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Topological compactifications

by

Benjamin Vejnar (Praha)

Abstract. We study those compactifications of a space such that every autohomeo-
morphism of the space can be continuously extended over the compactification. These are
called H-compactifications. Van Douwen proved that there are exactly three H-compactifi-
cations of the real line. We prove that there exist only two H-compactifications of Euclidean
spaces of higher dimension. Next we show that there are 26 H-compactifications of a count-
able sum of real lines and 11 H-compactifications of a countable sum of Euclidean spaces
of higher dimension. All H-compactifications of discrete and countable locally compact
spaces are described.

1. Introduction. A compactification γX of a space X is said to be an
H-compactification if each autohomeomorphism of X can be continuously
extended to a mapping of γX into γX. This notion was studied by several
authors: in [Smi94] it is called ‘equivariant extension’, in [dGM60] it is called
‘G-compactification’ (where G is a subgroup of the group of all autohome-
omorphisms of X), and in [vD79] the name ‘topological compactification’
is used. The last name is probably the most suitable since it expresses the
fact that the compactification is defined only with respect to the topology
of the base space and does not depend on the concrete representation of the
space. However, we prefer the shorter term introduced above.

Informally, a compactification is an H-compactification if and only if
it can be defined only in terms of topological properties of the given space.
Clearly, the Alexandroff one-point compactification of a non-compact locally
compact spaceX (denoted by αX) and the Čech–Stone compactification βX
of a Tychonoff space X are always H-compactifications.

It is known that the Sorgenfrey line as well as the spaces of rational
and irrational numbers admit only one H-compactification and that there
are exactly three H-compactifications of the real line (see [vD79]). In the
same paper it is noted that there are at least eleven H-compactifications of
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a countable sum of real lines. In this work we study Euclidean spaces of
higher dimension and their countable sums.

For a continuous mapping f : X → Y of Tychonoff spaces we denote by
βf : βX → βY the only continuous extension of f . For brevity we write X∗

for the Čech–Stone remainder βX \X. We denote by H(X) the group of all
autohomeomorphisms of a space X. For x ∈ X the set {h(x) : h ∈ H(X)} is
called the orbit of the point x.

For all other unexplained notions we refer to [Eng89] and [Cha76]. All
spaces in this paper are supposed to be Tychonoff.

2. Lattice structure. In this section, we give a characterization of an
H-compactification by bounded continuous functions which are extendable
over the compactification. Consequently, we observe that the H-compactifi-
cations of a locally compact space form a lattice. The notion of a homoge-
neous mapping will be helpful.

Definition 1. We say that a continuous mapping f : X → Y is homo-
geneous if for every h ∈ H(X) there exists g ∈ H(Y ) such that fh = gf .

Let us emphasize that this notion depends essentially on the codomain
of f . Clearly a compactification γX is an H-compactification if and only if
the inclusion mapping X → γX is homogeneous. It is easy to verify that the
identity as well as constant mappings are always homogeneous and that the
composition of two homogeneous mappings is again homogeneous. Neither
products nor sums of homogeneous mappings are in general homogeneous.
Two simple lemmas are stated below.

Lemma 2. A diagonal mapping ∆fi : X →
∏
Yi is homogeneous pro-

vided that every mapping fi : X → Yi is homogeneous.

Lemma 3. Let f : X → Y be a homogeneous mapping. Then its core-
strictions f : X → f(X) and f : X → f(X) are also homogeneous.

Recall that the set of all compactifications of a space X (up to equiv-
alence) with natural order is a complete upper semilattice. If X is locally
compact we even get a complete lattice. For more details see [Cha76, p. 16].

Proposition 4. The set of all H-compactifications of a space X is
a complete subsemilattice of the semilattice of all compactifications of X.

Proof. For a set of H-compactifications γiX we denote by γi : X → γiX
the inclusion mappings. The least upper bound of these compactifications
is given by γ(X) where γ = ∆γi. This is an H-compactification because γ
and its corestriction γ : X → γ(X) are homogeneous by Lemmas 2 and 3.

Proposition 5. Let γX be a compactification of a space X and let
∼ be an equivalence relation for which γX = βX/∼. Then the following
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conditions are equivalent:

(i) γX is an H-compactification.
(ii) For every h ∈ H(X) and x, y ∈ βX with x ∼ y we have βh(x) ∼

βh(y).
(iii) Every homeomorphism h ∈ H(X) is uniformly continuous with re-

spect to the unique uniformity on γX.
(iv) For every f ∈ C∗(X) which is continuously extendable over γX and

for every h ∈ H(X) the function fh can be continuously extended
over γX.

Proof. (i)⇒(ii). Take any h ∈ H(X) and x, y ∈ βX. Denote by ϕ : βX
→ γX the only extension of the identity on X. Note that x ∼ y iff ϕ(x) =
ϕ(y). By (i) there is a g ∈ H(γX) extending h, from which we get ϕβh = gϕ
since both sides are the same on a dense subset of βX. Thus if ϕ(x) = ϕ(y)
we get ϕβh(x) = gϕ(x) = gϕ(y) = ϕβh(y) and hence βh(x) ∼ βh(y).

(ii)⇒(iii). For any h ∈ H(X) define g ∈ H(βX/∼) by the condition
g([x]∼) = [βh(x)]∼. The mapping g is uniformly continuous and extends h.
Thus h is also uniformly continuous.

(iii)⇒(iv) Pick h ∈ H(X) and f ∈ C∗(X) continuously extendable to
a function f̄ : γX → R. Since h is uniformly continuous by (iii) and f̄ is also
uniformly continuous, the composition fh is uniformly continuous. Thus by
Theorem 8.3.10 from [Eng89, p. 447] there is a continuous extension of fh
over γX.

(iv)⇒(i). Let h ∈ H(X). We want to show that h is continuously ex-
tendable to a mapping γX → γX. By a special case of Theorem 3.2.1 from
[Eng89, p. 136], a continuous mapping h : X → γX can be continuously ex-
tended over γX if and only if for every pair E, F of disjoint closed subsets
of γX the preimages h−1(E) and h−1(F ) have disjoint closures in Y .

