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Abstract. Let X be a crowded metric space of weight κ that is either κω-like or
locally compact. Let y ∈ βX\X and assume GCH. Then a space of nonuniform ultrafilters
embeds as a closed subspace of (βX \ X) \ {y} with y as the unique limit point. If, in
addition, y is a regular z-ultrafilter, then the space of nonuniform ultrafilters is not normal,
and hence (βX \X) \ {y} is not normal.

1. Introduction. An important theorem about the structure of βX \X
when X is discrete is due to Bešlagić and van Douwen [1].

Theorem 1.1 (Bešlagić and van Douwen [1]). Assume GCH. Let κ be
an infinite cardinal, and let X be the discrete space of cardinality κ. Let y
be any point of βX \ X. Then the space of nonuniform ultrafilters on κ+

embeds in (βX \X) \ {y} as a closed subset. Hence neither (βX \X) \ {y}
nor βX \ {y} is normal.

Recent research has extended nonnormality point results to nondiscrete
spaces. For example:

Theorem 1.2 (Logunov [9] and Terasawa [12], independently). If X
is a crowded metrizable space space, then βX \ {y} is not normal for all
y ∈ βX \X.

Theorem 1.3 (Logunov [10]). If X is a crowded realcompact locally
compact metrizable space space, and y is not a P-point, then (βX \X) \ {y}
is not normal for all y ∈ βX \X.

Logunov and Terasawa prove their results without extra axioms of set
theory. They prove that βX \ {y} or (βX \X) \ {y} is not normal, but do
not embed closed subspaces of nonuniform ultrafilters. Our results are closer
to those of Bešlagić and van Douwen.
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Theorem 1.4. Let X be a metric space of weight κ without isolated
points that is either κω-like or locally compact. Let y ∈ βX \ X. Assume
GCH. Then a space of nonuniform ultrafilters embeds as a closed subspace
of (βX\X)\{y} with y as the unique limit point. If y is a regular z-ultrafilter,
then neither (βX \X) \ {y} nor βX \ {y} is normal.

2. Topological spaces. All spaces X are Tikhonov, and hence have
a Stone–Čech compactification βX. We consider a point of βX to be a
z-ultrafilter on X. We identify a point x of X with the z-ultrafilter x̂, the
collection of all zero sets ofX of which x is an element, so thatX is embedded
as a subspace of βX. When f is a bounded, continuous function from X
to R, we denote the unique extension of f by βf .

A space is called crowded if it has no isolated points. The topology,
weight, and Lindelöf number of a space X are denoted τ(X), w(X), and
L(X). We use the letters κ, λ, θ, etc. to denote infinite cardinals and the
discrete spaces of that cardinality. We say that a space X is κω-like if X is
metrizable, nowhere locally compact, and every nonempty open subset of X
has weight κ.

Lemma 2.1. Let X be a κω-like metrizable space and let Z be a subset
of X with w(Z) = λ < κ. There is a λω-like closed subset Y of X contain-
ing Z.

Proof. Set Z1 = Z. Given Zn with L(Zn) = λ, choose Vn ∈ [τ(X)]λ such
that Zn ⊂

⋃
Vn and diamV < 1/n for all V ∈ V. Choose Zn+1 such that

Zn ⊆ Zn+1, |Zn+1 \ Zn| ≤ λ (hence L(Zn+1) = λ), and for all V ∈ Vn there
is E ∈ [V ∩ Zn+1]λ which is closed discrete (hence w(V ∩ Zn+1) = λ). Set
Y0 =

⋃
n∈N Zn; note that w(Y ) ≤ λ because {V ∩ Y0 : (∃n) V ∈ Vn} is a

base for Y0.
Let y ∈ W be open in Y0. There are n ∈ N and V ∈ Vn such that

y ∈ V ∩Zn+1 ⊆W . Then w(W ) ≥ w(V ∩Zn+1) = λ. Finally, set Y = clY0.

3. Regular z-ultrafilters. The next result tells us for which cardinals θ
the space of nonuniform ultrafilters is not normal.

Lemma 3.1. Let NU(θ) denote the subspace of βθ of nonuniform ultra-
filters. That is, NU(θ) = {y ∈ βθ : (∃Z ∈ y) |Z| < θ}.

(1) ([11]) If θ is regular and not a strong limit cardinal (in particular, if
θ = κ+), then NU(θ) is not normal.

(2) ([11]) If θ is singular, then NU(θ) is not normal.
(3) ([8]) The space NU(θ) is normal if and only if θ is weakly compact.

In the proof of Theorem 1.1, the reaping number r(κ) of κ is defined,
and the space NU(r(κ)) is embedded in (βκ \ κ) \ {y}. The inequalities
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κ < r(κ) ≤ 2κ hold in ZFC, so GCH gives r(κ) = κ+, and the embedded
space is not normal.

In the proof of Theorem 1.4, we consider a point y of βX \X. The analog
of r(κ) is θy, a cardinal which depends on the point y (not just the space X).
The upper bound θy ≤ 2κ is proved as in [1], but the lower bound κ < θy
requires assuming that y is a regular z-ultrafilter.

Definition 3.2. Let y be a z-ultrafilter on a space X. We say that y is
κ-regular if there is a subset Z of y such that Z is locally finite and |Z| = κ.
We say that y is regular if y is w(X)-regular.

If X is a discrete space of cardinality κ, then any ultrafilter on X is a
z-ultrafilter (because every subset of X is an open set, a closed set, and a z-
set). In this case, a κ-regular ultrafilter is exactly an (ω, κ)-regular ultrafilter
as defined in [2]. The notion of regular ultrafilter appears implicitly in papers
from the mid-1950’s, for example [5].

