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An integral formula for entropy of
doubly stochastic operators
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Bartosz Frej and Paulina Frej (Wrocław)

Abstract. A new formula for entropy of doubly stochastic operators is presented. It
is also checked that this formula fulfills the axioms of the axiomatic definition of operator
entropy, introduced in an earlier paper of Downarowicz and Frej. As an application of the
formula the ‘product rule’ is obtained, i.e. it is shown that the entropy of a product is
the sum of the entropies of the factors. Finally, the proof of continuity of the new ‘static’
entropy as a function of the measure is given.

1. Introduction. The classical notion of a dynamical system as a quad-
ruple (X,B, µ, T ), where (X,B, µ) is a probability space and T : X → X
is a measure preserving map, gives rise to many generalizations. One of the
possible directions is the concept of a doubly stochastic operator on L1(µ),
i.e. a linear (continuous) operator T : L1(µ)→ L1(µ) satisfying the following
conditions:

(i) Tf is a positive function if f is positive,
(ii) T1 = 1, where 1 is the constant function equal to 1 everywhere,
(iii)

	
X Tf dµ =

	
X f dµ.

The class of all doubly stochastic operators includes Koopman operators of
all measure preserving transformations and, more generally, all operators
associated to the stationary transition probabilities P (·, ·) by the formula
Tf(x) =

	
f(y)P (x, dy). Since each space Lp, p ≥ 1, is invariant under the

action of a doubly stochastic operator and, on the other hand, an operator
on Lp satisfying (i)–(iii) uniquely extends to a doubly stochastic operator,
the domain of an operator may be any Lp space. Our main interest lies in
transferring the concept of entropy to such operators.
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In the literature one can find various generalizations of the notion of
entropy (see e.g. [AF], [CNT], [GLW], [M], [MR] and [V]). Some of them
were designed exclusively for doubly stochastic operators, while some concern
more general cases, including doubly stochastic operators as a special case.
A natural question is whether these notions coincide on doubly stochastic
operators. A partial answer was given in [DF], where an axiomatic theory
of operator entropy was established. The axiomatic theory assumes that
entropy is constructed in the following steps:

(1) one specifies a T -invariant collection F of finite families F of mea-
surable functions; a family is understood as a set or a finite sequence
of functions; it is also convenient if F contains a distinguished trivial
family O invariant under T ;

(2) one defines an operation t of joining families, so that FtG ∈ F when-
ever F ∈ F and G ∈ F, and the cardinality of the join is bounded
by a number depending on the cardinalities of the components; the
operation is assumed to be associative and commutative in the sense
that F tG consists of the same functions as G tF , possibly enumer-
ated in a different order; the trivial family satisfies F t O = O t F
for every F ∈ F;

(3) one defines the static (independent of the dynamics induced by an
operator) entropy Hµ(F) of a family F ∈ F with respect to µ; it is
required that Hµ(F) does not depend on the possible enumeration
of the elements of F and that Hµ(O) = 0;

(4) denoting

Fn =
n−1⊔
k=0

T kF

one then defines

hµ(T,F) = lim sup
n→∞

1
n
Hµ(Fn);

(5) and eventually one sets

hµ(T ) = sup
F∈F

hµ(T,F).

The conditional entropy is given by

Hµ(F | G) = Hµ(F t G)−Hµ(G).
The entropies defined in [AF] (after restricting to doubly stochastic opera-
tors), [GLW], [M] and an explicit formula for entropy given in [DF] fit in the
above scheme (but see Remark 2.6), though they differ in the choice of F,
in the definition of the join operation t and in the definition of the static
entropy Hµ(F). To prove that they give the same value of hµ(T ) one only
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needs to verify four axioms concerning properties of Hµ(F): subadditivity,
monotonicity, continuity with respect to the family F and compatibility with
the Shannon entropy of a partition. It turns out that the same value of en-
tropy of a doubly stochastic operator is obtained if one uses the definition
given in [MR], but since in this approach the notion of the join is absent,
the argument does not employ the axiomatic theory (see [F]). In the present
paper the theory of entropy of doubly stochastic operators is developed in
the spirit of [DF]. Relations to the entropies defined in [CNT] and [V] have
not been studied yet and they will not be investigated in the current paper.

Below we state the axioms formulated in [DF]:

(A) Monotonicity and subadditivity axiom. For F , G and H be-
longing to F,

0 ≤ Hµ(F |H) ≤ Hµ(F t G |H) ≤ Hµ(F |H) +Hµ(G |H),

where, by convention, Hµ(F |O) = Hµ(F).

Definition 1.1. Let r′ ≤ r. For two families of measurable functions
F={f1, . . . , fr} and G={g1, . . . , gr′} the L1-distance, denoted by dist(F ,G),
is defined by

dist(F ,G) = min
π

{
max
1≤i≤r

�
|fi − gπ(i)| dµ

}
,

where the minimum ranges over all permutations π of {1, . . . , r} and where G
is considered an r-element family by setting gi ≡ 0 for r′ < i ≤ r.

(B) L1-Continuity axiom. For every r ≥ 1 and ε > 0 there is a
δ > 0 such that if F , G and H have cardinalities at most r and
dist(F ,G) < δ then

dist(F tH,G t H) < ε, |Hµ(F)−Hµ(G)| < ε.

