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Abstract. We prove that every additive category has a unique maximal exact struc-
ture in the sense of Quillen.

Introduction. In his treatise on algebraic K-theory, Quillen [7] intro-
duced the concept of exact category, which means an additive category A
with a distinguished class of short exact sequences (= conflations) such that
relative homological algebra can be applied to A . The attribute “relative”
comes from the fact that every exact structure on A can be induced from
a full embedding A ↪→ B into an abelian category B [7, 8, 16].

In many cases, the exact structure on A is intrinsic. This is certainly
true for the class of splitting conflations. For abelian categories, the natural
exact structure is the greatest one. So by the Gabriel–Quillen embedding
A ↪→ B, one should expect that a canonical exact structure ought to be
maximal. In fact, there is a wide class of preabelian categories (i.e. with
kernels and cokernels) where all short exact sequences form an exact struc-
ture, namely, the quasi-abelian categories [4, 14, 10]. (For a brief history of
the concept, see [11].) They are defined by the property that cokernels are
stable under pullback, and kernels are stable under pushout. A (co-)kernel
with this stability property is said to be semi-stable [9]. If a semi-stable
cokernel has a semi-stable kernel, the corresponding short exact sequence is
said to be stable.

The conflations of an exact category are stable. So it is natural to ask
whether the stable exact sequences form an exact structure for any addi-
tive category. Sieg and Wegner [15] confirmed this for the preabelian case,
and Crivei [2] extended the result to additive categories which are divisive
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(i.e. every split epimorphism has a kernel). In particular, a divisive addi-
tive category has a greatest exact structure, hence a “natural” homological
algebra.

It is known that the distinguished cokernels (= deflations) c of a divisive
additive category are divisible, i.e. c = ba implies that b is again a deflation.
In general, this implication only holds if b has a kernel. (Quillen [7] stated
the latter fact as an axiom. Being redundant for exact categories, it became
known as the “obscure axiom” [16].)

The aim of this note is to show that a greatest exact structure exists for
any additive category A . It remains an open question whether this greatest
exact structure coincides with the class of all stable short exact sequences.
More generally, we introduce one-sided exact structures on A and prove
that there is always a greatest one (Corollary 1 of Theorem 2). In this con-
text, Quillen’s “obscure axiom” (Q) reappears in an essential way. Namely,
we define a left exact structure to be a class D of cokernels in A which
satisfies half of the axioms for an exact structure, plus Quillen’s axiom (Q).
We then prove that every left exact structure combines with every right
exact one to give an exact structure on A . Thus we reduce the existence
problem to the one-sided case, getting in return the trouble with Quillen’s
axiom (Q).

We introduce three operators C, P , Q on morphism classes D ⊂ A ,
related to properties of a left exact structure. Specifically, PD consists of
the morphisms in D which remain stable under pullback, CD picks up the
cokernels of D , while QD has a more subtle relationship to Quillen’s prop-
erty (Q). For example, PCA consists of the semi-stable cokernels of A .
Using these operators, we prove that any subcategory D containing the
splitting deflations gives rise to a left exact structure PQPCD (Theorem 2)
which is maximal for D = A . If A is divisive, the operator Q can be dropped
for suitable D (Theorem 3). In particular, this implies that the maximal left
exact structure on a divisive additive category A simplifies to PCA .

1. Left exact structures. Let A be an additive category. A sequence

(1) A
a→ B

b→ C

of morphisms a, b ∈ A is said to be short exact if a = ker b and b = cok a.
We call A divisive [12] if every split monomorphism has a cokernel, or
equivalently, if any pair of morphisms i : A→ B and p : B → A with pi = 1A

can be completed to a biproduct [6] B ∼= A ⊕ C. Thus A is divisive if and
only if A op is. Note that any triangulated category is divisive, but not
necessarily Karoubian (i.e. with splitting idempotents).

In [13, Definition 4], we introduced left exact structures on an additive
category, necessarily divisive, so that two-sided exactness is equivalent to
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exactness in the sense of Gabriel and Roiter [3]. For our present purpose,
we stick to the original concept given by Quillen [7]. For the one-sided case,
we require Quillen’s “obscure axiom” [16, Appendix A], which is known to
be redundant for two-sided exact categories [17, 5].

Definition 1. We define a left exact structure on an additive category
A to be a class D ⊂ A of cokernels, called deflations, which satisfies

(C) D is a subcategory with Ob D = Ob A .
(P) The pullback of any c ∈ D along an arbitrary morphism exists and

belongs to D .
(Q) If A

a→ B
b→ C belongs to D and b has a kernel, then b ∈ D .