To verify this condition let E and F be as above. There exists f ∈ C(γX)
such that E ⊆ f−1(0) and F ⊆ f−1(1). By (iv) there exists e ∈ C(γX) such
that fh = e�X . Finally,

h−1(E) ∩ h−1(F ) ⊆ (fh)−1(0) ∩ (fh)−1(1) ⊆ e−1(0) ∩ e−1(1) = ∅.
Using the previous theorem we get the following result.

Proposition 6. The set of all H-compactifications of a locally compact
space X is a complete sublattice of the lattice of all compactifications of X.

Proof. For a given family of H-compactifications γiX denote by Ci the
set of all continuous functions from C∗(X) that are extendable over γiX.
Let C =

⋂
Ci. The greatest lower bound of the compactifications γiX is

given by γ(X) where γ : X → RC is defined by f(x)e = e(x). We are going
to verify condition (iv) of Proposition 5. Let h ∈ H(X) and let f ∈ C∗(X)
be continuously extendable over γ(X). Then f ∈ C. Consequently, fh ∈ Ci
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for every i because γiX is an H-compactification. Hence fh ∈
⋂
Ci = C is

continuously extendable over γ(X).

3. Countable, discrete and Euclidean spaces. What does the set of
all H-compactifications look like? This question seems to be hard to answer
in some cases. For example, for a rigid space (i.e. admitting no non-trivial
homeomorphisms) every compactification is an H-compactification and there
can be a huge number of them (e.g. when a dense rigid subset of the real line
is taken there exist at least continuum many). However, we can describe the
lattices of all H-compactifications of discrete spaces, countable locally com-
pact spaces, Euclidean spaces and countable sums of Euclidean spaces. This
is possible since these spaces possess a rich structure of homeomorphisms.

3.1. Discrete spaces. The two lemmas below will be used in proving
Theorem 9.

Lemma 7. Let X be a space and γX and δX be two compactifications
such that δX is an H-compactification of X and there exists a continuous
mapping f : δX → γX extending the identity on X. If f is a homogeneous
mapping then γX is an H-compactification of X.

Proof. The inclusion γ : X → γX is a homogeneous mapping, being the
composition of two homogeneous mappings, f and the inclusion X → δX.

Note that the opposite implication in the previous lemma is not true in
general. Just consider the space X = βω ⊕ ω and a continuous mapping
f : βX → αX which extends the identity on X. Note that βX = βω ⊕ βω
is an H-compactification of X and f is not homogeneous.

Lemma 8. Let ∼ be an equivalence relation on a space X. Suppose more-
over that equivalence classes are either singletons or unions of orbits. Then
the quotient mapping q : X → X/∼ is homogeneous.

Proof. Fix h ∈ H(X) and define g : X/∼ → X/∼ by g([x]) = [h(x)],
where [x] denotes the equivalence class of x. This mapping is well-defined
because equivalence classes are either singletons or unions of orbits. It is a
bijection satisfying qh = gq. For an open set G ⊆ X/∼ we can see that
H = h−1q−1(G) is open. If x ∈ H then [x] ⊆ H. Hence q(H) is open.
The equality q(H) = g−1(G) implies that g is continuous. Similarly g−1 is
continuous and so g is the required homeomorphism.

Theorem 9. The only H-compactifications of a discrete space D of car-
dinality κ ≥ ω are of the form βD/Fλ where ω ≤ λ ≤ κ+ and

Fλ = βD \
⋃
{A : A ⊆ D, |A| < λ}.
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Proof. Recall that the system {A : A ⊆ D} is a clopen base of βD.
Hence every set Fλ is closed and βD/Fλ is a compactification of D. This is
an H-compactification by Lemma 7 because the quotient mapping qλ : βD →
βD/Fλ is homogeneous by Lemma 8. Note that Fω = βD \D and Fκ+ = ∅
and hence βD/Fω = αD and βD/Fκ+ = βD.

Let f : βD → γD be a continuous mapping onto some compactification
γD extending the identity on D. Suppose that γD is not equivalent to any
βD/Fλ. This means that for every ω ≤ λ ≤ κ+, either |f(Fλ)| ≥ 2, or
f�βD\Fλ is not one-to-one. Let λ be the least cardinal such that f�βD\Fλ
is not one-to-one. Clearly ω < λ ≤ κ+. By minimality of λ we derive that
λ = µ+ is a successor cardinal and |f(Fµ)| ≥ 2.

The proof is completed by using the lemma below.

Lemma 10. Let D be a discrete space of cardinality κ ≥ ω. Suppose
f : βD → γD is the only continuous extension of the identity on D onto
some compactification γD. If there exists ω ≤ µ ≤ κ for which |f(Fµ)| ≥ 2
and f�βD\Fµ+

is not one-to-one then γD is not an H-compactification of D.

Proof. There exist two points u, v ∈ Fµ such that f(u) 6= f(v) and two
distinct points x, y ∈ βD \Fµ+ such that f(x) = f(y). Let U and V be open
neighbourhoods of u and v respectively satisfying f(U)∩ f(V ) = ∅. We can
find A,B ⊆ D such that u ∈ A ⊆ U and v ∈ B ⊆ V . Note that |A|, |B| ≥ µ.
From the fact that x, y /∈ Fµ+ we derive the existence of two disjoint subsets
M,N ⊆ D of cardinalities less than µ+ such that x ∈ M and y ∈ N . We
can also require |D \ (M ∪N)| = κ.

It is easy to see that there exists a b ∈ H(D) such that b(M) ⊆ A
and b(N) ⊆ B. Let h ∈ H(βD) be the only continuous extension of b.
Note that h(x) ∈ A and h(y) ∈ B. Suppose for contradiction that γD
is an H-compactification and find g ∈ H(γD) extending b. Two continuous
mappings fh and gf are equal on D and because D is dense in βD we derive
fh = gf . On the other hand we have fh(x) ∈ f(U) and fh(y) ∈ f(V ) and
gf(x) = gf(y). But f(U) and f(V ) are disjoint, hence fh(x) 6= fh(y), and
this contradicts the equality fh = gf .