(C) Partitions axiom. If Ξ is a measurable partition of X, let 1Ξ =
{1A : A ∈ Ξ} denote the family of the corresponding characteris-
tic functions. Then F contains 1Ξ for every measurable partition Ξ
of X. The entropy Hµ coincides on partitions with the classical no-
tion in the sense that

Hµ(1Ξ) = Hµ(Ξ) = −
∑
A∈Ξ

µ(A) logµ(A)

and

Hµ

( n⊔
i=1

1Ξi

)
= Hµ

( n∨
i=1

Ξi

)
.

(D) Domination axiom. For every r ≥ 1 and ε > 0 there exists δ > 0
such that for every family F = {f1, . . . , fr} and every partition α
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of the unit interval into finitely many subintervals of lengths not
exceeding δ,

Hµ(F |1W
i f
−1
i (α) t α) < ε,

where α is some finite family depending only on α and satisfying
limn n

−1Hµ(
⊔n
k=1 α) = 0 (usually α is the empty family or a family

of some constant functions).

Ergodic theory is often considered on compact spaces. A continuous map
of X is then a source of various metric dynamical systems, which arise after
fixing an invariant measure. If C(X) denotes the space of all real valued
continuous functions on X, then a positive linear operator T : C(X) →
C(X) which preserves constants is called a Markov operator. It is well known
that on a metrizable space every Markov operator T is generated by the
transition probability P (x, · ) = T ∗δx, where δx is the point mass at x and
T ∗ is the operator adjoint to T , acting on the dual (to C(X)) space of signed
Radon measures on X. Such a transition probability is called Feller ; it is a
continuous map from X into the set of probability measures with the weak∗
topology. The set of all T ∗-invariant (i.e. satisfying

	
Tf dµ =

	
f dµ for

every continuous f) Radon probability measures µ is a non-empty convex
set, compact in the weak∗ topology. For every such measure µ the operator T
becomes a doubly stochastic operator.

In the classical (non-operator) case a measurable space X may be in-
terpreted as the phase space of a physical system, where a finite r-element
partition models an experiment performed on that system, giving r possible
outcomes. The apparatus used to measure the outcomes of the experiment
is assumed to be faultless, i.e. in each state of the system (point of a phase
space) it yields an outcome unambiguously assigned to this state. Doubly
stochastic operators may be used to deal with situations in which the mea-
surement is disturbed or unclear; in each state the machinery gives outcomes
according to some probability distribution. The action of an operator mod-
els a change in settings of the measuring tool or a flow of time. One would
expect that the entropy of the family F satisfies the following conditions:

(i) if F consists solely of constant functions then its entropy is zero, be-
cause an experiment modeled by such family yields the same results
regardless of the state of the system, providing no information about
the actual state;

(ii) Hµ(F |F) = 0 for every family F , because copying the results of an
experiment performed before does not give any new information.

The axioms from [DF] do not guarantee that these properties are satisfied
and, in fact, none of the above mentioned versions of entropy has both these
properties at the same time. Indeed, the entropies introduced in [AF], [GLW]
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and [M] violate the first condition, because they use pointwise multiplication
of functions in the role of t. This makes the family F tF essentially bigger
than F and may cause Hµ(F t F) to be strictly greater than Hµ(F). The
[DF]-entropy avoids this problem, but here the entropy of a family of con-
stant functions is strictly positive whenever at least one of these constants
is neither 0 nor 1 (see Section 2 for the definition of [DF]-entropy). The goal
of the current paper is to introduce a new formula for static entropy, com-
patible with the axioms and having both the desirable properties. Thus the
paper refines the theory of operator entropy, but it does not introduce any
new definition of the dynamical entropy hµ(T ).

In Section 2 we present the formula and check that it satisfies the axioms,
which are rephrased in Lemmas 2.3, 2.5, 2.7 and 2.8. In Section 3 we prove
that the limit in the definition of hµ(T,F) exists (see step (4) above). In
Section 4 we use the new formula to show that, similarly to the classical
case, the entropy of a product system is equal to the sum of the entropies of
the factors. Finally, the topological case is studied, namely, we show that the
entropy Hµ(F) is continuous when considered as a function of the measure,
with F being a fixed family of continuous functions (Section 5).

2. A formula for static entropy. Let (X,B, µ) be a probability
space. Denote η(x) = −x log x for x ∈ (0, 1] and η(0) = 0 (log means
logarithm to base 2). For a function f : X → [0, 1] let Af = {(x, t) ∈
X×[0, 1] : t ≤ f(x)} and denote by Af the partition ofX×[0, 1] consisting of
Af and its complement. For a collection F of measurable functions we define
AF =

∨
f∈F Af . Denote by At the t-section of a set A ⊂ X × [0, 1] at t, i.e.

At = {x ∈ X : (x, t) ∈ A}, and by A t
F the partition of X consisting of the

t-sections At, where A ∈ AF . Following the scheme of the introduction we
declare that F is the collection of all finite sequences of measurable functions
from X into the unit interval and the join will be the concatenation of such
sequences (1). We assume that F also contains an empty sequenceO and that
AO = {X}. Clearly, AFtG = AF∨AG and (AFtG)t = (AF∨AG)t = A t

F∨A t
G .

