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Abstract. Suppose t = (T, T1, p) is a triple of two countable theories T ⊆ T1 in
vocabularies τ ⊂ τ1 and a τ1-type p over the empty set. We show that the Hanf number
for the property ‘there is a model M1 of T1 which omits p, but M1�τ is saturated’ is
essentially equal to the Löwenheim number of second order logic. In Section 4 we make
exact computations of these Hanf numbers and note some distinctions between ‘first or-
der’ and ‘second order quantification’. In particular, we show that if κ is uncountable,
then h3(Lω,ω(Q), κ) = h3(Lω1,ω, κ), where h3 is the ‘normal’ notion of Hanf function
(Definition 4.12).

Newelski asked in [New] whether it is possible to calculate the Hanf num-
ber of the following property PN . In a sense made precise in Theorem 0.2, we
show the answer is no. In accordance with the original question, we focus on
countable vocabularies for the first three sections. We deal with extensions
to larger vocabularies in Section 4.

Definition 0.1. We say M1 |= t where t = (T, T1, p) is a triple of
two theories in vocabularies τ ⊂ τ1, respectively, with T ⊆ T1, and p is a
τ1-type over the empty set if M1 is a model of T1 which omits p, but M1�τ
is saturated. Let Kt denote the class of models M1 which satisfy t.

For K = Kt, with t in a countable vocabulary, let P cN (Kt, λ) hold if
|τ1| ≤ ℵ0 and for some M1 with |M1| = λ, M1 |= t; and P fN (Kt, λ) is the
same property restricted to triples where T1 and T are finitely axiomatizable
in finite vocabularies and p is definable in second order logic.

Recall Hanf’s observation [Han60] that for any such property P (K, λ),
where K ranges over a set of classes of models, there is a cardinal κ = H(P )
such that κ is the least cardinal satisfying: if P (K, λ) holds for some λ ≥ κ
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then P (K, λ) holds for arbitrarily large λ; H(P ) is called the Hanf number
of P . E.g. P (K, λ) might be the property that K has a model of power λ.
Similarly the Löwenheim number `(P ) of a set P of classes is the least
cardinal µ such that any class K ∈ P that has a model has one of cardinality
≤ µ.

Theorem 0.2. Assume the collection of λ with λ<λ = λ is a proper
class. Then H(P fN ) = `(LII) where LII denotes the collection of sentences
of second order logic.

Since H(P cN ) ≥ H(P fN ), this shows that the Hanf number in the abstract
is at least `(LII), as asserted. In Section 1 we introduce a variant `2(LII) on
the Löwenheim number of second order logic which is ‘essentially equal’ to
`(LII) (i.e. equal modulo a mild set-theoretic hypothesis: Assumption 0.3).
It is fairly easy to show (Claim 2.8) `2(LII) ≥ H(P fN ), giving the ‘essentially
equal’ of the abstract. We will replace this ‘essential equality’ with an exact
computation and deal with uncountable languages in Section 4.

Jouko Vaananen provided the following summary of the effect of this re-
sult by indicating the size of `(LII): `(LII) is bigger than the first (second,
third, etc.) fixed point of any normal function on cardinals that itself can
be described in second order logic. For example it is bigger than the first κ
such that κ = iκ, bigger than the first κ such that there are κ cardinals λ
below κ such that λ = iλ, etc. It is easy to see that if there are measurable
(inaccessible, Mahlo, weakly compact, Ramsey, huge) cardinals, then the
Löwenheim number of second order logic exceeds the first of them (respec-
tively, the first inaccessible, Mahlo, weakly compact, Ramsey, huge) (and
second, third, etc.). So even under V = L, the Löwenheim number is bigger
than any ‘large’ cardinal that is second order definable and consistent with
V = L. Such results are discussed in Vaananen’s paper [Vaa79]. A result
of Magidor [Mag71] shows the Löwenheim number of second order logic is
always below the first supercompact. Vaananen’s paper [Vaa82] gives lower
bounds for the Löwenheim number of equicardinality quantifiers and thus
a fortiori for second order logic. In simple terms, if E(κ) is the statement
that 2κ ≥ κ++ then the first κ cardinals (if any) such that E(κ) holds is
less than the Löwenheim number of second order logic. This shows that by
forcing we can push the Löwenheim number up at will.

We make the following assumption throughout.

Assumption 0.3. The collection of λ with λ<λ = λ is a proper class.

This assumption follows from GCH, but if GCH fails badly the only such
cardinals are strongly inaccessible. The key point for our use of the condition
is that λ<λ = λ > |τT | + ℵ0 is a sufficient condition for the existence of a
saturated model in λ of a complete theory T ; if T is unstable, λ<λ = λ is
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also necessary. We will explore this issue for stable theories, in the absence
of Assumption 0.3, elsewhere. In Section 1 we review some properties of
second order logic and show the equality of two ‘Löwenheim numbers’ in
our context. In Section 2, we state two technical results, prove one, and
deduce Theorem 0.2 from them. In Section 3, we prove the more difficult
technical result. In Section 4, we code syntax more carefully and obtain a
uniform equivalence for vocabularies of all cardinalities.

