
FUNDAMENTA

MATHEMATICAE

214 (2011)

L2-homology and reciprocity for right-angled Coxeter groups

by

Boris Okun (Milwaukee, WI) and Richard Scott (Santa Clara, CA)

Dedicated to Mike Davis on the occasion of his 60th birthday

Abstract. Let W be a Coxeter group and let µ be an inner product on the group
algebra RW . We say that µ is admissible if it satisfies the axioms for a Hilbert algebra
structure. Any such inner product gives rise to a von Neumann algebra Nµ containing
RW . Using these algebras and the corresponding von Neumann dimensions we define L2

µ-
Betti numbers and an L2

µ-Euler charactersitic for W . We show that if the Davis complex
for W is a generalized homology manifold, then these Betti numbers satisfy a version of
Poincaré duality. For arbitrary Coxeter groups, finding interesting admissible products is
difficult; however, if W is right-angled, there are many. We exploit this fact by showing
that when W is right-angled, there exists an admissible inner product µ such that the
L2
µ-Euler characteristic is 1/W (t) where W (t) is the growth series corresponding to a

certain normal form for W . We then show that a reciprocity formula for this growth series
that was recently discovered by the second author is a consequence of Poincaré duality.

1. Introduction. A systematic study of the L2-(co)homology of Cox-
eter groups was started by Davis and Okun [6] in an effort to prove the Singer
Conjecture for right-angled Coxeter groups. Subsequent work of Dymara and
Januszkiewicz computing the L2-cohomology of buildings [9] then led to a
“weighted” L2-theory for Coxeter groups obtained by deforming multiplica-
tion in the group algebra according to a (multi)parameter q which encoded
the thickness of the corresponding building [8]. This work was further devel-
oped by all four authors in [5] where various vanishing and decomposition
theorems were established for sufficiently small (or large) values of the pa-
rameter q.

What it means for the parameter q to be sufficiently small or large is
given in terms of the region of convergence of a certain power series in q,
called the growth series, associated to the Coxeter group. Given a Coxeter
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group W , we let W (q) denote the corresponding growth series. It turns out
that for values of q for which the growth series converges, the weighted
L2-cohomology of W is concentrated in dimension 0 and the corresponding
weighted L2-Betti number is b0q = 1/W (q). In fact, the growth series is
known to be a rational function of q, and for arbitrary q, one obtains a
formula for the weighted L2-Euler characteristic

χ
(2)
q (W ) =

1
W (q)

(see [8]). Thus, the growth series of a Coxeter group can be expressed geo-
metrically in terms of weighted L2-cohomology. It was further observed by
Dymara [8] that the reciprocity formula

W (q−1) = ±W (q),

first proved by Serre [16] for affine Coxeter groups and generalized to Coxeter
groups with Eulerian nerve (see Section 7) by Charney and Davis [3], actu-
ally follows from a version of Poincaré duality for weighted L2-cohomology.

More recently Scott [15] introduced a more general growth series, called
the greedy growth series. This power series depends on a different multi-
parameter t and is defined in terms of elements of greatest length in finite
parabolic subgroups of W (see Section 11). This power series, which we
denote by W (t), specializes to the usual growth series W (q) with an appro-
priate substitution of variables. It was shown by Scott [15] that W (t) is also
a rational function, and in the case that W is right-angled and has Eulerian
nerve, one has the reciprocity formula

W (t−1) = ±W (t).

The goal of the present paper is to describe an L2-(co)homology theory
for right-angled Coxeter groups that provides a geometric context for this
greedy growth series and the corresponding reciprocity formula.

The basic technical tool that allows one to obtain nonintegral Betti num-
bers and Euler characteristics is the theory of von Neumann algebras and
von Neumann dimensions. Roughly speaking, in the nonweighted L2-theory,
one uses the standard inner product on the group algebra RW to complete
the action of RW on itself. The resulting operator algebra N is called the
von Neumann algebra of W . As in the case of equivariant homology, one then
considers a cell complex X on which W acts cocompactly with finite cell sta-
bilizers (the standard choice is the Davis complex Σ described in Section 2,
below). The space of ordinary chains (or compactly supported cochains) on
X can then be completed with respect to the standard inner product, result-
ing in a (co)chain complex consisting of N -modules. Such modules are called
Hilbert modules and have a well-defined dimension, called the von Neumann
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dimension, obtained by taking the trace of a suitable projection. One de-
fines L2-Betti numbers as the dimensions of the corresponding (co)homology
groups and the L2-Euler characteristic as the alternating sum of these Betti
numbers.

In the weighted version, one deforms both the algebra RW and the in-
ner product with respect to the parameter q. The deformed algebra RqW
coincides with the classical Hecke algebra, and the inner product is orthog-
onal (but not orthonormal) with respect to the standard basis. One then
obtains a family of von Neumann algebras Nq indexed by q, and a resulting
weighted L2

q-(co)homology theory.
In the event that the Coxeter group W is right-angled, all of the Hecke

algebras RqW (for different values of q) are canonically isomorphic, hence
can all be identified with the group algebra RW . This allows one to interpret
the q-deformation described above not as a simultaneous deformation of the
group algebra and the inner product, but rather as a deformation only of the
inner product on the fixed group algebra RW . Moreover, in the right-angled
setting, the group algebra RW has many natural automorphisms, allowing
one to move any given inner-product to many others. By taking convex
combinations, one then obtains a large family of inner products on RW
with respect to which one can form a von Neumann algebra.

We adopt this perspective of fixing the algebra RW and varying the
inner product throughout the paper. We call any such inner product µ ad-
missible, and we let Nµ denote the resulting von Neumann algebra. We refer
to the resulting homology theory as L2

µ-homology. We let biµ denote the cor-
responding L2

µ-Betti numbers and χµ the L2
µ-Euler characteristic of W .

For any Coxeter group W , mapping each generator s ∈ S to its negative
−s induces an automorphism of the group algebra RW . Given an admissible
inner product µ, we let µ∗ denote the (admissible) inner product obtained by
pulling back µ via this automorphism. With the assumption that the Davis
complex Σ is a generalized homology n-manifold, we prove (in Theorem 8.1)
a version of Poincaré duality:

biµ = bn−iµ∗ .

As a consequence, we obtain the formula

χµ = (−1)nχµ∗ .

In fact, we prove that this last formula holds more generally whenever the
Coxeter group W has Eulerian nerve.

Although the calculations above hold for any Coxeter group, finding
interesting admissible inner products in this generality is challenging. How-
ever, when one restricts to right-angled Coxeter groups, the isomorphism
with Hecke algebras and the abundance of automorphisms gives rise to a
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large family of admissible inner products. The main result of the paper
is the following theorem, which establishes the desired connection between
the L2

µ-Euler characteristic and the greedy growth series W (t) when W is
right-angled.

Theorem. Let W be a right-angled Coxeter group with greedy growth
series W (t). Then if t is in the region of convergence of W (t), there exists
an admissible inner product µ such that χµ = 1/W (t). If, in addition, the
nerve of W is Eulerian, then χµ∗ = 1/W (t−1).

(The first claim of this theorem is Theorem 11.3 below, and the second
is the displayed equation (12.3) at the end of the paper.) Applying this last
result to the aforementioned Euler characterstic equation, we obtain the
desired reciprocity formula

W (t−1) = (−1)nW (t)

for the greedy growth series.

2. Coxeter groups. In this section, we recall some standard facts about
Coxeter groups and refer the reader to any standard reference for proofs and
further details (see, e.g., [1, 2, 4, 12]).

Let W be a Coxeter group with standard generating set S. In particular,
W admits a presentation of the form

W = 〈s ∈ S | (st)m(s,t) = 1 for all s, t ∈ S〉

where m(s, t) are integers (or ∞) satisfying m(s, t) = m(t, s) ≥ 2 for s 6= t
and m(s, s) = 1. The group W is called right-angled if m(s, t) ∈ {2,∞} for
all s 6= t.

Let l : W → Z≥0 denote the length function, defined with respect to S.
Any subset T ⊂ S generates a parabolic subgroup of W , which we denote
by WT . By convention, we set W∅ = {1}. Parabolic subgroups are themselves
Coxeter groups whose length function is the restriction of l to WT . A subset
T ⊂ S is called spherical if WT is finite, and we let N denote the collection of
all spherical subsets of S. The setN , called the nerve ofW , forms an abstract
simplicial complex on the vertex set S. We shall often denote spherical
subsets by τ, σ, . . . as a reminder that they represent simplices in N .