We define the entropy of the collection F by the formula

(2.1) H(F) =
1�

0

Hµ(A t
F ) dλ(t),

where Hµ(α) is the classical Shannon entropy of the partition α. It is obvious
that this quantity has both properties mentioned in the introduction: the
entropy of a collection of constant functions is zero, as is the conditional
entropy H(F |F). Recall that in [DF] the static entropy of F (we denote it

(1) In [DF] and [F] the join of F and G was denoted by F ∪G and it was claimed that
it is just the set-theoretic union. We comment on it in Remark 2.6.
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by HDF(F)) was defined as the Shannon entropy of AF with respect to the
product of µ and the Lebesgue measure,

HDF(F) = Hµ×λ(AF ) =
∑
A∈AF

η((µ× λ)(A)).

Before we check that (2.1) satisfies the axioms, we make the following easy
observation.

Proposition 2.1. H(F) ≤ HDF(F).

Proof. By Jensen’s inequality,

H(F) =
∑
A∈AF

1�

0

η(µ(At)) dλ(t) ≤
∑
A∈AF

η
( 1�

0

µ(At)dλ(t)
)

=
∑
A∈AF

η((µ× λ)(A)) = HDF(F).

Remark 2.2. Notice that the inequality above can be strict. Consider
X = [0, 1] with the Lebesgue measure λ and the collection F = {f}, where
f(x) = x. Since AF consists of two sets of equal product measure, we have
HDF(F) = 1 (note that we use logarithm to base 2). On the other hand,
integrating by parts we have

H(F) =
1�

0

(−t log t− (1− t) log(1− t)) dt = −2
1�

0

t log t dt < 1.

Lemma 2.3 (Monotonicity and subadditivity axiom). For any finite fam-
ilies F , G and H,

0 ≤ H(F |H) ≤ H(F t G |H) ≤ H(F |H) +H(G |H).

Proof. The conclusion follows easily from (2.1) and the properties of the
Shannon entropy of a partition. For instance, to justify the last inequality
one needs to show that H(F |H) +H(G |H)−H(F t G|H) is nonnegative.
But this expression is equal to
1�

0

[Hµ(A t
F ∨A t

H) +Hµ(A t
G ∨A t

H)−Hµ(A t
F ∨A t

G ∨A t
H)−Hµ(A t

H)] dλ(t)

=
1�

0

[Hµ(A t
G |A t

H)−Hµ(A t
G |A t

F ∨A t
H)] dλ(t) ≥ 0.

We recall that the above lemma suffices to prove that

H
( n⊔
i=1

Fi
∣∣∣ n⊔
i=1

Gi
)
≤

n∑
i=1

H(Fi | Gi)

for arbitrary families F1, . . . ,Fn and G1, . . . ,Gn.
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The next lemma will help us prove that the entropy H satisfies the L1-
continuity axiom (Lemma 2.5) and the domination axiom (Lemma 2.8). We
abbreviate H({f} | {g}) by H(f | g) and denote symmetric difference by 4.

Lemma 2.4. Let f, g : X → [0, 1]. For every ε > 0 there exists δ > 0 such
that if ‖f − g‖1 < δ then H(f | g) < ε.

Proof. Let A{f,g} = {A,B,C,D}, where

A = {(x, t) : t < min{f(x), g(x)}},
B = {(x, t) : t ≥ max{f(x), g(x)}},

C = {(x, t) : f(x) ≤ t < g(x)},
D = {(x, t) : g(x) ≤ t < f(x)},

and recall that Ag = {Ag, Acg}. We have

H(f | g) ≤
1�

0

|η(µ(At))− η(µ(Atg))| dλ(t)

+
1�

0

|η(µ(Bt))− η(µ((Acg)
t))| dλ(t)

+
1�

0

η(µ(Ct)) dλ(t) +
1�

0

η(µ(Dt)) dλ(t).

We now show that the last two summands are small. Let δ′ be small enough
to have η(x) < ε/8 for x < δ′, and let N = maxx∈[0,1] η(x). Then

1�

0

η(µ(Ct)) dλ(t) =
�

{t : µ(Ct)<δ′}

η(µ(Ct)) dλ(t) +
�

{t : µ(Ct)≥δ′}

η(µ(Ct)) dλ(t)

≤ ε

8
· λ{t : µ(Ct) < δ′}+N · λ{t : µ(Ct) ≥ δ′}.

The first summand is not larger than ε/8, while the second is estimated by

λ{t : µ(Ct) ≥ δ′} ≤ 1
δ′

1�

0

µ(Ct) dλ =
1
δ′

(µ× λ)(C).

Since (µ × λ)(C) ≤ ‖f − g‖1 < δ and δ′ depends only on ε, choosing δ
suitably small we obtain

1�

0

η(µ(Ct)) dλ(t) <
ε

8
+
N

δ′
· δ < ε

4
.

By the same reasoning
	1
0 η(µ(Dt)) dλ(t) < ε/4.