Corollary 11. The only H-compactifications of ω are αω and βω.

3.2. Countable metrizable spaces. As mentioned in the paper of de
Groot and McDowell [dGM60], ‘it is of interest to ask for conditions under
which every autohomeomorphism of a given space can be extended to a
suitable metric compactification’. In this section we study this problem in
the class of countable metrizable spaces. Let us recall the frequently used fact
that the Alexandroff one-point compactification of a non-compact separable
locally compact metrizable space is always metrizable.
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Proposition 12. A non-compact countable metrizable space admits a
metrizable H-compactification if and only if it is locally compact. In this case
the only metrizable H-compactification is the one-point compactification.

Proof. Suppose that X is a countable metrizable space and γX an ar-
bitrary metrizable H-compactification. Denote by Y the set of all isolated
points of X.

We claim that Y is dense in X. Suppose it is not. Hence X \ Y is an
open non-empty set no points of which are isolated. We can find a non-empty
clopen set Q ⊆ X \ Y . Since Q is a non-empty countable metrizable space
without isolated points, it is homeomorphic to the rational numbers Q (see
[vE86, p. 17]). By a result of van Douwen [vD79] there exists exactly one H-
compactification of Q, namely βQ. The inclusion Q → X is homogeneous,
which implies that the closure of Q in γX is homeomorphic to βQ. This
contradicts the assumption that γX is metrizable. So the claim is proved.

For any x, y ∈ γX \ X we can fix sequences xn, ym ∈ Y converging to
x and y respectively because γX is metrizable and isolated points of X
are dense in γX . We can assume moreover that all the points xn, ym are
distinct. We can define a homeomorphism h ∈ H(X) by

h(z) =


xn if z = yn and n is odd,
yn if z = xn and n is odd,
z otherwise,

because the sets {xn : n ∈ ω} and {ym : m ∈ ω} are clopen and discrete.
There is an extension g ∈ H(γX) of h for which necessarily x = h(x) = y.
Thus γX \X contains at most one point. Therefore X is locally compact.

Since the one-point compactification of a locally compact separable
metrizable space is again metrizable, we are done.

In what follows, it is of importance that every countable locally compact
space is metrizable. To see this, recall that network weight is the same as
weight for compact spaces [Eng89, p. 127] and thus any countable locally
compact space is first countable. Moreover by the Urysohn metrization theo-
rem [Eng89, p. 260] such a space is metrizable because it is second countable
and regular.

For any ordinal δ denote by Xδ the δth Cantor–Bendixson derivative
of X. By rankX we denote the least ordinal δ for which Xδ is empty. This
is reasonable only for scattered spaces. For any space X define topX = Xδ

if rankX = δ + 1 and topX = ∅ otherwise. Notice that for any scattered
compact space its Cantor–Bendixson rank cannot be a limit ordinal.

It is helpful to define another ordinal rank, rankcX, associated to every
scattered space X. It is the least ordinal δ for which Xδ is compact. Note
that rankcX ≤ rankX.
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Below we give a series of statements useful for the proof of Theorem 16.

Lemma 13 (Mazurkiewicz–Sierpiński [MS20]). Let K and L be countable
and compact spaces. Then K is homeomorphic to L if and only if rankK =
rankL and topK ∼= topL.

Corollary 14. The orbits of a countable locally compact space X are
precisely the sets Xδ \ Xδ+1 where δ < rankX. Moreover for any x, y ∈
Xδ \ Xδ+1 there is a homeomorphism h ∈ H(X) such that h(x) = y and
h�Xδ+1 is the identity.

Proof. Clearly the sets Xδ \Xδ+1 are preserved by all homeomorphisms
since the Cantor–Bendixson derivative is a topological notion. On the other
hand suppose we have two distinct points x, y ∈ Xδ \ Xδ+1. There exist
disjoint compact clopen neighbourhoods P and Q of x and y respectively for
which P ∩Xδ = {x} and Q∩Xδ = {y}. The sets P and Q are homeomorphic
by Lemma 13 and since they are clopen we can extend this homeomorphism
by the identity to a homeomorphism of the whole space.

Proposition 15. Let X and Y be two countable locally compact spaces.
Then X is homeomorphic to Y if and only if rankX = rankY , rankcX =
rankc Y and topX ∼= topY .

Proof. The direct implication is clear. If one of the two spaces is compact,
so is the other, since rankcX = rankc Y , and by Lemma 13 we get the
desired result. Thus suppose they are both non-compact and consider their
one-point compactifications αX = X ∪ {∞x} and αY = Y ∪ {∞y}. There
are three possibilities:

• rankX = rankcX. This implies that rankαX = rankX + 1 = rankY
+ 1 = rankαY and topαX = {∞x} ∼= {∞y} = topαY .
• rankX = rankcX + 1. In this case rankαX = rankX = rankY =

rankαY and topαX = topX ∪ {∞x} ∼= topY ∪ {∞y} = topαY .
• rankX > rankcX + 1. Then rankαX = rankX = rankY = rankαY

and topαX = topX ∼= topY = topαY .

In all cases the assumptions of Lemma 13 are satisfied, hence there exists
a homeomorphism h : αX → αY . It is not always the case that h(∞x) =∞y

so we need to find a homeomorphism g ∈ H(αY ) for which g(h(∞x)) =∞y.
However its existence is a consequence of Corollary 14 for δ = rankcX since
∞x ∈ (αX)δ \ (αX)δ+1 and thus h(∞x),∞y ∈ (αY )δ \ (αY )δ+1.

Finally gh�X is the required homeomorphism.

Theorem 16. Let X be a countable locally compact space. Then the only
H-compactifications of X are of the form βX/Fδ where

Fδ =
⋂
{Xε : ε < δ} ∩X∗
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for 1 ≤ δ ≤ rankcX + 1. Thus the lattice of all H-compactifications of X is
a chain isomorphic to the ordinal rankcX + 1 when rankcX is finite, and
to rankcX + 2 when rankcX is infinite.