Let ∆ be a simplex whose codimension-1 faces are indexed by S. Then
each σ ∈ N corresponds to a codimension-|σ| face of ∆, which we denote
by ∆σ, and we let vσ denote the barycenter of ∆σ. The Davis chamber is
the subcomplex of the barycentric subdivision of ∆ that is spanned by the
vertices vσ, σ ∈ N . We let Dσ denote the subcomplex Dσ = D ∩∆σ. The
Davis complex Σ for (W,S) is then defined to be Σ = W × D/∼ where
(w, p) ∼ (u, q) whenever there exists a σ ∈ N such that p = q ∈ Dσ and
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w−1u ∈Wσ. The simplicial decomposition of D induces a triangulation of Σ,
and the group W acts on Σ (on the left) preserving this triangulation.

The Davis complex also admits a cell decomposition into “Coxeter cells”.
For each σ ∈ N , we let cσ denote the union of all simplices c ⊂ Σ such that
c ∩ Dσ = vσ. The boundary of cσ is cellulated by wcτ where w ∈ Wσ and
σ ⊂ τ ∈ N . As a simplicial complex, this boundary is the Coxeter com-
plex for the finite Coxeter group (Wσ, σ) which is a sphere. Hence cσ and its
W -translates are disks, which we call Coxeter cells. We denote this decompo-
sition into Coxeter cells by Σcc to distinguish it from the triangulated Davis
complex. Σcc is a regular cell complex whose poset of cells can be identified
with the set of cosets WN = {wWσ | w ∈ W, σ ∈ N} partially ordered
by inclusion. The simplicial structure on Σ coincides with the geometric
realization of this poset, hence Σ is the barycentric subdivision of Σcc.

In the event that the Davis chamber is a generalized homology disk (so
Σ is a generalized homology manifold), we obtain another decomposition of
Σ into homology cells. Recall that (D, ∂D) is a generalized homology n-disk
if it is a homology manifold with boundary and its relative homology groups
are the same as the homology of an n-disk relative to its boundary. In this
case, each Dσ is also a homology (n− |σ|)-disk, and the W -translates of the
Dσ’s form a homology cell structure on Σ, which we denote by Σghd (as
in [8]). It follows that Σghd and Σcc have the simplicial complex Σ as their
common barycentric subdivision.

3. Hilbert algebras and Hilbert modules. In this section we work
over the group algebra RW of an arbitrary Coxeter group W . We let x 7→ x∗

denote the linear involution on RW induced by w 7→ w−1.

Definition 3.1. Let µ = 〈 , 〉 be a positive definite inner product on
RW . We say that µ is admissible if, together with the involution ∗, it satisfies
the axioms for a Hilbert algebra structure in the sense of [7, A.54]. These
axioms are

(i) (xy)∗ = y∗x∗,
(ii) 〈x, y〉 = 〈y∗, x∗〉,

(iii) 〈xy, z〉 = 〈y, x∗z〉,
(iv) the map y 7→ xy : RW → RW is continuous for every x, and
(v) the set {xy | x, y ∈ RW} is dense in RW .

The first axiom is immediate from our definition of ∗, the last axiom
follows since the algebra RW has a unit element 1. Axioms (ii) and (iii)
ensure that ∗ corresponds to taking adjoints for left and right multiplication.
Axiom (iv) ensures that left and right multiplication by any element of the
algebra are bounded operators.
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The standard inner product on RW is clearly admissible. In Section 10
we will show that if W is right-angled then there are many admissible inner
products on RW (arising from natural Hilbert algebra structures on Hecke
algebras). Any inner product µ = 〈 , 〉 on RW has a dual inner product
defined as follows. Let j : RW → RW denote the algebra involution that
maps each s ∈ S to −s. This involution commutes with the involution ∗.
Given any inner product µ = 〈 , 〉 on RW , we define its dual µ∗ = 〈 , 〉∗ by

〈x, y〉∗ = 〈j(x), j(y)〉.
Note that with respect to the standard basis for RW , we have

〈v, w〉 = (−1)l(w)+l(v)〈v, w〉∗

for all v, w ∈ W . A routine computation shows that µ∗ is admissible if and
only if µ is admissible.

Let µ = 〈 , 〉 be an admissible inner product on RW , and let L2
µ denote

the Hilbert space completion of RW with respect to µ. As described in [7],
one obtains a von Neumann algebraNµ which acts on the left of L2

µ by taking
all bounded linear endomorphisms that commute with the right RW -action
on L2

µ. Similarly, one obtains another von Neumann algebra acting on the
right of L2

µ. As in [5], we use the same notation for both algebras and rely
on the context to distinguish between them.

We define an R-linear trace trµ : Nµ → R by

trµ(φ) = 〈1 · φ, 1〉
where φ is any element of the von Neumann algebra acting from the right
on L2

µ. In general, given any bounded linear map Φ :
⊕n

i=1 L
2
µ →

⊕n
i=1 L

2
µ

of left RW -modules, we can represent it as right multiplication by an n× n
matrix (φij) with entries in Nµ. We then define the trace of Φ to be

trµ(Φ) =
n∑
i=1

trµ(φii).

By definition, a Hilbert Nµ-module is any closed subspace V of (L2
µ)n

(an orthogonal direct sum) that is stable under the diagonal left action
of RW . Given a Hilbert module V ⊆ (L2

µ)n, we let pV : (L2
µ)n → (L2

µ)n

denote the orthogonal projection onto V , and we define the corresponding
von Neumann dimension of V to be

dimµ V = trµ(pV ).

A standard argument shows that dimµ V is independent of the choice of
embedding of V .

A map of Hilbert Nµ-modules U and V is any bounded linear map f :
U → V that commutes with the left RW -actions. The following lemma
provides our main source of Nµ-module maps.
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Lemma 3.2. Let Φ : RWm → RWn be a morphism of left RW -modules.
Then the induced map Φ : (L2

µ)m → (L2
µ)n is a map of Nµ-modules. More

generally, suppose U ⊆ RWm and V ⊆ RWn are RW -invariant subspaces
with closures L2

µU ⊆ (L2
µ)m and L2

µV ⊆ (L2
µ)n, respectively. If U is projec-

tive (i.e., a direct summand of RWm), then any RW -morphism Φ : U → V
induces a map of Nµ-modules Φ : L2

µU → L2
µV .

Proof. The first statement follows from the fact that Φ can be written as
right multiplication by an m× n matrix with entries in RW and that right
multiplication by elements of RW is bounded (this follows from the axioms
for an admissible inner product). See [10, Lemma 2.2.1] for details. For the
second statement, write RWm = U ⊕ U ′ and extend the map Φ by zero to
get a map Φ̃ : RWm → RWn. Then apply the first statement.

4. L2
µ-homology of W . Let W be a Coxeter group, and let µ be an

admissible inner product on RW . Let X be a cell complex on which W acts
with finite stabilizers. By fixing an orientation for each cell in X, we identify
ordinary chains (over R) with compactly supported cochains,

C∗(Σcc) = C∗c (Σcc).

These inherit the structure of (left) RW -modules from the W -action on X.
We let X(i) denote the set of i-cells in X, and using our choice of ori-

entations, we regard X(i) as a subset of (in fact, a basis for) Ci(X). For
any c ∈ X(i), we let Wc ⊆ W denote the stabilizer, and we let deg : Wc →
{−1,+1} denote the degree homomorphism induced by the action of Wc on
the orientations of c. For each cell c, define pc ∈ RW by

pc =
1
|Wc|

∑
w∈Wc

deg(w)w.

Lemma 4.1. The element pc is a self-adjoint (with respect to µ) idem-
potent.

Proof. Since deg is a homomorphism to {−1,+1},

p2
c =

1
|Wc|2

∑
v,w∈Wc

deg(v) deg(w)vw =
|Wc|
|Wc|2

∑
w∈Wc

deg(w)w = pc.

Since w∗ = w−1 and deg(w−1) = deg(w), we get p∗c = pc.

From each W -orbit of i-cells, choose a basis cell c. This gives an RW -
module direct sum decomposition

(4.1) Ci(X) =
⊕
c

Ci(Wc).

For each summand, we define an embedding φc : Ci(Wc)→ L2
µ by mapping

c to
√
|Wc| pc and extending left-equivariantly. We pull back the inner prod-
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uct µ to Ci(Wc), and let L2
µCi(Wc) denote the Hilbert space completion of

Ci(Wc). Thus, φc extends to an isomorphism of Nµ-modules

φc : L2
µCi(Wc)→ L2

µpc.

