coinitial in Aβ. We are
focusing on the case where A does not have a first or last element since
the argument applies with routine modifications to the degenerate cases.
Thus, [cβ(xn), cβ(xn+1)) (n ∈ Z) is a partition of Aβ. It is sufficient to show
that each interval [xn, xn+1) is in

⋃
ξ<α+2Aξ. For each n ∈ Z, we fix a set

Xn ⊂ [xn, xn+1) so that |Xn ∩ cβ(x)| = 1 for all xn ≤ x < xn+1, i.e., Xn is
a set of representatives of the interval [cβ(xn), cβ(xn+1)). We have

[xn, xn+1) =
⋃
x∈Xn

cβ(x).

As cβ(x) has C-rank β for all x ∈ A and cβ(xn) ∼ cβ(xn+1) for all n ∈ Z,
we obtain Xn �

∑
i∈I Ai, where I � C or I � C∗ and Ai is Countryman

for each i ∈ I, and cβ(x) is in
⋃
ξ<β+2Aξ for all x ∈ A. Thus, we infer that

[xn, xn+1) ∈
⋃
ξ<α+2Aξ.

If α is a non-zero limit ordinal, then A =
⋃
β<α c

β(x) for some (any)
x ∈ A. First note that if cof(α) = ω1 and αξ (ξ ∈ ω1) is strictly increasing
and cofinal in α then picking an element xξ ∈ (cαξ+1(x)∩ [x,∞)) \ cαξ(x) or
xξ ∈ (cαξ+1(x)∩ (−∞, x])\ cαξ(x) we obtain a copy of ω1 or ω∗1, respectively.
Therefore, cof(α) = ω. Let αn be strictly increasing and cofinal in α. Then

A =
⋃
n∈ω

[(cαn+1(x) ∩ [x,∞)) \ cαn(x)] ∪
⋃
n∈ω

[(cαn+1(x) ∩ [x,∞)) \ cαn(x)].

Since the C-rank of the intervals (cαn+1(x)∩ [x,∞))\cαn(x) and (cαn+1(x)∩
(−∞, x]) \ cαn(x) is αn we infer that A ∈

⋃
ξ<α+2Aξ.

Note that if α < β, then Aα ⊆ Aβ and we have a natural rank:

Definition 4.6. Given A ∈ AF let rank(A) = min{α : A ∈ Aα}.
Note that A � B implies rank(A) ≤ rank(B). We are now ready to prove

an important structural result about the class AF of fragmented Aronszajn
lines.

Lemma 4.7. (MAω1) For every ordinal α < ω2 there exist two incompa-
rable A-lines D+

α and D−α of rank α such that:

(1) C ×D+
α ≡ D+

α , C∗ ×D−α ≡ D−α ,
(2) D−α � C∗ ×D+

α , D+
α � C ×D−α ,

(3) for every A ∈ Aα either A ≡ D+
α or A ≡ D−α or else both A ≺ D+

α

and A ≺ D−α .

Proof. The proof is by induction on α. Suppose that α is given and that
D+
β and D−β satisfying clauses (1)–(3) have been defined for all β < α.

If α = 0, then let D+
0 = C and D−0 = C∗. Clause (1) follows from Fact

3.11, clause (2) is trivial and clause (3) follows from Fact 3.10.
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If α = β + 1, then let D+
α = C × D−β and D−α = C∗ × D+

β . Clause (1)
follows from Fact 3.11. For (2) note that D−α � C∗ × D+

α is equivalent to
C∗ × D+

β � C∗ × (C × D−β ) which follows from the induction hypothesis
D+
β � C

∗ ×D−β .
In order to prove (3), let A ∈ Aα be given. We may assume that A =∑
x∈C Ax where rank(Ax) ≤ β for all x ∈ C. We will show that either

A ≡ D+
α or both A � D+

α and A � D−α . Let X = {x : Ax ≡ D−β } (note
X 6= ∅, otherwise A � D+

β , which has rank < α). If X is uncountable, then
by Fact 3.10 we have X ≡ C. Using the embedding of C into X we obtain
D+
α � A, and since A � D+

α it follows that they are equivalent.
So suppose D+

α � A and hence X is countable.
Consider the following relation on C \X:

x ∼ y iff [x, y] ∩X = ∅.
It is easy to see that ∼ is an equivalence relation with convex classes.

Since C does not contain uncountable real types we have

|{[a] : a ∈ C \X}| = ω.

By the induction hypothesis we see that for each a ∈ C \ X we can write
Ba =

∑
x∈[a]Ax, where Ax � D+

β for all x ∈ [a].
Since [a] has countable cofinality and coinitiality, we have Ba � D+

β . Let
I be a set such that |I ∩ [a]| = 1 for all a ∈ C. Therefore A =

∑
i∈(I∪X)Xi,

where Xi = Bi for i ∈ I and Xi = Ai for i ∈ X. Hence X is a countable sum
of linear orders which are embeddable into either D+

β or D−β and therefore
A is a countable sum of linear orders which embed into both D+

α and D−α .
If α is a non-zero limit ordinal, then let us note that properties (1)–(3)

imply that every A ∈ Aβ+1 \ Aβ must contain a copy of both D+
β and D−β

for all β < α. Thus, by clause (3) again we infer that A contains every line
of smaller rank. Observe that if A has rank α then for each β < α there
exists an A-line embedded into A with rank greater than β. Thus, we have
the following useful property: rank(A) < rank(B) ≤ α implies A � B.