Proof. Note that the Čech–Stone compactification of X is equivalent to
βX/Fδ for δ = rankcX + 1. Suppose γX is an H-compactification distinct
from βX and denote by f : βX → γX the only extension of the identity
on X. Let δ be the least non-zero ordinal for which there exist distinct points
x ∈ βX \Xδ and y ∈ βX such that f(x) = f(y). Note that both x and y

are elements of the remainder and clearly δ ≤ rankcX since XrankcX ⊆ X.
Our aim is to prove that γX is equivalent to βX/Fδ.

Pick any point z ∈ Fδ distinct from x and y. We wish to show that every
neighbourhood U of z contains a point which is mapped to f(y) by f . Take
a clopen neighbourhood O of x such that O ∩ Xδ = ∅ and y, z /∈ O and a
clopen neighbourhood P of z with P ⊂ U , y ∈ P and P ∩ ∅. We distinguish
two possibilities in order to define a sequence Z = {zn : n ∈ ω}.
• If δ = ε+1 define {zn : n ∈ ω} to be a sequence contained in P ∩ (Xε \
Xδ) whose limit is ∞ ∈ αX. This is possible since P ∩Xε is a closed
and non-compact subset of X and Xε \Xδ is dense in Xε.

• When δ is a supremum of ordinals {δn : n ∈ ω} less than δ one can find
a sequence {zn : n ∈ ω} with limit∞ ∈ αX and zn ∈ P ∩Xδn \Xδn+1.

At this moment let us mention that

(1) ∅ 6= Z \ Z ⊆
⋂
ε<δ

Xε \Xδ.

Since Z and Xδ are two disjoint closed subsets of X there exists a clopen
set N ⊆ X containing the sequence Z and disjoint from Xδ. Denote by M
the clopen set O ∩X. It follows that rankM = rankcM = δ = rankcN =
rankN . Moreover if δ is an isolated ordinal we get topM ∼= ω ∼= topN ,
as otherwise topM = ∅ = topN . Thus by Proposition 15 the sets M and
N are homeomorphic. Since they are clopen and disjoint we can define a
homeomorphism h ∈ H(X) such that h(M) = N , h(N) = M and h is the
identity on the complement of M ∪ N . Since x ∈ M we get βh(x) ∈ U
and βh(y) = y. There exists an extension g ∈ H(γX) of h, because γX is
an H-compactification. We have gf = fβh and since f(x) = f(y) we get
f(βh(x)) = f(βh(y)) = f(y). Consequently, βh(x) is a point in U which
is mapped by f to f(y). As U was an arbitrary neighbourhood of z, by
continuity of f we get f(z) = f(y).

We have just proved that γX ≤ βX/Fδ. If we assume this inequality is
strict we get a contradiction with the minimality of δ.

In order to prove that all the above mentioned H-compactifications are
mutually distinct we have to verify that Fε 6= Fδ for 1 ≤ ε < δ ≤ rankcX+1.
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It suffices to check that Xδ \X (
⋂
ε<δX

ε \X for 1 ≤ δ ≤ rankcX, which
is a consequence of (1).

Example 17. The space ω×(ω+1)n admits exactly n+2 H-compactifi-
cations.

Remark 18. When dealing with countable non-locally compact spaces
the situation seems to be more complicated even in the range of metrizable
spaces.

3.3. Euclidean spaces. Van Douwen proved in [vD79] that there exist
only three H-compactifications of the real line, namely αR, [−∞,+∞] and
βR. Continuing this research, we show that there are only two H-compact-
ifications of Euclidean spaces of higher dimension.

The following definitions are given in order to state Lemma 22, Theorem
24 and Theorem 29 succinctly. These statements are formulated for a general
space X instead of the Euclidean space Rn, mainly because the proofs then
seem to be more transparent.

Definition 19. If U is a collection of subsets of a metric space X then
the mesh of U is

mesh U = sup{diam U : U ∈ U} ∈ [0,+∞].

Definition 20. We say that an open subset U of a space X has property
(∗) if whenever E ⊆ U is closed in X and V ⊆ U is open and non-empty,
there is a homeomorphism h ∈ H(X) such that h(E) ⊆ V and h is the
identity on the complement of U .

Definition 21. We say that a space X has property (∗∗) if there is a
number N ∈ ω such that for every ε > 0 there is an open cover U which can
be expressed as a union of N discrete subcollections with mesh less than ε,
where each U ∈ U has property (∗).

We note that property (∗∗) is automatically connected with the num-
ber N .

Lemma 22. Let X be a separable locally compact metric space with prop-
erty (∗∗). Let M = 2N . Then:

(i) For every closed set F contained in an open set H there exist a
closed discrete set C ⊆ F and closed sets F0, . . . , FM−1 such that
F =

⋃
Fi and for every i < M and each open neighbourhood G of C

there is an h ∈ H(X) such that h(Fi) ⊆ G and h is the identity on
the complement of H.

(ii) For every pair of disjoint closed sets F, F ′ ⊆ X there exist disjoint
closed discrete sets C,C ′ ⊆ X and closed sets F0, . . . , FM−1, F

′
0, . . . ,

F ′M−1 such that F =
⋃
Fi, F ′ =

⋃
F ′j and for any i, j < M and
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neighbourhoods G and G′ of C and C ′ respectively there exists a hom-
eomorphism h ∈ H(X) such that h(Fi) ⊆ G and h(F ′j) ⊆ G′.

Proof. (i) Fix a closed set F and an open set H containing F . Our first
claim is that there exists an open cover V of F in H which can be expressed
as a union of M discrete collections of sets with property (∗).

Let us find a chain of compact sets {Kn : n ∈ ω} where Kn ⊂ intKn+1

and K0 = ∅. This can be done since X is locally compact and of countable
weight. Denote by dn the distance of Kn from Kn+2 \ intKn+1 and by εn
an arbitrary positive number less than 1

3 min{d0, . . . , dn} and dist(F ∩Kn,
X \ H). There exists an open cover Un = Un0 ∪ · · · ∪ UnM−1 of X of mesh
less than εn, consisting of sets with property (∗) where every collection Uni
is discrete. Define now

Vi =


⋃
n odd

{U ∈ Un+1
i : U ∩ F ∩ (Kn+1 \ intKn) 6= ∅} for i < N ,⋃

n even

{U ∈ Un+1
i−N : U ∩ F ∩ (Kn+1 \ intKn) 6= ∅} for N ≤ i < M .