We indicate deflations by two-head arrows (�). Note that the pullback
of a deflation b : B � C along 0 → C yields its kernel a : A → B, which
shows that every deflation b gives rise to a short exact sequence (1). We
refer to such sequences as conflations. Kernels of deflations will be called
inflations and written as A� B.

Note that by (C), every identical morphism 1C is a deflation. Hence
Quillen’s axiom (Q) implies that every split short exact sequence is a con-
flation. In particular, deflations are closed under isomorphism.

An additive category A with a left exact structure D will be called a
left exact category. Dually, a right exact structure on A is given by a class
I of inflations which satisfies the axioms of Definition 1 in A op. Thus, an
exact category in the sense of Quillen [7] is the same as a left and right exact
category. The following two lemmata will be used frequently. Their proofs
are left to the reader.

Lemma 1. Let A be an additive category. For a pullback

A
a
→ B

C
↓
b

d
→ D
↓
c

the morphism a has a kernel if and only if d has a kernel. If k = ker a, then
bk = ker d.

Lemma 2. Let A be an additive category, and let

(2)

D
g
→ E

h
→ F

PB

A
↓
d

a
→ B
↓
e

b
→ C
↓
f
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be a commutative diagram in A such that the right-hand square is a pullback.
The whole rectangle is a pullback if and only if the left-hand square is a
pullback.

Our first result shows that any pair of a left and a right exact category
determines an exact category.

Theorem 1. Let A be an additive category with a left exact struc-
ture D ⊂ A and a right exact structure I ⊂ A . The class of short ex-
act sequences (1) with a ∈ I and b ∈ D makes A into an exact cate-
gory.

Proof. Let Ds be the class of deflations b ∈ D with ker b ∈ I . By sym-
metry, it is enough to verify (C) and (P) for Ds instead of D . Thus let

A
a
� B

b
� C and E

e
� C

c
� F be short exact sequences with b, c ∈ Ds.

To show that cb ∈ Ds, consider the pullback of b and e, which gives a
commutative diagram

A �
q
� D

p
�� E

PB

A

wwwwww
�

a
� B
g

d

b
�� C
g

g
e

F
g

cb

===== F

gg
c

with p ∈ D and q = ker p. Furthermore, the pullback property implies
that d = ker cb. By (C), we have cb ∈ D . Hence cb = cok d. Now it is
straightforward to verify that the diagonal squares in the commutative dia-
gram

A
q
� D

d
� B

PO

B
g

g
a (

1
0

)
� B ⊕ E

g

(
d
p

) (
1 0
0 e

)
� B ⊕ C

g

(
1
b

)

PO

E

f(
0
1

)
�

e
� C

f(
0
1

)

are pushouts. Therefore, the morphisms
(
d
p

)
and

(
1 0
0 e

)
belong to I . Thus(

1
b

)
d =

(
1 0
0 e

)(
d
p

)
∈ I . Since cb = cok d, we get d ∈ I by the dual of (Q).

Hence cb ∈ Ds.
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Next, let

K �
i
� A

a
�� B

PB

K

wwwwww
�

j
� C
g

b

d
�� D
g

c

be a pullback with d ∈ Ds. Then (P) gives a ∈ D . Since a = cok i and
bi = j ∈ I , we get i ∈ I by the dual of (Q). Hence a ∈ Ds.

We conclude this section with some examples of left exact categories
which need not be right exact.

Examples. Let A be an additive category with kernels and cokernels.
The class of all short exact sequences makes A into a left exact category
if and only if A is left quasi-abelian (= left almost abelian [10]), i.e. if
condition (P) of Definition 1 holds for arbitrary cokernels c. This follows
by [10, Proposition 2 and Corollary 1 of Proposition 1]. For example, let
Mod(R) denote the category of left modules over a ring R. Then every full
subcategory A of Mod(R) which is closed with respect to submodules and
products is left quasi-abelian. By [10, Theorem 2 and Lemma 7], every left
quasi-abelian category A admits a full embedding into an abelian category
Ql(A ) such that the left exact structure of A is exact if and only if A is
closed with respect to extensions.

Further examples are given in [1, Examples 4.6 and 4.7].

2. The operators C, P , and Q. In this section, we introduce three
operators on morphism classes which will be used for a subsequent construc-
tion of left exact structures from any subcategory.

Definition 2. Let A be an additive category, and let D be a class of
morphisms in A . We define PD to be the class of morphisms f : C → F
such that for every h : E → F in A , the pullback

(3)

B
b
→ C

E
↓
e

h
→ F
↓
f

exists and satisfies e ∈ D . We write QD for the class of morphisms f ∈ D
such that for every pullback (3), the implication b ∈ D ⇒ h ∈ D holds.
The class of cokernels in D will be denoted by CD .