Similarly, we estimate the first two summands. Let δ′′ > 0 be chosen so
that |η(x)− η(y)| < ε/8 if |x− y| < δ′′. Decomposing the unit interval into
{t : |µ(At) − µ(Atg)| < δ′′} and its complement, and integrating separately
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over these sets, we obtain
1�

0

|η(µ(At))− η(µ(Atg))| dλ(t) ≤ ε

8
+N · λ{t : |µ(At)− µ(Atg)| ≥ δ′′}

and again

λ{t : |µ(At)− µ(Atg)| ≥ δ′′} ≤
1
δ′′

1�

0

|µ(At)− µ(Atg)| dλ(t)

≤ 1
δ′′

(µ× λ)(A4Ag) ≤
1
δ′′
‖f − g‖1 ≤

δ

δ′′
,

which can be made smaller than ε/8N by an appropriate choice of δ. Finally,
we get H(f | g) < ε.

Lemma 2.5 (L1-continuity axiom). For every r ≥ 1 and ε > 0 there
exists a constant δ > 0 such that if F , G and H have cardinalities at most r
and dist(F ,G) < δ then

dist(F tH,G t H) < ε and |H(F)−H(G)| < ε.

In fact, the latter may be replaced by H(F | G) < ε.

Proof. Clearly, dist(F tH,G tH) ≤ dist(F ,G), so the first inequality is
satisfied. Notice that

|H(F)−H(G)| ≤ H(F | G) +H(G |F),

so it suffices to estimate H(F | G). Let r ≥ r′, and let F = {f1, . . . , fr}
and G = {g1, . . . , gr′} satisfy dist(F ,G) < δ, where δ is obtained from the
previous lemma for ε/2r in place of ε. There is a correspondence fi 7→ gπ(i),
where i = 1, . . . , r (possibly with some gi’s equal to zero if r > r′), such that
max1≤i≤r ‖fi − gπ(i)‖1 < δ. Thus

H(F | G) ≤
r∑
i=1

H(fi | gπ(i)) < ε/2.

Remark 2.6. In [DF] and [F] the join of F and G was denoted by F ∪G
and it was claimed that it is just the set-theoretic union. Unfortunately, if
F = {1/2} = H and G = {1/2 + ε} (families of constant functions), then
dist(F ,G) = ε, while dist(F ∪H,G ∪ H) = dist(F ,G ∪ H) = 1/2 no matter
how small ε is! This problem may be eliminated if we keep an additional copy
of 1/2 in the join of F and H, i.e. if we concatenate the families rather than
take their union. Notice that the partition AF is insensitive to any change
in enumeration of functions and depends only on a set of distinguishable
functions constituting F , hence in the definition of HDF(F) one can safely
replace finite sets of functions by finite sequences of functions. Moreover, the
formula AFtG = AF ∨AG remains correct regardless of whether we use finite
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sets and their unions or finite sequences and concatenations as a basic tool.
Thus, the values of HDF(F), hDF(T,F) and hDF(T ) remain unchanged if we
pass from sets and unions to sequences and concatenations. A version using
sequences satisfies the axioms with no exceptions, hence all theorems proved
for dynamical entropy in [DF] and [F] are valid for any version of entropy
compatible with the axioms.

Another approach to the problem, with a slight weakening of the axioms,
was presented in a recent book [D] by Tomasz Downarowicz. We stress that
our new formula is compatible with the axioms given there.

Lemma 2.7 (Partitions axiom). H(1Ξ) = Hµ(Ξ), where Hµ(Ξ) is the
Shannon entropy of Ξ.

Proof. Since every t-section of A1Ξ is equal to Ξ we immediately get the
assertion.

If α is a partition of [0, 1], denote by F−1(α) the partition
∨
f∈F f

−1(α)
of X.

Lemma 2.8 (Domination axiom). For every r ≥ 1 and ε > 0 there exists
δ > 0 such that for every family F of at most r elements and every partition α
of the unit interval into finitely many subintervals of lengths not exceeding δ,

H(F |1F−1(α)) < ε.

Proof. Fix r ≥ 1 and ε > 0. For ε/r choose δ > 0 according to Lemma
2.4. Let F = {f1, . . . , fr} and let α denote a partition of the unit interval
into intervals whose lengths do not exceed δ. Denote by 0 = a0 < a1 < · · · <
as = 1 the endpoints of these intervals. For every i = 1, . . . , r define a simple
function si : X → [0, 1] by

si =
s−1∑
k=0

ak1Bi,k , where Bi,k = {x : ak ≤ fi(x) < ak+1}.

Then ‖fi − si‖1 < δ for every i. Let α denote the family of constant functions
with values a0, a1, . . . , as. Since the entropy of a family of constants is zero,
we have

H(F |1F−1(α)) = H(F |1F−1(α))−H(α)

≤ H(F |1F−1(α) t α)

=
1�

0

Hµ(A t
F |A t

1F−1(α)tα
) dλ(t).

Since the partition of the product induced by 1F−1(α) t α is finer than
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A{s1,...,sr}, the right hand is not greater than
1�

0

Hµ(A t
F |A t

{s1,...,sr})dλ(t) =
1�

0

Hµ

( r∨
i=1

A t
fi

∣∣∣ r∨
i=1

A t
si

)
dλ(t)

≤
1�

0

r∑
i=1

Hµ(A t
fi
|A t

si) dλ(t) =
r∑
i=1

H(fi | si) < ε.