The collections Vi are discrete and consist of sets with property (∗). Then
V =

⋃
i<M Vi is the required cover of F contained in H. Thus the claim is

proved.
Since metrizable spaces are paracompact according to the Stone theorem

[Eng89, p. 300] we can find a closed indexed refinement {E(V ) : V ∈ V}
whose union is F , because by Remark 5.1.7 from [Eng89, p. 301] every
open cover of a regular paracompact space has a closed indexed refinement.
Observe that the set Fi =

⋃
{E(V ) : V ∈ Vi} is closed, because it is the

union of a discrete collection of closed sets. Suppose that C is a selecting
set from {E(V ) : V ∈ V}. It is a closed discrete set.

Suppose that G is an open neighbourhood of C and fix i < M . For
every V ∈ Vi there exists hV ∈ H(X) which sends the set E(V ) into G ∩ V
and which is the identity on the complement of V . This is because V has
property (∗).

Since the collection Vi is discrete, we can construct h ∈ H(X) which is
roughly speaking, the composition of all these hV . Consequently, h sends
the set Fi into G.

(ii) For two disjoint closed sets F and F ′ we can find open sets H and
H ′ whose closures are disjoint and which contain F and F ′ respectively. By
(i) there exist closed discrete sets C and C ′ and closed sets F0, . . . , FM−1,
F ′0, . . . , F

′
M−1 such that whenever i, j < M andG andG′ are neighbourhoods

of C and C ′ respectively, there exist h, h′ ∈ H(X) such that h(Fi) ⊆ G,
h′(F ′j) ⊆ G′, h�X\H = id and h′�X\H′ = id. Then h′′ = h′h is the required
homeomorphism.
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Definition 23. Let X be a topological space and P a collection of
subspaces of X. Then X is called n-homogeneous with respect to P if for
any sets Ci, Di ∈ P for i < n satisfying Ci ∼= Di and Ci ∩Cj = ∅ = Di ∩Dj

for i 6= j there exists a homeomorphism h ∈ H(X) such that h(Ci) = Di for
every i < n.

When n = 1 we just say homogeneous with respect to P. Note that for
example homogeneity with respect to points is equivalent to the classical
notion of homogeneity.

Theorem 24. Let X be a separable locally compact but non-compact
metric space with property (∗∗) and 2-homogeneous with respect to closed
discrete sets. Then αX and βX are the only H-compactifications of X.

Proof. Suppose that γX is an H-compactification of X distinct from
the one-point compactification. Take arbitrary disjoint closed sets F and F ′

in X. Our aim is to prove that their closures in γX are also disjoint, because
then we infer that γX is equivalent to βX.

By Lemma 22 there exist two closed discrete sets C, C ′ and closed sets
F0, . . . , FM , F

′
0, . . . , F

′
M with properties mentioned above. Since F =

⋃
Fi

and F ′ =
⋃
F ′j it is enough to prove that for any i, j < M the closures of Fi

and F ′j are disjoint in γX.
Note that there exist two countable infinite closed discrete sets D and

D′ of X whose closures in γX are disjoint, because γX \X contains at least
two points. Since X is 2-homogeneous with respect to closed discrete sets
and since γX is an H-compactification, the closures of C and C ′ in γX are
disjoint. Hence we can separate them by open sets G and G′ in X whose
closures in γX are disjoint.

By Lemma 22 we can find h ∈ H(X) with h(Fi) ⊆ G and h(F ′j) ⊆ G′.
Consequently, the closures of h(Fi) and h(F ′j) in γX are disjoint and since
γX is an H-compactification, the closures of Fi and F ′j are also disjoint.

Thus we have proved that γX is equivalent to βX.

We need to show that Euclidean spaces of dimension at least two satisfy
the assumptions of Theorem 24. This is partially done in Proposition 26.
The following notion will be useful in the proof.

Definition 25. A space X is called strongly locally homogeneous if for
every x ∈ X and each neighbourhood U of x there exists a neighbourhood
V of x in U such that for every y ∈ V we can find a homeomorphism of X
which sends x to y and is the identity on the complement of V .

Note that if we have an open connected set U in a strongly locally homo-
geneous space X and two points x, y ∈ U , there is always a homeomorphism
h ∈ H(X) for which h(x) = y and which is the identity on the complement
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of U . This is because the set {g(x) : g ∈ H(X), g�X\U = id} is clopen in U
and thus it has to be equal to U .

It is a well-known fact that Euclidean spaces are strongly locally homo-
geneous (see [vM01, p. 64]).

Proposition 26. Let n ≥ 2. Then every bijection of closed discrete
subsets of Rn can be extended to a homeomorphism of the whole space.

Proof. Let C and D be closed discrete subsets of Rn of cardinality
m ≤ ω, and b : C → D a bijection. We will use the structure of the normed
linear space (Rn, ‖ · ‖). The words span and conv mean linear hull and con-
vex hull respectively. Let S ⊂ Rn consist of those points which either lie on
a line through two points from C ∪D or whose distance from two distinct
points from C ∪ D is the same. This set is a countable union of nowhere
dense sets, so a set of the first category in Rn. Hence by the Baire theorem
Rn \ S 6= ∅; without loss of generality we can assume that 0 ∈ Rn \ S.

Enumerate now the set C as {ci : i < m} and denote ri = ‖ci‖, ϕi =
ci/‖ci‖ ∈ Sn−1, di = b(ci) and si = ‖di‖. By the first paragraph we know that
ri 6= rj , ϕi 6= ϕj and si 6= sj for i < j < m. Fix i < m for a while. Denote by
εi the positive distance of the set

⋃
{span(0, c) : c ∈ C, ‖c‖ < ri} ∪ C \ {ci}

from the segment conv(ci, siϕi). Denote by Ui the set of all points whose
distance from conv(ci, siϕi) is less than 1

3εi. Since Rn is strongly locally
homogeneous and the open set Ui is connected it follows that there exists
hi ∈ H(Rn) such that hi(ci) = siϕi and hi is the identity on the complement
of Ui. Since the collection {Ui : i < m} is discrete we can define h ∈ H(Rn)
by

h(x) =
{
hi(x) if x ∈ Ui,
x otherwise.

