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Gradient otopies of gradient local maps

by

Piotr Bartłomiejczyk and Piotr Nowak-Przygodzki (Gdańsk)

Abstract. We introduce various classes of local maps: gradient, gradient-like, proper
etc. We prove Parusiński’s theorem for otopy classes of gradient local maps.

Introduction. In 1990 A. Parusiński [7] published a surprising result: if
two gradient vector fields on the unit disc Dn and nonvanishing in Sn−1 are
homotopic, then they are gradient homotopic. An immediate consequence
of this fact is that the inclusion of the space of gradient vector fields into
the space of all vector fields on Dn nonvanishing in Sn−1 induces a bijection
between the sets of the respective homotopy classes, i.e. between the sets of
path-components of these function spaces. Even though Parusiński’s result
does not hold for equivariant maps, his techniques can still be used to study
homotopy classes of gradient equivariant maps (see [4]).

J. C. Becker and D. H. Gottlieb have introduced an extremely useful
generalization of the concept of homotopy called otopy (see for instance [2,
3, 5]). The main advantage of using otopies is that otopy relates maps with
not necessarily the same domain (so called local maps). Furthermore, otopy
theory turns out to be fruitful in equivariant degree theory (see [1]).

The main goal of our paper is to establish a clear relation between otopy
classes of gradient and usual (not necessarily gradient) local maps. More
precisely, we introduce many natural classes of local maps: gradient, gradient-
like, proper, proper gradient and proper gradient-like and then relate their
respective otopy classes. For example, we prove some version of Parusiński’s
Theorem: the inclusion of the set of gradient local maps into the set of all
local maps induces a bijection between the respective otopy classes of local
maps. In other words, there is no better invariant in gradient otopy theory
than the usual topological degree.
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The organization of the paper is as follows. Section 1 provides a brief
exposition of otopy theory for local maps. Section 2 contains our main result
concerning the relation between the sets of otopy classes of various classes of
local maps. This result is proved in Section 7. In Section 3 we introduce stan-
dard local maps and discuss their elementary properties, which are needed
in the next section. In Section 4 we prove the key lemma that says that the
degree map from the set of gradient otopy classes of gradient local maps to
the integers is a bijection. Sections 5 and 6 contain some additional results
needed for the proof of our Main Theorem. It is worth pointing out that
the nontrivial part of this proof is hidden in the Main Lemma and Proposi-
tion 6.3. The proof of Proposition 3.5 was motivated by [9].

1. Basic definitions. The notation A b B means that A is a compact
subset of B.

Definition 1.1. A continuous map f : U → Rn is called a local map if

• U is an open subset of Rn,
• f−1(0) b U .

We will often write such maps as pairs (f, U), pointing out their domains.

Recall that these maps are called gradient (resp. gradient-like) if there is
a C1-function ϕ : U → R such that f = ∇ϕ (resp. f(x) · ∇ϕ(x) > 0 for all
x ∈ U \f−1(0)), and proper if the preimages of compact subsets are compact.

We will consider the set of all local maps, denoted by F(n), and the
following subsets:

F∇(n) := {f ∈ F(n) | f is gradient},
Fgl(n) := {f ∈ F(n) | f is gradient-like},
P(n) := {f ∈ F(n) | f is proper},
P∇(n) := F∇(n) ∩ P(n),
Pgl(n) := Fgl(n) ∩ P(n).

Immediately from the above definitions we obtain the following commu-
tative diagram of inclusions:

(1.1)

P∇(n) −−−−→ Pgl(n) −−−−→ P(n)y y y
F∇(n) −−−−→ Fgl(n) −−−−→ F(n)

Let I = [0, 1].

Definition 1.2. A continuous map h : Ω → Rn is called an otopy if

• Ω is an open subset of Rn × I,
• h−1(0) b Ω.
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Fig. 1. Domain of an otopy and its zeros

Given an otopy (h,Ω) we can define for each t ∈ I sets Ωt = {x ∈ Rn |
(x, t) ∈ Ω} and maps ht : Ωt → Rn with ht(x) = h(x, t). We allow ht to be
the empty map.

Definition 1.3. If (h,Ω) is an otopy, we say that (h0, Ω0) and (h1, Ω1)
are otopic (written h0 ∼ h1 or (h0, Ω0) ∼ (h1, Ω1)).

