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Khovanov–Rozansky homology for embedded graphs
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Emmanuel Wagner (Dijon)

Abstract. For any positive integer n, Khovanov and Rozansky constructed a bi-
graded link homology from which you can recover the sln link polynomial invariants. We
generalize the Khovanov–Rozansky construction in the case of finite 4-valent graphs em-
bedded in a ball B3 ⊂ R3. More precisely, we prove that the homology associated to a
diagram of a 4-valent graph embedded in B3 ⊂ R3 is invariant under the graph moves
introduced by Kauffman.

Introduction. We consider finite oriented 4-valent graphs embedded in
a ball B3 ⊂ R3. We fix a great circle on the boundary 2-sphere of B3 and
require that the boundary points of the embedded graph lie on this great
circle and that the orientations around a vertex be as follows:

These graphs are called open regular graphs. A diagram Γ of an open regular
graph is a generic projection of the graph onto the plane of the great circle.
An isotopy of such a graph should not move its boundary points and should
respect the cyclic order around the vertices. An embedded graph in B3

without boundary points is called a (closed) regular graph. If an open regular
graph can be embedded in the plane of the great circle, it is called planar,
and we make no distinction between the graph and this generic projection
(see Figure 1 for an example).

For any positive integer n, Khovanov and Rozansky categorified the sln
link polynomials [4] by associating to a link diagram a complex of matrix
factorizations (see Section 1.1 for definition). The first step in their construc-
tion is to associate a matrix factorization to an open planar regular graph. It
is then almost immediate to associate a complex Cn(Γ ) of matrix factoriza-
tions to a diagram Γ of an open regular graph. To prove that the homotopy
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Fig. 1. Planar regular graph

type of this complex is an invariant of the open regular graph, we check
that it is invariant under the graph moves, called RV-moves, introduced by
Kauffman [2] (see Figure 4). We obtain the following theorem:

Theorem 1. Let Cn(Γ1) and Cn(Γ2) be complexes of matrix factoriza-
tions associated to diagrams Γ1 and Γ2 of open regular graphs in B3. If
there exists a sequence of RV -moves transforming Γ1 into Γ2 then Cn(Γ1)
and Cn(Γ2) are homotopy equivalent.

As pointed out by Kauffman and Vogel [3], link polynomial invariants
give rise to graph invariants; the same is true for Khovanov–Rozansky link
homology.

In Section 1, we recall the Khovanov–Rozansky construction and adapt
it to the case of oriented 4-valent graphs embedded in B3 ⊂ R3. In Sec-
tion 2, we introduce Kauffman graph moves, and in Section 3, we prove the
invariance up to homotopy of the complex of matrix factorizations under
these moves.

1. Khovanov–Rozansky construction

1.1. Matrix factorizations. Let k be a positive integer, let R =
Q[x1, . . . , xk] be a commutative polynomial Q-algebra, and let w ∈ R. An
(R,w)-matrix factorization of the potential w over R consists of two free
R-modules C0, C1 and two R-module maps

C0 d0−→ C1 d1−→ C0

such that d0 ◦ d1(m) = wm for all m ∈ C1 and d1 ◦ d0(m) = wm for all
m ∈ C0.

A first example of matrix factorization is the following (R, ab)-matrix
factorization:

R
×a−−→ R

×b−→ R,

where a, b ∈ R. We denote this matrix factorization by (a, b)R. We construct
more matrix factorizations by tensoring over R such elementary factoriza-
tions (see [4] for the definition of tensor products). More precisely we denote
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by 
a1 b1
...