We proceed similarly to find a homeomorphism h′. Let ε′i be a positive
distance of the point si from the set {sj : j 6= i} and denote by U ′i the
set of all points whose distance from siSn−1 is less than 1

3ε
′
i. We can find

h′i ∈ H(Rn) such that h′i(siϕi) = di and h′i is the identity on the complement
of U ′i . Since the collection {U ′i : i < m} is discrete we can define h′ ∈ H(Rn)
by

h′(x) =
{
h′i(x) if x ∈ U ′i ,
x otherwise.

Now it is enough to define h′′ as the composition h′h to get the desired
homeomorphism for which h′′(ci) = h′h(ci) = h′(siϕi) = di = b(ci).

Remark 27. The proof of Proposition 26 can be done more easily for
Euclidean spaces of dimension at least three. In the plane the situation is
more complicated. Note that this proposition obviously fails to be true for
n = 1.
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Corollary 28. There are exactly two H-compactifications of Rn for
n ≥ 2, namely αRn and βRn.

Proof. It is enough to check that the assumptions of Theorem 24 are
satisfied. The fact that Rn is 2-homogeneous with respect to closed discrete
sets follows easily from Proposition 26. To verify the assumptions of Lemma
22 consider the maximum metric ρ on Rn and denote by Bρ(x, r) the open
ball with centre x and diameter r. Put N = 2n. For arbitrary ε > 0 we can
take the cover U =

⋃
{Uj : j ∈ 2n} of Rn where

Uj = {Bρ(εi/3, ε/4) : i ∈ Zn, ik ≡ jk (mod 2)}.
All collections Uj are discrete and they consist of sets with property (∗), be-
cause every ball Bρ(x, r) in Rn has property (∗). Thus Rn has property (∗∗).

For completeness we should add that the two H-compactifications are
distinct, which is however an immediate consequence of the fact that there
exists a continuous bounded function with no limit at infinity.

3.4. Products of ω and Euclidean space. In this section we are go-
ing to describe all the H-compactifications of the product ω×Rn. It is shown
that there are always finitely many of them, but the situation in the case
n = 1 is different from the case n ≥ 2. Some of these H-compactifications
can be obtained via applying compactifications α, β and ϕ, where ϕ de-
notes the Freudenthal compactification which is the largest compactification
with zero-dimensional remainder. For a locally compact space X it always
exists and can be described as a quotient of βX where every component of
βX \X shrins to a point. Some additional facts concerning the Freudenthal
compactification can be found in [Dom03].

For a space X we define W0 to be the quotient space ω×αX/(ω×{∞}).
The space W1 is obtained from ω × αX by adding one point ∞ where base
neighbourhoods of ∞ are of the form

{∞} ∪
⋃
n>m

{n} × (αX \Kn)

where Kn are compact subsets of X and m ∈ ω. The space W2 arises by
adjoining a point ∞ to X. Base neighbourhoods of ∞ are of the form

{∞} ∪
⋃
n>m

{n} × (X \Kn)

where Kn are compact subsets of X and m ∈ ω. Finally a space W3 is given
by Y ∪ω∗ where Y is an open set in W3 and base neighbourhoods of a point
x ∈ ω∗ are of the form

(ω∗ ∩Mβω) ∪
⋃
n∈ω
{n} × (X \Kn)

where M ⊆ ω, x ∈Mβω and Kn are compact subsets of X.
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We use Hasse diagrams to describe a lattice or a partially ordered set.
Here, two objects are connected with a line if the upper one is a minimal
element strictly bigger than the lower one. For more information about Hasse
diagrams we refer to the first chapter of [Bir67, p. 4].

The following result can be applied to X = Rn where n ≥ 2 since the
assumptions were verified in the proof of Corollary 28.

Theorem 29. Let X be a non-compact connected separable locally com-
pact metric space with property (∗∗) and 2-homogeneous with respect to
closed discrete sets. Then the space Y = ω × X admits exactly eleven H-
compactifications which form a lattice described below.

βY

βW3

β(ω×αX) βW2

.....
ϕ(ω×βX)

βW1

.......
.......

.

ϕ(ω×αX) α(ω×βX)

..............

βW0 α(ω×αX)

αY

(2)

Notation 30. We will use a consequence of Proposition 5 that all H-
compactifications of the (locally compact) space Y are in a natural one-to-
one correspondence with those closed equivalence relations E ⊆ (βY \ Y )2

such that βh × βh(E) = E for every h ∈ H(Y ). Equivalences with this
property are called invariant. Note that closed invariant equivalences of
a locally compact space form a lattice antiisomorphic to the lattice of all
H-compactifications.

Denote by π : Y → ω the projection onto the first coordinate, by Xn the
set {n} ×X, by C the closed set

βY \
⋃
{KβY : K ⊆ Y and K ∩Xn is compact for every n}

and by ∆ the diagonal of the square (βY \ Y )2.
Moreover, define three equivalences on Y ∗ as follows:

EC = ∆ ∪ {(x, y) ∈ C × C},
E∗ = ∆ ∪ {(x, y) ∈ Y ∗ × Y ∗ : βπ(x), βπ(y) ∈ ω∗},
E= = ∆ ∪ {(x, y) ∈ Y ∗ × Y ∗ : βπ(x) = βπ(y)}.
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It can be verified that these equivalences are closed. Since X is connected
(and thus any homeomorphism of Y sends a set Xn onto some Xm) we see
that the mapping π is homogeneous. Consequently, all the three equivalences
above are invariant.

