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Abstract. Using Lipschitz distance on Outer space we give another proof of the train
track theorem.

1. Introduction. An elegant proof of Thurston’s classification of sur-
face homeomorphisms [Thu88] was given by Bers [Ber78]. Given a surface
homeomorphism Φ the proof proceeds by studying the associated displace-
ment function Φ̃ on Teichmüller space T with respect to Teichmüller metric,
i.e. the function

Φ̃(x) = d(x, Φ(x)).

There are three possibilities:

• (elliptic) inf Φ̃ = 0 and the infimum is realized. In this case Φ̃ has a
fixed point and it is not hard to show that Φ is isotopic to a homeo-
morphism of finite order.
• (hyperbolic) inf Φ̃ > 0 and the infimum is realized. In this case Bers

proceeds to show that Φ is isotopic to a pseudo-Anosov homeomor-
phism.
• (parabolic) The infimum is not realized. In this case Bers shows that
Φ is reducible.

In this paper we carry out Bers’ argument in the context of Out(Fn)
and Outer space. The role of Teichmüller metric is played by the Lipschitz
metric, a direct analog of Thurston’s Lipschitz metric on Teichmüller space
[Thu]. This metric is not symmetric and one must carefully choose the order
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of the two points when measuring distance. The result is an alternative proof
of the train track theorem [BH92].

Theorem. Every irreducible automorphism Φ has a topological repre-
sentative which is a train track map.

2. Outer space and Lipschitz metric. In this section we review basic
definitions and set some notation.

A graph Γ is a finite cell complex of dimension ≤ 1. A core graph is a
graph Γ with all vertices of valence ≥ 2. A rose in rank n is the wedge Rn
of n circles. A marking of a graph Γ is a homotopy equivalence f : Rn → Γ .
A metric on Γ is an assignment ` of positive lengths `(e) to the edges e of Γ
such that the sum is 1. If α is an immersed loop in Γ , we define the length
of α with respect to the metric ` as the sum `(α) of the lengths of the edges
of Γ crossed by α, with multiplicity. If α is not immersed, we define `(α) as
the length of the immersed loop homotopic to α (or 0 if α is nullhomotopic).
We may view Γ as a geodesic metric space with each edge e having length
`(e). A direction at x ∈ Γ is a germ of isometric embedding d : [0, ε) → Γ
with d(0) = x. Thus most points of Γ have two directions, and the number
of directions at a vertex is the valence. Directions can be viewed as analogs
of unit tangent vectors. If φ : Γ → Γ ′ is a map which is linear on edges and
φ(x) = x′, then φ induces a map φ∗ from the set of directions at x to the
set of directions at x′ (unless the slope of φ is 0 on an edge containing x).

Recall that Culler–Vogtmann’s Outer space Xn in rank n [CV86] is the
set of equivalence classes of triples (Γ, f, `) where

• Γ is a core graph,
• f : Rn → Γ is a marking, and
• ` is a metric on Γ .

Two such triples (Γ, f, `) and (Γ ′, f ′, `′) are equivalent if there is a hom-
eomorphism φ : Γ → Γ ′ such that

• φf ' f ′, and
• for all loops α in Γ , `(α) = `′(φ(α)).

If Γ and Γ ′ have no vertices of valence 2, then φ must induce a bijection
between the edges of Γ and Γ ′, and `(e) = `′(φ(e)) for every edge e ⊂ Γ .
Every triple (Γ, f, `) is equivalent (for n ≥ 2) to some (Γ ′, f ′, `′) such that
Γ ′ has no vertices of valence 2, by “unsubdividing” and assigning the sum
of the lengths of the subdivision edges to the newly created edges.

There are three ways of defining the topology on Xn, all yielding the
same topology:

• Xn can be decomposed into open simplices corresponding to fixing the
marking and varying lengths on Γ . This gives Xn the structure of a
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“complex of simplices with missing faces”. Take the weak topology
with respect to the collection of these simplices with missing faces.
• There is an embedding Xn ↪→ RS where S is the set of nontrivial

conjugacy classes in Fn, or equivalently, the set of immersed loops
in Rn. The embedding is given by

[(Γ, f, `)] 7→ (α 7→ `(f(α))).