Remark 1.4. Of course, otopy gives an equivalence relation on F(n).
The set of otopy classes of local maps will be denoted by F [n]. Observe that
if (f, U) is a local map and V is open subset of U such that f−1(0) ⊂ V ,
then (f, U) and (f |V , V ) are otopic. In particular, if f−1(0) ∩ U = ∅ then
(f, U) is otopic to the empty map.

Apart from the usual otopies, we will consider otopies that satisfy some
additional conditions, namely:

• gradient, i.e. h(x, t) = ∇xχ(x, t) for some C1-function χ,
• gradient-like, i.e. h(x, t) · ∇xχ(x, t) > 0 if h(x, t) 6= 0,
• proper, i.e. h is proper,
• proper gradient,
• proper gradient-like.

The sets of respective otopy classes in F∇(n), Fgl(n), P(n), P∇(n), Pgl(n)
will be denoted by F∇[n], Fgl[n], P[n], P∇[n], Pgl[n].

Let Σn = Rn ∪ {∗} denote the one-point compactification of Rn. It is a
pointed space with base point ∗. We will writeM∗Σn for the set of pointed
continuous maps from Σn to Σn. With every map f ∈M∗Σn one associates
a proper local map (f�f−1(Rn), f

−1(Rn)). Conversely, if (f, U) ∈ P(n), then
the map f+ : Σn → Σn given by

f+(x) =
{
f(x) if x ∈ U ,
∗ otherwise,
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is continuous. Using this observation we see that the map

µ : P(n)→M∗Σn, µ((f, U)) = f+,

is a bijection. SinceM∗Σn is a metric space, P(n) also has the metric struc-
ture induced by the pullback of the supremum metric.

2. Main Theorem. The diagram (1.1) induces the following commuta-
tive diagram of maps between sets of otopy classes (all the maps are induced
by inclusions):

(2.1)

P∇[n] a−−−−→ Pgl[n] b−−−−→ P[n]

c

y d

y e

y
F∇[n]

f−−−−→ Fgl[n]
g−−−−→ F [n]

Let us formulate the main result of this paper.

Main Theorem 2.1. The maps b, d, e, f and g in the diagram (2.1) are
bijections and the maps a, c are surjections.

Remark 2.2. We expect that c and hence a are also bijections, although
at the moment we do not have a complete proof of that fact due to some
technical difficulties. It is worth pointing out that our result includes some
version of Parusiński’s Theorem: the inclusion F∇(n) ⊂ F(n) induces a
bijection F∇[n]→ F [n]. However, our proof makes no appeal to the original
proof of Parusiński.

Remark 2.3. It is clear from the classical degree theory that all the
maps in the following commutative diagram are bijections:

M∗[Σn]

deg
%%JJJJJJJJJJ
P[n]oo //

deg

��

F [n]

deg
{{ww

ww
ww

ww
w

Z
Consequently, the map e in (2.1) is bijective.

The true difficulty in proving the Main Theorem lies in the following

Main Lemma 1. deg : F∇[n]→ Z is bijective.

We will see that, in fact, only injectivity causes a problem. Another non-
trivial result is injectivity of d.

3. Standard local maps. Let us denote by B(p, r) the open r-ball
around p and by R the reflection defined by

R(x1, x2, . . . , xn) = (−x1, x2, . . . , xn).
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Any map f : B(p, r) → Rn of the form f(x) = Id(x − p) (resp. f(x) =
R(x−p)) is called a t-identity (resp. t-reflection) at p. The letter t stands here
for “moved by translation”. Clearly, any two t-identities (resp. t-reflections)
are gradient otopic, since both translations and restrictions of gradient maps
induce gradient otopies.

The following terminology is borrowed from [8], but is used in a slightly
different context.

Definition 3.1. We say that a local map (f, U) is standard of type (m, l)
if

• U is a finite disjoint union of open balls,
• on each of these balls, f is either a t-identity or a t-reflection at its

center,
• f consists of exactly m t-identities and l t-reflections.

A standard map of type (m, 0) (resp. (0, l)) will be called standard of type m
(resp. −l) for brevity.

Observe that standard maps are gradient. Moreover, we see at once that
any two standard maps of type m are gradient otopic (the same reasoning
as above).

Reduction of standard maps of type (m, l) to standard maps of typem−l
is established by the following Annihilation Lemma.