Newelski’s question arose in the study of the model theory of groups and
the existence of groups with bounded orbits.

1. Some second order logic. By (pure) second order logic, LII , we
mean the logic with individual variables and variables for relations of all
arities but no non-logical constants. The atomic formulas are equalities be-
tween variables and expressions X(x) where X is an n-ary relation variable
and x is an n-tuple of individual variables. Note that a structure A for this
logic is simply a set, so is determined entirely by its cardinality. But we use
the full semantics: the n-ary relation variables range over all n-ary relations
on A.

We explain the connection of our restriction to λ with λ = λ<λ to the
computation of some variants on the Hanf and Löwenheim numbers. In
general for any class K of models write spec(K) for the collection of λ such
that there is a model in K with cardinality λ.

Definition 1.1. Let ψ be a sentence of second order logic. Set

spec1(ψ) = {λ : λ |= ψ}, spec2(ψ) = {λ : λ = λ<λ ∧ λ |= ψ}.
Note that there is a sentence χ in second order logic which has a model

of size λ if and only if λ<λ = λ. Namely, let χ assert there is an extensional
relation R on sets such that each element denotes, via R, a set of smaller
cardinality than the universe and each such set is coded by R. We will
generally write λ<λ = λ to denote this sentence.

Definition 1.2. Define H2 and `2 to be the Hanf and Löwenheim num-
bers with respect to spec2.

We will write `1 for ` and H1 for H where it is convenient for comparison.
Note the following easy transformations in second order logic.

Fact 1.3. Fix φ ∈ LII .
(1) spec1(φ):

(a) There is a φ1 ∈ LII with min(spec(φ)) < min(spec(φ1)).
(b) If spec(φ) is bounded and nonempty there is a φ2 ∈ LII

with spec(φ2) bounded and nonempty and sup(spec(φ)) <
sup(spec(φ2)).
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(2) spec2(φ):

(a) There is a φ3 ∈ LII with min(spec(φ)) < min(spec(φ3)) and if
λ |= φ3, then λ<λ = λ.

(b) If spec2(φ) is bounded and nonempty there is a φ4 ∈ LII

with spec2(φ4) bounded and nonempty and sup(spec2(φ4)) <
sup(spec2(φ4)).

These transformations imply:

Fact 1.4.

(1) H1(LII), H2(LII), `1(LII), `2(LII) are strong limit cardinals.
(2) There is no sentence attaining any of these values exactly. (E.g.,

there is no φ ∈ LII with sup(spec(φ)) = H1(LII).)
(3) For either spectrum, `i(LII) = sup{min{speci(φ)} : φ ∈

LII has a model} and similarly H i(LII) = sup{sup{speci(φ)} : φ ∈
LII is bounded}.

Note that any logic satisfying Fact 1.3 will also satisfy Fact 1.4. We use
this observation without comment in studying infinitary second order logics
in Section 4.

Using Assumption 0.3 we can show:

Lemma 1.5. H(LII) = H2(LII), `(LII) = `2(LII).

Proof. One direction is easy. For every sentence ψ of second order logic,
there is a sentence ψ∗ such that

spec2(ψ) = spec1(ψ∗).

ψ∗ just expresses the conjunction of ψ with λ<λ = λ. Recall Fact 1.4(3).
Since every 2-spectrum is a 1-spectrum, `2(LII) ≤ `1(LII) and H2(LII) ≤
H1(LII).

But the opposite inequality also holds. Let φ be a sentence with a non-
empty 2-spectrum. Let f(λ) denote the least µ > λ with µ<µ = µ. It is easy
to construct for each second order sentence φ a sentence φ∗ such that

spec(φ∗) = spec2(φ∗) = {f(λ) : λ ∈ spec(φ)}.

Clearly the map φ 7→ φ∗ shows `2(LII) ≥ `1(LII) and H2(LII) ≥
H1(LII). 1.5

2. The main result. Recall our notation from Definition 0.1.

Notation 2.1. We will write t (possibly with subscripts) for a triple
(T, T1, p). The expression ‘t has a model in λ’ means there is a model of T1

with cardinality λ that omits p and whose reduct to L(T ) = τ is saturated.
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Convention 2.2. When τ1 is finite we consider it to be a subset of ω.
Thus the set of first order τ1-sentences is recursive and we can code them
as natural numbers.

We concentrate first on P fN (Kt, λ) from Definition 0.1. We need some
additional coding to handle non-finitely axiomatizable theories and consider
this generalization in Section 4. We begin by clarifying a notion from Defi-
nition 0.1.