The above lemmas together with Theorem 2.1 of [DF] imply the following
theorem:

Theorem 2.9. The quantity H defined by (2.1) is a version of operator
entropy in the sense of [DF].

3. Dynamical entropy. In this section we prove that if the static en-
tropy is defined as in the previous section then in the formula for h(T,F)
(step (4) of the general scheme) the upper limit may be replaced by a limit.
To prove the convergence in the classical case one uses the subadditivity of
Hµ(

∨n−1
i=0 T

−iα), where α is a partition, which involves both subadditivity
and invariance of the static entropy. Lemma 2.3 equips us with the first of
these tools, but an easy example shows that we lack the second one. In-
deed, let X be the unit interval with the Lebesgue measure and Tf(x) =
1
2f(x) + 1

2f(1− x). The family F = {1[0,1/4],1(1/4,1]} cuts every t-section of
X × [0, 1] into two disjoint sets [0, 1/4], (1/4, 1], while its image yields parti-
tions into two sets of equal measure, soH(F) < H(TF). Therefore, below we
reproduce the argument used in [DF] for the current version of static entropy.

We recall the theorem on the integral representation of stochastic oper-
ators proved by A. Iwanik in [I].

Theorem. If T is an operator on the set of bounded measurable func-
tions of a standard Borel space and T is induced by a transition probability
then

Tf(x) =
�

Ω

f(ϕω(x)) dλ(ω),

where (Ω, λ) denotes the unit interval equipped with the Lebesgue measure
and (ω, x) 7→ ϕω(x) is a jointly measurable map from Ω ×X into X.

Suppose that T satisfies the assumptions of the above theorem and let Φ
be the operator on bounded measurable functions on Ω × X generated by
a pointwise map φ(ω, x) = (ω, ϕω(x)). Denoting by f the function (ω, x) 7→
f(x) we have

Tf(x) =
�
Φf(ω, x) dλ(ω).

Though Φ need not preserve the product measure, using Fubini’s theorem
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we do have

(3.1)
� �
Φf dλ dµ =

�
Tf dµ =

�
f dµ.

In particular, (λ× µ)(φ−1(Ω ×A)) = µ(A) for all measurable A ⊂ X. Since
every iterate of T is induced by a transition probability (because T is), we
can denote by Φk the pointwise generated operator corresponding to T k and
by φk the map that generates Φk. Note that, in general, Φk is not equal to
the iterate Φk. The proof of the following lemma can be found in [DF] (the
statement (3.2.3) in the proof of Lemma 3.2).

Lemma 3.1. Let F be a collection of measurable functions from X to
[0, 1]. For all f ∈ F and δ > 0 there exists N ∈ N such that for all k ∈ N
and l ≥ N ,

‖T k+lf − ΦkT lf‖1 < δ.

We say that a family G = {g1, . . . , gr} is increasing if g1 ≤ · · · ≤ gr.

Lemma 3.2. For an increasing family G = {g1, . . . , gr} of functions
on X,

Hλ×µ(ΦkG) = Hµ(G) ∀k ∈ N.

Proof. Let g0 ≡ 0 and gr+1 ≡ 1 be functions defined on X. Notice that
AG = {A0, A1, . . . , Ar}, where A0 = {(x, t) : t ≤ g1(x)} and Ai = {(x, t) :
gi(x) < t ≤ gi+1(x)} for i = 1, . . . , r. So for G = {g1, . . . , gr} we have
AG = {B0, . . . , Br}, where Bi = Ω ×Ai. Thus we have Bt = Ω ×At and

(λ× µ)(Bt) = µ(At) =
�
T k1At(x) dµ(x)

=
� �
Φk1Bt(ω, x) dλ(ω) dµ(x) = (λ× µ)(φ−1

k (Bt)).

Denoting AΦkG = {Ci : i = 1, . . . , r}, where

Ci = {(ω, x, t) : Φkgi(ω, x) < t ≤ Φkgi+1(ω, x)},

we obtain Cti = φ−1
k (Bt

i), where Bi ∈ AG . Hence A t
ΦkG

= φ−1
k (A t

G) and

Hλ×µ(ΦkG) =
1�

0

∑
B∈AG

η((λ× µ)(φ−1
k (Bt))) dλ(t)

=
1�

0

∑
A∈AG

η(µ(At)) dλ(t) = Hµ(G).

An arbitrary family F = {f1, . . . , fr} of functions may be transformed
into an increasing one in the following way. Denote by 2 the lexicographic
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order on the set of words {0, 1}r. For every β ∈ {0, 1}r we define

θβ =

{ 1 for β = 11 . . . 1,
sup
α2β

inf{fi : αi = 0} otherwise.

It is clear that the family {θβ} is increasing with respect to the lexicographic
order on {0, 1}r—the outcome depends, however, on the initial enumeration.
Excluding from θβ ’s spare copies of functions and including (for convenience)
the function equal to zero everywhere we obtain an increasing collection
which will be denoted by Θ(F). It is not hard to prove that AΘ(F) = AF ,
so A t

F = A t
Θ(F) and H(F) = H(Θ(F)). Moreover, Θ(ΦkF) = Φk(Θ(F)) for

every k ∈ N, because Φk is pointwise generated (thus preserves the maximum
and minimum operations).