Lemma 3.2 (Annihilation Lemma). A disjoint union of a t-identity and
a t-reflection is gradient otopic to the empty local map.

Proof. As observed before, both translations and restrictions of gradient
maps induce gradient otopies. So it remains to find a gradient otopy for some
convenient maps. For t ∈ I let:

• et = (t, 0, . . . , 0) ∈ Rn,
• Ωt = B(−et, 1) ∪B(et, 1),
• χ(x, t) = 1

2x1|x1| − tx1 + 1
2x

2
2 + · · ·+ 1

2x
2
n.

Finally set:

• Ω =
⋃
t∈I Ωt × t,

• h(x, t) = ∇xχ(x, t) = (|x1| − t, x2, . . . , xn).

Then (h,Ω) is almost the desired gradient otopy. What is left is to “lift” the
local map (h0, Ω0) a little (i.e. “move up” its first component) to get a local
map without zeros, which is evidently gradient otopic to the empty local
map (see Figure 2).

Repeated application of the Annihilation Lemma yields the following
conclusion.
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Fig. 2. Annihilation of t-identity and minus t-identity

Corollary 3.3. Two standard maps of type (m, l) and (m′, l′) are gra-
dient otopic iff m− l = m′− l′. In other words, two standard maps of degree
k are gradient otopic.

We will also need the following two results.

Proposition 3.4 (turning a helmet inside-out). Any t-identity in the
plane is gradient otopic to any minus t-identity.

Proof. Consider the following three gradient local maps:

f(x1, x2) = (x1 + 2, x2) on U1 = B((−2, 0), 1),
g(x1, x2) = (−x1, x2) on U2 = B((0, 0), 1),
h(x1, x2) = (−x1 + 2,−x2) on U3 = B((2, 0), 1).

If ∼ denotes for a moment the relation of being gradient otopic, then
analysis similar to that in the proof of the Annihilation Lemma shows that

(f, U1) = (f, U1) t ∅ ∼ (f, U1) t (g, U2) t (h, U3) ∼ ∅ t (h, U3) = (h, U3).

Proposition 3.5. If A : Rn → Rn is a linear map represented by a non-
singular symmetric matrix, then (A,Rn) is gradient otopic either to (Id,Rn)
or to (R,Rn).

Proof. The statement is trivial for n = 1, so suppose n ≥ 2. Denote by
Symm(n) the set of n×n symmetric matrices. By abuse of notation, we will
use the same letter A for both a linear map and its matrix representation.
Let A ∈ GLn(R) ∩ Symm(n). We describe a procedure which allows us to
reduce A to the required form. It is worth pointing out that we cannot carry
out this procedure in the space of nonsingular symmetric matrices, because
the signature is constant on connected components of this space. Therefore
we have to leave the “universe” of linearity for a moment constructing our
gradient otopy.

The proof falls naturally into four steps.

Step 1 (diagonalization). There exists P ∈ SO(n) such that PAP−1 =
diag(α1, . . . , αn). Since SO(n) is path-connected, P is homotopic to Id in
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SO(n) by some homotopy Pt, i.e. Pt ∈ SO(n), P0 = Id and P1 = P . There-
fore, the homotopy

Ht = PtAP
−1
t ∈ GLn(R) ∩ Symm(n)

connects A to diag(α1, . . . , αn).

Step 2 (normalization). The homotopy

Ht = diag(tα1+(1−t) sgnα1, . . . , tαn+(1−t) sgnαn) ∈ GLn(R)∩Symm(n)

connects diag(α1, . . . , αn) to a diagonal matrix with all diagonal elements
equal to ±1, i.e. to B = diag(β1, . . . , βn) with β2

i = 1. If B = Id, then we
are done. So suppose it is not the case. If B = −Id, go to Step 4. Otherwise,
go to the next step.

Step 3 (swapping pairs of adjacent 1 and −1 on the diagonal). The
homotopy

Ht =

(
cos(πt) sin(πt)
sin(πt) − cos(πt)

)
shows that diag(1,−1) and diag(−1, 1) are homotopic in GL2(R)∩Symm(2).
Repeated application of this observation enables us to gather all −1’s at the
top of the diagonal. Precisely, diag(β1, . . . , βn) with β2

i = 1 is homotopic in
GLn(R) ∩ Symm(n) to C = diag(γ1, . . . , γn) with γi ≤ γj for i < j (i.e. all
−1’s followed by all 1’s). If C = R, then we are done, but otherwise we have
to elaborate a little.