Definition 2.3. A type p in a vocabulary satisfying Convention 2.2 is
definable in second order logic if we can code the type as a subset Ap of ω
so that in the vocabulary with constant symbol 0 and relation symbol S
there is a second order sentence ψ and second order formula ϕ(x) satisfying
the following condition. For the first cardinal λ which satisfies ψ, if M is
(λ, 0, S), with 0 interpreted as 0 and S as successor on the natural numbers,
then Ap = {n : M |= ϕ(n)}.

Now for convenience we restrict our triples to those satisfying the con-
vention. Formally:

Notation 2.4. T f denotes the set of triples t such that T is finitely
axiomatizable and p is second order definable.

Theorem 2.5. For every second order sentence φ, there is a triple
tφ ∈ T f such that if λ<λ = λ, then the following are equivalent:

• tφ has a model in λ.
• φ has a model in every cardinal strictly less than λ.

We prove Theorem 2.5 in Section 3.

Lemma 2.6. For every t ∈ T f there is a second order φt such that φt

has a model in λ if and only if t has a model in λ.

Proof. Recalling the restrictions involved in T f , it is easy to write a
second order sentence θ such that M |= θ if and only if M |= T1, M omits
p and M�τ is saturated. 2.6

We could strengthen Lemma 2.6 by restricting the second order quan-
tification to sets of size strictly less than the size of the model, but that is
not important here. We now deduce Theorem 0.2 from Theorem 2.5 and
Lemma 2.6. We use the following notation.

Notation 2.7. Spec(t) is the collection of cardinals λ such that there
is an M1 satisfying t with |M1| = λ.

We have not established that the Hanf and Löwenheim numbers for the
PN satisfy Fact 1.4. This complicates the argument for the following two
results.

Claim 2.8. H(P fN ) ≤ `2(LII) where LII denotes second order logic.



260 J. T. Baldwin and S. Shelah

Proof. Lemma 2.6 shows that for any t ∈ T f , there is a φt ∈ LII with
spec(t) = spec(φt). Suppose for contradiction that H(P fN ) > `2(LII). Then
there is a triple t ∈ T f such that sup(spec(t)) ≥ `2(LII) .

Let C = {µ : µ = µ<µ}. Choose ψt ∈ LII so that µ |= ψt iff for every
infinite cardinal κ ∈ C ∩ µ there is θ ∈ [κ, µ) ∩ spec(t).

Let λt be the minimal element of C ∩ spec(t)c. Then λt ≥ `2(LII).
For any t, the definition of P fN guarantees that if λ<λ = λ, µ > λ and
some M |= t has cardinality µ then some N |= t has cardinality λ (take a
saturated elementary submodel). Thus, µ |= ψt if and only if every κ ∈ C∩µ
belongs to spec(t).

Now spec(ψt) is exactly {µ : µ ≤ λt}, whence spec(¬ψt) is {µ : µ > λt}.
So the Löwenheim number of ¬ψt is (λt)+ > `2(LII) and this contradiction
completes the proof. 2.8

Lemma 2.9. H(P fN ) ≥ `2(LII) where LII denotes second order logic.

Proof. Suppose for contradiction that there is a second order sentence
ψ such that λ0 = min(spec2(ψ)) ≥ H(P fN ). By the definition of spec2,
λ<λ0

0 = λ0. Let ψ̂ express (∃U)(ψU ∧ |U |<|U | = |U |). We apply Theorem 2.5
to ¬(ψ̂). Note that ψ̂ is true on all cardinals ≥ λ0 and false on all µ < λ0.
By Theorem 2.5, λ0 |= t¬(ψ̂) and λ0 ≥ H(P fN ). So t¬(ψ̂) and therefore ¬(ψ̂)

has arbitrarily large models. But ¬(ψ̂) has no models larger than λ0. This
contradiction yields the theorem. 2.9

In the next section we prove the crucial Theorem 2.5. In the last section
we remove the restrictions to finitely axiomatizable theories and countable
languages.

3. Essential lemmas. Now we prove Theorem 2.5. For convenience, we
list here the two vocabularies. We describe the axioms of T and T1 below.

Notation 3.1.

• τ contains unary predicates Q1, Q2, a binary relation R and partial
binary functions F and F2. It contains two constant symbols c0, cω
and a unary function symbol g.
• τ1 adds a unary predicate Q0 and a binary relation <1.