Proof of Theorem 29. It is interesting to mention that the four equiva-
lences EC , E∗, E= and ∆ generate the lattice of all closed invariant equiv-
alences on Y ∗, as will follow. For any S ⊆ {C, ∗,=} we denote by ES
the closed invariant equivalence

∧
i∈S Ei. Our claim is that the only closed

one-generated invariant equivalences are the ES except E=. So take a pair
(x, y) ∈ (βY \ Y )2 and observe that if x = y then this pair generates ∆,
otherwise we have to distinguish the following possibilities. We give a com-
plete proof only in the case of EC∗= since the other cases are very similar.

• x, y ∈ C.

• βπ(x), βπ(y) ∈ ω∗.
• βπ(x) = βπ(y). To prove that (x, y) generates the equivalence
EC∗= take any (x′, y′) ∈ EC∗= \∆ and a neighbourhood G ×H
of (x′, y′) in βY × βY . We want to find h ∈ H(Y ) for which
(βh(x), βh(y)) ∈ G ×H. Since x′, y′ ∈ C and βπ(x′) = βπ(y′) ∈
ω∗ there exists an infinite set K ∈ βπ(x′) such that for every
n ∈ K the closures of G∩Xn and H ∩Xn in Y are non-compact.
We can assume that ω \K is infinite. Suppose that E and F are
disjoint closed subsets of L×X for which x ∈ E and y ∈ F where
L is an infinite subset of ω such that ω\L is infinite. Let b : ω → ω
be an arbitrary bijection for which b(L) = K.
For fixed n ∈ L apply Lemma 22 to the space Xn and closed sets
E ∩Xn and F ∩Xn to get closed discrete sets Cn, Dn ⊆ Xn and
closed sets Eni , F

n
j ⊆ Xn where i < M with suitable properties.

Since
E =

⋃
i<M

⋃
n∈ω

Eni and F =
⋃
j<M

⋃
n∈ω

Fnj ,

there exist indices i, j < M such that x ∈
⋃
{Eni : n ∈ ω} and

y ∈
⋃
{Fnj : n ∈ ω}. Since X is 2-homogeneous with respect to

closed discrete sets we can find a homeomorphism hn : Xn →
Xb(n) such that hn(Cn) ⊆ G ∩ Xb(n) and hn(Dn) ⊆ H ∩ Xb(n).
Lemma 22 yields gn ∈ H(Xn) such that gn(Eni ) ⊆ h−1

n (G∩Xb(n))
and gn(Fnj ) ⊆ h−1

n (H ∩Xb(n)).
For n ∈ ω \ L we let hn be the natural homeomorphism Xn →
Xb(n) and gn the identity on Xn. Now h =

⋃
{hngn : n ∈ ω} ∈

H(Y ) is the desired homeomorphism.
• βπ(x) 6= βπ(y). In this case the pair (x, y) generates EC∗.
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• βπ(x) ∈ ω or βπ(y) ∈ ω.

• βπ(x) = βπ(y). Then (x, y) generates EC=.
• βπ(x) 6= βπ(y). Then (x, y) generates EC .

• x /∈ C or y /∈ C.

• βπ(x), βπ(y) ∈ ω∗.
• βπ(x) = βπ(y). Then (x, y) generates E∗=.
• βπ(x) 6= βπ(y). Then (x, y) generates E∗.

• βπ(x) ∈ ω or βπ(y) ∈ ω.

• βπ(x) = βπ(y). This cannot happen.
• βπ(x) 6= βπ(y). Then (x, y) generates E∅.

We conclude that each closed invariant congruence can be obtained as
the join of some family of one-generated equivalences ES and ∆. Thus there
exist at most 29 = 512 of them. However there are obvious inclusions ∆ ⊆
ES ⊆ ET for T ⊆ S ⊆ {C, ∗,=}, which reduces this number substantially.

Observe that E∗ = E∗= ∨ EC∗, because if (x, y) ∈ E∗ \ ∆ we can find
x′, y′ ∈ C such that βπ(x) = βπ(x′) and βπ(y) = βπ(y′) and thus (x, x′) ∈
E∗=, (x′, y′) ∈ EC∗ and (y′, y) ∈ E∗=, hence (x, y) ∈ E∗= ∨ EC∗. Similarly
it can be shown that E= = E∗= ∨ EC= and E∅ = EC ∨ E∗=. If we put
together these equalities and the obvious inclusions we see that the lattice
of all closed invariant equivalences is given by the Hasse diagram

E∅

E∗ ∨ E= EC

E= E∗ EC∗ ∨ EC=

E∗= EC=

.......
.......

.............
EC∗

EC∗=

.....

∆

(3)

It remains to verify that this lattice corresponds to the lattice mentioned in
the statement, which is routine.

Remark 31. Below we give a characterization of all H-compactifications
of the space ω×X from Theorem 29 using rings of continuous functions. For
simplicity we denote by fk the restriction f�{k}×X whenever f ∈ C∗(ω×X).
The symbol lim fk means limx→∞ fk(x) where X ∪ {∞} is the one-point
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compactification of X. The symbols lim and lim denote limes superior and
limes inferior respectively.

(4) C∗(ω ×X)

{f : lim
k→∞

(limfk − limfk) = 0}

{f : (∀k ∈ ω)(∃ lim fk)} {f : lim
k→∞

limfk = lim
k→∞

limfk}

...........

{f : lim
k→∞

(sup fk − inf fk) = 0}

{f : (∀k ∈ ω)(∃ lim fk),

∃ lim
k→∞

lim fk}

.......
.......

.......
...

{f : (∀k ∈ ω)(∃ lim fk),

lim
k→∞

(sup fk − inf fk) = 0} {f : lim
k→∞

sup fk = lim
k→∞

inf fk}

...........................................

{f : (∀k ∈ ω)(∃ lim fk),

lim fk = lim f0}
{f : (∀k ∈ ω)(∃ lim fk),

lim
k→∞

sup fk = lim
k→∞

inf fk}

{f : (∀k ∈ ω)(∃ lim fk),

lim fk = lim f0,

lim
k→∞

sup fk = lim
k→∞

inf fk}

Corollary 32. The only H-compactifications of the space Z = ω × Sn
for n ≥ 2 are the Alexandroff one-point compactification αZ, the Freudenthal
compactification ϕZ and the Čech–Stone compactification βZ.