...
ak bk


R

the tensor product over R of (a1, b1)R, . . . , (ak, bk)R. It is a matrix factor-
ization of the potential w = a1b1 + · · · + akbk. We consider the following
Z-grading on R: deg(xi) = 2 for i = 1, . . . , k. A matrix factorization is
graded if d0 and d1 are homogeneous and deg(d0) = deg(d1). The grading
on R induces a grading on C0 and C1: C0 =

⊕
i∈ZC

i,0, C1 =
⊕

i∈ZC
i,1,

We denote by {·} the shift of the Z-grading: for i, k ∈ Z and j ∈ Z/2Z,
Ci,j{k} = Ci−k,j . For k ∈ Z, let 〈k〉 be the shift of the (Z/2Z)-grading by
k (mod 2). Given two graded (R,w)-matrix factorizations C and D, a mor-
phism f : C → D is a pair of R-module homomorphisms f0 : C0 → D0 and
f1 : C1 → D1 preserving the Z-grading and such that the following diagram
commutes:

C0 d0 //

f0

��

C1 d1 //

f1

��

C0

f0

��
D0 δ0 // D1 δ1 // D0

A homotopy h between morphisms f, g : C → D of matrix factorizations is
a pair of morphisms h0 : C0 → D1 and h1 : C1 → D0 such that

f0 − g0 = h1 ◦ d0 + δ1 ◦ h0 and f1 − g1 = h0 ◦ d1 + δ0 ◦ h1.

Given w ∈ R, we denote by hmfRw the homotopy category of graded matrix
factorizations of the potential w over R.

1.2. Planar regular graphs and matrix factorizations. Fix a pos-
itive integer n. We now recall the matrix factorizations that Khovanov and
Rozansky [4] associate to an open planar regular graph Γ . Let k be a pos-
itive integer and {x1, . . . , xk} a set of marks on the edges of Γ such that
every edge has at least one mark.

We consider the following piece of a planar regular graph:

xj xi

The matrix factorization Lij associated to this piece is (πij , xi − xj)Q[xi,xj ]:

Q[xi, xj ]
×πij−−−→ Q[xi, xj ]{1− n}

×(xi−xj)−−−−−−→ Q[xi, xj ],

where πij = (xn+1
i − xn+1

j )/(xi − xj). The grading shift makes Lij graded.
More precisely, with this shift multiplications by πij and xi − xj become
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homogeneous maps of degree n+ 1. We now consider the following piece Γ 1

of a planar regular graph:

xj

xlxk

xi

Fix R to be the ring Q[xi, xj , xk, xl]. We associate to such a piece a graded
matrix factorization of the potential w = xn+1

i +xn+1
j −xn+1

k −xn+1
l over R.

We decompose w as

w = u1(xi, xj , xk, xl)(xi + xj − xk − xl) + u2(xi, xj , xk, xl)(xixj − xkxl)
where

u1 =
g(xi + xj , xixj)− g(xk + xl, xixj)

xi + xj − xk − xl
,

u2 =
g(xk + xl, xixj)− g(xk + xl, xkxl)

xixj − xkxl
,

and g is the two-variable function satisfying g(x+ y, xy) = xn+1 + yn+1. We
now define Cn(Γ 1) to be the graded matrix factorization(

u1 xi + xj − xk − xl
u2 xixj − xkxl

)
R

{−1}.

In other words Cn(Γ 1) is the tensor product over R of the graded matrix
factorizations

R
u1−→ R{1− n} xi+xj−xk−xl−−−−−−−−−→ R

and
R

u2−→ R{3− n} xixj−xkxl−−−−−−→ R

with an additional shift by {−1}. As for Lij , the grading shift makes Cn(Γ 1)
graded.

We distinguish two kinds of tensor product of such elementary graded
matrix factorizations: tensor product over Q corresponding topologically to a
disjoint union of pieces and tensor product over some polynomial Q-algebra
corresponding to gluing of pieces along some endpoints (see [4] for a detailed
treatment). The potential of graded matrix factorizations is additive with
respect to both tensor products. We consider the two examples in Figure 2.
The graded matrix factorization associated to the left diagram of Figure 2
is Lik ⊗Q Ljl and the graded matrix factorization associated to the right
diagram in Figure 2 is Lij ⊗Q[xj ] L

j
k. In general, we can now associate to a

planar regular graph Γ embedded in R2 the matrix factorization

Cn(Γ ) =
(⊗

Lij

)
⊗
(⊗

Cn(Γ 1)
)
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xk

xi

xk xl

xj

xi

xj

Fig. 2. Two examples

where the first tensor product runs through all the oriented arcs starting
and ending at marks and with no interior mark, and where the second runs
through all 4-valent vertices. The tensor products are over suitable polyno-
mial Q-algebras (see [4]). The homotopy type of this matrix factorization
does not depend on the choice of marks [4].