Now take the subspace topology.
• A neighborhood of [(Γ, f, `)] is determined by ε > 0 and consists of

classes [(Γ ′, f ′, `′)] such that there is a map φ : Γ → Γ ′ with φf ' f ′

and such that φ is <(1 + ε)-Lipschitz.

The group Out(Fn) acts on Xn on the right as follows. Let Φ ∈ Out(Fn).
We may view Φ as a homotopy equivalence (defined up to homotopy) Φ :
Rn → Rn. Then

[(Γ, f, `)]Φ = [(Γ, fΦ, `)].

The third definition of the topology on Xn can be promoted to a (non-
symmetric) metric.

Let [(Γ, f, `)], [(Γ ′, f ′, `′)] ∈ Xn. Consider maps φ : Γ → Γ ′ so that

• φf ' f ′, and
• φ is linear on edges.

Call any map φ that satisfies these two conditions a difference of mark-
ings. Let σ(φ) denote the maximal slope of φ.

Observe that if α is any loop in Γ then

`′(φ(α)) ≤ σ(φ)`(α).

The following result is due to Tad White (unpublished). A proof appears
in [FM], but for completeness we include a proof.

Proposition 2.1. Let φ0 : Γ → Γ ′ be a difference of markings. Then

inf{σ(φ) | φ ' φ0 : Γ → Γ ′ is a difference of markings} = sup
α

`′(φ0(α))
`(α)

and moreover both inf and sup are realized.

Proof. That inf ≥ sup follows from the observation just before the propo-
sition. Arzelà–Ascoli implies that inf is realized. Let φ : Γ → Γ ′ be a dif-
ference of markings that realizes inf. Denote by ∆ = ∆(φ) the union of all
edges of Γ on which φ has slope equal to σ(φ). We may also assume that ∆
is minimal possible. Therefore ∆ is a core graph (any edges with a valence 1
vertex can be removed by a small homotopy of φ, by moving the image of
the valence 1 vertex in the direction that lowers the slope on the edge of ∆
containing it).
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Let v be a vertex of ∆ and consider a turn, i.e. pair of distinct directions
{d, d′} out of v in ∆. We say that this turn is legal if φ∗(d) 6= φ∗(d′), and it
is illegal if φ∗(d) = φ∗(d′). A path or a loop in ∆ is legal if it crosses only
legal turns. Note that the loop φ(α) is immersed if and only if α is legal.
Also observe that there is an equivalence relation on the set of directions
(within ∆) out of each vertex v ∈ ∆, where d ∼ d′ if and only if φ∗(d) =
φ∗(d′). A turn {d, d′} is legal if and only if d � d′. We will call equivalence
classes gates.

If∆ contains a vertex with only one gate, then a small homotopy as above
would reduce ∆. Therefore there are at least two gates at each vertex. It
follows that every legal edge path in ∆ can be extended in a legal fashion.
In particular, ∆ admits a legal loop α. By construction `′(φ(α)) = σ(φ)`(α),
and thus α realizes the sup and equality holds as claimed.

Remark 2.2. The legal loop α can be chosen to cross each edge of ∆ at
most twice. Therefore, the sup can be calculated by taking the maximum
over a finite collection of loops in Γ . Furthermore, `′(φ0(α)) does not depend
on φ0, only on the homotopy class of φ0, so the quantity in the statement
can be easily calculated.

To simplify notation, we will replace [(Γ, f, `)] with Γ . Denote by σ(Γ, Γ ′)
the quantity in the statement of Proposition 2.1.

Definition 2.3. Let Γ, Γ ′ ∈ Xn. A difference of markings φ : Γ → Γ ′

is optimal if σ(φ) = σ(Γ, Γ ′). The tension (sub)graph ∆ = ∆φ ⊂ Γ with
respect to an optimal map φ is the union of the edges on which the slope of
φ equals σ(φ).

The tension graph is equipped with a train track structure as in the
proof of Proposition 2.1: a turn {d, d′} is legal if φ∗(d) 6= φ∗(d′), and illegal
otherwise. Directions (in ∆) at a vertex break up into equivalence classes,
called gates, so that {d, d′} is illegal if and only if d, d′ are in the same gate.

Definition 2.4. d(Γ, Γ ′) = log σ(Γ, Γ ′).

Proposition 2.5.