Theorem 3.3 ([7, Section 12.7]). Let κ be an infinite cardinal. There
is a maximal ideal M in C(κ) such that |C(κ)/M | > κ. In fact, no set of
power at most κ is cofinal in the ordered field C(κ)/M . If 2κ = κ+, then
cf(C(κ)/M) = |C(κ)/M | = 2κ.

Proof. Because κ is infinite, there is a bijection α 7→ sα from κ to [κ]<ω.
For each α ∈ κ, set Zα = {γ ∈ κ : α ∈ sγ}. By construction, {Zα : α ∈ κ}
has the finite intersection property: if s = sγ ∈ [κ]<ω, then γ ∈

⋂
{Zα :

α ∈ s}. Extend {Zα : α ∈ κ} to a z-ultrafilter y, and set M = {f ∈ C(κ) :
f←{0} ∈ y}.

Given B = {gα : α < κ} ⊂ C(κ), define

f(γ) = 1 + max{gα(γ) : α ∈ sγ}.
The maximum exists because sγ is finite, and f is continuous because κ is
discrete. Let gα ∈ B be arbitrary. For every γ ∈ Zα,

gα(γ) ≤ max{gα′ : α′ ∈ sγ} < f(γ).

We can generalize the previous theorem to show that if X is a para-
compact space, and y is a regular z-ultrafilter on X, then C(X)/My has
cofinality greater than κ, where My is the maximal ideal of functions f such
that {x ∈ X : f(x) = 0} ∈ y. We have also generalized the notion of “κ+-
good” to z-ultrafilters and proved the analogous theorem. If y is a κ+-good
z-ultrafilter on a paracompact space X, then C(X)/My is an ηα-set, where
κ+ = ℵα.

Definition 3.4. Let UR(κ) be the assertion that every uniform ultra-
filter on a set of cardinality κ is κ-regular. Let UR assert that UR(κ) holds
for every infinite κ. Informally, we read UR as “every uniform ultrafilter is
regular”.
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The most familiar example of a nonregular ultrafilter is a countably com-
plete free ultrafilter on a measurable cardinal. Hence UR implies that there
are no measurable cardinals. Like the assumption that there are no measur-
able cardinals, UR is safe. The assumption of Theorem 1.4, GCH + UR, is
a consequence of V = L. Hence UR does not imply that ZFC is consistent.
On the other hand, it has been shown that ¬UR does imply that ZFC is
consistent. In fact, it is plausible to conjecture that ¬UR is equiconsistent
with “there exists a measurable cardinal”. See [3].

Lemma 3.5. Assume UR(κ). That is, every uniform ultrafilter p on a set
of cardinality κ is κ-regular. Let X be a metrizable space of weight κ which
is locally compact. Then every uniform z-ultrafilter y on X is κ-regular.

Proof. Let C be the collection of open subsets of X that have compact
closure. Because X is locally compact, C covers X. Let R be a locally finite
open refinement of C.

We claim that |R| = κ. Since y is free, X is not compact and therefore R
cannot be finite. Hence if κ = ω then |R| = κ = ω. Suppose that κ > ω. Let
B be a base for X of cardinality κ. Because R is locally finite, |R| ≤ |B| = κ.
In the other direction, if R ∈ R, then L(R) = ω. Hence κ = L(

⋃
R) ≤ |R|·ω.

By the same argument, for all S ∈ [R]<κ and Z ∈ y, we have Z 6⊆
⋃
S

because y is a uniform z-ultrafilter.
For each Z ∈ y, set U(Z) = {U ∈ R : U ∩ Z 6= ∅}. Observe that

p0 = {U(Z) : Z ∈ y} ∪ {X \ S : S ∈ [R]<κ} has the finite intersection
property, and extend it to a uniform ultrafilter p on R.

Because p is κ-regular, there is a point finite collection {Uα : α ∈ κ} ⊂ p.
For each α, set Zα = cl

⋃
Uα. We now show that Zα ∈ y. Let Z ∈ y be

arbitrary. The collections Uα and U(Z) are both members of p, so Uα ∩
U(Z) 6= ∅. Let U ∈ Uα ∩U(Z). Then U ∩Z 6= ∅ and therefore

⋃
Uα ∩Z 6= ∅.

Hence Zα ∩ Z 6= ∅, so Zα ∈ y.
We have shown that {Zα : α ∈ κ} is a subset of y; we must show that

it is locally finite. Because R is locally finite, for each x ∈ X there is an
open set V such that x ∈ V and {U ∈ R : V ∩ U 6= ∅} is finite. Then
{α ∈ κ : (∃U ∈ Uα) V ∩ U 6= ∅} is finite, and we are done.

In the result above, the hypothesis “X is locally compact” can be re-
placed with the cumbersome “Let X have a cover C of open sets of weight
less than λ, for some regular cardinal λ less than or equal to κ”.

4. Pi-bases. In our constructions we will use locally finite pairwise dis-
joint collections ξ of open sets. The collections will come from an appropriate
π-base. Following Terasawa we use ξ∗ to denote

⋃
ξ. Observe that such a

collection ξ is locally finite and maximal disjoint if and only if ξ∗ is dense
in X.
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Proposition 4.1 (Terasawa). Let X be a crowded metrizable space.
Then X has a π-base

B =
⋃
n∈ω
Bn

such that

(1) Bn is a locally finite, maximal disjoint family of nonempty open sets;
(2) Bn refines Bn−1;
(3) for each B ∈ Bn−1, there are three sets B(i) ∈ Bn, i = 0, 1, 2, such

that clB(i) ⊂ B and clB(i) ∩ clB(i) = ∅ for i 6= j;
(4) every open cover of X is refined by a locally finite, maximal disjoint

subfamily of B.