Lemma 3.3. For every ε>0 there exists N ∈N such that for all k,m ∈ N,

|Hµ(T k+NFm)−Hµ(TNFm)| < mε.

Proof. Assume that X is standard Borel and T is as required in Iwanik’s
theorem. Fix ε > 0 and denote F = {f : f ∈ F}. Applying Lemma 3.1 to
each function of F and then Lemma 2.5 we see that there exists N ∈ N such
that for all l ≥ N and k ∈ N,

Hλ×µ(T k+NFm |ΦkTNFm) ≤
N+m−1∑
l=N

Hλ×µ(T k+lF |ΦkT lF) < mε.

Hence,

Hµ(T k+NFm) = Hλ×µ(T k+NFm)

≤ Hλ×µ(ΦkTNFm) +Hλ×µ(T k+NFm |ΦkTNFm)

≤ Hλ×µ(ΦkTNFm) +mε.

Using Lemma 3.2 we obtain

Hλ×µ(ΦkTNFm) = Hλ×µ(Θ(ΦkTNFm)) = Hλ×µ(ΦkΘ(TNFm))
(Lem. 3.2)

= Hµ(Θ(TNFm)) = Hµ(TNFm),

and consequently

Hµ(T k+NFm) < Hµ(TNFm) +mε.

A similar argument, but with the roles of T k+NFm and TNFm exchanged,
yields

Hµ(TNFm) < Hµ(T k+NFm) +mε.

In the general case the main idea is to pass to the complex subalgebra L
of L∞(µ) generated by (countably many) functions used in the above ar-
gument. It is known that L is isometrically isomorphic to the algebra of
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complex continuous functions on a certain compact Hausdorff space X . The
isomorphism τ sends a measure µ to a certain Borel probability measure on
X and the operator T to a Markov operator T = τTτ−1 defined on the real
algebra C(X ) of all continuous real functions. Since a Markov operator is
always induced by a (Feller) transition probability the assertion (for T ) fol-
lows from the first part of the proof. The entropies of TNFm and T k+NFm
are equal to the entropies of the corresponding families in C(X ), which
completes the proof. We refer the reader to [DF] for more details.

The above lemma allows one to replace subadditivity by the following
quasi-subadditivity property. We omit the proofs of both the property and
the consequent theorem, as they strongly resemble arguments used in the
classical pointwise theory.

Lemma 3.4. For every ε > 0 there exists N ∈ N and a constant c such
that for every k ∈ N and m ≥ N ,

Hµ(Fk+m) ≤ Hµ(Fk) +Hµ(Fm) + c+mε.

Theorem 3.5. If T is a doubly stochastic operator then

hµ(T,F) = lim
n→∞

1
n
Hµ(Fn).

We remark that the above limit need not coincide with the corresponding
infimum.

4. The product rule. If T is a doubly stochastic operator on L1(µ)
and S a doubly stochastic operator on L1(ν) then one can define an opera-
tor on functions of the form f(x) · g(y) ∈ L1(µ× ν) by (T × S)(fg)(x, y) =
Tf(x) ·Sg(y). Extending the definition to linear combinations of such prod-
ucts and then, by density, to the whole L1(µ×ν) we obtain a doubly stochas-
tic operator which will be called the product of T and S and denoted by T×S.
In other words, if we represent T and S by their stochastic kernels (or less
generally by transition probabilities) then the stochastic kernel of the prod-
uct is the product of the kernels of T and S (or its transition probability is
the product of the transition probabilities of T and S).

As an application of the new formula we will prove that, similarly to the
classical case, the entropy of a product is the sum of the entropies of the
factors. Notice that since Theorem 4.5 concerns the dynamical entropy of an
operator it remains valid regardless of the choice of static entropy. We start
by stating some crucial lemmas.

Definition 4.1. For a function f and constants a < b let f ba = (f∨a)∧b,
where ∨ and ∧ denote maximum and minimum, respectively. We say that f
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has property CZ(δ) if �
|Tn(f ba)− (Tnf)ba| dµ < δ

for every n ≥ 0 and any constants a < b.

Lemma 4.2 ([DF, Lemma 2.3]). If T is a doubly stochastic operator and
f a bounded function then for every δ > 0 there exists an integer l such that
T lf has property CZ(δ).

Lemma 4.3 ([DF, Lemma 2.5]). Let F consist of r functions with ranges
in [0, 1], having property CZ(δ3). Then there is a partition Ξ of [0, 1] into
subintervals of lengths not exceeding 2rδ such that for every n and f ∈ F ,
and all breakpoints ξ of Ξ,

(4.1)
�
|Tn1{x: f(x)≥ξ} − 1{x:Tnf(x)≥ξ}| dµ < 4δ.

Lemma 4.4 ([DF, Lemma 2.6]). Let F consist of r functions with ranges
in [0, 1], all having property CZ(δ3), and let α be a partition of [0, 1] into m
pieces A0 = [0, ξ1), Aj = [ξj , ξj+1) (j = 1, . . . ,m− 2) and Am−1 = [ξm−1, 1],
where the points ξj all satisfy condition (4.1). Then

dist(Tn(1F−1(α)),1(TnF)−1(α)) < 8rmrδ for every n ≥ 0.