Doing this for each of the summands in (4.1) and declaring the summands
to be orthogonal, we let L2

µCi(X) denote the Hilbert space completion of
Ci(X). We then obtain an isomorphism of Nµ-modules

Φ :=
⊕
c

φc : L2
µCi(X)→

⊕
c

L2
µpc ⊆

⊕
c

L2
µ.

Let ∂ : Ci(X)→ Ci−1(X) and δ : Ci(X)→ Ci+1(X) denote the ordinary
boundary and coboundary maps. More precisely, with respect to the basis
X(i) for Ci(X), we have

∂(c) =
∑

d∈X(i−1)

[c : d]d and δ(c) =
∑

d∈X(i+1)

[d : c]d

where [c : d] denotes the incidence number for the two cells. Both are maps of
(projective) RW -modules, hence by Lemma 3.2 induce maps of Nµ-modules

∂ : L2
µCi(X)→ L2

µCi−1(X), δ : L2
µCi(X)→ L2

µCi+1(X).

We define the (reduced) L2
µ-(co)homology of X by

L2
µHi(X) :=

ker(∂ : L2
µCi(X)→ L2

µCi−1(X))

Im(∂ : L2
µCi+1(X)→ L2

µCi(X))
,

L2
µH

i(X) :=
ker(δ : L2

µCi(X)→ L2
µCi+1(X))

Im(δ : L2
µCi−1(X)→ L2

µCi(X))

where Im denotes the closure of the image.

Lemma 4.2. The maps ∂ and δ are adjoints.

Proof. Let c be a basic i-cell and d a basic (i− 1)-cell. With respect to
the sum decomposition (4.1), the matrix entry of ∂ corresponding to the
orbits cW and dW is

∂c,d =
∑
e∈Wd

[c : e]e =
1
|Wd|

∑
w∈W

[c : wd]wd.

With respect to the isomorphisms φc and φd, we have

∂c,d(pc) = ∂c,d(c/
√
|Wc|) =

1√
|Wc| |Wd|

∑
w∈W

[c : wd]wpd.

Since pc is idempotent, we also have

∂c,d(pc) = ∂c,d(p2
c) = pc∂c,d(pc) =

1√
|Wc| |Wd|

∑
w∈W

[c : wd]pcwpd.
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Thus, as a map L2
µ → L2

µ, ∂c,d is given by right multiplication by

1√
|Wc| |Wd|

∑
w∈W

[c : wd]pcwpd.

Similarly, the matrix element δd,c is given by

1√
|Wc| |Wd|

∑
w∈W

[wc : d]pdwpc.

Since [gc : d] = [c : g−1d], g∗ = g−1, and pc and pd are self-adjoint, we
see that ∂c,d and δd,c are adjoints. Since different orbits are orthogonal, it
follows that δ and ∂ are also adjoints.

It follows from Lemma 4.2 that we have a Hodge decomposition

L2
µCi(X) = (ker ∂i ∩ ker δi+1)⊕ Im ∂i+1 ⊕ Im δi.

In particular, L2
µHi(X) and L2

µH
i(X) can both be identified with the space

of “harmonic chains”, ker ∂i ∩ ker δi+1.
Since ∂ and δ are both Nµ-module maps, L2

µHi(X) is an Nµ-module. We
define the ith L2

µ-Betti number of X to be

biµ(X) := dimµ L
2
µHi(X) = dimµ L

2
µH

i(X).

Since the von Neumann dimension is additive with respect to direct sums,
we can then define the L2

µ-Euler characteristic by either of the formulas

χµ(X) :=
∑
i

(−1)ibiµ(X), χµ(X) :=
∑
i

(−1)i dimµ L
2
µCi(X).

The following theorem establishes the topological invariance of L2
µ-Betti

numbers.

Theorem 4.3. If X is R-acyclic, then the Betti numbers bµi (X) and
Euler characteristic χµ(X) depend only on W and µ (not on X).

Proof. The pair (RW, τ), where τ : RW → R is the functional given by
τ(x) = 〈1 · x, 1〉, is a traced ∗-algebra in the sense of Paschke [14]. Since X
is acyclic, the augmented chain complex

· · · → C2(X) ∂→ C1(X) ∂→ C0(X)→ R→ 0

gives a finitely generated projective resolution of the trivial RW -module R.
The invariance of bµi (X) and, hence, χµ(X) then follow from the standard
chain homotopy argument and Lemma 3.2 (see, e.g., Theorem 2.2 in [14]).

Remark 4.4. Our perspective differs from that of Dymara and coau-
thors in [4, 5, 8]. Because they work with von Neumann completions of the
Hecke algebra (rather than the group algebra), the ordinary boundary map
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is not a morphism of Hilbert modules. Thus, they use the ordinary cobound-
ary map δ (which is a module map) and its adjoint ∂q to define weighted
L2-cohomology and homology, respectively.

5. Standard Hilbert modules. In this section we describe the basic
Hilbert modules that will play a role in the rest of the paper. Let W be a
Coxeter group with nerve N , and let µ = 〈 , 〉 be an admissible inner product
on RW . For each σ ∈ N , we let aσ and hσ denote the usual “averaging” and
“alternating” idempotents in RW :

aσ =
1
|Wσ|

∑
w∈Wσ

w and hσ =
1
|Wσ|

∑
w∈Wσ

(−1)l(w)w.

For any σ ∈ N , we let W σ denote the set of minimal length coset represen-
tatives for W/Wσ. Equivalently, W σ is the set of σ-reduced elements:

W σ = {w ∈W | l(ws) > l(w) for all s ∈ σ}.
To simplify notation, for τ ⊆ σ, we let W τ

σ denote the set (Wσ)τ consisting
of minimal coset representatives for Wσ/Wτ . The following properties of the
idempotents are routine computations.

Lemma 5.1. For any σ ∈ N and τ ⊆ σ, we have

(1) aσaτ = aσ = aτaσ,
(2) hσhτ = hσ = hτhσ,

(3) aσ = pτσaτ where pτσ =
|Wτ |
|Wσ|

∑
v∈W τ

σ

v,

(4) hσ = qτσhτ where qτσ =
|Wτ |
|Wσ|

∑
v∈W τ

σ

(−1)l(v)v.

Multiplying RW on the right by (the idempotents) aσ and hσ, we obtain
(projective) left RW -submodules:

RWaσ ⊆ RW, RWhσ ⊆ RW.
Taking the closures in L2

µ, we obtain the Nµ-modules

Aσ := L2
µaσ and Hσ := L2

µhσ.

Since the subgroups Wσ are closed under inversion and l(w) = l(w−1), the
elements aσ and hσ satisfy a∗σ = aσ and h∗σ = hσ. In other words, they
are self-adjoint idempotents, hence right multiplication by them defines an
orthogonal projection L2

µ → L2
µ onto their respective images. It follows that

dimµHσ = 〈hσ, 1〉 and dimµAσ = 〈aσ, 1〉.
When σ is the singleton set {s}, we denote aσ by as (likewise for hσ, Aσ,

andHσ). For a subspaceE⊆L2
µ, we letE⊥ denote its orthogonal complement.
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Lemma 5.2. For all σ ∈ N , we have

Aσ =
⋂
s∈σ

As =
(∑
s∈σ

Hs

)⊥
and Hσ =

⋂
s∈σ

Hs =
(∑
s∈σ

As

)⊥
Proof. The arguments are the same as those for Lemmas 19.2.11–19.2.13

in [4].

As a corollary, using inclusion-exclusion and the additivity of the von
Neumann dimension with respect to direct sums, we obtain the following.

Lemma 5.3. For all σ ∈ N , we have

dimµHσ =
∑
τ⊆σ

(−1)|τ | dimµAτ and dimµAσ =
∑
τ⊆σ

(−1)|τ | dimµHτ .

Remark 5.4. If W is right-angled, then the idempotents aσ and hσ
factor as

aσ =
1

2|σ|
∏
s∈σ

(1 + s) =
∏
s∈σ

as and hσ =
1

2|σ|
∏
s∈σ

(1− s) =
∏
s∈σ

hs.

In this case, the formulas in Lemma 5.3 actually hold in the group ring RW ,
i.e.,

hσ =
∑
τ⊆σ

(−1)|τ |aτ and aσ =
∑
τ⊆σ

(−1)|τ |hτ .

The j-involution. Let j : RW → RW denote the algebra involution
that maps each s ∈ S to −s. It follows from the definition of the dual
inner product µ∗ that j defines an isometric isomorphism from (RW,µ) to
(RW,µ∗), hence induces an isomorphism of Hilbert spaces

j : L2
µ → L2

µ∗ .