Suppose y ∈ βX \X. Terasawa remarks that the π-base in Proposition
4.1 can be easily modified so that

(#) y /∈ clβX B for all B ∈ B.
This property of B was not, however, necessary in his proof that βX \ {y}
is not normal; the butterfly sets did not need to be subsets of βX \X. To
show that (βX \X) \ {y} is not normal, our construction will require closed
subsets of βX \ X. The following propositions define a π-base B for two
types of metric spaces. For X locally compact, (#) is true for B for any
y ∈ βX \X. For X κω-like, given y ∈ βX \X, we construct B so that (#)
is satisfied.

We say that a π-base B for a crowded metric space is nice if it satisfies
(1), (2) and (4) in Proposition 4.1. In Section 5 we use the properties of a
nice π-base to construct locally finite collections. In the sections after 5 we
use a nice π-base with the additional properties (3) and (#).

The proofs of the next two results are omitted because they follow easily
from Proposition 4.1.

Proposition 4.2. Let X be a locally compact crowded metrizable space.
Then X has a π-base

B =
⋃
n∈ω
Bn

such that

(1) Bn is a locally finite, maximal disjoint family such that clX B is
compact for each B ∈ B;

(2) Bn+1 refines Bn and |{B′ ∈ Bn+1 : B′ ⊂ B}| = 4 for all B ∈ Bn;
(3) for B ∈ Bn there are B0, B1 ∈ Bn+1 such that clB0 ∩ clB1 = ∅ and

clB0, clB1 ⊂ B;
(4) every open cover of X is refined by a locally finite, maximal disjoint

subfamily of B.
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Proposition 4.3. Let κ be an infinite cardinal and let X be a κω-like
metric space. Let y be a free z-ultrafilter on X. Then X has a π-base

B =
⋃
n∈ω
Bn

such that

(1) Bn is a locally finite, maximal disjoint family of nonempty open sets;
(2) Bn refines Bn−1;
(3) |B0| = κ and for each B ∈ Bn−1, there are sets B(η) ∈ Bn, η ∈ κ,

such that clB(η) ⊂ B and clB(η) ∩ clB(η′) = ∅ for η 6= η′;
(4) every open cover of X is refined by a locally finite, maximal disjoint

subfamily of B;
(5) clB /∈ y for all B ∈ B.

5. Locally finite collections and cofinalities. Let X be a crowded
metrizable space with a nice π-base B. Let Ξ be the collection of maximal
pairwise disjoint, locally finite collections ξ ⊂ B.

Remark 1. For each B,B′ ∈ B, if B ∩ B′ 6= ∅ then either B = B′,
B ( B′ or B′ ( B.

Remark 2. If ξ, η ∈ Ξ and B ∈ ξ, then since both ξ∗ and η∗ are dense
in X, because of Remark 1, there is B′ ∈ η such that either B = B′, B ( B′

or B′ ( B.

Fix a free z-ultrafilter y on X and let τy be the collection of open
neighborhoods of y in βX. Let Ny = {X ∩ O : y ∈ O, O ∈ τ(βX)}.
The collection Ny is a free open filter on X. We write N̂y for the collec-
tion of open subsets U of X that are dense in some N ∈ Ny, that is,
N ⊂ clU . Using N̂y, we define a strict partial order <y on Ξ. For ξ, η ∈ Ξ let
L(ξ, η) = {B ∈ ξ : B′ ( B for some B′ ∈ η}. Define ξ <y η if L(ξ, η)∗ ∈ N̂y.

The lemma below is analogous to Theorem 3.3.

Lemma 5.1. Let κ = w(X). Suppose y ∈ βX\X is a regular z-ultrafilter.
Any subset {ξγ : γ ∈ λ} of Ξ where λ ≤ κ is bounded.

Proof. Let {ξγ : γ ∈ κ} ⊂ Ξ. We construct ξ ∈ Ξ such that ξγ <y ξ for
all γ ∈ κ. Let {Zγ : γ ∈ κ} ⊂ y be a locally finite subcollection of y. Since
X is paracompact, there is a locally finite collection W = {Wγ : γ ∈ κ}
of open subsets of X such that Zγ ⊂ Wγ for all α ∈ κ (see [4, Remark
5.1.19]). Note that Wγ ∈ Ny. For each x ∈ X let Fx = {γ : x ∈ clWγ}
and set U0

x = X \
⋃
{clWγ : γ /∈ Fx} = X \ cl(

⋃
{Wγ : γ /∈ Fx}). For

γ ∈ Fx let C(x, γ) = {B ∈ ξγ : x ∈ clB} and set Cx =
⋃
{C(x, γ) : γ ∈ Fx}.

Define Ux = U0
x \
⋃
{clB : B ∈ ξγ \ Cx, γ ∈ Fx}. Since ξγ is locally finite,

Ux is an open neighborhood of x. Choose a finite set Ex ⊂ X \ {x} such
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that |Ex ∩ B| ≥ 1 for each B ∈ Cx. Let Vx = Ux \ Ex. For B,B′ ∈ B,
observe that if B ⊂ Vx, γ ∈ Fx, B′ ∈ ξγ and B ∩ B′ 6= ∅ then B ( B′.
The collection V = {Vx : x ∈ X} is an open cover of X. Let ξ ∈ Ξ be a
maximal locally finite collection refining V. Suppose γ ∈ κ. We will show
that L(ξγ , ξ)∗ contains Wγ ∩ξ∗∩ξ∗γ , and is therefore dense in Wγ , and hence
ξγ <y ξ.