Remark 3.2 (proof sketch). For each second order φ, we construct a
triple tφ. But most of the construction is independent of the particular φ
and so we first construct a theory T1 which does not depend on φ. The
vocabulary τ will contain unary predicates Q1, Q2. The axioms will assert
that Q1, Q2 partition the universe. Q0 is in τ1. Omission of the type p will
guarantee that Q0 ⊂ Q1 is countable. Omission of the type in a model M
of T1 whose τ -reduct is ℵ1-saturated and some coding involving the partial
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order <0 in τ will guarantee that Q1(M) is well-ordered by a relation symbol
<1 in τ1. A relation symbol R in τ will code subsets of Q1 by elements of Q2.
Thus first order quantification on Q2 will encode second order quantification
on Q1. In particular, we can code a given second order sentence φ and thus
extend T1 to Tφ. But the encoding guarantees ‘correctness’ only on subsets
whose subsets are all coded in Q2. The construction will guarantee that if
µ < λ and M is λ-saturated, then µ is a <1-initial segment Q1. Since µ < λ
each subset of µ is coded by a type of size µ so the encoded semantics is
correct and µ is a model of φ.

Beginning the proof of Theorem 2.5. We gradually introduce the vocab-
ulary and theory explaining the use of various predicates as they are intro-
duced; we repeat a bit of the proof sketch. Below we say certain conditions
hold to mean they hold in any model of T . We first describe τ and T . In
particular, τ contains unary predicates Q1, Q2 that partition the universe.

There is a binary relation <0, which is a partial order of Q1. There is a
partial function F mapping Q1 × Q1 into Q1. We write Fa for the partial
function from Q1 into Q1 indexed by a. Any model of T satisfies: a ≤0 b
implies Fa ⊂ Fb.

We have two further properties of F . First, Fc0 is the empty function.
For every a ∈ Q1 and every e ∈ Q1, if e 6∈ domFa, then there are b, d ∈ Q1

with a <0 b and Fb = Fa ∪ {〈e, d〉}.
Further there is a pairing function F2 on Q1 and an extensional relation

R between Q1 and Q2 so that each element of Q2 codes a subset of Q1 via R.
We write Ub for {a : R(b, a)} (for a ∈ Q1 and b ∈ Q2).

T asserts that Q1 is preserved by g, that g is a permutation, and Q1(c0).
The set of {Ua : a ∈ Q2} is closed under Boolean operations and if Ub

is such a set so is Fa(Ub) for any a ∈ Q1. For each a ∈ Q1, there is b ∈ Q2

such that Ub = {c : c <1 a}.
Secondly, we turn to the description of τ1 and T1. In τ1, there is a binary

τ1-relation <1, which is a linear order of Q1 and such that Q1(x) implies
x <1 g(x) and no element of Q1 lies between x and g(x), and x <1 cω
implies g(x) <1 cω. T1 further asserts (Q1, <1) is ‘internally well-ordered’ in
the following sense. For every a ∈ Q2, if Ua is non-empty, it has a <1-least
element. Finally, there is a unary relation Q0 such that Q0 ⊂ Q1 and T1

asserts c0 ≤1 x <1 cω if and only if Q0(x). (Q0 is just an abbreviation and
<1 is the crucial symbol added to create τ1.) Thus, each gi(c0) ∈ Q0 and
{gi(c0) : i < ω} name countably many elements of Q0 which are <1-ordered
in order type ω.

The type p asserts Q0(x) and x is not a gi(c0) for any i < ω. Thus if p
is omitted in a model M , Q0(M) = {gi(c0) : i < ω}.
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Claim 3.3. If a model M of T1 is such that its reduct to τ is an ℵ1-
saturated model of T but M omits p, then (Q1, <1) is a well-ordering in M .

Proof. Suppose there is a countable <1-descending chain B={bi : i < ω}
in (Q1, <1). Using the properties of F , we can define a <0-increasing chain
of an in Q1 such that Fan = {〈c0, b0〉, . . . , 〈gn(c0), bn〉}, where the gi(c0) are
images of c0 under iterating g. Since the model is ℵ1-saturated there is an
aω ∈ Q1 such that each Fan ⊂ Faω . But then B = Faω({gi(c0) : i < ω}).
Note that while the choice of bi involved the τ1-symbol <1, the existence of
aω is by the consistency of a τ -type so the use of saturation is legitimate.

Since M omits p, {gi(c0) : i < ω} = Q0(M) = {a : c0 ≤ a <1 cω}
and therefore is coded by an element of Q2. By the closure properties of
the coded sets, B = Ud for some d ∈ Q2. This contradicts the internal
well-ordering of Q1. 3.3

Now translate φ to the first order formula φ∗(v) by translating each
bound second order variable X to a first order formula in x and v. Replace
each occurrence of X(z) by R(z, v) ∧ R(z, x). This translation has the fol-
lowing consequence. (This is immediate for monadic second order but we
included a pairing function F2 on Q1 so it extends to arbitrary sentences.)

Fact 3.4. If M |= T , a ∈ Q2(M) and each subset of Ua is coded by an
element of Q2(M), then M |= φ∗(a) if and only Ua(M) |= φ.