1.3. Regular graph embedded in R3 and the complex of graded
matrix factorizations. We define two morphisms χ0 and χ1 of graded
matrix factorizations between elementary matrix factorizations as depicted
in the following diagram:

xjxjxi

xk xl

χ0

xk

xi

xl

χ1

Γ 0 Γ 1

The matrix factorization Cn(Γ 0) is the tensor product over Q of Lik and Ljl
and is given by(

R

R{2− 2n}

)
P0−→
(
R{1− n}
R{1− n}

)
P1−→
(

R

R{2− 2n}

)
where

P0 =

(
πik xj − xl
πjl xk − xi

)
, P1 =

(
xi − xk xj − xl
πjl −πik

)
.

The matrix factorization Cn(Γ 1) is(
R{−1}

R{3− 2n}

)
Q0−−→

(
R{−n}
R{2− n}

)
Q1−−→

(
R{−1}

R{3− 2n}

)
where

Q0 =

(
u1 xixj − xkxl
u2 −xi − x− j + xk + xl

)
,

Q1 =

(
xi + xj − xk − xl xixj − xkxl

u2 −u1

)
.
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We define χ0 : Cn(Γ 0)→ Cn(Γ 1) by the pair of matrices

U0 =

(
xk − xj 0

a 1

)
, U1 =

(
xk −xj
−1 1

)
acting on C0

n(Γ 0) and C1
n(Γ 0) respectively. Let a be equal to −u2 + (u1 +

xiu2 − πjl)/(xi − xk), and define the morphism χ1 : Cn(Γ 1) → Cn(Γ 0) by
the pair of matrices

V0 =

(
1 0
−a xk − xj

)
, V1 =

(
1 xj

1 xk

)
acting on C0

n(Γ 1) and C1
n(Γ 1) respectively. The maps χ0 and χ1 are mor-

phisms of graded matrix factorizations and are of degree 1 (for the grad-
ing {·}).

We now consider a regular graph embedded in R3. We denote by D a
diagram for this graph. It has three different types of crossing: positive,
negative and singular (see Figure 3).

negative positive singular

Fig. 3. Crossings

Let k, r, and s be positive integers. We put marks {x1, . . . , xk} on D
such that every arc between two crossings has at least one mark. We also
put marks {p1, . . . , pr} on every positive or negative crossing and {q1, . . . , qs}
on every singular crossing. As for planar regular graphs, we want to associate
to every elementary piece of a regular graph diagram an algebraic object,
and in this case it is a complex of graded matrix factorizations.

For an arc that contains no crossings and no other marks, define Lij as
above and consider it as the chain complex

0→ Lij → 0,

where Lij is in cohomological degree 0. For a singular crossing q, define Cn(q)
as Cn(Γ 1) and consider it as the chain complex

0→ Cn(Γ 1)→ 0,

where Cn(Γ 1) is in cohomological degree 0. We now consider positive and
negative crossings. For every positive or negative crossing p, there are two
different resolutions, either Γ 0 or Γ 1.
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0

0 -1

1

Γ1Γ0

If p− is a negative crossing we define Cn(p−) to be the chain complex

0→ Cn(Γ 0){1− n} χ0−→ Cn(Γ 1){−n} → 0,

and if p+ is a positive crossing we define Cn(p+) to be the chain complex

0→ Cn(Γ 1){n} χ1−→ Cn(Γ 0){n− 1} → 0,

where Cn(Γ 0) is always in cohomological degree 0. Now to a regular graph
diagram D associate the complex of graded matrix factorizations

Cn(D) =
(⊗

Li
j

Lij

)
⊗
(⊗

p

Cn(p)
)
⊗
(⊗

q

Cn(q)
)

where the first tensor product runs through all arcs in D that start and end
at marks and that contain no crossings and no other marks, p runs through
all the positive and negative crossings of D, and q runs through all singular
crossings. The tensor products are over suitable polynomial Q-algebras.