Let x′ ∈ Wγ ∩ ξ∗ ∩ ξ∗γ . So, there are x ∈ X, B ∈ ξ, and B′ ∈ ξγ such
that B ⊂ Vx and x′ ∈ B ∩ B′. Since Vx ∩Wγ 6= ∅ it must be that γ ∈ Fx.
Following a previous observation, B ( B′. Hence x′ ∈ L(ξγ , ξ)∗.

If we assume that 2κ = κ+, we may write Ξ as {ζγ : γ ∈ κ+}. We define
{ξγ : γ ∈ κ+} by induction, using Lemma 5.1 to define ξγ greater than
{ξα : α < γ} ∪ {ζγ}. The result is a <y-increasing sequence {ξγ : γ ∈ κ+}
cofinal in Ξ.

If y is a remote point, then the partial order (Ξ,<y) is a total order. We
can show, without using axioms beyond ZFC, that if y is a remote point,
then the cofinality of (Ξ,<y) is equal to the cofinality of C(X)/My.

6. H’s and L’s. Suppose y is a z-ultrafilter on a crowded metric spaceX
with weight κ. Following Logunov [9] and Terasawa [12], in this section we
use a cofinal sequence from Ξ to define a sequence of closed sets intersecting
to y.

Suppose {ξγ : γ ∈ θy} is a cofinal <y-increasing sequence in Ξ. We note
now that θy ≤ 2κ and make extra assumptions on θy later. Without loss of
generality we may assume that ξγ ∩ B0 = ∅. If ξγ ∩ B0 6= ∅, replace ξγ with
(ξγ \B0)∪{B ∈ B1 : (∃B′ ∈ ξγ ∩B0) B ⊂ B′}. Let Nγ = {U ⊂ ξγ : U∗ ∈ N̂y}
and let

Hγ =
⋂
{clβX U∗ : U ∈ Nγ}.

Claim. For each γ ∈ θy, y ∈ Hγ.

Proof. If U∗ and V∗ are dense in N and N ′ from Ny, then U∗ ∩ V∗ is
dense in N ∩ N ′, which is also in Ny. Hence, Nγ is a filter on ξγ . Every
U ∈ N̂y is dense in some N ∈ Ny, the trace of a neighborhood of y on X.
Therefore, y ∈ clβX U for all U ∈ N̂y.

Claim. For each γ ∈ θy, Hγ ⊂ βX \X.

Proof. By Proposition 4.3(5), for any B ∈ ξγ , since y /∈ clβX B it must
be that ξγ \ {B} ∈ Nγ . Fix x ∈ X. Since ξγ is locally finite, U = {B ∈ ξγ :
x ∈ clβX B} is finite and hence ξγ \ U ∈ Nγ . Also, x /∈ clβX(ξγ \ U)∗ and
therefore x /∈ Hγ .

Claim. If γ′ < γ then Hγ ⊂ Hγ′.
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Proof. Let γ′ < γ and let U ∈ Nγ′ . We will show that Hγ ⊂
clβX U∗. Since γ′ < γ, ξγ′ <y ξγ and therefore L(ξγ′ , ξγ) ∈ Nγ′ . Hence
U ∩L(ξγ′ , ξγ) ∈ Nγ′ . Since U , L(ξγ′ , ξγ) ⊂ ξγ′ we find that U∗ ∩L(ξγ′ , ξγ)∗ =
(U ∩ L(ξγ′ , ξγ))∗. Let W = U ∩ L(ξγ′ , ξγ) and V = {V ∈ ξγ : V ∩ U 6= ∅ for
some U ∈ W}. Since ξ∗γ is dense in X, clX V∗ ⊃ W∗. Furthermore, V ∈ ξγ ,
U ∈ L(ξγ′ , ξγ) and V ∩ U 6= ∅ imply that V ⊂ U . Therefore V∗ ⊂ W∗ and
hence clX V∗ = clXW∗. Since W∗ ∈ N̂y and V∗ is dense in W∗ we deduce
that V ∈ Nγ . Therefore, Hγ ⊂ clβX V∗ = clβXW∗ ⊂ clβX U∗.

Claim.
⋂
{Hγ : γ ∈ θy} = {y}.

Proof. We have seen that y ∈
⋂
{Hγ : γ ∈ θy}. Let O′ ∈ τy. We will find

γ ∈ θy such that Hγ ⊂ O′. Let W ′, U ′ ∈ τy be such that

clβXW ′ ⊂W ′ ⊂ clβX U ⊂ O.

Let O = O′∩X, U = U ′∩X and W = W ′∩X. So, clXW ⊂ U ⊂ clX U ⊂ O.
Let V = X \ clXW . Then {U, V } is an open cover of X. By Proposition 4.2
there is ξ ∈ Ξ that refines {U, V }. Let γ ∈ θy be such that ξ <y ξγ . Note
that W ∈ Ny. Since ξ <y ξγ we have L(ξ, ξγ)∗ ∈ N̂y and W ∩L(ξ, ξγ)∗ ∈ N̂y.
Let Ŵ = W ∩L(ξ, ξγ)∗ and let V = {B ∈ ξγ : B ∩ Ŵ 6= ∅}. Since ξ∗γ is dense
in X and Ŵ is open, clX V∗ ⊃ Ŵ . Hence V∗ ∈ N̂y. On the other hand, if
B ∈ V then B ∩ L(ξ, ξγ)∗ 6= ∅ and therefore B ⊂ B′ for some B′ ∈ ξ. Since
ξ refines {U, V }, either B ⊂ B′ ⊂ U or B ⊂ B′ ⊂ V . Since B ∩W 6= ∅, it
cannot be the case that B ⊂ V . Therefore B ⊂ U and hence V∗ ⊂ U and
clX V∗ ⊂ clX U ⊂ O. Then, since X is normal, clβX V∗ ⊂ O′. Since V ⊂ ξγ
and V∗ ∈ N̂y we have Hγ ⊂ clβX V∗ ⊂ O′ as desired.