Since j takes bounded elements to bounded elements, it also extends to an
isomorphism of von Neumann algebras

j : Nµ → Nµ∗ .
In other words, j defines a j-equivariant isomorphism between the Hilbert
Nµ-module L2

µ and the Hilbert Nµ∗-module L2
µ∗ .

Applying j to the definitions of aσ and hσ, we obtain j(aσ) = hσ and
j(hσ) = aσ. This implies the following.

Lemma 5.5. For all σ ∈ N , the isometry j : L2
µ → L2

µ∗ restricts to
j-equivariant isomorphisms

j : Aσ → Hσ and j : Hσ → Aσ

from Nµ-modules to Nµ∗-modules. In particular,

dimµAσ = dimµ∗ Hσ and dimµHσ = dimµ∗ Aσ.
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6. The cell complex Σcc. Let W be a Coxeter group with nerve N .
In this section, we consider the L2

µ-homology of W using the cell decompo-
sition Σcc. Recall from Section 2 that Σcc consists of all W -translates of the
special cells cσ, σ ∈ N . Moreover, each such cell wcσ can be identified with
the coset wWσ in a face-preserving fashion. Fix an orientation for each cσ
arbitrarily. For any other cell wcσ, let u be the minimal coset representative
for wWσ, and assign the orientation to wcσ so that left multiplication by u
maps the oriented cell cσ to wcσ in an orientation-preserving manner (1).

Let N (i) denote the set of (i − 1)-simplices in the nerve N . Since each
σ ∈ N (i) corresponds to a unique W -orbit Wcσ, we have the RW -module
direct sum decomposition

(6.1) Ci(Σcc) =
⊕
σ∈N(i)

Ci(Wcσ).

As a vector space, the summand Ci(Wcσ) has a basis consisting of the
oriented cells {ucσ | u ∈ W σ}. For each summand, we let ψσ denote the
embedding

ψσ := φcσ : Ci(Wcσ)→ L2
µ.

It is given by wcσ 7→
√
|Wσ|uhσ where u is the minimal coset representative

for wWσ. Thus, L2
µCi(Wcσ) gets identified with the standard module Hσ =

L2
µhσ, giving us the Nµ-module isomorphism

L2
µCi(Σcc) =

⊕
σ∈N(i)

Hσ.(6.2)

In light of this decomposition, we have the following formula for χµ.

Proposition 6.1. The Euler characteristic χµ is given by the formula

χµ =
∑
σ∈N

(−1)|σ| dimµHσ.

7. Eulerian nerves. The existence of the homology cell decomposition
Σghd relies on the Davis chamber D being a generalized homology disk.
A weaker version of this condition is to require that the nerve N resemble
a sphere “up to Euler characteristics”. Although imposing this condition on
W is not enough to ensure Poincaré duality for L2

µ-homology, it does suffice
to prove a duality formula for the L2

µ-Euler characteristic.

Definition 7.1. Let N be an abstract simplicial complex on the vertex
set S. Then N is an Eulerian (n− 1)-sphere if for every simplex σ ∈ N , we

(1) As a word of caution, the oriented cell wcσ need not coincide with the oriented
cell obtained by translating cσ by w. For example, if s ∈ σ, then scσ = cσ as an oriented
cell, but s(cσ) = −cσ since s is a reflection that reverses the orientation of cσ.
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have ∑
τ⊇σ

(−1)|τ | = (−1)n.

Note that for σ = ∅, the condition says that the Euler characteristic
of the geometric realization of N is the same as that of an (n − 1)-sphere;
and more generally, the link of any k-simplex σ in N has the same Euler
charactersitic as the link of a k-simplex in an (n− 1)-sphere. In particular,
if the Davis chamber D is a generalized homology disk of dimension n, then
the nerve N is an Eulerian (n − 1)-sphere. Under the assumption that N
be Eulerian, we obtain the following alternative formula for the L2

µ-Euler
characteristic of W .

Proposition 7.2. Let W be any Coxeter group whose nerve N is an
Eulerian (n− 1)-sphere. Then for any admissible inner product µ, we have

χµ = (−1)n
∑
σ∈N

(−1)|σ| dimµAσ.

Proof. We have

χµ =
∑
σ∈N

(−1)|σ| dimµHσ

=
∑
σ∈N

(−1)|σ|
∑
τ⊆σ

(−1)|τ | dimµAτ by Lemma 5.3

=
∑
τ∈N

(−1)|τ | dimµAτ
∑
σ⊇τ

(−1)|σ| changing the order of summation

=
∑
τ∈N

(−1)|τ | dimµAτ (−1)n since N is Eulerian.

Combining Lemma 5.5 and Propositions 6.1 and 7.2, we obtain the Euler
characterstic equation.

Theorem 7.3. Let W be a Coxeter group and assume that the nerve
of W is an Eulerian (n− 1)-sphere. Then for any admissible inner product
on RW , we have

χµ = (−1)nχµ∗ .

8. The dual cell complex and Poincaré duality. Assume now that
the Davis chamber D is a generalized homology n-disk and Σghd is the corre-
sponding homology cell structure. In this case, Σ is the common barycentric
subdivision of both Σcc and Σghd and is a contractible (hence, orientable)
homology n-manifold. Fix an orientation for Σ. For each σ ∈ N (i), the face
Dσ ⊆ D is an (n − i)-dimensional homology disk. Each such Dσ intersects
the i-cell cσ transversely, and we choose the orientation for Dσ so that the
(already) chosen orientation for cσ followed by the orientation for Dσ yields
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the orientation for Σ. We then extend these orientations equivariantly to all
homology cells wDσ.

Although we work with a homology cell structure in this case, every-
thing in Section 4 still applies if we let C∗(Σghd) denote the homology chain
complex

Ci(Σghd) := H∗(Σ
(i)
ghd, Σ

(i−1)
ghd ).

In this case, the sum decomposition of Ci(Σghd) is

(8.1) Ci(Σghd) =
⊕

σ∈N(n−i)

Ci(WDσ).

Each summand Ci(WDσ) has a basis consisting of oriented cells {uDσ |
u ∈W σ}. For each summand, we let φσ denote the embedding

φσ = φDσ : Ci(WDσ)→ L2
µ.

This time, it is given by φσ(wDσ) =
√
|Wσ|waσ, and hence φσ identifies

Ci(WDσ) with Aσ = L2
µaσ. The map Φ =

⊕
φσ then gives the isomorphism

of Nµ-modules

Φi : L2
µCi(Σghd) =

⊕
σ∈N(n−i)

Aσ.(8.2)

If the Davis complex Σ is a generalized homology manifold, the isomor-
phisms (8.2) and Theorem 4.3 provide an alternative argument for Propo-
sition 7.2, and hence for the Euler-charactersitic duality

χµ = (−1)nχµ∗

(Theorem 7.3). However, since requiring that Σ be a generalized homology
manifold is much stronger than just requiring Eulerian links, one should
expect a stronger duality. This is indeed the case.

Theorem 8.1. Assume Σ is a generalized homology manifold of dimen-
sion n, and µ is any admissible inner product on RW . Then there exists
an isometry D : L2

µHi(Σcc) → L2
µ∗H

n−i(Σghd) which is a j-equivariant
isomorphism from an Nµ-module to an Nµ∗-module. In particular,

biµ = bn−iµ∗ .

Proof. The argument is the same as the one given in Theorem 20.4.2
in [4] (but with the multiparameter q set equal to 1). We first define a map

D : L2
µCi(Σcc)→ Cn−i(Σghd)

with respect to the basis {ucσ | σ ∈ N (i), u ∈W σ} by

D(ucσ) = (−1)l(u)Dσ.
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It then suffices to show that (1) D intertwines (up to sign) the boundary
operator ∂ on Σcc with the coboundary operator δ on Σghd, and that (2)
D is an isometric j-equivariant isomorphism of modules.

To establish (1), first note that with our choice of orientations, we have
[cσ : cτ ] = ±[Dτ : Dσ] where the sign depends only on i and n. Next we
calculate

∂(cσ) =
∑
τ⊆σ

[cσ : cτ ]qτσcτ and δ(Dσ) =
∑
τ⊆σ

[Dτ : Dσ]pτσDτ

where qτσ and pτσ are as in Lemma 5.1. And finally, for u ∈W σ, we compute

D(∂(ucσ)) = D(u∂(cσ)) = D
(
u
∑
τ⊆σ

[cσ : cτ ]qτσcτ
)

=
∑
τ⊆σ

[cσ : cτ ]D(uqτσcτ ) =
∑
τ⊆σ

[cσ : cτ ](−1)l(u)upτσDτ ,

and

δ(D(ucσ)) = (−1)l(u)δ(uDσ) = (−1)l(u)uδ(Dσ)

= (−1)l(u)u
(∑
τ⊆σ

[Dτ : Dσ]pτσDτ

)
= ±D(∂(ucσ)).