Add the following axiom to T1 to obtain the theory Tφ:
(∀u)(∀w)[((∀z)R(z, w)↔ z <1 u)→ φ∗(w)].

This completes tφ as 〈T, Tφ, p〉.
Claim 3.5. If µ < λ = λ<λ and M is a model of Tφ with cardinality λ

that omits p but whose reduct to τ is saturated, then µ |= φ.
Conversely, if φ is true on all µ < λ = λ<λ, then there is a model M1

of Tφ with cardinality λ that omits p but whose reduct to τ is saturated.

Proof. Since µ < λ, µ is an initial segment of Q1 so µ = {a ∈ Q1 :
R(y, d)} for some d ∈ Q2. But then each subset Y of µ gives rise to a type:

qY (x) = {R(y, d)} ∪ {R(y, x) : y ∈ Y } ∪ {¬R(y, x) : y 6∈ Y }.
For each Y the τ -type qY (x) has cardinality less than λ and so is realized
by saturation. We finish by Fact 3.4.

For the converse, well-order Q1 by <1 in order type λ. Add in Q2 a code
for each subset of cardinality < λ. Let the Fa list the partial functions of
cardinality less than λ from Q1 to Q1 and let <0 denote the natural partial
ordering on Q1 induced by inclusion of the named functions. Since φ is true
below λ, each infinite initial segment in λ defines a model of φ and the
definition of Tφ shows that we have a saturated model of T when we take
the reduct to τ . Finally, let Q0 include exactly the first ω elements of Q1. 3.5
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Concluding the proof of Theorem 2.5. Letting tφ be the triple (T, Tφ, p)
we have a triple satisfying Theorem 2.5. 2.5

4. The exact strength. In this section we remove the restrictions to
finitely axiomatizable theories and countable languages. In Theorem 4.11
we prove actual equality of the Hanf number studied here (for any triple of
theories and types of any cardinality) with a Löwenheim number of second
order logic; the cost is that we must move into infinitary second order logic
and (in the proof) allow relation constants (i.e. predicate symbols other than
equality) in the vocabulary of the second order sentence.

Instead of Theorem 2.5 we could slightly more easily prove

H(P fN ) ≤ `2(LII) ≤ H(P cN ),

which gives our answer to Newelski’s question but is not quite as sharp.
That is, if we had just required tφ in Theorem 2.5 to be in a countable
language rather than finitely axiomatizable, this would have no effect on the
proof of Lemma 2.9 and it would have simplified the proof of Theorem 2.5
since we could have worked with countably many constants and omitted
the function g. Similarly the arguments of Sections 2 and 3 extend from
finitely axiomatizable to ‘arithmetic’ by coding a model of arithmetic in the
second order sentence. And it is easy to see that the theory constructed in
Theorem 2.5 is recursive. This observation is generalized in Theorem 4.11
to remove the restrictions on axiomatizability. The key idea is to see that
we can use the same ideas as in Section 3 to code the syntax of infinitary
second order logic by a triple t.

We extend our notion of second order logic in two ways. First we allow
infinite conjunctions and strings of quantifiers. Secondly we now allow some
relation constants instead of dealing with ‘pure’ second order logic.

Definition 4.1.

• Lθ denotes the θ stage in the construction of the inner model L.
• Let Lθ+,κ(II) denote second order logic allowing strings of second

order quantifiers of cardinality < κ ≤ θ+ and conjunctions and dis-
junctions of cardinality ≤ θ.

Remark 4.2. Again using Assumption 0.3, note that as in Fact 1.3 the
Löwenheim number of Lθ+,κ(II) is a strong limit cardinal of cofinality > θ
and is an accumulation point of {µ : µ = µ<µ}.

Notation 4.3. We denote by L(II, τ∗) second order logic in the vocab-
ulary τ∗ consisting of constant symbols cκ, cθ, cτ , cφ, a unary predicate Q,
and a binary relation R1.
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Notation 4.4. Let K = Kt, where the set of triples t is as in Nota-
tion 2.1 but requiring that τ1 ⊂ Lθ and omitting the requirement that p is
second order definable. Then P κN (Kt, λ) holds if |τ1| ≤ κ and for some M1

with |M1| = λ, M1 |= t.

In the following H(µ) denotes the set of all sets whose transitive closure
has cardinality less than µ. We use implicitly that µ<µ = µ implies that µ
is regular and so (H(µ), ε) satisfies all axioms of ZFC except power set.

We now construct a sentence ψ ∈ L(II, τ∗) and for every τ ⊂ Lθ and
every φ in Lθ+,κ(II)(τ) a set Aτ,φ of ordinals so that ψ and Aτ,φ codes φ.