Next, we will use the cofinal sequence to inductively define a pair of
locally finite collections, L0

γ and L1
γ , from B such that cl(L0

γ)∗∩ cl(L0
γ)∗ = ∅.

In this induction, we must do θy many tasks, and each step of the induction
can have at most κ predecessors. Therefore, we assume 2κ = κ+ to get
θy ≤ κ+. The constructions of the L’s for the two types of spaces are not the
same. However, in either case, the pairs will be used for the same purpose:
to “split” the Hγ ’s.

6.1. X is locally compact. We are able to arrange the cofinal sequence
of collections {ξγ : γ ∈ θy} as “step functions”, which makes the definition
of the L’s easier than in the κω-like case. List B0 = {Bα,∅ : α ∈ κ} and
Bi = {Bα,σ : α ∈ κ, σ ∈ i4} in such a way that Bα,σ ⊂ Bα,σ′ if σ extends σ′.
We may assume that for α ∈ κ and σ ∈i4, clX Bα,σa0 ∩ clX Bα,σa1 = ∅ and
clX Bα,σa0, clX Bα,σa1 ⊂ Bα,σ. Notice that the collections ξ from Ξ that
have the property that Bα,σ, Bα,σ′ ∈ ξ implies |σ| = |σ′| form an unbounded
set in Ξ. To see this, let ξ′ ∈ Ξ and let n(α) = max{|σ| : Bα,σ ∈ ξ′} + 1.
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Then the collection ξ = {Bα,σ : α ∈ κ, σ ∈ n(α)4} has the property that
ξ >y ξ

′ since L(ξ′, ξ) = ξ′.
Therefore, we may assume that {ξγ : γ ∈ θy} is a sequence of collections

that have the property that for each γ ∈ θy and α ∈ κ if Bα,σ, Bα,σ′ ∈ ξγ
then |σ| = |σ′|. For each γ ∈ θy define the function n(γ, ·) : κ→ ω such that
ξγ = {Bα,σ : α ∈ κ, σ ∈n(γ,α)4}. Notice that for any γ′ < γ < θy the set
L(ξγ , ξγ′)∗ is dense in {Bα : α ∈ S}∗ for any nonempty set S ⊂ κ.

Defining the Liγ ’s. For γ ∈ θy and i = 0, 1 define Liγ = {Bα,σai : α ∈ κ,
σ ∈n(γ,α)4}.

Claim. For all γ ∈ θy, clβX(
⋃
L0
γ) ∩ clβX(

⋃
L1
γ) = ∅.

Proof. For each α ∈ κ and σ ∈ i4, clX Bα,σa0 ∩ clX Bα,σa1 = ∅. Also,
Bα,σ ∩ Bα,β = ∅ for σ 6= β ∈ n(γ,α)4, and for i = 0, 1 we have clX Bα,σai ⊂
Bα,σ and clX Bα,βai ⊂ Bα,β. Therefore

clX Bα,σai ∩ clX Bα,βaj = ∅

for i, j = 0, 1. So,⋃
{clX Bα,σa0 : σ ∈ n(γ,α)4} ∩

⋃
{clX Bα,σa0 : σ ∈ n(γ,α)4} = ∅.

Now, since {Bα,∅ : α ∈ κ} is a locally finite family and since clX Bα,σai ⊂
Bα,∅ for each σ ∈

⋃
n∈ω

n4 and i = 0, 1, we have

clX
(⋃
L0
γ

)
∩ clX

(⋃
L1
γ

)
=
⋃
{clX Bα,σa0 : σ ∈ n(γ,α)4, α ∈ κ}

∩
⋃
{clX Bα,σa1 : σ ∈ n(γ,α)4, α ∈ κ} = ∅.

Finally, since clX(
⋃
L0
γ) ∩ clX(

⋃
L1
γ) = ∅ we conclude that clβX(

⋃
L0
γ) ∩

clβX(
⋃
L1
γ) = ∅.

Since clβX(
⋃
L0
γ)∩clβX(

⋃
L1
γ) = ∅, y can be in at most one of clβX(

⋃
L0
γ)

or clβX(
⋃
L1
γ). Without loss of generality, assume y /∈ clβX(

⋃
L0
γ) for each

γ ∈ θy.
Consider a finite collection {ξγi : i ∈ m} ⊂ {ξγ : γ ∈ θy} such that

γi < γj for i < j ≤ m and let U(i, j) = L(ξγi , ξγj ). It is the case that
U(i, j)∗ ∈ N̂y for each i < j and hence U =

⋂
{U(i, j)∗ : i < j ≤ m} ∈ N̂y.

For any B ∈ ξγ0 such that B ∩ U 6= ∅ we observe that {B′ ∈ γi : B′ ⊂ B}
refines {B′ ∈ γj : B′ ⊂ B} whenever 0 < j < i ≤ m.

A special case of the following claim, in particular when Φ is constant,
is proven in [12, Lemma 3] and in [9, Proposition 6].