To establish (2), it suffices to show that the diagram

L2
µCi(Wcσ)

D
��

ψσ // Hσ

j

��
L2
µ∗Ci(WDσ)

φσ // Aσ

commutes (this is because the horizontal maps are isometric isomorphisms
of Hilbert modules and the vertical map j is a j-equivariant isomorphism of
Hilbert modules). Computing with the basis elements, we have

j(ψσ(ucσ)) = j(
√
|Wσ|uhσ) =

√
|Wσ| j(u)aσ =

√
|Wσ| (−1)l(u)uaσ,

and

φσ(D(ucσ)) = φσ((−1)l(u)uDσ) = (−1)l(u)
√
|Wσ|uaσ.

It follows that j ◦ ψσ = φσ ◦ D.

9. Hecke algebras. In this section we recall the basic properties of
Hecke algebras that we will need in order to define admissible products
on RW when W is right-angled. At the same time, we try to clarify rela-
tionships between various isomorphisms and involutions appearing in the
literature.
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Let (W,S) be a Coxeter group. Let q = (qs)s∈S ∈ RS be a fixed S-tuple
satisfying qs = qs′ whenever m(s, s′) is odd. For any element w ∈W , we let
qw denote the product qs1 · · · qsn where s1 · · · sn is any reduced expression
for w. It follows from Tits’ solution to the word problem that qw does not
depend on the choice of reduced expression.

Let R(W ) denote the free R-module with basis {ew | w ∈W}. According
to [2, Exercise 23], there is a unique ring structure on R(W ) such that

(9.1) esew =
{
esw if l(sw) > l(w),
qsesw + (qs − 1)ew if l(sw) < l(w).

Let RqW denote this ring. If q is the constant S-tuple 1 = (1, . . . , 1),
then RqW is the ordinary group algebra RW . Thus, RqW is a deforma-
tion of RW , called the Hecke algebra of W associated to q.

It follows from (9.1) that RqW is generated as an algebra by {es | s ∈ S}.
For any pair s, s′ ∈ S with s 6= s′, let

w = ss′ss′ · · ·︸ ︷︷ ︸
m(s,s′)

= s′ss′s · · ·︸ ︷︷ ︸
m(s,s′)

.

Then ew can be written two different ways as a product of es and es′ , giving
the relation

(9.2) eses′eses′ · · ·︸ ︷︷ ︸
m(s,s′)

= es′eses′es · · ·︸ ︷︷ ︸
m(s,s′)

.

Applying (9.1) to the case w = s, we also obtain the relation

(9.3) e2s = qs + (qs − 1)es.

Proposition 9.1. The Hecke algebra RqW is isomorphic to the asso-
ciative algebra generated by es, s ∈ S, with relations (9.2) and (9.3).

Proof. Let A be the abstract associative R-algebra (with unit 1) that
is generated by es, s ∈ S, with relations of the form (9.2) and (9.3). Since
these relations hold for RqW there exists a surjective homomorphism φ :
A → RqW such that φ(es) = es for all s ∈ S. Given any w ∈ W , let
s1 · · · sn be a reduced expression for w, and define ew = es1 · · · esn . It follows
from Tits [17] and the relations (9.2) that ew is independent of the reduced
expression. We now prove by induction that any product x = es1 · · · esn ∈ A
can be written as a linear combination of these ew’s. If the word s1 · · · sn
is reduced, we are done. Otherwise, it follows from [17] that, after applying
the relation (9.2) if necessary, the product x has consecutive repetitions. We
can then apply (9.3) to write x as a linear combination of shorter products,
which by induction can each be written as linear combinations of the ew’s.
Thus, x is a linear combination of the ew’s. Since φ(ew) = ew and the ew’s
form an R-basis for RqW , it follows that φ is injective.
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Another useful set of generators for RqW is the set of idempotents as,
s ∈ S, defined by

as =
1 + es
1 + qs

.

Substituting (1 + qs)as − 1 for es in the relations (9.2) and (9.3), we obtain

asas′asas′ · · ·︸ ︷︷ ︸
m(s,s′)

= as′asas′as · · ·︸ ︷︷ ︸
m(s,s′)

(9.4)

+
m(s,s′)−2∑

k=1

αk(q)
(
asas′asas′ · · ·︸ ︷︷ ︸

k

− as′asas′as · · ·︸ ︷︷ ︸
k

)
and

(9.5) a2
s = as

where the coefficients αk(q) appearing in (9.4) are all rational functions
in q (depending on the pair (s, s′)). Note that if W is right-angled, all of
these coefficients are zero, in which case none of the relations involve the
parameter q. Hence, we have the following.

Corollary 9.2. The Hecke algebra RqW is isomorphic to the asso-
ciative algebra generated by as, s ∈ S, with relations (9.4) and (9.5). In
particular, if W is right-angled, then for any q, there exists a canonical
isomorphism of algebras RW → RqW taking as to as.

A similar algebra presentation can be described using the idempotents
hs, s ∈ S, defined by

hs = 1− as =
qs − es
1 + qs

.

The only difference in the resulting relations is that the rational functions
in (9.4) are different. If W is right-angled, however, these rational functions
all vanish, so one obtains the same algebra presentation. It follows that
in this case, mapping as 7→ hs for all s ∈ S induces an involution of the
algebra RqW . In fact, for any subset T ⊂ S, exchanging as and hs if and
only if s ∈ T also defines an involution in the right-angled case. We discuss
these involutions further below, but in the context of some more well-known
isomorphisms that hold for general Coxeter groups.

The j-isomorphism. For the multiparameter q = (qs)s∈S , we let 1/q
denote the I-tuple (1/qs)s∈S . For each es ∈ RqW , let j(es) denote the
element j(es) = −qses ∈ R1/qW . An easy calculation also shows that (9.2)
and (9.3) continue to hold after replacing es with j(es) and qs with 1/qs
(for all s ∈ S). It follows that es 7→ j(es) also induces an isomorphism
j : RqW → R1/qW . Note that with respect to the generators as, we have
j(as) = hs.
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The Kazhdan–Lusztig isomorphism. It follows from (9.3) that
in RqW , the element es is invertible with inverse given by

e−1
s =

(
1
qs
− 1
)

+
1
qs
es.

Although the relations (9.2) hold when the es’s are replaced by their inverses,
the relations (9.3) do not. However, if es and qs are replaced by their inverses,
then both (9.2) and (9.3) do hold. It follows that es 7→ e−1

s extends (by
linearity) to an isomorphism RqW → R1/qW . Following [13], we denote
this isomorphism by x 7→ x. Note, in particular, that with respect to the
idempotents as we have

as =
1 + es
1 + qs

=
1

1 + qs
+

1
1 + qs

((qs − 1) + qses) =
1 + es

1 + 1
qs

= as.

Involutions on RqW . Both the j-isomorphism and the Kazhdan–Lusz-
tig isomorphism described above are “involutions” in the sense that applying
them twice is the identity map. But they are not actually automorphisms of
the same Hecke algebra. Composing the j-isomorphism with the Kazhdan–
Lusztig isomorphism, however, does result in an involution on RqW , which
we denote by j. In terms of es’s we have

j(es) = (qs − 1)− es,

and in terms of as’s we have

j(as) = 1− as = hs.

(Note that in the special case q = 1, this involution j is precisely the
involution j : RW → RW introduced in Section 3.)

In the right-angled case, j is the involution mentioned above in the para-
graph after Corollary 9.2 that exchanges as with hs for each s ∈ S. More
generally, in the right-angled case, for any subset T ⊂ S, we obtain an
involution jT = RqW → RqW defined on generators by

jT (es) =
{

(qs − 1)− es for s ∈ T ,
es for s 6∈ T

or

jT (as) =
{
hs for s ∈ T ,
as for s 6∈ T .

Remark 9.3. For general (not just right-angled) Coxeter groups, there
do exist “partial j-isomorphisms”. These are defined as follows. Let T ⊂ S
be any subset satisfying wTw−1∩S ⊆ T for all w ∈W (i.e., T is closed with
respect to the conjugacy relation on the generating set S). Let qT = (rs)
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denote the S-tuple defined by

rs =
{

1/qs for s ∈ T ,
qs for s 6∈ T .