2. Reidemeister moves for graphs. We consider open regular graphs
embedded in B3 ⊂ R3 as graphs with rigid vertices. As explained in [2], a 4-
valent graph with rigid vertices can be regarded as an embedding of a graph
whose vertices have been replaced by rigid disks. Each disk has four strands
attached to it, and the cyclic order of these strands is determined via the
rigidity of the disk. An RV-isotopy or rigid vertex isotopy of the embedding of
such a regular graph Γ in R3 consists in affine motions of the disks, coupled
with topological ambient isotopies of the strands (corresponding to the edge
of Γ ). The notion of RV-isotopy is a mixture of mechanical (Euclidian) and
topological concepts. It arises naturally in the building of models for graph
embeddings, and it also arises naturally with regard to creating invariants
of graph embeddings.

In [2], Kauffman derived a collection of moves, analogous to Reidemeis-
ter moves, that generates RV-isotopy for diagrams of 4-valent graph em-
beddings. As we are only interrested in 4-valent oriented graph embeddings
whose oriented rigid vertex take the basic form

we will present the RV-moves in this case (see Figure 4).
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3. Invariance under RV-moves. In [4], Khovanov and Rozansky have
proved the invariance of Cn(Γ ) under type (I), (II) and (III) moves (see Fig-
ure 4). We prove invariance under type (IV) and (V). Invariance under type

(I)

(IIa) (IIb)

(III) (IV)

(Va) (Vb)

Fig. 4. Graph moves that generate rigid vertex isotopy

(IV) follows directly from the proof of invariance under (III). We will use
at many levels the proofs of Khovanov and Rozansky (see [4]). All isomor-
phisms under graded matrix factorizations below are in homotopy categories
hmf.

3.1. Invariance under (IV). As pointed out by Wu [6], Khovanov–
Rozansky’s proof of invariance under Reidemeister (III) can be simplified by
using Bar-Natan’s algebraic trick [1], i.e. by using the fact that the homotopy
equivalence used for the proof of invariance under Reidemeister move (IIa)
is a strong deformation retraction. If we think in the proof that way, then
the proof of invariance under (IV) is contained in the one of (III).

We need to show that Cn(Γ ) and Cn(Γ ′) are isomorphic for Γ , Γ ′ in
Figure 5. The diagram Γ has four resolutions, denoted by Γij for i, j ∈ {0, 1}

Γ Γ′

Fig. 5. Type (IV) move

(see Figure 6). The complex Cn(Γ ){−2n} has the form

0→ Cn(Γ00) ∂−2

−−→
(
Cn(Γ01){−1}
Cn(Γ10){−1}

)
∂−1

−−→ Cn(Γ11){−2} → 0
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with Cn(Γ11){−2} in cohomological degree 0. This complex is shown in
Figure 6.

Γ00

Γ10

Γ01

Γ11

Fig. 6. Four resolutions of Γ in a type (IV) move

Khovanov and Rozansky [4] proved the following isomorphism:

Cn(Γ01) ∼= Cn(Γ11){+1} ⊕ Cn(Γ11){−1}.(3.1)

Furthermore, they proved that

Cn(Γ00) ∼= Cn(Γ11)⊕ Υ,(3.2)

where Υ is defined in [4, Prop. 33].
The differential ∂−2 is injective on Cn(Γ11) ⊂ Cn(Γ00). In fact, the map

to Cn(Γ01){−1} is injective (which follows from the inclusion Cn(Γ11) ⊂
Cn(Γ00) and the proof of invariance under (IIa), see [4]). The graded ma-
trix factorization ∂−2(Cn(Γ00)) is a direct summand of C−1

n (Γ ){−2n}. Thus
Cn(Γ ){−2n} contains a contractible summand

0→ Cn(Γ11) ∂−2

−−→ Cn(Γ11)→ 0.(3.3)