• d(Γ, Γ ′) ≥ 0 with equality only when Γ = Γ ′.
• d(Γ, Γ ′′) ≤ d(Γ, Γ ′) + d(Γ ′, Γ ′′).
• Out(Fn) acts on Xn by isometries: d(Γ · Φ, Γ ′ · Φ) = d(Γ, Γ ′).

Proof. If σ(Γ, Γ ′) < 1 then the volume of the image (i.e. the sum of
the lengths of the images of edges) of an optimal map φ : Γ → Γ ′ is < 1,
contradicting the fact that φ is surjective. Likewise, if σ(Γ, Γ ′) = 1 then φ
must be an isometry.

The second statement follows by composing optimal maps and homotop-
ing rel vertices to a map linear on edges. The third statement is obvious.
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But note that in general d(Γ, Γ ′) 6= d(Γ ′, Γ ). See [AKB]. It can also be
shown that d : Xn ×Xn → [0,∞) is continuous.

3. Trichotomy. Fix an automorphism Φ ∈ Out(Fn) and consider the
displacement function

Φ̃ : Xn → [0,∞) given by Γ 7→ d(Γ, Γ · Φ).

There are three possibilities:

• (elliptic) inf Φ̃ = 0 and it is realized.
• (hyperbolic) inf Φ̃ > 0 and it is realized.
• (parabolic) inf Φ̃ is not realized.

We consider these cases separately.

3.1. Φ is elliptic. An example is pictured below.

a b
c

Fig. 1. Φ(a) = b, Φ(b) = c, Φ(c) = a. All three edges have length 1/3, the tension graph
is all of Γ and all nondegenerate turns are legal. Φ has order 6. Bar denotes the edge with
opposite orientation.

Here we are assuming that Φ has a fixed point, i.e. Γ · Φ = Γ for some
Γ ∈ Xn. If f is the marking of Γ , then fΦ ' φf for an isometry φ : Γ → Γ .
Since (for n ≥ 2) isometries of Γ have finite order, it follows that for some
k > 0 we have φk = id and hence f = φkf ' fΦk, so Φk is (homotopic to)
the identity, i.e. Φ has finite order.

3.2. Φ is hyperbolic. Suppose that inf Φ̃ is realized on Γ ∈ Xn. Let
log λ = d(Γ, Γ · Φ) = inf Φ̃ > 0, so λ > 1. Let ∆ ⊆ Γ be the tension graph
with its train track structure, with respect to an optimal map φ.

An example of a hyperbolic automorphism is given in Figure 2.

Proposition 3.1. After an arbitrarily small perturbation of Γ that pre-
serves the condition that d(Γ, Γ ·Φ) = log λ there is an optimal map φ : Γ →
Γ · Φ such that

• φ(∆) ⊆ ∆,
• φ sends edges of ∆ to legal paths, and
• φ∗ sends legal turns to legal turns.
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b

a

Fig. 2. Φ(a) = ab, Φ(b) = bab. Lengths of edges and σ(φ) = λ are computed from the
equations `(a)+`(b) = 1, λ`(a) = `(a)+`(b) and λ`(b) = `(a)+2`(b), i.e. λ = (3 +

√
5)/2,

`(a) = (3−
√

5)/2, `(b) = (
√

5− 1)/2. The tension graph is all of Γ . The gates are
indicated by the little triangle at the vertex: they are {a, b}, {a}, {b}, where we adopt the
convention that a represents the initial direction of the edge a, while a represents the
terminal direction of a, and similarly for b.

A 2-gate vertex v is allowed to be mapped to a non-vertex, with the
directions in each gate mapping to one of two directions out of φ(v), i.e. the
two directions out of a non-vertex are regarded as forming a legal turn.

Proof of Proposition 3.1. Fix an optimal map φ : Γ → Γ · Φ. The com-
plexity of ∆ is the pair (rankH1(∆),− rankH0(∆)). In the moves that follow
the complexity is never increased, and is often decreased. Note that if ∆ is
a core graph and ∆′ ⊂ ∆ is a proper core subgraph, then the complexity of
∆′ is strictly smaller than that of ∆.