For any generator es ∈ RqW , let jT (es) ∈ RqTW be the element

jT (es) =
{−qses for s ∈ T ,
es for s 6∈ T .

As in the case of the (full) j-isomorphism, the relations (9.2) and (9.3)
continue to hold after replacing es with −qses and qs with 1/qs for only the
generators s ∈ T . Thus, jT extends to an isomorphism jT : RqW → RqTW .
One can also verify that jT (as) = hs for s ∈ T and jT (as) = as for s 6∈ T .

In general, however, there does not exist a “partial Kazhdan–Lusztig
isomorphism” that one might compose jT with to get an involution on RqW .
This is because replacing only some of the generators es with their inverses in
the relations (9.2) need not result in the same relations. Thus, the involutions
jT are specific to the right-angled setting.

10. Admissible inner products for right-angled Coxeter groups.
The goal for this section is to show that for right-angled Coxeter groups,
the collection of admissible inner products is large enough that the set of
dimensions {dimµAσ ∈ R | σ ∈ N, σ 6= ∅} can be varied independently by
changing µ. This will allow us (in Section 11) to relate the Euler character-
istic χµ to the growth series W (t) for a suitable choice of µ.

First we describe the basic inner products arising from the work of Dy-
mara et al. In [8] (for one parameter) and [5] (in general) it is shown that
the inner product 〈 , 〉q on the Hecke algebra RqW defined (with respect to
the basis {ew}) by

〈ew, ev〉q =
{

qw if w = v,
0 if w 6= v,

satisfies the axioms for a Hilbert algebra structure (the involution ∗ in this
case is given with respect to the basis ew by ew 7→ ew−1). For general W ,
this inner product will determine an admissible inner product on the group
algebra RW only if q = 1, in which case one simply recovers the standard
inner product on RW .

However, if W is right-angled then by Corollary 9.2, RqW is canoni-
cally isomorphic to RW , and this isomorphism respects the ∗-involutions.
It follows that if W is right-angled, then for any q, the inner product 〈 , 〉q
determines an admissible inner product on RW . To avoid cumbersome no-
tation, we shall also denote this inner product by 〈 , 〉q.

Now let M(W ) be the set of all admissible inner products on RW .
Since finite convex combinations of admissible inner products are admis-



46 B. Okun and R. Scott

sible, M(W ) is convex. In general, M(W ) is very complicated, and we do
not understand it well. However, for our purposes, it will be enough to show
that a certain affine projection of M(W ) to RN is sufficiently large.

Definition 10.1. Let φ : M(W ) → RN be the map defined by 〈 , 〉 7→
(〈aσ, 1〉)σ, and let P (W ) denote the image in RN .

To describe the set P (W ) we consider the single-parameter Hecke algebra
RqW (i.e., qs = q for all s ∈ S), with the standard inner product 〈 , 〉q
described above. More generally, for any T ⊂ S, we consider the inner
product 〈 , 〉Tq defined by

〈x, y〉Tq = 〈jT (x), jT (y)〉q.

All of these products are admissible, and by means of the canonical isomor-
phism RW → RqW (which maps as’s to as’s and hs’s to hs’s) these inner
products all pull back to admissible products on the group algebra RW . We
denote the pulled back products to RW by the same symbols 〈 , 〉q and 〈 , 〉Tq ,
but to distinguish elements as, hs ∈ RW from those with the same symbols
in RqW , we shall decorate the latter with superscripts: a(q)

s , h
(q)
s .

Recall from Remark 5.4 that for a spherical subset σ = {s1, . . . , sk}, the
idempotent aσ ∈ RW has the product representation

aσ = as1 · · · ask .

Computing the inner product 〈aσ, 1〉q, we then have

〈aσ, 1〉q = 〈as1 · · · ask , 1〉q = 〈a(q)
s1 · · · a

(q)
sk
, 1〉q

=
〈

1 + es1
1 + q

· · · 1 + esk
1 + q

, 1
〉
q

=
(

1
1 + q

)k
where the last equality follows from the fact that all ew’s are orthogonal
to 1. More generally, for any T ⊂ S, we have

〈aσ, 1〉Tq = 〈jT (as1) · · · jT (ask), 1〉q = 〈jT (as1)(q) · · · jT (ask)(q), 1〉q

=
〈∏
si∈T

h(q)
s

∏
si 6∈T

a(q)
s , 1

〉
=
∏
si∈T

q

1 + q

∏
si 6∈T

1
1 + q

.

Now if we let q → 0, then

〈aσ, 1〉Tq →
{

1 if σ ∩ T = ∅,
0 if σ ∩ T 6= ∅.

On the other hand, if we let q →∞, then

〈aσ, 1〉Tq →
{

1 if σ ⊆ T ,
0 if σ 6⊆ T .
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For each σ ∈ N , we let δσ denote the corresponding standard basis vector
in RN . For each subset T ⊆ S, let vT ∈ RN denote the vector

vT =
∑
σ⊆T

δσ.

Then it follows from the formulas in the preceding paragraph that
the (degenerate) inner product 〈 , 〉T0 = limq→0〈 , 〉Tq projects (under φ :
M(W )→ RN ) to the vector vT , and the inner product 〈 , 〉T∞ = limq→∞〈 , 〉Tq
projects to vS−T . In particular, this implies that for each subset T ⊆ S, the
vector vT is contained in the closure P (W ). In other words, if ∆ denotes the
convex hull of the vectors {vT | T ⊆ S}, we have

∆ ⊆ P (W ) ⊆ RN .

Since 〈a∅, 1〉 = 1 for any admissible inner product, P (W ) lies in an (|N |−1)-
dimensional affine subspace of RN .

Proposition 10.2. Let α =
∑

σ ασδσ be any point in the relative in-
terior of ∆. Then there exists an admissible (nondegenerate) inner product
µ = 〈 , 〉 such that φ(µ) = α.

Proof. Let n = |N |. Then any such point α will be contained in the
relative interior of some (n− 1)-dimensional simplex spanned by vectors of
the form vT0 , . . . , vTn . For each such Ti, we can choose positive real numbers
qi such that the inner product 〈 , 〉Tiqi projects via φ to a point arbitrarily
close to vTi . Let uTi denote this point. In particular, we can choose all of the
qi’s so that the point α is still in the relative interior of the simplex spanned
by the vectors uTi . Let yi denote the barycentric coordinates of the point α
with respect to the vertices uTi . Then the inner product

µ = 〈 , 〉 =
n∑
i=0

yi〈 , 〉Tiqi

is admissible and projects to the point α.

The following corollary will be used in Section 11.

Corollary 10.3. Let {γσ ∈ R | σ ∈ N} be any collection of real num-
bers satisfying γσ > 0 and

∑
σ∈N γσ = 1. For each σ ∈ N , let ασ and βσ be

given by
ασ =

∑
τ∩σ=∅

γτ and βσ =
∑
τ⊇σ

γτ .

Then

(1) ασ and βσ satisfy the formulas

βσ =
∑
τ⊆σ

(−1)|τ |ατ and ασ =
∑
τ⊆σ

(−1)|τ |βτ ,
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(2) there exists an admissible inner product µ = 〈 , 〉 such that

dimµAσ = ασ and dimµHσ = βσ.

Proof. For (1), we compute∑
τ⊆σ

(−1)|τ |ατ =
∑
τ⊆σ

(−1)|τ |
∑
ρ∩τ=∅

γρ =
∑
ρ

γρ
∑

τ⊆σ−ρ
(−1)|τ |

=
∑

σ−ρ=∅

γρ =
∑
ρ⊇σ

γρ = βσ,

and the second formula follows from a similar computation.
For (2), consider the collection of “cospherical” subsets Tσ = S − σ,

σ ∈ N . The corresponding vectors vTσ span an (n− 1)-dimensional simplex
in ∆a, hence the point

α =
∑
σ

γσvTσ

lies in the relative interior of ∆a. With respect to the standard basis δσ, we
have

α =
∑
σ

γσ
∑

τ⊆S−σ
δτ =

∑
τ

( ∑
τ∩σ=∅

γσ

)
δτ =

∑
τ

ατδτ .

Hence, by Proposition 10.2, there exists an admissible inner product µ = 〈 , 〉
such that 〈aσ, 1〉 = ασ for all σ ∈ N . The change of variables in Remark 5.4
and part (1) then give

〈hσ, 1〉 =
〈∑
τ⊆σ

(−1)|τ |aτ , 1
〉

=
∑
τ⊆σ

(−1)|τ |ατ = βσ.