Step 4 (replacement of pairs of adjacent −1’s on the diagonal with pairs
of adjacent 1’s). It should be emphasized that all the above steps used “very
nice” homotopies in GLn(R) ∩ Symm(n), which, of course, are also gradient
otopies. But the last step, as we have mentioned above, cannot be realized in
GLn(R) ∩ Symm(n) because of the invariance of signature. However,

(
1 0
0 1

)
and

(−1 0
0 −1

)
are gradient otopic by Proposition 3.4. Consequently, both the

matrix C obtained in the previous step and the matrix − Id from Step 2 are
gradient otopic either to Id or to R, which completes the proof.

4. Proof of the Main Lemma. The proof of the Main Lemma will
consist of two parts.

Surjectivity. By definition, any standard map of type n is gradient and
has degree n.

Injectivity. By Corollary 3.3 it is sufficient to show that any gradient local
map of degree k is gradient otopic to some standard map of type (m, l) with
m− l = k. For clarity, this will be proved in four steps. Let (f, U) ∈ F∇(n)
(i.e. f = ∇ϕ) and deg(f, U) = k. Of course, there is no loss of generality in
assuming that U is bounded.
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Step 1. We deform the potential ϕ to a Morse function ψ. By density
and openness of the set of Morse functions (see for instance [6, Ch. 6])
we can choose a Morse function ψ such that the straight-line homotopy of
potentials χ(x, t) = (1− t)ϕ+ tψ induces a gradient homotopy on U (hence
also a gradient otopy) between ∇ϕ and ∇ψ.

Step 2. The gradient otopy class of the local map (∇ψ,U) is uniquely
determined by its restriction to a disjoint union of open balls around non-
degenerate critical points of ψ, since any such restriction map induces a
gradient otopy.

Step 3. Next we replace ∇ψ on each of these balls by its linear approx-
imation around the center of the ball. Precisely, since the derivative of the
gradient ∇ψ is the Hessian matrix of the potential ψ, we have

∇ψ(x) = Hessψ(p)[x− p] + o(|x− p|) for x ∈ B(p, r).

If we make the radius r sufficiently small, then the straight-line homotopy
of the potential

χ(x, t) = (1− t)ψ(x) +
1
2
t[x− p]T Hess(p)[x− p]

induces the gradient homotopy on the reduced ball around p, which is also
a gradient otopy.

Step 4. By Proposition 3.5 any derivative of the gradient map (i.e. the
Hessian matrix of the potential) is gradient otopic either to the identity or
to the reflection. Thus any map obtained in the previous step is gradient
otopic to some standard map of type (m, l) with m − l = k, which finishes
the proof of the lemma.

Corollary 4.1. The map g ◦ f : F∇[n]→ F [n] is a bijection.

Proof. This follows immediately from Remark 2.3, Main Lemma and the
commutativity of the diagram

F∇[n]

deg
""EEEEEEEE
gf

// F [n]

deg
}}{{

{{
{{

{{

Z
It is now easy to show that the maps in the bottom row of the diagram

(2.1) are bijections.

Proposition 4.2. The map f : F∇[n]→ Fgl[n] is a surjection.

Proof. Observe that it suffices to make the following observation. If (f, U)
is gradient-like and ϕ is a potential appearing in the definition of being
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gradient-like, then (f, U) is gradient-like otopic to (∇ϕ,U). The required
gradient-like otopy is given simply by the straight-line homotopy

ht(x) = (1− t)f(x) + t∇ϕ(x).

Consequently, f : F∇[n] → Fgl[n] is surjective, since [(f, U)] = [(∇ϕ,U)] in
Fgl[n].

Let us mention an easy consequence of Corollary 4.1 and Proposition 4.2.

Corollary 4.3. The maps f and g in the diagram (2.1) are bijections.

5. Proper gradient local maps

Proposition 5.1. The map c : P∇[n]→ F∇[n] is a surjection.

Proof. By the Main Lemma, we know that deg : F∇[n]→ Z is bijective.
It remains to prove that deg : P∇[n] → Z is surjective. But that is indeed
the case, since we can construct a proper gradient local map of degree ±1
on the open unit ball around 0. Namely, an easy computation shows that

ϕ(x1, x2, . . . , xn) =
±x2

1 + x2
2 + · · ·+ x2

n

1− x2
1 − x2

2 − · · · − x2
n

gives the desired potential.