The operators P and Q are related, respectively, to the properties (P)
and (Q) in Definition 1. For (Q), this will be shown in Proposition 3. The
special case h : 0→ F in (3) shows that every morphism in PD has a kernel.
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In general, CD need not satisfy (C) even if D does. The application of P ,
however, recovers this property.

Proposition 1. Let A be an additive category, and let D be a class of
morphisms in A . Then PPD = PD . If (C) holds for D , then it also holds
for PD and PCD .

Proof. Since PD ⊂ D , the equality PPD = PD says that PD satisfies
condition (P) of Definition 1. Consider a pullback (3) with f ∈ PD . For any
g : D → E, the pullback of f along hg exists, which leads to a commutative
diagram

(4)

A
a
→ B

b
→ C

D
↓
d

g
→ E
↓
e

h
→ F
↓
f

where the whole rectangle and the right-hand square are pullbacks. By
Lemma 2, so is the left-hand square. Since d ∈ D , it follows that e ∈ PD .

For the rest of the proof, we assume D satisfies (C). First, let g : D → E
and h : E → F in PD be given. For an arbitrary morphism f : C → F , the
pullback of hg along f can be obtained in two steps and leads to a pullback
(4) consisting of two pullback squares. Hence a, b ∈ D , and thus ba ∈ D .
This proves that PD satisfies (C).

Next, let g : D → E and h : E → F be in PCD . Then the kernels k =
ker g and q = ker h exist, and the pullback of g and q gives a commutative
diagram

K
i
→ G

p
→ H

PB

K

wwwwww
k
→ D
↓
j

g
→ E
↓
q

F
↓
hg

===== F
↓
h

with i = ker p. Since g, h ∈ CD , we have g = cok k and h = cok q. Further-
more, g ∈ PCD implies that p ∈ CD . Hence hg = cok j, and thus hg ∈ CD .
Moreover, for any pullback (4), the morphisms a, b belong to PCD . Hence
ba ∈ CD , which yields hg ∈ PCD .

Now we turn to Quillen’s property (Q) and its relationship to the oper-
ator Q. First, we prove
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Proposition 2. Let A be an additive category, and let D be a class of
morphisms which satisfies (C) and (P). Assume that every zero epimorphism
A→ 0 belongs to D . Then QD satisfies (C) and (Q).

Proof. Let g : D → E and h : E → F in QD be given. Then hg ∈ D .
Since D satisfies (P), any pullback of a morphism f : C → F along hg exists
and splits into a pair of pullback squares (4). If d ∈ D , then g ∈ QD implies
that e ∈ D , and h ∈ QD yields f ∈ D . Hence hg ∈ QD . This proves (C).

To verify (Q), assume that c ∈ QD has a factorization c = hg such that
h has a kernel k : K → E. Then there is a pullback

K ⊕D
(0 1)
→ D

E
↓
(k g)

h
→ F
↓
c

The canonical morphism (0 1) : K ⊕ D → D belongs to D since it can be
obtained as a pullback of K → 0 along D → 0. Hence h ∈ D .

Now consider a pullback (3). The pullback of f along hg gives rise to
a commutative diagram (4), where the left-hand square is a pullback by
Lemma 2. Assume that e ∈ D . Then (P) implies that d ∈ D . Hence hg ∈ QD
yields f ∈ D . Thus h ∈ QD .

As a consequence, we can express (Q) by means of the operator Q.

Proposition 3. Let A be an additive category, and let D be a class of
morphisms which satisfies (C) and (P). Assume that every zero epimorphism
A→ 0 belongs to D . Then D satisfies (Q) if and only if QD = D .

Proof. Assume D satisfies (Q). Consider a pullback (3) with b, f ∈ D .
Since (C) holds for D , we get he = fb ∈ D . As D satisfies (P), the morphism
b has a kernel k, and thus ek = ker h by Lemma 1. Hence h ∈ D . This proves
that QD = D . The converse follows by Proposition 2.

Proposition 4. Let A be an additive category, and let D be a class of
morphisms which satisfies (C) and (P). Assume that the zero epimorphisms
belong to D . Then PQD satisfies (C), (P), and (Q).

Proof. By Proposition 1, PQD satisfies (P). Furthermore, Propositions 1
and 2 imply that (C) holds for PQD . To show that PQD satisfies (Q), let
c : A → C be a morphism in PQD , and let c = ba be a factorization such
that b has a kernel. Since c ∈ QD , it follows that b ∈ D . By assump-
tion, D satisfies (P). Therefore, the pullback of any morphism f : F → C
along b or c exists, which yields a commutative diagram (2) where the
whole rectangle and the right-hand square are pullbacks. Now c ∈ PQD
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implies that hg ∈ QD . Since b has a kernel, Lemma 1 implies that h has
a kernel. Therefore, Proposition 2 implies that h ∈ QD . This shows that
b ∈ PQD .