Suppose that all vertices of ∆ have ≥ 2 gates (in particular, ∆ is a core
graph) and φ(∆) 6⊆ ∆, and let e be an edge of ∆ with φ(e) 6⊂ ∆. Perturb
the metric on Γ by scaling by µ > 1 on the edges of ∆ and scaling down
on the edges in the complement of ∆, maintaining volume 1. Denote the
new metric graph by Γ ′. The tension graph ∆′ for the new pair Γ ′ → Γ ′ ·Φ
(using the same map made linear on edges) is contained in ∆ and does not
contain e. Note that the slope on some edge must be λ by the minimality
assumption. Continuing in this way we obtain a perturbation of Γ where
φ(∆) ⊆ ∆. If during the process we encounter ∆ with a 1-gate vertex, we
perturb the map as in the proof of Proposition 2.1 with the effect that ∆ is
replaced by a smaller graph.

If φ maps an edge e of ∆ over an illegal turn, first perturb by folding
the illegal turn (this means identify initial segments of small length ε > 0
in the two edges and rescale the metric so that the volume is 1; the map φ
naturally induces a map on the quotient). After homotoping rel vertices to a
map linear on edges, we see that an edge (induced by e) drops out of ∆ and
complexity decreases. Again it may be necessary to remove 1-gate vertices.
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Now suppose that φ∗ maps a legal turn to an illegal turn. Perturb by
folding the illegal turn. This converts the legal turn to an illegal turn and it
either lowers the number ∑

v

[max(0, G(v)− 2)]

where G(v) is the number of gates at v, or else it introduces a 1-gate vertex.
In the latter case the subsequent perturbation of φ lowers the complexity
of ∆. At the end of the process we have φ and ∆ satisfying the conclusion.

Corollary 3.2. Let Γ realize inf Φ̃ = log λ. Then d(Γ, Γ ·Φk) = k log λ
for any k = 1, 2, . . . .

Proof. After perturbing as in the proof of Proposition 3.1, the statement
follows by observing that for a legal loop α the loop φ(α) is also legal, and
iterating we find that the length of φk(α) is equal to λk`(α). By continuity,
this is true before perturbing as well.

Remark 3.3. It is easy to see that if Φ is any automorphism and φ : Γ →
Γ · Φ an optimal map satisfying the conclusions of Proposition 3.1, then Φ̃
achieves minimum at Γ . Indeed, as above we have d(Γ, Γ ·Φk) = kd(Γ, Γ ·Φ)
for k > 0 and if Γ ′ ∈ Xn then

d(Γ, Γ · Φk) ≤ d(Γ, Γ ′) + d(Γ ′, Γ ′ · Φk) + d(Γ ′ · Φk, Γ · Φk)
≤ d(Γ, Γ ′) + kd(Γ ′, Γ ′ · Φ) + d(Γ ′, Γ ).

The first and last terms are independent of k so by dividing by k and taking
the limit as k →∞ we see that d(Γ, Γ · Φ) ≤ d(Γ ′, Γ ′ · Φ).

For another example of an automorphism of this type consider Φ :
F3 → F3 given by Φ(a) = ab, Φ(b) = bab and Φ(c) = cw where w is any
word in a and b. Let Γ be the rose with the metric on a, b as in Figure 2 but
scaled by t > 0, and let the length of c be 1 − t. When t > 0 is sufficiently
small (depending on w), Γ realizes the minimal displacement log λ with the
same λ as in Figure 2.

3.3. Φ is parabolic. One example of a parabolic automorphism, with
inf Φ̃ = 0, is shown in Figure 3.

For another example, consider Φ(a) = ab, Φ(b) = bab, Φ(c) = cad, Φ(d) =
dcad. On a and b take the metric from Figure 2 scaled by a parameter t > 0,
and on c and d take the same metric (with c corresponding to a and d to b)
scaled by 1− t. The tension graph consists of c and d, with slope converging
to λ = (3 +

√
5)/2 as t → 0. In this example inf Φ̃ = log λ > 0 is not

realized. (One way to see this is to show that the (combinatorial) length
of Φk(c) grows like kλk.)
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a

b

Fig. 3. Φ(a) = a, Φ(b) = ab. Let the length of a be t > 0 and the length of b be 1 − t.
Then the slope on a is 1 and the slope on b is 1/(1− t). Thus as t→ 0 the displacement
converges to 0. The tension graph is the loop b.