Noticing a special role of characteristic functions in the domination axiom
(Lemma 2.8) we observe that if α is a partition of X and β is a partition of
Y then

(4.2) H(1α×Y t 1X×β) = H(1α×β) = H(1α) +H(1β).

Theorem 4.5.
h(T × S) = h(T ) + h(S).

Proof. Let U = T × S and fix ε > 0. Let E be a family of measurable
functions X ×Y → [0, 1]. Each of them can be approximated in L1 norm by
a sum

∑
i figi, where fi : X → [0, 1], gi : Y → [0, 1]. Denote the collection of

all these sums by E ′. Since the product operator U is a contraction, each Une
for e ∈ E is L1-approximated without increasing the error by the nth image
of a suitable element of E ′. Demanding that dist(E , E ′) is appropriately small
we obtain

H(EN ) ≤ H((E ′)N ) +Nε.

If Fe is the family of all functions fi used in sums
∑

i figi to approximate
e ∈ E and Ge is the family of all corresponding functions gi then we let
F =

⊔
e∈E Fe and G =

⊔
e∈E Ge. Denote r = #F = #G.

Let δ be as specified in Lemma 2.5 (continuity axiom) for the cardinal-
ity #E and ε > 0. Let m = d8r/δe. Then choose δ′ < δ/4rmr again from
Lemma 2.5, but for the cardinality mr and ε. Let L be large enough to
ensure that every TLf for f ∈ F and every SLg for g ∈ G have property
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CZ((δ′/8rmr)3) for the actions of T and S, respectively. We use Lemma 4.3
for T and TLF to obtain a suitable partition Ξ. The number δ′/4mr ma-
jorizes the distances between the breakpoints ξ of Ξ and, because it is much
smaller than δ/8r, we can pick m− 1 of them creating a partition α of [0, 1]
into m intervals of lengths smaller than δ/4r. The same procedure is ap-
plied to S and SLG, giving a partition β of [0, 1]. We stress that the same
parameters m, r, δ are valid for both α and β.

We put αn = (TnF)−1(α) and βn = (SnG)−1(β) for n ∈ N. Note that
αn and βn are partitions of X. By Lemma 4.4 we obtain

(4.3) dist(Tn1αL ,1αL+n) < δ′ and dist(Sn1βL ,1βL+n
) < δ′

for every n ∈ N.
Each TLf ∈ TLF may be approximated with an error of at most δ/4r

by a simple function
∑

k ak1Ak , where Ak ∈ αL and the values ak are break-
points of the partition α. Since each such simple function admits at most
m values and the preimage (by TLf) of each element of α is a union of at
most mr−1 elements of αL, the sum

∑
k ak1Ak has at most mr elements.

Then each TL+nf ∈ TL+nF is δ/4r-approximated by
∑

k akT
n
1Ak . Using

(4.3) we can replace functions Tn1Ak by certain characteristic functions 1Ãk ,
where Ãk ∈ αL+n, which yields an error of δ′ on each such function. There-
fore,∥∥∥TL+nf −

∑
k

ak1Ãk

∥∥∥ ≤ ∥∥∥TL+nf −
∑
k

akT
n
1Ak

∥∥∥+
∑
k

ak‖Tn1Ak − 1Ãk‖

<
δ

4r
+mr · δ′ < δ

2r
.

Similarly, given SLg ∈ SLG we find a simple function
∑

k bk1B̃k , where B̃k ∈
βL+n and bk are breakpoints of β, such that ‖SL+ng −

∑
k bk1B̃k‖ < δ/2r.

Since every function
∑

i figi ∈ E ′ consists of at most r summands, an easy
calculation proves that∥∥∥UL+n

∑
i

figi −
∑
i

∑
k,l

a
(i)
k b

(i)
l 1

Ã
(i)
k ∩B̃

(i)
l

∥∥∥ < δ

for some a(i)
k and b

(i)
l which are breakpoints of α and β, Ã(i)

k ∈ αL+n and
B̃

(i)
l ∈ βL+n. If E ′′n denotes the set of all functions of the form∑

i

∑
k,l

a
(i)
k b

(i)
l 1

Ã
(i)
k ∩B̃

(i)
l

chosen for elements of UL+nE ′ then both UL+nE ′ and E ′′n have cardinality #E ,
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so H(UL+nE ′ | E ′′n) < ε, and consequently

H((E ′)L+N ) ≤ H((E ′)L) +H
(N−1⊔
n=0

E ′′n
)

+Nε.

But
⊔N−1
n=0 E ′′n consists of simple functions, so its entropy is smaller than or

equal to the entropy of the family of characteristic functions used to produce
elements of

⊔N−1
n=0 E ′′n . These characteristic functions represent (possibly not

all) sets from the partitions αL+n × βL+n (with n < N), which are coarser
than

∨
n<N αL+n ×

∨
n<N βL+n. Thus, using (4.2) we obtain

H
(N−1⊔
n=0

E ′′n
)
≤ H(1W

n<N αL+n×
W
n<N βL+n

)

= H(1W
n<N αL+n

) +H(1W
n<N βL+n

)

= H
( ⊔
n<N

1αL+n

)
+H

( ⊔
n<N

1βL+n

)
.