By the commutativity of the diagram (2.1), we easily get the following
result.

Corollary 5.2. The map d : Pgl[n]→ Fgl[n] is a surjection.

6. Proper gradient-like local maps. The proof of Proposition 6.3
below is based on the following two lemmas. In what follows, we make use
of the otopy notation introduced in Section 1.

Lemma 6.1. If (h,Ω) is a gradient-like otopy, then

(1) there are open sets Ω̃, Ω̂ in Rn × I such that

h−1(0) b Ω̃ ⊂ cl Ω̃ b Ω̂ ⊂ cl Ω̂ b Ω,

(2) there is a proper gradient-like otopy ĥ : Ω̂ → Rn such that

(a) h−1(0) = ĥ−1(0),
(b) h�

cl eΩ = ĥ�
cl eΩ.

Proof. Put

ϕ(x) =
{

1 if x ∈ [0, α],
α/(2α− x) if x ∈ [α, 2α).

Now let W be an open set such that h−1(0) bW ⊂ clW b Ω. Define

• 2α := min{|h(x, t)| | (x, t) ∈ ∂W},
• W β := {(x, t) ∈W | |h(x, t)| < β}, where β = α or β = 2α,
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• Ω̃ := Wα, Ω̂ := W 2α,
• ĥ(x, t) := ϕ(|h(x, t)|) · h(x, t).

It is easily seen that Ω̃, Ω̂ and (ĥ, Ω̂) satisfy the assertion of the lemma.

Lemma 6.2. Let (f, U), (f̂ , Û) ∈ Pgl(n). Assume that

(1) f−1(0) = f̂−1(0),
(2) there is an open set V such that

(a) f−1(0) b V ⊂ clV b U ∩ Û ,
(b) f�clV = f̂�clV .

Then (f, U) is proper gradient-like otopic to (f̂ , Û).

Proof. We will make use of a family of auxiliary functions ϕt : [0,∞)→
[1, 1/t] indexed by the real parameter t ∈ (0, 1] and given by

ϕt(x) =


1 if x ∈ [0, α],
t(2α− x) + α

2α− x+ tα
if x ∈ [α, 2α],

1/t if x ∈ [2α,∞),
where α > 0 (see Figure 3). Observe that

• ϕt is increasing on [α, 2α] for each t ∈ (0, 1],
• the map ϕ(x, t) := ϕt(x) is continuous both in x and t.

1
t

1

α 2α

ϕt

x

Fig. 3. The function ϕt

Moreover, since

lim
t→0+

ϕ(x, t) =


1 if x ∈ [0, α],
α/(2α− x) if x ∈ [α, 2α),
∞ if x ∈ [2α,∞),

we can consider ϕ as defined on [0,∞)× (0, 1] t [0, 2α)× 0. As in the proof
of Lemma 6.1, set
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• 2α := min{|f(x)| | x ∈ ∂V },
• V β := {x ∈ V | |f(x)| < β}, where β = α or β = 2α.

Finally, define
• h(x, t) := ϕt(|f(x)|) · f(x),

• Ωt :=
{
U for t ∈ (0, 1],
V 2α for t = 0,

• Ω :=
⋃
t∈I Ωt × t.

We check at once that (h,Ω) is a proper gradient-like otopy connecting (f, U)
and (h0, V

2α). In the same way we can define a proper gradient-like otopy
(ĥ, Ω̂) connecting (f̂ , Û) and (ĥ0, V̂

2α). But since f�clV = f̂�clV , we have
(h0, V

2α) = (ĥ0, V̂
2α), which proves the lemma.

Proposition 6.3. The map d : Pgl[n]→ Fgl[n] is a bijection.

Proof. By Proposition 5.2, d is surjective. So we only need to prove it
is injective. Let (f0, U0), (f1, U1) ∈ Pgl(n) be gradient-like otopic. We will
show that they are also proper gradient-like otopic. By assumption, there is
a gradient-like otopy (h,Ω) such that (hi, Ωi) = (fi, Ui) for i = 0, 1. Let ∼
denote for a moment the relation of being proper gradient-like otopic. Then
combining Lemmas 6.1 and 6.2 we get

(f0, U0) = (h0, Ω0)
6.2∼ (ĥ0, Ω̂0)

6.1∼ (ĥ1, Ω̂1)
6.2∼ (h1, Ω1) = (f1, U1).