Fix a sequence Γk such that

d(Γk, Γk · Φ)→ D = inf Φ̃

but D is not realized.
For θ > 0 denote by Xn(θ) the subspace of Xn consisting of all marked

metric graphs Γ where every nontrivial loop has length ≥ θ (the θ-thick part
of Xn). Then Xn(θ) is an Out(Fn)-invariant closed subset on which Out(Fn)
acts cocompactly.

Proposition 3.4. For any θ > 0 there are only finitely many Γk with
Γk ∈ Xn(θ).

Proof. Suppose not, and after passing to a subsequence assume that
Γk ∈ Xn(θ) for every k. By cocompactness, there are Ψk ∈ Out(Fn) such
that Γk · Ψk → Γ∞ (after taking a subsequence). Therefore, we have

d(Γ∞ · Ψ−1
k , Γ∞ · Ψ−1

k Φ)

≤ d(Γ∞ · Ψ−1
k , Γk) + d(Γk, Γk · Φ) + d(Γk · Φ, Γ∞ · Ψ−1

k Φ)
= d(Γ∞, Γk · Ψk) + d(Γk, Γk · Φ) + d(Γk · Ψk, Γ∞)

and hence
d(Γ∞ · Ψ−1

k , Γ∞ · Ψ−1
k Φ)→ D

(since d(ΓkΨk, Γ∞)→ 0 and d(Γ∞, ΓkΨk)→ 0). In other words,

d(Γ∞ · Ψ−1
k Φ−1Ψk, Γ∞)→ D.

Note that Arzelà–Ascoli implies that there are only finitely many Ψ ∈
Out(Fn) such that d(Γ∞Ψ, Γ∞) ≤ D + 1 (the set of eD+1-Lipschitz maps
Γ∞ → Γ∞ is compact and nearby maps are homotopic, so such maps rep-
resent only finitely many homotopy classes). It follows that, after taking a
subsequence, Ψ−1

k Φ−1Ψk is a constant sequence and

d(Γ∞ · Ψ−1
k Φ−1Ψk, Γ∞) = D,
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i.e. the displacement of Γ∞ ·Ψ−1
k under Φ is D, contradicting our assumption

that inf is not realized.

For ε > 0 the ε-small subspace Γ ε of Γ is the union of all essential (not
necessarily immersed) loops of length ≤ ε (but note that Γ ε may not be a
subgraph). There is εn > 0 such that for any Γ ∈ Xn the subspace Γ εn is
always proper (i.e. not equal to Γ , e.g. there is always an edge of length
≥ 1/(3n − 3), assuming no valence 2 vertices, so εn < 1/(3n − 3) works).
Moreover, there is a bound Bn to the length of any chain of proper core
subgraphs.

Proposition 3.5. For large k any optimal map φ : Γk → Γk · Φ leaves
a nonempty proper core subgraph invariant up to homotopy (and so φ is
homotopic to a possibly nonoptimal map that maps this core subgraph to
itself ).

Proof. Let θ = εn/(eD+1)Bn . By Proposition 3.4 eventually Γk 6∈ Xn(θ).
Choose k so large that in addition the displacement of Γk is < D + 1. Set
δi = εn/e

(D+1)i
, i = 0, 1, . . . , Bn. Then

Γ δ0k ⊃ Γ
δ1
k ⊃ · · · ⊃ Γ

δBn
k

form a chain of homotopically nontrivial proper subspaces (not necessarily
subgraphs, but abstract graphs) of length Bn + 1, so there must be some i
such that Γ δik and Γ δi+1

k have the same core. By definition, an optimal map
must send Γ

δi+1

k into Γ δik , so the common core is mapped to itself up to
homotopy.

4. Train tracks. In this section we complete the proof of the train
track theorem. We first make the standard definitions; the definition of a
train track structure is as before, but does not require a metric on the graph.

Definition 4.1. Let Γ be a marked graph with marking f : Rn → Γ .
We say that φ : Γ → Γ represents Φ ∈ Out(Fn) if φf ' fΦ. The au-
tomorphism Φ is reducible if there is some φ : Γ → Γ that represents Φ
and leaves a homotopically nontrivial (i.e. not a forest) proper subgraph
invariant. Otherwise Φ is irreducible.

Definition 4.2. A train track structure on a core graph Γ is an equiva-
lence relation on the set of directions at every vertex of Γ with at least two
equivalence classes (called gates) at every vertex. As before, a turn {d, d′}
is illegal if d ∼ d′, and legal otherwise. An immersed loop or a path is legal
if it takes only legal turns.