By (4.3) and since the cardinalities of the families involved are smaller
than mr, we deduce from Lemma 2.5 that

H
( ⊔
n<N

1αL+n

)
≤ H((1αL)N ) +Nε,

H
( ⊔
n<N

1βL+n

)
≤ H((1βL)N ) +Nε.

So for any N we have

H(EL+N ) ≤ H((E ′)L) +H((1αL)N ) +H((1βL)N ) + (4N + L)ε,

which after dividing by N and taking the limit yields

h(U, E) ≤ h(T,1αL) + h(S,1βL) + 4ε ≤ h(T ) + h(S) + 4ε.

Since ε and E were chosen arbitrarily and independently, we get h(T ×S) ≤
h(T ) + h(S).

To prove the opposite inequality take families F , G of functions on X
and Y , respectively, with cardinalities at most r. Fix ε > 0 and take δ ac-
cording to Lemma 2.8 (domination axiom) for cardinality r. Pick m > 1/δ.
Suppose δ′ < δ satisfies the assertion of Lemma 2.5 for cardinality mr and
simultaneously 2δ′ satisfy the assertion of the same lemma for families of car-
dinality m2r. Take L so that TLF and SLG have property CZ((δ′/8rmr)3).
In the same way as in the first part of the proof we can choose partitions
α and β, and define αn = (TnF)−1(α) and βn = (SnG)−1(β), so that (4.3)
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holds. By Lemma 2.8,

H(FL+N ) +H(GL+N ) ≤ H(FL) +H
(N−1⊔
n=0

Tn1αL

)
+H(GL) +H

(N−1⊔
n=0

Sn1βL

)
+ 2Nε.

On the other hand, using (4.3) and then (4.2) we obtain

H
(N−1⊔
n=0

Tn1αL

)
+H

(N−1⊔
n=0

Sn1βL

)
≤ H

(N−1⊔
n=0

1αL+n

)
+H

(N−1⊔
n=0

1βL+n

)
+2Nε

= H(1WN−1
n=0 αL+n×

WN−1
n=0 βL+n

) + 2Nε

= H
(N−1⊔
n=0

1αL+n×βL+n

)
+ 2Nε.

Every function from 1αL+n×βL+n
is a product of characteristic functions,

which by (4.3) are approximated by elements of Tn1αL or Sn1βL . Thus it is
2δ′-approximated by a function from Un1αL×βL . Since both the last family
and 1αL+n×βL+n

have each at most m2r elements, by Lemma 2.5 we have

H
(N−1⊔
n=0

1αL+n×βL+n

)
≤ H

(N−1⊔
n=0

Un1αL×βL

)
+Nε.

We have thus obtained

H(FL+N ) +H(GL+N ) ≤ H(FL) +H(GL) +H
(N−1⊔
n=0

Un1αL×βL

)
+ 5Nε.

After dividing both sides by N and taking the limit we get
h(T,F) + h(S,G) ≤ h(T × S,1αL×βL) + 5ε ≤ h(T × S) + 5ε.

5. Continuity of static entropy with respect to the measure.
We end the paper by considering the case of a compact space X. The main
aim of this section is to show that if a sequence µn of probability measures
converges weakly∗ to a measure µ then limn→∞Hµn(F) = Hµ(F) provided
that F consists of continuous functions (we recall that Hµ(F) is the static
entropy defined in Section 2).

If f is continuous then the boundary of the set Af = {(x, t) : t ≤ f(x)}
(and of Acf ) is characterized by the condition f(x) = t. Let F = {f1, . . . , fr}
be a family of continuous functions. The inclusion ∂(E ∩ F ) ⊂ ∂E ∪ ∂F
implies that the boundary of every A ∈ AF is contained in the union of the
graphs of functions f1, . . . , fr. Since the graph of a real measurable function
has µ× λ measure zero, we get (µ× λ)(∂A) = 0 for every A ∈ AF .
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Fix A ∈ AF . We have ∂(At) ⊂ (∂A)t, so

0 = (µ× λ)(∂A) =
1�

0

µ((∂A)t) dλ(t) ≥
1�

0

µ(∂(At)) dλ(t),

hence µ((∂A)t) = 0 for λ-almost every t. But AF consists of finitely many
elements, so µ((∂A)t) = 0 for all A and almost all t.

Finally, let µn converge to µ in the weak∗ topology. If µ((∂A)t) = 0
then the sequence µn(At) converges to µ(At), which in turn implies that
Hµn(A t

F ) tends toHµ(A t
F ) for almost all t. Since for every n ∈ N the function

t 7→ Hµn(A t
F ) is bounded by a constant log #AF , we can use the dominated

convergence theorem to prove that

Hµn(F) =
1�

0

Hµn(A
t
F ) dλ(t)→

1�

0

Hµ(A t
F ) dλ(t) = Hµ(F).

We have thus obtained the following theorem.

Theorem 5.1. If X is a compact metric space and F is a finite family
of continuous functions then the function mapping a probability measure µ
to the entropy Hµ(F) is (uniformly) continuous in the weak∗ topology on the
space of all probability measures of X.
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