11. Growth series. In this section, we recall the greedy growth series
introduced in [15], and use it to measure the relative sizes of the quotients
W/Wσ for σ ∈ N . We then show that we can choose an admissible inner
product in such a way that these relative sizes become the dimensions of
the submodules Aσ.

Let W be a right-angled Coxeter group with nerve N . For any w ∈ W ,
recall that l(w) denotes the word length of w with respect to the generating
set S. For each spherical subset σ ∈ N , we let wσ denote the element of
greatest length in Wσ. Since W is right-angled, we have

wσ =
∏
s∈σ

s,

thus, l(wσ) = |σ|. For any spherical subset σ ∈ N we define St(σ) ⊆ S
by St(σ) = {s ∈ S | {s} ∪ σ ∈ N}. Note that St(∅) = S. The following
proposition is a reformulation of Propositions 5.1 and 5.3 in [15] in the case
that W is right-angled.
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Proposition 11.1. Any element w ∈ W can be written uniquely as a
product w = wσ1 · · ·wσn where St(σi)∩ σi−1 = ∅ for i = 2, . . . , n. Moreover,
in this case

l(w) =
∑
i

l(wσi) =
∑
i

|σi|.

We call such a product representation for w its (right) greedy normal
form (2). We associate a “monomial weight” to each element of W using this
greedy normal form. Let t denote the N -tuple t = (tσ)σ∈N (by convention,
we set t∅ = 1), and for any w ∈W , let tw denote the monomial

tw =
n∏
i=1

tσi

where wσn · · ·wσ1 is the greedy normal form for w. We then define the greedy
growth series for W to be the (multivariate) power series

W (t) =
∑
w∈W

tw.

More generally, for any subset X ⊂W , we define the corresponding series

X(t) =
∑
w∈X

tw.

It was shown in [15] that the greedy normal form is a regular language,
hence the series W (t) can be expressed as a rational function in t. We sketch
the argument here, but refer the reader to [15] and [11] for further details.
For each σ ∈ N , let Xσ ⊂W be the subset

Xσ = {w ∈W | l(ws) < l(w)⇔ s ∈ σ}.
The set Xσ consists of those elements of W whose greedy normal form
ends in wσ. It follows from Proposition 11.1 that an element of Xσ can be
obtained from an element of Xτ by multiplying on the right by wσ if and
only if St(σ)∩ τ = ∅. This implies that the growth series for Xσ satisfies the
equation

Xσ(t) = tσ
∑

St(σ)∩τ=∅

Xτ (t).

In other words, the system of linear equations given by{
zσ = tσ

∑
St(σ)∩τ=∅

zτ

∣∣∣ for all σ ∈ N
}

(11.1)

(2) There is also a left greedy normal form for w given by w = wσn · · ·wσ1 where
St(σi)∩σi−1 = ∅ for i = 2, . . . , n. In fact this is the one treated in [15], but since the right
greedy normal form for w is the same as the left greedy normal form for w−1 written in
reverse order, all of the relevant properties still hold.



50 B. Okun and R. Scott

has solution {zσ = Xσ(t)}σ∈N . On the other hand, this system can be solved
explicitly by row reducing the coefficient matrix over the fraction field Q(t).
It can be shown that this system has a 1-dimensional space of solutions, and
that the solution becomes unique once one sets z∅ = X∅(t) = 1. It follows
that each of the power series Xσ(t) is a rational function in t, and since W
is the disjoint union of the Xσ’s, we deduce that

W (t) =
∑
σ∈N

Xσ(t)

is also a rational function.
As long as t is in the region of convergence for the power series W (t)

and X ⊆W is nonempty, the power series X(t) converges to a positive real
number, and the ratio X(t)/W (t) can be regarded as a measure of the size of
the subset X relative to W . We exploit this idea by finding an inner product
µ on RW so that the dimensions of the submodules Aσ ⊂ L2

µW correspond
to the relative sizes of the quotients W/Wσ. To make this precise, we use
the bijection W/Wσ ↔W σ and the following decomposition.

Proposition 11.2. The set W σ is the disjoint union W σ =
⋃
τ∩σ=∅Xτ .

Proof. Rewriting the definition of Xτ , we have

Xτ = {w ∈W | l(ws) > l(w)⇔ s ∈ S − τ}.
Since W σ = {w ∈ W | l(ws) > l(w) for all s ∈ σ}, it follows that w ∈
Wσ ∩Xτ if and only if σ ⊆ S − τ or, equivalently, if and only if σ ∩ τ = ∅.
Since W is the disjoint union of the Xτ ’s the result follows.

In light of this partition of W σ, we define the rational functions γσ(t),
ασ(t), and βσ(t) by

γσ(t) =
Xσ(t)
W (t)

,(11.2)

ασ(t) =
∑
τ∩σ=∅

γτ (t),(11.3)

βσ(t) =
∑
τ⊇σ

γτ (t).(11.4)

Then for t in the region of convergence of W (t), all of these numbers are
positive and ασ(t) represents the size of the set W σ relative to W ; that is,

ασ(t) =
W σ(t)
W (t)

.

Note that by (1) of Corollary 10.3, we have

βσ(t) =
∑
τ⊆σ

(−1)|τ |ατ (t).
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In particular, the change of variables taking the ασ’s to the βσ’s is the same
change of variables described in Remark 5.4 taking the idempotents aσ’s to
the hσ’s.

We can now relate the Euler characteristic to the greedy growth series.
Let ασ(t) and βσ(t) be as in (11.3) and (11.4).

Theorem 11.3. Assume t is in the region of convergence for the greedy
growth series W (t). Then there exists an admissible inner product µ such
that

(1) dimµAσ = ασ(t),
(2) dimµHσ = βσ(t), and
(3) χµ = 1/W (t).

Proof. The first two statements follow from Corollary 10.3. For the third,
we have

χµ =
∑
σ

(−1)|σ|βσ(t) =
∑
σ

(−1)|σ|
∑
τ⊇σ

γτ (t) =
∑
τ

γτ (t)
∑
σ⊆τ

(−1)|σ|

= γ∅(t) =
1

W (t)
.

Remark 11.4. In fact, the theorem holds for any choice of t for which
the numbers γσ(t) are positive for all σ ∈ N .

Comparison with the L2
q-theory. We conclude this section by show-

ing that the dimensions of the submodules Aσ and Hσ obtained using our
choice of µ in Theorem 11.3 are consistent with the dimensions obtained
by Dymara in the Hecke-algebra setting. We let W (q) denote the standard
growth series W (q) =

∑
w∈W ql(w) for W . Let Nq denote the von Neu-

mann algebra obtained from the Hecke algebra RqW using the inner product
〈ew, ev〉q = δwvq

l(w). We let A(q)
σ denote the Nq-module corresponding to the

Wσ-invariant functions, and let H(q)
σ denote the Hecke-algebra version of the

module corresponding to the Wσ-alternating functions. (The corresponding
projection operators a(q)

σ and h
(q)
σ involve the weight q in the Hecke setting

to ensure a Hilbert-module structure. See [8] or [4] for details.) In [8] it is
shown that

dimNq A
(q)
σ =

1
Wσ(q)

=
(

1
1 + q

)|σ|
,

dimNq H
(q)
σ =

1
Wσ(q−1)

=
(

q

1 + q

)|σ|
.

The corresponding L2
q-Euler characteristic is then computed to be

χq =
1

W (q)
(see, e.g., Theorem 17.1.9 in [4]).
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The standard growth series W (q) is a specialization of the greedy growth
series W (t) obtained by substituting tσ = q|σ| for each σ ∈ N . Writing Xσ(q)
for the corresponding specialization of Xσ(t), we let ασ(q) and βσ(q) be as
in (11.3) and (11.4). With µ as in Theorem 11.3, we then have

dimµAσ = ασ(q) =
W σ(q)
W (q)

=
1

Wσ(q)
=
(

1
1 + q

)|σ|
,

dimµHσ = βσ(q) =
∑
τ⊆σ

(−1)|τ |ατ (q) =
∑
τ⊆σ

(
−1

1 + q

)|τ |
=
(

1− 1
1 + q

)|σ|
=
(

q

1 + q

)|σ|
.

In particular, the dimensions we obtain (by varying the inner product on
the group algebra) coincide with those obtained in the Hecke-algebra setting,
and we obtain the same formula for the Euler characteristic χµ = 1/W (q).