Definition 4.3. Let Φ ∈ Out(Fn) be irreducible. A map φ : Γ → Γ
representing Φ is a train track map if it sends each edge to a nondegenerate
immersed path and the following two equivalent conditions are satisfied:
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(i) There is a train track structure on Γ such that φ sends edges to legal
paths and if v is a vertex of Γ then either

• φ(v) = w is a vertex and inequivalent directions at v map to
inequivalent directions at w, or
• φ(v) is not a vertex, v has two gates, and all directions in one gate

fold to one direction at φ(v), while all directions in the other gate
fold to the other direction at φ(v).

(ii) There is a loop α in Γ such that every iterate φk(α) is immersed,
k = 1, 2, . . . .

To prove that (i) implies (ii) it suffices to choose any legal loop for α,
since (i) guarantees that legal loops map to legal loops. For the converse,
first note that the iterates of α cross every edge of Γ (otherwise the union of
the edges crossed by the iterates of α would be a homotopically nontrivial
proper φ-invariant subgraph). Thus iterated images of edges are immersed.
Define a train track structure on Γ by declaring d ∼ d′ if φk∗(d) = φk∗(d

′)
for some k ≥ 1. The reader may now easily check that the conditions in (i)
hold. For example, any simplicial isomorphism φ : Γ → Γ is a train track
map.

Remark 4.4. For a given φ : Γ → Γ there may be more than one
invariant (i.e. satisfying (i)) train track structure. For example, in Figure 2
we could take the gates to be {a, b} and {a, b}. In the above paragraph we
constructed the invariant train track structure with the minimal collection
of illegal turns.

The discussion in Section 3 proves the following theorem.

Theorem ([BH92]). Every irreducible automorphism Φ is represented
by a train track map φ : Γ → Γ .

There is an additional caveat. In [BH92] train track maps always send
vertices to vertices. This is very useful, and luckily it is not hard to achieve.
Let φt, t ∈ [0, 1], be a homotopy of φ = φ0 that moves each φ(v) that
is not a vertex to an endpoint of the edge containing φ(v). We also insist
that during the homotopy the order of the images of vertices in the same
edge does not change (i.e. there are no collisions, or “uncollisions”) until the
very last moment when several images of vertices may arrive at the same
vertex. It is not hard to see that the images of legal loops under φt are
unchanged (and they are still legal loops). There may be edges that map
to points under φ1; collapse all such edges iteratively (i.e. after a collapse
there may be new such edges that are then collapsed). We obtain a new map
φ′ : Γ ′ → Γ ′ representing Φ. Any legal loop in Γ induces a loop in Γ ′ whose
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φ′-iterates are immersed, so φ′ is a train track map that sends vertices to
vertices.

Finally, as in [BH92], one can put a metric on Γ ′ by solving linear equa-
tions e.g. as in Figure 2. The array of lengths is a positive left eigenvector of
the transition matrix M for φ′ whose ij-entry is the number of times φ′(ej)
crosses ei in either direction. The irreducibility of Φ implies the irreducibility
of M , so by Perron–Frobenius theory, M has a unique (positive) eigenvalue
with an associated positive eigenvector.

Remark 4.5. When φ : Γ → Γ sends vertices to vertices and edges to
nondegenerate immersed paths, finding an invariant train track structure
is algorithmic (when it exists). One forms a (finite) directed graph whose
vertices are the directions at the vertices of Γ and a directed edge from
d to d′ when d′ = φ∗(d). Thus each vertex of the directed graph has one
outgoing edge, and following outgoing edges eventually ends in a periodic
orbit (i.e. a cycle). Then define d ∼ d′ if d and d′ are based at the same
vertex and their forward iterates eventually coincide. For example, in Fig-
ure 2 we have a 7→ a, b 7→ b and a 7→ b 7→ b, so a ∼ b is the only nontrivial
equivalence.

Along the same lines one can give a proof of the existence of relative
train track maps [BH92] representing any given Φ ∈ Out(Fn). One works in
a relative Outer space, where all graphs contain a fixed subgraph Γ0 and on
which φ : Γ0 → Γ0 partially representing Φ has already been constructed.
The edges of Γ0 are assigned length 0. The strategy of the absolute case
applies here as well. The details may appear elsewhere.
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