Proof. Since there is a homogeneous embedding of ω ×Rn onto a dense
subspace of ω × Sn, every H-compactification of ω × Sn is at the same time
an H-compactification of ω×Rn. From Theorem 29 we derive that only the
three cases given can occur.

The situation is different for n = 1. Van Douwen noted in [vD79] that
there exist at least eleven H-compactifications of ω × R. In fact there are
exactly 26 of them. However it would be a long-distance run to prove this
completely, because there is a lot of routine work. Therefore we omit some
details in the proof.

Theorem 33. There exist exactly 26 H-compactifications of the space
ω × R. They form a lattice described in the diagram (6).

Proof. We use the terminology of Notation 30 with X replaced by R.
Moreover, for any pair E,F of closed subsets of R define o(E,F ) to be
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the infimum of k ∈ ω such that there exist intervals (i.e. connected sets)
I0, . . . , Ik covering E and not intersecting F . Note that o(E,F ) = +∞
whenever E and F have non-empty intersection. By a simple consideration
we derive that the numbers o(E,F ) and o(F,E) are either both infinite or
both finite, and their difference is at most one. For any x, y ∈ βY denote

over(x, y) = inf{sup
n∈ω

o(E ∩Xn, F ∩Xn) : x ∈ E, y ∈ F , E, F ⊆ Y }

and define a closed invariant equivalence E∞ = {(x, y) ∈ Y ∗×Y ∗ : over(x, y)
= ∞}. For any S ⊆ {C, ∗,=,∞} put ES =

∧
i∈S Ei. In this way we get at

most sixteen equivalences but it is easily seen that E∞ ⊆ E=. Hence there
are only twelve of them.

Our claim is that every one-generated closed invariant equivalence is of
the form ES for some S ⊆ {C, ∗,=,∞} or ∆. To verify this pick (x, y) ∈
Y ∗×Y ∗ and denote by E the closed invariant equivalence generated by this
couple. If x = y we get E = ∆. Otherwise we distinguish the possibilities
below. An argument at each step is necessary, but it is omitted.

• x, y ∈ C.

• βπ(x), βπ(y) ∈ ω∗.
• βπ(x) = βπ(y).

• over(x, y) =∞: E = EC∗=∞.
• over(x, y) <∞: E = EC∗=.

• βπ(x) 6= βπ(y): E = EC∗.

• βπ(x) ∈ ω or βπ(y) ∈ ω.

• βπ(x) = βπ(y).

• over(x, y) =∞: E = EC=∞.
• over(x, y) <∞: E = EC=.

• βπ(x) 6= βπ(y): E = EC .

• x /∈ C or y /∈ C.

• βπ(x), βπ(y) ∈ ω∗.
• βπ(x) = βπ(y).

• over(x, y) =∞: E = E∗=∞.
• over(x, y) <∞: E = E∗=.

• βπ(x) 6= βπ(y): E = E∗.

• βπ(x) ∈ ω or βπ(y) ∈ ω.

• βπ(x) = βπ(y): This cannot happen.
• βπ(x) 6= βπ(y): E = E∅.
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Next, a partially ordered set of all one-generated closed invariant equiv-
alences is given (this is not a lattice):

E∅

E∗ EC

E∗= EC∗ EC=

E∗=∞ EC∗= EC=∞

EC∗=∞

∆

(5)

Remember that every closed invariant equivalence is a join of some sub-
collection of the 11 equivalences from the diagram (5). It can be counted by
hand that there are 15 (unordered) pairs of equivalences in the diagram (5)
that are not comparable, only 5 incomparable triples and clearly no such
quadruples. Since E∗ = EC∗ ∨ E∗= and E∅ = EC ∨ E∗ = EC ∨ E∗=, there
are in fact at most 12 = 15− 3 two-generated invariant closed congruences
that are not one-generated and at most 3 three-generated ones that are not
two-generated. Thus there are at most 11+12+3 = 26 H-compactifications.

Finally, we get the Hasse diagram (6) of the lattice of all H-compactifi-
cations of ω×R. For brevity we write for example ‘C=’ instead of βY/EC=.

βY

C∗=∞

C=∞ C∗=

....

∗=∞

.........
.........

.....

C∗

....

..............

C= .........
.........

.......

..........

..........

.............. ∗=

........
........

........
..

..........
..........

..........
.............

................. ∗

.............

C .........
.........

.........
....................

∅

(6)
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It remains to verify that these compactifications are pairwise non-equi-
valent. This is however a lot of routine work only.

Remark 34. When dealing with the problem of finding all H-compactifi-
cations of ω×R, one starts with compactifications obtained in a natural way
in the form γ(ω × δR) where γ and δ are substituted by α, β or ϕ. Even if
we add α(ω × R) we obtain only 10 H-compactifications in this way.

Corollary 35. There exist exactly four H-compactifications of the space
Z = ω×S. These are (from the smallest to the biggest) αZ, the Freudenthal
compactification ϕZ, the compactification γZ described below and βZ.

The compactification γZ can be described as βZ/∼ where x ∼ y iff
sup{o(En, Fn) : n ∈ ω} = +∞ for every pair of closed sets E,F ⊆ Y such
that x ∈ E and y ∈ F . In this situation An = A ∩ {n}×S for A ⊆ Z,
and o(En, Fn) is the infimum of k ∈ ω for which there exist connected sets
I0, . . . , Ik ⊆ Zn such that En ⊆ I0 ∪ · · · ∪ Ik ⊆ Zn \ Fn.

Proof. There is a homogeneous embedding ω ×R→ ω × S onto a dense
subset and thus every H-compactification of ω × S is at the same time an
H-compactification of ω ×R. The latter were classified in Theorem 33 from
which it follows that only four of them occur here.

Corollary 36. The lattice of all H-compactifications of the space Z =
ω × [−∞,+∞] contains eight elements and is given by the Hasse diagram

βZ

αZ

(7)

Proof. This is a consequence of Theorem 33 since there is a homogeneous
embedding of ω×R onto a dense subset of Z. Exactly eight compactifications
from the lattice (6) occur here.
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