Fix a strictly increasing sequence (αj) converging to α (we use the
convention that j ∈ ω or j ∈ ω1 depending on whether cof(α) = ω or
cof(α) = ω1, respectively). Let

D+
α =

∑
x∈C

Ax, D−α =
∑
x∈C∗

Ax,

where Ax = D+
αj for some j. Moreover, for all j the set {x : Ax = D+

αj} is
dense in both C and C∗. By Fact 3.9, C is not Suslin, so let I = {Iα : α < ω1}
be an uncountable family of pairwise disjoint non-empty intervals of C. We
order I by

I < J iff (∀x ∈ I)(∀y ∈ J) x <C y.
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Since I is isomorphic to an uncountable subset of C, we deduce by Fact 3.10
that C � I. This gives us an embedding of C ×D+

α into D+
α , i.e., (1) holds.

Part (2) should be clear from the definition of D+
α and D−α .

We shall prove that (3) holds. Let A ∈ Aα be given; we may assume
that A =

∑
x∈C Ax where rank(Ax) ≤ α for all x ∈ C. Define the following

relation on C:

a ∼ b iff sup{rank(Ax) : x ∈ [a, b]} < α.

It is easy to see that ∼ is an equivalence relation with convex equivalence
classes. Since [a] has countable coinitiality and cofinality it follows that the
ordering

A′a =
∑
x∈[a]

Ax

has rank ≤ α. Let C ′ ⊂ C be such that |C ′ ∩ [a]| = 1 for all a ∈ C. Then we
also have the equality

A =
∑
a∈C′

A′a.

The point of this new representation is that if a, b ∈ C ′, a < b and (a, b) 6= ∅
then

(∀j)(∃x ∈ (a, b)) rank(Ax) > αj .

If this were not the case then we would get a ∼ b, which is impossible.
Observe that if C ′ is countable then A is a countable sum of linear

orders which embed into both D+
α and D−α . So it suffices to show that if C ′

is uncountable then A ≡ D+
α . By going to a subset of C ′, we may assume

that C ′ is ℵ1-dense; using Fact 3.9 we can find an uncountable family

Iξ := {(aξ, bξ) : ξ < ω1}
of pairwise disjoint non-empty intervals of C ′. As before we order X = {Iξ :
ξ < ω1} by

Iξ ≺ Iη iff (∀x ∈ Iξ)(∀y ∈ Iη) x <C y.
By Fact 3.10 there is a strictly increasing map F : C → X. We will use F to
construct a map f : C → C ′ with the property that f(x) ∈ F (x). Note that
this guarantees that f is strictly increasing. Given x ∈ C find a ∈ F (x) such
that rank(Ax) < rank(A′a). Thus, f provides an embedding of D+

α into A;
by a similar argument we can obtain the reverse embedding. Therefore A is
equivalent to D+

α , which concludes the proof of the lemma.

Theorem 4.8. (PFA) The class of Aronszajn lines is bqo under embed-
dability.

Proof. We will prove by induction on α that Aα is bqo. Suppose that α
is given and that Aβ is bqo for all β < α.



Well-quasi-ordering A-lines 209

If α = 0, then the result follows from Theorem 1.3 and Fact 3.10.
If α = β + 1, then let

f : [ω]ω → Aα

be a given Borel map. Consider the partition

[ω]ω = X1 ∪X2 ∪X3

where

X1 = {A ∈ [ω]ω : f(A) ≡ D+
α },

X2 = {A ∈ [ω]ω : f(A) ≡ D−α },
X3 = {A ∈ [ω]ω : f(A) ≺ D+

α ∧ f(A) ≺ D−α }.

By the Galvin–Prikry theorem (see [9]) there is X ∈ [ω]ω such that f”[X]ω ⊂
Xi for some i ∈ {1, 2, 3}. If i = 1, 2 then

f(X) ≡ f(X \ {min(X)})

and the result holds. If i= 3 then f mapsX into X =Aα \ {B ∈Aα : B ≡D+
α

∨B ≡ D−α }. By the previous lemma every element of X is a countable sum
of linear orders which are embeddable into both D+

β and D−β . Thus, X can
be identified with the set (Aβ)C of Q-types. By Theorem 2.8, X is bqo and
therefore there exists a Y ∈ [X]ω so that

f(Y ) � f(Y \ {min(Y )}).

If α is a non-zero limit ordinal, then it follows from Lemma 4.7 that

Aα = {A : A ≡ D+
α } ∪ {A : A ≡ D−α } ∪

( ⋃
ξ<α

Aξ
)C
.

By Theorem 2.8 and the Galvin–Prikry theorem it is enough to show that⋃
ξ<αAξ is bqo. Let f : [ω]ω →

⋃
ξ<αAξ be a given Borel map. Consider

the following partition of [ω]ω:

X1 = {A ∈ [ω]ω : rank(f(A)) > rank(f(A \ {min(A)}))},
X2 = {A ∈ [ω]ω : rank(f(A)) < rank(f(A \ {min(A)}))},
X3 = {A ∈ [ω]ω : rank(f(A)) = rank(f(A \ {min(A)}))}.

Again by the Galvin–Prikry theorem there is an X ∈ [ω]ω such that f”[X]ω

⊂ Xi for some i ∈ {1, 2, 3}. The case i = 1 is impossible as it would give us
a strictly decreasing sequence of ordinals. Since the case i = 2 gives us the
desired conclusion, we may assume i = 3. By going to an infinite subset X ′

of X we can assume that rank(f(Y )) is constant for all Y ∈ [X ′]ω; then the
conclusion follows from the induction hypothesis.
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