Definition 4.5. Let X be a transitive subset of H(θ+) with cardinal-
ity θ. We say that X is coded by A ⊆ θ if there is an injection f from X
into θ such that

A = {pr(f(a), f(b)) : a ∈ b ∈ X}.
Here pr is the standard pairing function on ordinals.

Now we show that the coding of X by A does not depend on the choice
of f .

Lemma 4.6. If A ⊆ θ codes X1 by f1 and X2 by f2 then X1 = X2.

Proof. We first note that for any X,A if A codes X by f then f is a
bijection between X and B = {α : pr(α, β) ∈ A ∨ pr(β, α) ∈ A}. Applying
this remark to f1, f2, we see g = f−1

2 f1 is a bijection from X1 onto X2.
But then g is an isomorphism with respect to ε, as it is easy to check (from
the definition of coding) that for any y1, z1 ∈ X1 with y2 = g(y1) and
z2 = g(z1), y1 ∈ z1 if and only if y2 ∈ z2. That is, y1 ∈ z1 if and only
pr(f1(y1), f1(z1)) ∈ A if and only pr(f2(y2), f2(z2)) ∈ A if and only y2 ∈ z2.
But then since ∅ ∈ X1 ∩X2, ε-induction yields X1 = X2. 4.6

We first define a certain set of ordinals Aτ,φ ⊆ θ in V that codes τ and
φ ∈ Lθ+,κ(II)(τ). Here tc(X) denotes the transitive closure of X.

Definition 4.7. For every vocabulary τ ⊆ Lθ and every sentence φ ∈
Lθ+,κ(II)(τ) we define Aτ,φ ⊆ θ to be a set which codes tc({φ, τ})∪ {φ, τ})
in the sense of Definition 4.5.

Such a code exists since the standard construction of φ ∈ Lθ+,κ(II)(τ)
implies that each formula is in H(θ+), each subformula of φ ∈ tc(φ), and φ
has at most θ subformulas.

Now we define the sentence ψ ∈ L(II, τ∗), which does not depend on
φ or τ , so that the interpretation of a predicate Q as Aτ,φ in a model M
of ψ will identify φ as the sentence under consideration. The function G in
Definition 4.8(2)(c) simply formalizes the normal definition of truth.
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Definition 4.8. We define a sentence ψ ∈ L(II, τ∗) by M |= ψ if and
only if M satisfies:

(1) (M,RM1 ) ≈ (H(µ), ε) for some µ with µ<µ = µ

and the following τ∗-axioms:

(2) (a) cκ and cθ are cardinals in the sense of M .
(b) cτ is a vocabulary of cardinality cθ contained in Lθ.
(c) The set of formulas of Lc+θ ,cκ(II)(cτ ) are given their usual in-

ductive definition in M by a formula µ(x, cθ, cκ, cτ ) ∈ L(II)(τ∗).
(d) cφ ∈ Lc+θ ,cκ(II)(cτ ), i.e. M |= µ(cφ, cθ, cκ, cτ ).
(e) Q(x)→ xR1cθ.
(f) Q is a set of codes (in the sense of M) of tc({cφ, cτ})∪{cφ, cτ}),

where tc is with respect to R1.
(3) There is a definable function G which defines truth of sentences of

Lθ+,κ(II, cτ ) on cτ -structures b∗ ∈ M : for every sentence χ, M |=
G(b∗, χ∗) = 1 if and only if

b |= χ.

(Here χ is an actual sentence, b is a cτ -structure in H(µ), and χ∗

(resp. b∗) is the member of M mapped to χ (resp. b) under the
isomorphism in Definition 4.8(1).)

The goal of the following lemma is to compute the Löwenheim number
of Lθ+,κ(II). Since it is certainly greater than θ, we may assume λ<λ > θ.

Lemma 4.9. Fix κ ≤ θ+, a vocabulary τ ⊆ Lθ and φ ∈ Lθ+,κ(II)(τ).
Choose Aτ,φ and ψ ∈ L(II, τ∗) satisfying Definitions 4.7 and 4.8, respec-
tively. For any cardinal λ = λ<λ > θ, the following are equivalent:

(1) φ has no model of cardinality < λ.
(2) There is a model (M,RM1 , Q

M , cMθ , c
M
κ , c

M
φ , c

M
τ ) with cardinality λ of

the sentence ψ defined in Definition 4.8 such that letting PM denote

{b : M |= b is an ordinal ∧ bRM1 cθ}

and PM1 denote

{b : M |= b is an ordinal ∧ bRM1 cκ};

we have:

(a) (PM , RM1 ) has order type θ;
(b) (PM1 , RM1 ) has order type κ;
(c) Aτ,φ = {α < θ : for some a ∈ QM , α = otp({bR1cθ :

bRM1 a}, RM1 )}.
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Proof. Suppose (2). Without loss of generality, we identify (M,RM1 ) with
H(λ, ε). We have τ ∈ H(λ) since τ ⊂ Lθ. Then |M | = λ, (PM , RM1 ) has
order type θ, and Aτ,φ is the image of QM under an isomorphism from
(PM , RM1 ) to θ. By the choice of Aτ,φ, the model M correctly recognizes
the vocabulary τ and the formula φ. The function GM correctly represents
truth in M by Definition 4.8(3), (4). So φ fails on all subsets of M with
cardinality < λ by Definition 4.8(2)(d). Thus (2) implies (1). Clearly if (1)
holds we can construct a model M satisfying (2). 4.9

We continue to use the conventions regarding PM , PM1 from the proof
of Lemma 4.9.