3. The maximal exact structure. By the results of the preceding
section, we are now in a position to show how any left exact structure arises
from a combination of the operators C, P , and Q.

Theorem 2. Let A be an additive category, and let D be a subcategory
which contains every split epimorphism with kernel. Then PQPCD is a left
exact structure on A .

Proof. By Proposition 1, PCD satisfies (C) and (P). Since D contains
the split epimorphisms with kernel, the same holds for PCD . Therefore,
Proposition 4 implies that PQPCD satisfies (C), (P), and (Q). Since CD
consists of cokernels, the same is true for PQPCD . Thus PQPCD is a left
exact structure on A .

As a first application, we get

Corollary 1. Let A be an additive category. Then PQPCA is the
unique maximal left exact structure on A .

Proof. Theorem 2 implies that PQPCA is a left exact structure. By
Proposition 3, any left exact structure D satisfies QD = D . Hence D =
PQPCD ⊂ PQPCA , which proves the claim.

Combining Corollary 1 with Theorem 1 yields

Corollary 2. Every additive category A admits a unique maximal
exact structure.

Proof. By Corollary 1, every left exact structure is contained in the
maximal left exact structure PQPCA . Thus, by symmetry, Theorem 1
shows that the maximal exact structure consists of the short exact sequences
(1) where b belongs to PQPCA , and a belongs to the maximal right exact
structure.

Sieg and Wegner [15] and Crivei [2] have shown that Corollary 2 holds
under the assumption that A is divisive. In this case, the existence of a
kernel in Quillen’s property (Q) can be dropped (see [13, Definition 4]).

Proposition 5. Let A be a divisive additive category, and let D be a
class of morphisms which satisfies (P). If ba ∈ D , then b has a kernel.
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Proof. For c := ba, there exists a pullback

D
e
→ B

A
↓
d

c
→ C
↓
b

Since c ·1A = b ·a, there exists a unique s : A→ D with ds = 1A and es = a.
As A is divisive, this implies that d has a kernel. Hence b has a kernel by
Lemma 1.

Theorem 3. Let A be a divisive additive category, and let D be a class
of morphisms which satisfies (C) and (Q). Then PCD is a left exact struc-
ture on A .

Proof. By Proposition 1, PCD satisfies (P) and (C). To verify (Q),
let c : A → C be a morphism in PCD . For any factorization c = ba, we
show first that b ∈ CD . By Proposition 5, b has a kernel k : K → B.
Furthermore, c has a kernel q : H → A. So we get a commutative dia-
gram

H ====== H

K

(
1
0

)
→ K ⊕A

↓

(
p
q

)
(0 1)
→ A
↓
q

K

wwwwww
k
→ B
↓
(k a)

b
→ C
↓
c

with (k a)
(
p
q

)
= 0. In fact, b · aq = cq = 0 implies that −aq = kp for some

p : H → K. Since c ∈ PCD , it follows that (k a) is a cokernel and c = cok q.
Now let u : B → X be a morphism with uk = 0. Then ua ·q = u(k a)

(
p
q

)
= 0.

Hence ua = vc for some v : C → X. Therefore, (u − vb) · (k a) = 0, and
thus u − vb = 0 since (k a) is a cokernel. Furthermore, b is epic, which
yields b = cok k. Since D satisfies (C) and (Q), every split epimorphism
belongs to D . Hence b · (k a) = c · (0 1) ∈ D , and thus b ∈ D . Consequently,
b ∈ CD .

It remains to show that b ∈ PCD . For any f : F → C in A , the
morphism c factors through (b f) : B ⊕ F → C. Hence (b f) has a ker-
nel by Proposition 5. Therefore, the pullback of f along c or b exists, and
by Lemma 2, we get a commutative diagram (2) where both squares are
pullbacks. By Proposition 1, we have hg ∈ PCD , and the above shows that
h ∈ CD . Hence b ∈ PCD .
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As a consequence, Corollary 1 simplifies as follows if A is divisive.

Corollary 3. Let A be a divisive additive category. Then PCA is the
maximal left exact structure on A .

Proof. For any left exact structure D , we have D = PCD ⊂ PCA , and
PCA is a left exact structure by Theorem 3.

The morphisms in PCA are called semi-stable cokernels [9]. Dually, the
semi-stable kernels in A are defined to be the semi-stable cokernels in A op.
In particular, we get the main result of Crivei [2].

Corollary 4. Let A be a divisive additive category. The maximal exact
structure on A consists of the short exact sequences (1) with a semi-stable
kernel a and a semi-stable cokernel b.

Proof. This follows by Corollary 3 and Theorem 1.
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