The direct sum decomposition (3.1) can be chosen so that

Cn(Γ01){−1} ∼= p01∂
−2Cn(Γ11)⊕ Cn(Γ11){−2},

where p01 is the projection of C−1
n (Γ ){−2n} onto Cn(Γ01){−1}. The differ-

ential ∂−1 is injective on Cn(Γ11){−2} ⊂ Cn(Γ01){−1}. Furthermore, the
image of Cn(Γ11){−2} ⊂ Cn(Γ01){−1} under ∂−1 is a direct summand of
C0
n(Γ ){−2n}. Hence the complex Cn(Γ ){−2n} contains a contractible direct

summand isomorphic to

0→ Cn(Γ11){−2} ∂−1

−−→ Cn(Γ11){−2} → 0(3.4)

After splitting off contractible direct summands (3.3) and (3.4), the complex
Cn(Γ ){−2n} reduces to the complex C defined by

0→ Υ
∂−2

−−→ Cn(Γ10){−1} → 0.
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Since both Cn(Γ ){−2n} and Cn(Γ ′){−2n} contain Cn(Γ10){−1}, [4, Prop.
33] ensures that we can perform exactly the same reduction to Cn(Γ ′){−2n}.
Finally, we conclude that Cn(Γ ) ∼= Cn(Γ ′).

3.2. Invariance under (Va). This invariance can be obtained as a
consequence of Lemma 4.10 from Rasmussen [5]. We detail the proof.

Γ Γ′

Fig. 7. Type (Va) move

Γ00

Γ10

Γ11

Γ01

Fig. 8. Four resolutions of Γ in a type (Va) move

We need to show that Cn(Γ ) and Cn(Γ ′) are isomorphic for the graphs
Γ , Γ ′ shown in Figure 7. The diagram Γ has four resolutions, denoted by
Γij for i, j ∈ {0, 1} and shown in Figure 8. The complex Cn(Γ ) has the form

0→ Cn(Γ00){+1} ∂−1

−−→
(
Cn(Γ01)
Cn(Γ10)

)
∂0

−→ Cn(Γ11){−1} → 0

where Cn(Γ01) and Cn(Γ10) are in cohomological degree 0. We have depicted
this complex in Figure 8. Since Γ00 and Γ11 are isotopic, Cn(Γ00) and Cn(Γ11)
are isomorphic. Khovanov and Rozansky [4] proved that

Cn(Γ10) ∼= Cn(Γ00){+1} ⊕ Cn(Γ00){−1}.(3.5)

Khovanov–Rozansky’s proof of invariance under (IIa) ensures that the dif-
ferential ∂−1 is injective on C−1

n (Γ00). The direct sum decomposition (3.5)
can be chosen so that

Cn(Γ10) ∼= p10∂
−1Cn(Γ00){+1} ⊕ Cn(Γ00){−1}.
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Thus, Cn(Γ ) contains a contractible summand

0→ Cn(Γ00){+1} ∂−1

−−→ Cn(Γ00){+1} → 0.(3.6)

Furthermore, we have

Cn(Γ11){−1} ∼= Cn(Γ01)⊕ Cn(Γ01){−2}.(3.7)

The differential ∂0 is surjective onto Cn(Γ01) ⊂ Cn(Γ11){−1}. Thus Cn(Γ )
contains a contractible summand

0→ Cn(Γ01) ∂0

−→ Cn(Γ01)→ 0.(3.8)

After splitting off the contractible direct summands (3.6) and (3.8), the
complex Cn(Γ ) reduces to a complex C of the form

0→ Cn(Γ11){−1} ∂0

−→ Cn(Γ01){−2} → 0

Since Γ ′ and Γ01 are isotopic, the decomposition (3.7) ensures that C is
homotopy equivalent to

0→ Cn(Γ ′)→ 0.

3.3. Invariance under (Vb). We need to show that Cn(Γ ) and Cn(Γ ′)
are isomorphic for the graphs Γ , Γ ′ shown in Figure 9. The diagram Γ has

Γ Γ′

Fig. 9. Type (Vb) move

four resolutions, denoted by Γij for i, j ∈ {0, 1} and shown in Figure 10.
The complex Cn(Γ ) has the form

Γ10

Γ11

Γ01

Γ00

Fig. 10. Four resolution of Γ in a type (Vb) move



212 E. Wagner

0→ Cn(Γ00){+1}
t(∂−1,0,∂−1,1)−−−−−−−−−→

(
Cn(Γ10)
Cn(Γ01)

)
(∂0,0,∂0,1)−−−−−−→ Cn(Γ11){−1} → 0

where Cn(Γ01) and Cn(Γ10) are in cohomological degree 0. We have depicted
this complex in Figure 10.