Claim 6.1. For any ρ < θy and Φ : D ⊂ [ρ, θy) → 2, the collection
{Hρ} ∪ {clβX(

⋃
LΦ(γ)
γ ) : γ ∈ D} has nonempty intersection.
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Proof. Let ρ < θy and Φ : D → 2 for some D ⊂ [ρ, θy). We will show
that {clβX U∗ : U ∈ Nρ}∪{clβX(

⋃
LΦ(γ)
γ ) : γ ≥ ρ} has the finite intersection

property. Let U1, . . . ,Un ∈ Nρ and let γ1, . . . , γm ∈ D be such that γm ≥
· · · ≥ γ1 ≥ ρ. Since Nρ is a filter, U =

⋂
{Ui : 1 ≤ i ≤ n} ∈ Nρ and therefore

V = U∗ ∈ N̂y. For i < j ≤ m, let U(i, j)∗ = L(ξγi , ξγj ) and notice that
U =

⋂
{U(i, j)∗ : i < j ≤ m} ∈ N̂y. Let Bα,σ ∈ ξρ be such that Bα,σ ⊂ V

and Bα,σ ∩ U 6= ∅. As noted before, {B ∈ γi : B ⊂ Bα,σ} refines {B ∈ γj :
B ⊂ Bα,σ} whenever 0 < j < i ≤ m. Define σ′ ∈ n(γm,α)+14 as follows:
σ′|n(ρ,α) = σ, σ′(n(γi, α) + 1) = Φ(γi) for each 1 ≤ i ≤ m and σ′(k) = 0
otherwise. Then Bα,σ′ ⊂ Bα,σ, since σ′ extends σ and hence Bα,σ′ ⊂ U∗.
Furthermore, Bα,σ ⊂

⋃
LΦ(γi)
γi since σ′ extends σ′|n(γi,α)+1 = σ′|n(γi,α)

aΦ(γi)

and Bα,σ′|n(γi,α)
aΦ(γi) ∈ L

Φ(γi)
γi .

6.2. X is κω-like. Consider a finite collection {ξγi : i ∈ n} ⊂ {ξγ :
γ ∈ θy} such that γi < γj for i < j ≤ n and let U(i, j) = L(ξγi , ξγj ). It is
the case that U(i, j)∗ ∈ N̂y for each i < j and hence U =

⋂
{U(i, j)∗ : i <

j ≤ n} ∈ N̂y. It is tempting to assume that, as in the locally compact case,
{B ∈ ξγ0 : B ⊂ clU} 6= ∅. However, there may not exist B ∈ ξγ0 such that
{B′ ∈ γi : B′ ⊂ B} refines {B′ ∈ γj : B′ ⊂ B} whenever 0 < j < i ≤ n.

Defining the Liγ ’s. We define {Liγ : i ∈ 2, γ ∈ θy} by induction on γ ∈ θy.
Let P = {p : dom(p) ∈ [θy]<ω, ran(p) ⊂ 2}. Let γp = max(dom(p)) and

n(p) = |p|. Define p|i to be the function p restricted to the first i elements
of dom(p). We say B ∈ B and p ∈ P are aligned if for each γ ∈ dom(p) and
B′ ∈ ξγ such that B′ ∩ B 6= ∅, we have B′ ( B. We will define L(B, p) for
each B and p and set

Liγ =
⋃
{L(B, p) : γp = γ and p(γ) = i}.

If B and p are not aligned, set L(B, p) = ∅.

Stage γ = 0. There are two p ∈ P with dom(p) = {0}, namely p0 =
{(0, 0)} and p1 = {(0, 1)}. Notice that B ∈ B is aligned with p0 or p1 if
there exists B′ ∈ ξ0 such that B′ ( B, and that there are κ such B. List
as {(Bν , pν) : ν ∈ κ} all pairs (B, p) such that p = p0 or p = p1 and B is
aligned with p, so that each (B, p) appears in the list κ times. We will define
a sequence {L(ν) : ν ∈ κ} and for each p and B aligned with p, we will set
L(B, p) = {L(ν) : (B, p) = (Bν , pν)}.

Suppose we have defined L(µ) ∈ B for each µ < ν such that L(µ) ( Vµ
( Bµ where Vµ is some element of ξ0. Also assume that if L(µ), L(µ′) ⊂
V ∈ ξ0, then µ = µ′. We now define L(ν). For each V ∈ ξ0 such that
V ∩Bν 6= ∅ there is η ∈ κ such that V ⊂ Bη

ν . Furthermore, since ξ∗0 is dense
in X, for each η ∈ κ there is V ∈ ξ0 such that V ⊂ Bη

ν . For each µ < ν,
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L(µ) is contained in an element V of ξ0 and |ν| < κ. Therefore, there are κ
many η ∈ κ such that for all µ < ν, Bη

ν ∩L(µ) = ∅. So, let η0 be one such η
and choose L(ν) ∈ B so that L(ν) ( Vν ⊂ Bη0

ν ( Bν for some Vν ∈ ξ0.
For p = p0 or p1 and each B aligned with p, set

L(B, p) = {L(ν) : (B, p) = (Bν , pν)}.
Let

Li0 =
⋃
{L(B, p) : p = pi and B is aligned with p}.

Notice that if L(ν), L(µ) ⊂ B′ ∈ ξ0 then ν = µ. So, since ξ0 is locally
finite, cl(

⋃
L0

0) is disjoint from cl(
⋃
L1

0). Since each (B, p) is listed κ times,
|{ν : L(Bν , pν) ( B}| = κ. Consequently, |{η ∈ κ : there is L ∈ L(B, p),
L ⊂ Bη}| = κ.

Induction hypothesis. Let B and p be aligned such that γp ≤ γ and
n(p) > 1. Then, for κ many η ∈ κ, there is a sequence {Li : 0 ≤ i < n(p),
Li ∈ L(B, p|i)} such that

Ln(p)−1 ⊂ Ln(p)−2 ⊂ · · · ⊂ L0 ⊂ Bη ⊂ B.
Also, for each γ′ < γ, cl(

⋃
L0
γ′) is disjoint from cl(

⋃
L1
γ).