Remark 11.5. If we are only interested in finding an admissible inner
product on RW that gives us the Euler characteristic χµ = 1/W (q), then
the obvious choice would be µ = 〈 , 〉q (the pull back of Dymara’s inner
product on RqW with respect to the canonical isomorphism RW → RqW ).
With this choice of µ, our cochain complex (L2

µC
∗(Σcc), δ) is isomorphic to

Dymara’s (L2
qC
∗(Σcc), δ), hence, not only are the dimensions of the cochains

(and, hence, the Euler characteristics) the same, but so are the Betti num-
bers. There is a similar isomorphism if q is replaced with any multiparameter
q ∈ RS .

On the other hand, for general t ∈ RN , there is no Hecke algebra
parametrized by t. Thus, in order to have enough degrees of freedom for our
choice of µ to give us χµ = 1/W (t) for t ∈ RN , we must instead use convex
combinations of the inner products 〈 , 〉Tq . This is why we need Corollary 10.3
for the proof of Theorem 11.3. Although we can control the dimensions of
the cochains for such convex combinations, the coboundary maps themselves
are much more subtle. In fact there are many choices of inner products hav-
ing a given set of cochain dimensions, and these will typically have different
coboundary maps, presumably resulting in different L2

µ-Betti numbers.
Another important difference between the inner products µ = 〈 , 〉q and

general µ ∈ M(W ) is that for the former, the isomorphism RW → RqW
gives a canonical basis for RW with respect to which µ is orthogonal. This
means that the completion L2

µ can be regarded as the set of functions on W
that are square-summable with respect to a suitable measure. Similarly,
L2
µ-cochains can be interpreted as square-summable cochains. For general µ,

however, there is no such interpretation of L2
µ or L2

µC
∗. They are simply for-

mal Hilbert space completions with respect to µ.
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12. Reciprocity. In this section we show that under the additional
assumption that the nerve ofW is Eulerian, if µ is chosen as in Theorem 11.3,
then switching from the Euler characteristic χµ to its dual χ∗µ corresponds
to replacing t with its reciprocal t−1. This will follow from the following
purely combinatorial formula.

Theorem 12.1. Let W be a right-angled Coxeter group whose nerve N
is an Eulerian (n− 1)-sphere. Then the rational functions ασ(t) and βσ(t)
satisfy the reciprocity formula

ασ(t) = βσ(t−1).

Before proving Theorem 12.1, we first describe some systems of equa-
tions that characterize the rational functions ασ(t) and βσ(t). Recall from
Section 11 that the system of equations (11.1) has solution zσ = Xσ(t) and
that up to a scalar multiple this solution is unique. Thus by dividing each
Xσ(t) by W (t), we see that {zσ = γσ(t)}σ∈N is the unique solution to the
system {

zσ = tσ
∑

τ∩St(σ)=∅

zτ (∀σ ∈ N), and
∑
σ∈N

zσ = 1
}
.(12.1)

Applying Möbius inversion to (11.4), we obtain the formula

γσ(t) =
∑
τ⊇σ

(−1)|τ−σ|βτ (t).

It follows that {yσ = βσ(t)}σ∈N will be the unique solution to (12.1) after
the change of variables zσ =

∑
τ⊇σ(−1)|τ−σ|yτ . With this substitution, we

obtain{∑
τ⊇σ

(−1)|τ−σ|yτ = tσ
∑

τ∩St(σ)=∅

∑
ρ⊇τ

(−1)|ρ−τ |yρ (∀σ ∈ N), and

∑
σ∈N

∑
τ⊇σ

(−1)|τ−σ|yτ = 1
}
.

The last equation simplifies to

1 =
∑
σ∈N

∑
τ⊇σ

(−1)|τ−σ|yτ =
∑
τ∈N

(−1)|τ |yτ
∑
σ⊆τ

(−1)|σ| = y∅

(since the sum
∑

σ⊆τ (−1)|σ| is equal to zero unless τ = ∅). We rewrite the
system more concisely as

{Fσ(y) = tσGσ(y) (∀σ ∈ N), and y∅ = 1}(12.2)

where Fσ(y) and Gσ(y) are given by

Fσ(y) =
∑
τ⊇σ

(−1)|τ−σ|yτ and Gσ(y) =
∑

τ∩St(σ)=∅

∑
ρ⊇τ

(−1)|ρ−τ |yρ.
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It follows that {yσ = βσ(t)}σ∈N is the unique solution to (12.2), and {yσ =
βσ(t−1)}σ∈N is the unique solution to

{Gσ(y) = tσFσ(y) (∀σ ∈ N), and y∅ = 1}.

It will suffice, therefore, to show that {yσ = ασ(t)}σ∈N is also a solution
to this last system. For this, we use the further change of variables yσ =∑

τ⊆σ(−1)|τ |uτ (recall that this is the same change of variables that takes aσ
to hσ and vice versa). Let Gσ(y(u)) (resp., Fσ(y(u))) denote the expression
Gσ(y) (resp., Fσ(y)) after the substitution yτ =

∑
ρ⊆τ (−1)|ρ|uρ (for all

τ ∈ N).

Lemma 12.2. If N is an Eulerian (n− 1)-sphere, then

Gσ(y(u)) = (−1)n+|σ|Fσ(u) and Fσ(y(u)) = (−1)n+|σ|Gσ(u)

for all σ ∈ N .

Proof. Substituting variables and switching the order of summation gives

Fσ(y(u)) =
∑
τ⊇σ

(−1)|τ−σ|
∑
ρ⊇τ

(−1)|ρ|uρ

= (−1)|σ|
∑
ρ∈N

(−1)|ρ|uρ
( ∑
τ⊇ρ, τ⊇σ

(−1)|τ |
)
.

The parenthetical sum evaluates to 0 if ρ∪ σ 6∈ N , and since N is Eulerian,
it evaluates to

∑
τ⊇ρ∪σ = (−1)n if ρ ∪ σ ∈ N . Thus, we have

Fσ(y(u)) = (−1)n+|σ|
∑

ρ∪σ∈N
(−1)|ρ|uρ.

On the other hand, switching the order of the sums in the definition of
Gσ(u), we obtain

Gσ(u) =
∑
ρ∈N

(−1)|ρ|uρ
( ∑
τ∩St(σ)=∅, τ⊆ρ

(−1)|τ |
)
.

This time the parenthetical sum evaluates to
∑

τ⊆ρ−ν(−1)|τ | = 0 if ρ ∩
St(σ) = ν 6= ρ, and evaluates to

∑
τ=∅(−1)τ = 1 if ρ ∩ St(σ) = ρ (i.e., if

ρ ∪ σ ∈ N). This gives

Gσ(u) =
∑

ρ∪σ∈N
(−1)|ρ|uρ.

This proves that Fσ(y(u)) = (−1)n+|σ|Gσ(u). The other equation follows
from this one and the observation that the change of variables formulas
from yσ’s to uσ’s and from uσ’s to yσ’s are identical.
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Proof of Theorem 12.1. Since {yσ = βσ(t)}σ∈N is the unique solution to
the system (12.2), {uσ = ασ(t)}σ∈N is the unique solution to

{Fσ(y(u)) = tσGσ(y(u)) (∀σ ∈ N), and u∅ = 1}.
By Lemma 12.2, {uσ = ασ(t)}σ∈N is then the unique solution to

{Gσ(u) = tσFσ(u) (∀σ ∈ N), and u∅ = 1}.
But as already noted, {uσ = βσ(t−1)}σ∈N is also a solution to this system;
hence ασ(t) = βσ(t−1) for all σ ∈ N .

Now suppose that µ is chosen as in Theorem 11.3 so that

dimµAσ = ασ(t) and dimµHσ = βσ(t).

Then if W has Eulerian nerve, Theorem 12.1 and Lemma 5.5 imply that

dimµ∗ Aσ = ασ(t−1) and dimµ∗ Hσ = βσ(t−1).

We can now give a geometric interpretation of the main result of [15]. Since

χµ =
∑
σ∈N

(−1)|σ| dimµHσ =
∑
σ∈N

(−1)|σ|βσ(t) =
1

W (t)

we have

χµ∗ =
∑
σ∈N

(−1)|σ| dimµ∗ Hσ =
∑
σ∈N

(−1)|σ|βσ(t−1) =
1

W (t−1)
.(12.3)

Thus Theorem 7.3 implies the following.

Corollary 12.3. Suppose W is right-angled and the nerve N is an
Eulerian (n− 1)-sphere. Then

W (t−1) = (−1)nW (t).
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