By the commutativity of the diagram (2.1), we immediately obtain the
following result.

Corollary 6.4. The map b : Pgl[n]→ P[n] is a bijection.

Once again, the commutativity of the diagram (2.1), Corollary 4.3, Propo-
sition 5.1 and Corollary 6.3 yields the following conclusion.

Corollary 6.5. The map a : P∇[n]→ Pgl[n] is a surjection.

Remark 6.6. It is worth pointing out that Lemmas 6.1 and 6.2 make
sense also for parametrized local maps. Namely, let

F(n, k) := {f : U → Rn | U ⊂ Rn+k is open, f−1(0) b U}
be the set of parametrized local maps (with parameter in Rk). Similarly, we
can define

• the sets P(n, k), F∇(n, k), etc.,
• otopies of parametrized local maps,
• the sets of otopy classes: F [n, k], P[n, k], etc.

Of course, P[n, k] is isomorphic to πn+kS
n. The analogues of Lemmas 6.1

and 6.2 imply that the inclusion P(n, k) ⊂ F(n, k) induces an injection
P[n, k]→ F [n, k]. The same is true with subscript gl. The surjectivity of the
above maps is an immediate consequence of two obvious observations:



100 P. Bartłomiejczyk and P. Nowak-Przygodzki

• any local map (gl local map) can be easily perturbed to a close proper
one,
• the straight-line homotopy between a given local map (gl local map)

and its close proper perturbation establishes the required otopy.

7. Proof of the Main Theorem. We just gather our partial results:
• b is a bijection by Corollary 6.4,
• d is a bijection by Proposition 6.3,
• e is a bijection by Remark 2.3,
• f and g are bijections by Corollary 4.3,
• a is a surjection by Corollary 6.5,
• c is a surjection by Proposition 5.1.

Acknowledgments. The second author was supported by the Ministry
of Science and Higher Education, Poland, grant no. NN201373236.

References

[1] P. Bartłomiejczyk, K. Gęba and M. Izydorek, Otopy classes of equivariant local maps,
J. Fixed Point Theory Appl. 7 (2010), 145–160.

[2] J. C. Becker and D. H. Gottlieb, Vector fields and transfers, Manuscripta Math. 72
(1991), 111–130.

[3] —, —, Spaces of local vector fields, in: Contemp. Math. 227, Amer. Math. Soc. 1999,
21–28.

[4] E. N. Dancer, K. Gęba and S. Rybicki, Classification of homotopy classes of gradient
equivariant maps, Fund. Math. 185 (2005), 1–18.

[5] D. H. Gottlieb and G. Samaranayake, The index of discontinuous vector fields, New
York J. Math. 1 (1994), 130–148.

[6] M. W. Hirsch, Differential Topology, Springer, New York, 1976.
[7] A. Parusiński, Gradient homotopies of gradient vector fields, Studia Math. 96 (1990),

73–80.
[8] A. S. Schwarz, Topology for Physicists, Springer, New York, 1994.
[9] G. Teschl, Nonlinear Functional Analysis, http://www.mat.univie.ac.at/˜gerald/ftp/

book-nlfa/, 2009.

Piotr Bartłomiejczyk
Institute of Mathematics
University of Gdańsk
Wita Stwosza 57
80-952 Gdańsk, Poland
E-mail: pb@mat.ug.edu.pl
http://pb.mat.ug.edu.pl

Piotr Nowak-Przygodzki
Faculty of Applied Physics and Mathematics

Gdańsk University of Technology
Gabriela Narutowicza 11/12

80-233 Gdańsk, Poland
E-mail: piotrnp@wp.pl

Received 30 January 2011;
in revised form 11 June 2011

http://dx.doi.org/10.1007/s11784-010-0013-0
http://dx.doi.org/10.1007/BF02568269
http://dx.doi.org/10.4064/fm185-1-1
http://www.mat.univie.ac.at/~gerald/ftp/book-nlfa/
http://www.mat.univie.ac.at/~gerald/ftp/book-nlfa/

	Basic definitions
	Main Theorem
	Standard local maps
	Proof of the Main Lemma
	Proper gradient local maps
	Proper gradient-like local maps
	Proof of the Main Theorem