Definition 4.10. For ψ as in Definition 4.9, spec(ψ, θ, κ,Aτ,φ) is the set
of the cardinalities of modelsM of ψ with (PM , PM1 , Q,RM1 )≈ (θ, κ,Aτ,φ,<).

Theorem 4.11. For any cardinals θ, κ, the following four cardinals are
equal:

(1) λ1 is the Hanf number of P θN .
(2) λ2 is the Löwenheim number of Lθ+,ω(II) = `2(Lθ+,κ(II)).
(3) λ3 is the Löwenheim number of Lθ+,θ+(II) = `2(Lθ+,θ+(II)).
(4) λ4 = sup{spec(ψ, θ, κ,Aτ,φ) : ψ ∈ L(II, τ∗), φ ∈ Lθ+,θ+(II), and

Aτ,φ ⊂ θ such that spec(ψ, θ, κ,Aτ,φ) is bounded}.
Proof. We choose the logic Lθ+,ω precisely so λ1 ≤ λ2 (by a proof like

that of Lemma 2.6 but now we have conjunctions of cardinality θ). So in fact
the demand that ‘a model omits the type p’ becomes ‘the model satisfies
the sentence in Lθ+,ω, ¬(∃x)

∧
p’ so the worries in the first sections about

the second order definability of p disappear. Clearly λ2 ≤ λ3.
With ψ from Lemma 4.9 and applying that lemma with τ as {=} and

with κ = θ+ yields

{min(spec2(φ)) : φ ∈ Lθ+,θ+}
⊆ {sup(spec2(θ, ψ,Aτ,φ)) : φ ∈ Lθ+,θ+ is bounded}.

(We can replace φ by a φ∗ whose only model is the model of φ with minimum
cardinality to guarantee the containment.) Thus, λ3 ≤ λ4.

The proof that λ4 ≤ λ1 is obtained by modifying the proof of Theo-
rem 2.5. Add to the vocabulary in the Tφ from the proof in Section 3 of
Theorem 2.5, symbols P, P1, Q,R1 and symbols cα for each α ∈ Aτ,φ and
use the same coding ideas to guarantee that P1, Q are contained in P and all
three are well-ordered by R1. Thus, for φ ∈ Lθ+,θ+(II) we can construct tφ,
encoding the second order sentence ψ ∈ L(II, τ∗) defined in Definition 4.8
and where the type p also codes that QM ≈ Aτ,φ so that the two spectra are
related as in Theorem 2.5. The type p is just {Q(x)} ∪ {x 6= cα : α ∈ Aτ,φ}.
This yields λ4 ≤ λ1 by slightly modifying the argument for Lemma 2.9. 4.11
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Our discussion of the Hanf and Löwenheim numbers of second order
logic focused on two vocabularies: {=} and τ∗. In contrast, in many studies
of the Hanf and Löwenheim numbers of logics the number is taken as the
supremum for a given logic over all vocabularies of a bounded cardinality.
That is, a Löwenheim or Hanf function (with argument the cardinality of
the vocabulary) is defined:

Definition 4.12. For any logic L and any cardinal θ:

• Let the Löwenheim function `3(L, θ) be the least cardinal µ such that
for any vocabulary τ of cardinality ≤ θ and any φ ∈ L(τ), if φ has a
model it has one of cardinality less than or equal µ.

• Let the Hanf function h3(L, θ) be the least cardinal µ such that for any
vocabulary τ of cardinality ≤ θ and any φ ∈ L(τ), if φ has a model of
cardinality µ, it has arbitrarily large models.

The cardinalities of the vocabularies play a significant role. A trivial
example is that both the Löwenheim function and Hanf function in the sense
of Definition 4.12 of first order logic map the cardinality of the vocabulary
to itself. A more interesting example is that for the logic L(Q) (with Q
interpreted as ‘there exist uncountably many)’, the Löwenheim number in
τ = {=} is ℵ1, while for an arbitrary vocabulary τ it is ℵ1 + |τ |. The Hanf
number of L(Q) for countable vocabularies is iω (see e.g. 3.3.12 of [Sch85]).
Thus,

iω = h3(Lω,ω(Q),ℵ0) < h3(Lω1,ω,ℵ0) = iω1 .