Stage γ. Consider all (B, p) such that γp = γ and B is aligned with p.
We have assumed 2κ = κ+. So, γ < κ+ and hence there are ≤κ many p with
γp = γ. Therefore, we can list the collection of such (B, p) as {(Bν , pν) :
ν ∈ κ} in such a way that each (B, p) appears κ times. Assume we have
defined L(µ) ∈ B for each µ < ν so that L(µ) ( Vµ ( Bµ where Vµ is some
element of ξγ . Also assume that if L(µ), L(µ′) ⊂ V ∈ ξγ , then µ = µ′. Let
η ∈ κ be such that there is {Li : 0 ≤ i < n(pν), Li ∈ L(Bν , pν |i)} with
Ln(pν)−1 ⊂ Ln(pν)−2 ⊂ · · · ⊂ L0 ⊂ Bη

ν ⊂ Bν . Since we have defined L(µ)
for |ν| < κ many µ, by the inductive hypothesis we may also assume that η
satisfies Bη

ν ∩ L(µ) = ∅ for all µ < ν.
Let V ∈ ξγ be such that Ln(pν)−1 ∩ V 6= ∅. Let L(ν) be an element of B

such that

L(ν) ( (V ∩ Ln(pν)−1) ⊂ Ln(pν)−2 ⊂ · · · ⊂ L0 ⊂ Bη
ν ⊂ Bν .

Set L(B, p) = {L(ν) : (Bν , pν) = (B, p)} and observe that(⋃
L(B, p)

)
∩
⋂{⋃

L(B, p|i) : i < n(p)
}
6= ∅.

Now, set Liγ =
⋃
{L(B, p) : γp = γ and p(γ) = i}. This concludes stage γ.

For each p and B aligned with p, we have(⋃
L(B, p)

)
∩
⋂{⋃

L(B, p|i) : i < n(p)
}
6= ∅.

Therefore, if dom(p) \ {γp} = {γi : 1 ≤ i < n(p)}, we deduce that
⋂
{Lp(γi)γi :

i < n(p)} ∩B 6= ∅.
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Claim 6.2. For any ρ < θy and Φ : D ⊂ [ρ, θy) → 2, the collection
{Hρ} ∪ {clβX(

⋃
LΦ(γ)
γ ) : γ ∈ D} has nonempty intersection.

Proof. Let ρ < θy and Φ : D → 2 for some D ⊂ [ρ, θy). We will show
that {clβX U∗ : U ∈ Nρ}∪{clβX(

⋃
LΦ(γ)
γ ) : γ ≥ ρ} has the finite intersection

property. Let U1, . . . ,Un ∈ Nρ and let γ1, . . . , γm ∈ D be such that γm >
· · · > γ1 > ρ. For each i ≤ m, L(ξρ, ξγi) ∈ Nρ since ξγi > ξρ. Hence, U =⋂
{Ui : 1 ≤ i ≤ n}∩

⋂
{L(ξρ, ξγi) : 1 ≤ i ≤ m} ∈ Nρ. Let p be the function Φ

restricted to {γi : 1 ≤ i ≤ m}. Note that if B ∈ U then B is aligned with p.
From the previous construction we conclude that

⋂
{
⋃
Lp(γi)γi : i ≤ m} ∩ B

6= ∅.

7. Theorems

Theorem 7.1. Let X be a crowded metrizable space of weight κ that is
either κω-like or locally compact. Let y ∈ βX \ X. Suppose that 2κ = κ+

and θ<θyy = θy. Then there is a closed copy of NU(θy) in (βX \X) \ {y}.
Proof. We follow the argument found in [1] to embed NU(θy) into

(βX \X) \ {y}, using the Lγ ’s to play the role of the reaping sets.

The induction. Denote by θy the discrete space of size θy. We define a
1-1 function g from θy into a compact subset of βX \X such that

(1) y ∈ clβX g[A] if and only if |A| = θy.
(2) If A,B ∈ [θy]<θy and A ∩B = ∅ then clβX g[A] ∩ clβX g[B] = ∅.

By assumption, we have θ<θyy = θy. List θy ∪ {(A,B) : A,B ∈ [θy]<θy
and A ∩ B = ∅} as {Tη : η ∈ θy} in such a way that if Tη = (A,B), then
η ≥ sup(A ∪B), and if Tη ∈ θy, then η ≥ Tη. For ρ ∈ θy let Dρ = {η : Tη =
(A,B) and ρ ∈ A ∪B} ∪ {η : ρ ∈ Tη}. Note that Dρ ⊂ [ρ, θy).

For each ρ ∈ θy we define Φρ : Dρ → 2 and choose g(ρ) to be any element
of Kρ :=

⋂
({Hρ} ∪ {clβX(

⋃
LΦρ(γ)γ ) : γ ∈ Dρ}). We define Φρ by induction.

Let η ∈ θy and assume we have defined Φρ|η∩Dρ . If Tη ∈ θy, let Φβ(η) = 0
for all β < Tη. If Tη = (A,B), let Φβ(η) = 0 for all β ∈ A and let Φβ(η) = 1
for all β ∈ B. By Claims 6.1 and 6.2, Kρ 6= ∅ for each ρ ∈ θy, so we may
choose g(ρ) ∈ Kρ.