Applying Khovanov–Rozansky’s results, we have the isomorphisms

Cn(Γ00) ∼=
n−2⊕
i=0

Cn(G00){2− n+ 2i}〈1〉,(3.9)

Cn(Γ01) ∼=
n−2⊕
i=0

Cn(G01){2− n+ 2i}〈1〉,(3.10)

Cn(Γ11) ∼=
n−2⊕
i=0

Cn(G11){2− n+ 2i}〈1〉,(3.11)

Cn(Γ10) ∼=
( n−3⊕
i=0

Cn(G11){3− n+ 2i}〈1〉
)
⊕ Cn(Γ ′),(3.12)

where G00, G01 and G11 are depicted in Figure 11.

GG00 G01 G11

Fig. 11. The graphs G00, G01, G11, G

We can twist the direct sum decompositions (3.9), (3.10) and (3.11) so
that ∂−1,1 and ∂0,1 have diagonal form with respect to the decompositions
∂−1,1 =

∑n−2
i=0 ∂

−1,1
i and ∂0,1 =

∑n−2
i=0 ∂

0,1
i . The proof of invariance under (I)

by Khovanov and Rozansky implies that ∂−1,1
i is split injective and ∂0,1

i is
split surjective for all i ∈ [[0, n− 2]]. Hence ∂−1,1 is split injective and ∂0,1 is
split surjective. Denote by δ−1

i the restriction of δ−1 to Cn(G00){3−n+2i}〈1〉
and by δ0i the composition of δ0 with the projection onto Cn(G11){1− n+
2i}〈1〉. Since the category hmfw has splitting idempotents (see [4, p. 46]),
we can decompose C0

n(Γ ) as the direct sum

C0
n(Γ ) ∼=

( n−2⊕
i=0

Im(∂−1
i )
)
⊕
( n−2⊕
i=0

Y i
1

)
⊕ Y2

in such a way that ∂0
i restricts to an isomorphism from Y i

1 to Cn(G11){1−
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n+2i} for all i = 0, . . . , n−2 and ∂0
i (Y2) = 0. Therefore, Cn(Γ ) is isomorphic

to the direct sum of complexes

0 → Y2 → 0,

0 → Cn(G00){3− n+ 2i} ∼=−→ Im(∂−1
i ) → 0,

0 → Y i
1

∼=−→ Cn(G11){1− n+ 2i} → 0.

We can decompose further the sum decompositions (3.9)–(3.11) to obtain

Cn(Γ00) ∼=
n−2⊕
i=0

n−2⊕
j=0

Cn(G){4− 2n+ 2(i+ j)},(3.13)

Cn(Γ01) ∼=
n−2⊕
i=0

n−1⊕
j=0

Cn(G){3− 2n+ 2(i+ j)},(3.14)

Cn(Γ11) ∼=
n−2⊕
i=0

n−2⊕
j=0

Cn(G){4− 2n+ 2(i+ j)},(3.15)

Cn(Γ10) ∼=
( n−3⊕
i=0

n−2⊕
j=0

Cn(G){5− 2n+ 2(i+ j)}
)
⊕ Cn(Γ ′),(3.16)

where G is the rightmost graph in Figure 11. From formulas (3.13) to (3.16)
we obtain

C0
n(Γ ) ∼= Cn(Γ01)⊕ Cn(Γ10) ∼= Cn(Γ00){+1} ⊕ Cn(Γ11){−1} ⊕ Cn(Γ ′).

The category hmfw is Krull–Schmidt; this implies that Y2
∼= Cn(Γ ′). There-

fore, the complexes Cn(Γ ) and 0 → Cn(Γ ′) → 0 are isomorphic. This con-
cludes our proof of the invariance under type (Vb) moves. Theorem 1 follows.
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