Computing the Hanf function of L(Q) for vocabularies of cardinality
µ ≥ ℵ1 is considerably more complicated. The key point is the following
observation which does not depend on Assumption 0.3. Since we have not
been able to find it in print we describe the key innovation here.

Theorem 4.13. If κ is uncountable, h3(Lω,ω(Q), κ) = h3(Lω1,ω, κ).

Proof. Lopez-Escobar and Chang (e.g. [Cha68]) showed how to code
sentences of Lω1,ω as first order theories omitting types. Since each sentence
will have only countably many subformulas, each sentence regardless of the
cardinality of the vocabulary can be coded by a first order sentence omitting
countably many types. And it is known (e.g. by the proof of Theorem 5.1.4
of [She78]) that this omitting types problem can be reduced to omitting
one type p of the form P (x) ∪ {x 6= cn : n < ω}. More precisely, we can
find for any pair (T, Γ ) in a vocabulary τ (where Γ is a countable collection
of types) a pair (T1, {p}) in an expanded vocabulary τ1 such that each τ -
structure omitting Γ can be expanded to a τ1-structure omitting p and
each model of T1 omitting p also omits each type in Γ . This translation
can be done for τ of any cardinality. The crux of the current extension is
that with an uncountable language one can further reduce the omission of
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the type p to the assertion ¬(Qx)P (x). For this, add to the language unary
function symbols Fα for α < ℵ1 and a binary relation symbol <. Fix a family
〈ηα : α < ω1〉 of distinct functions from ω to 2. Now add axioms asserting

• < linearly orders P .
• cn+1 is the <-successor of cn and c0 is <-minimal.
• Each Fα maps P onto P .
• For α < β < ℵ1, if (ηα�n 6= ηβ�n) then (∀x)(cn < x→ Fα(x) 6= Fβ(x)).

Now in any model of these axioms if the type p is realized by some c, the
Fα(c) for α < ℵ1 are uncountably many elements of P . This establishes the
reduction. 4.13

Remark 4.14. This result can be extended substantially; we could have
replaced the study of sentences of Lω1,ω by theories of cardinality ℵ1 without
loss. Basic facts concerning the Hanf number of Lµ+,ℵ0 for vocabularies of
cardinality µ ≥ ℵ1 appear in VII.5 of [She78] and Chapter 4 of [Bal09].
General sufficient conditions to show h3(Lω1,ω, κ) = h3(Lκ+,ω, κ) are studied
in [GS05].

However, the dependence on the size of the vocabulary disappears for
the Löwenheim number of infinitary second order logic. Without loss of gen-
erality we restrict to relational languages. There is no loss in our restriction
to vocabularies of cardinality at most θ since no sentence of Lθ+,κ(II) can
contain more than θ relation symbols.

Note that just by existentially quantifying out the relation symbols, for
any κ ≤ θ+:

`3(Lθ+,κ(II), θ) ≤ `2(Lθ+,θ+(II)).

Combining this observation with λ2 = λ3 in Theorem 4.11, we have:

Corollary 4.15. `3(Lθ+,κ(II), θ) = `2(Lθ+,κ(II)).

We arrived at this result using our analysis of the Hanf number of P θN .
But a variant of Corollary 4.15 can be obtained, using the same ideas of
coding syntax, without the detour through P θN . It shows that with only a
finite vocabulary one can code any reasonable similarity type.

Notation 4.16. τ∗∗ is the vocabulary containing one unary predicate P ,
one binary relation symbol < and a ternary predicate R.

Theorem 4.17. `3(Lθ+,κ(II), θ) = `2(Lθ+,κ(II)(τ∗∗)).

Proof. Instead of considering an arbitrary vocabulary of size θ we can
consider a ‘universal’ vocabulary σ of θ binary relations. (It is easy to code
the first in the second.) So the claim is that for any sentence φ ∈ Lθ+,κ(II)(σ)
there is a sentence φ∗ of Lθ+,κ(II)(τ∗∗) such that spec(φ) = spec(φ∗). (The
converse is obvious.)
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Let φ∗ assert:

• (P,<) is a well-order.
• The formula obtained by replacing each occurrence of Ri(σ1, σ2) in φ

by the formula (where z does not occur in φ)

(∃z)[P (z) ∧ otp({y : P (y) ∧ y < z}) = i ∧R(z, σ1, σ2)].

(Here σ1, σ2 are arbitrary terms from φ ∈ Lθ+,κ(II)(σ), i.e. individual
variables.)

Now there is a model N with cardinality λ ≥ θ of φ∗ where PN has
order type θ, such that N |= φ∗ if and only if there is a σ-structure M with
cardinality λ satisfying φ. 4.17.
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