To show (1), let A ⊂ θy be such that |A| < θy. There is γ ∈ θy with A ⊂
[0, γ). Let η satisfy Tη = γ. Note that η ≥ γ. For any ρ < γ = Tη, Φρ(η) = 0.
So, for ρ ∈ A, Kρ ⊂ L0

η. But y /∈ clβX(
⋃
L0
η). Hence, y /∈ clβX g[A]. For the

other direction, let A ⊂ θy be such that |A| = θy. Since θy is regular, A is
unbounded in θy. Let U ∈ N . There is γ ∈ θy such that Hγ ⊂ U . For ρ ≥ γ,
g(ρ) ∈ Hρ ⊂ Hγ ⊂ U . Hence y ∈ clβX g[A].

To show (2), let A,B ∈ [θy]<θy be such that A∩B = ∅. Let η be such that
Tη = (A,B). Then, for each ρ ∈ A, Φρ(η) = 0, and for each ρ ∈ B, Φρ(η) = 1.
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Hence g(ρ) ∈ Kρ ⊂ clβX(
⋃
L0
η) for ρ ∈ A and g(ρ) ∈ Kρ ⊂ clβX(

⋃
L1
η) for

ρ ∈ B. But clβX(
⋃
L0
η) ∩ clβX(

⋃
L1
η) = ∅. Hence clβX g[A] ∩ clβX g[B] = ∅.

Note (2) implies g is one-to-one.
Since θy is discrete, g is continuous. Extend g to βg : βθy → βX \X. It

follows from Bešlagić and van Douwen’s [1, Lemma 2.2] that the image of
βg is a closed subset of (βX \X)\{y} which is homeomorphic to NU(θy).

Theorem 7.2. (2κ = κ+) Let X be a metric space of weight κ that
is either crowded locally compact or κω-like. Any regular z-ultrafilter is a
nonnormality point of βX \X.

Proof. Since y is regular, by Lemma 5.1, θy > κ. By the hypothesis,
θy = κ+ = 2κ and hence θy is regular and not a strong limit. By Lemma 3.1,
NU(θy) is not normal. Hence, by Theorem 7.1, y is a nonnormality point of
βX \X.

Corollary 7.3. Suppose GCH+UR. Let X be a crowded locally com-
pact metric space. Then each y ∈ βX \X is a nonnormality point of βX \X.

Proof. We have seen that if y ∈ βX \ X is uniform then it is a non-
normality point of βX \X. Suppose that y ∈ βX \X is not uniform. That
is, there exists Z ∈ y for which w(Z) < w(X). Let Z ∈ y be such that
λ = w(Z) is minimum. Then y is a uniform z-ultrafilter on the set Z, and
by UR, it is regular. However, it may be the case that Z has isolated points.
We aim to find a crowded locally compact closed subset Y of X with weight
λ such that Z ⊂ Y . There is a cover of Z consisting of sets clB from a
subcollection Z of B0 of size λ. Let Y =

⋃
{clB : B ∈ Z}. Since B0 is

locally finite, Y is closed. Each B ∈ Z is crowded and has compact closure,
so Y is crowded locally compact.

So, y ∈ clβX Y . Since X is normal and Y is closed, Y is C∗-embedded
in X. Therefore, βY = clβX Y and y|Y is uniform on Y . So, by the theorem,
y is a nonnormality point of the set (clβX Y ) \ Y and hence a nonnormality
point of βX \X.

8. Questions. Gillman’s question [6], which started research in this
area, is still not completely answered.

Problem 8.1. Let X be N. Let y be any point of βX \X. Without extra
axioms of set theory, is (βX \X) \ {y} not normal? If yes, what if X is any
discrete space? If yes, what if X is any metrizable space?

There are many ways that our work can be extended. For example

Problem 8.2. Assume GCH. For every crowded metrizable space X and
every y ∈ βX \X, is (βX \X) \ {y} not normal?
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Katětov (see [4, 5.5.10]) showed that if there is a nonrealcompact metriz-
able (more generally, paracompact) space, then there is a measurable car-
dinal. In other words, if there is a countably complete free z-ultrafilter on
a metrizable (more generally, paracompact) space, then there is a count-
ably complete free ultrafilter on a set. Is there an analogue for nonregular
ultrafiters?

Problem 8.3. If there is a nonregular ultrafilter on a metrizable (more
generally, paracompact) space, is there a nonregular ultrafilter on a set?

Problem 8.4. What can be proved about θy and the normality of
(βX \X) \ {y} when y is a nonregular z-ultrafilter?

We do not know whether it is possible that θy is an uncountable weakly
compact cardinal. It is possible that θy = ω. For example, let q be a κ-
complete ultrafilter on a measurable cardinal κ. Let X be κ×R. Then X is
crowded, locally compact, metrizable. (If a nowhere locally compact example
is wanted, we can use Q in place of R.) For r ∈ R let er : κ→ X be defined
by er(α) = (α, r), and let βer : βκ→ βX be the extension. Let y be βe0(q).
Then θy = ω. In fact, {βe1/n(q) : n ∈ N} is a sequence converging to y. We
can show that (βX \X) \ {y} is not normal. Observe that neither Theorem
1.3 (X is not realcompact) nor Theorem 1.4 (y is nonregular) applies here.
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[5] P. Erdős, L. Gillman, and M. Henriksen, An isomorphism theorem for real-closed

fields, Ann. of Math. 61 (1955), 542–554.
[6] L. Gillman, The space βN and the continuum hypothesis, in: General Topology and

Its Relations to Modern Analysis and Algebra II (Proc. Second Prague Topological
Sympos., 1966), Academia, Praha, 1967, 144–146.

[7] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer, New York,
1976.

[8] K. Kunen and L. Parsons, Projective covers of ordinal subspaces, Topology Proc. 3
(1978), 407–428.

[9] S. Logunov, On non-normality points and metrizable crowded spaces, Comment.
Math. Univ. Carolin. 48 (2007), 523–527.
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