FUNDAMENTA
MATHEMATICAE
214 (2011)

Nonnormality points of X \ X
by

William Fleissner (Lawrence, KS) and
Lynne Yengulalp (Dayton, OH)

Abstract. Let X be a crowded metric space of weight x that is either x“-like or
locally compact. Let y € X \ X and assume GCH. Then a space of nonuniform ultrafilters
embeds as a closed subspace of (8X \ X) \ {y} with y as the unique limit point. If, in
addition, y is a regular z-ultrafilter, then the space of nonuniform ultrafilters is not normal,
and hence (86X \ X) \ {y} is not normal.

1. Introduction. An important theorem about the structure of 5X \ X
when X is discrete is due to Beslagi¢ and van Douwen [I].

THEOREM 1.1 (Beslagi¢ and van Douwen [I]). Assume GCH. Let k be
an infinite cardinal, and let X be the discrete space of cardinality k. Let y
be any point of X \ X. Then the space of nonuniform ultrafilters on k™
embeds in (BX \ X)\ {y} as a closed subset. Hence neither (X \ X) \ {y}
nor BX \ {y} is normal.

Recent research has extended nonnormality point results to nondiscrete
spaces. For example:

THEOREM 1.2 (Logunov [9] and Terasawa [12], independently). If X
is a crowded metrizable space space, then X \ {y} is not normal for all

yepX\X.
THEOREM 1.3 (Logunov [I0]). If X is a crowded realcompact locally

compact metrizable space space, and y is not a P-point, then (65X \ X)\{y}
is not normal for all y € X \ X.

Logunov and Terasawa prove their results without extra axioms of set
theory. They prove that 5X \ {y} or (X \ X) \ {y} is not normal, but do
not embed closed subspaces of nonuniform ultrafilters. Our results are closer
to those of Beslagi¢ and van Douwen.
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THEOREM 1.4. Let X be a metric space of weight k without isolated
points that is either k“-like or locally compact. Let y € X \ X. Assume
GCH. Then a space of nonuniform ultrafilters embeds as a closed subspace
of (BX\X)\{y} with y as the unique limit point. If y is a reqular z-ultrafilter,
then neither (6X \ X) \ {y} nor 6X \ {y} is normal.

2. Topological spaces. All spaces X are Tikhonov, and hence have
a Stone-Cech compactification SX. We consider a point of 3X to be a
z-ultrafilter on X. We identify a point  of X with the z-ultrafilter z, the
collection of all zero sets of X of which x is an element, so that X is embedded
as a subspace of 5X. When f is a bounded, continuous function from X
to R, we denote the unique extension of f by Gf.

A space is called crowded if it has no isolated points. The topology,
weight, and Lindel6f number of a space X are denoted 7(X), w(X), and
L(X). We use the letters x, A, 0, etc. to denote infinite cardinals and the
discrete spaces of that cardinality. We say that a space X is k“-like if X is
metrizable, nowhere locally compact, and every nonempty open subset of X
has weight «.

LEMMA 2.1. Let X be a k“-like metrizable space and let Z be a subset
of X with w(Z) = X\ < k. There is a \-like closed subset Y of X contain-
mg 2.

Proof. Set Z1 = Z. Given Z, with L(Z,) = X, choose V,, € [7(X)]* such
that Z,, C UV, and diamV < 1/n for all V € V. Choose Z, 41 such that
Zn € Zni1y | Zns1 \ Zn| < A (hence L(Z,41) = A), and for all V' € V,, there
is £ € [V N Z,41]* which is closed discrete (hence w(V N Z,41) = A). Set
Yo = Unen Zn; note that w(Y) < A because {VNYy: (In) V € V,} is a
base for Yj.

Let y € W be open in Yy. There are n € N and V € V,, such that
y € VNZ" C W. Then w(W) > w(VNZ,11) = A. Finally, set Y = clYp. =

3. Regular z-ultrafilters. The next result tells us for which cardinals 0
the space of nonuniform ultrafilters is not normal.

LEMMA 3.1. Let NU(0) denote the subspace of 36 of nonuniform ultra-
filters. That is, NU(0) = {y € 80 : (3Z € y) |Z| < 0}.

(1) ([I10) If 6 is regular and not a strong limit cardinal (in particular, if
0 = k™), then NU(0) is not normal.

(2) ([10) If 0 is singular, then NU(0) is not normal.

(3) ([8]) The space NU(8) is normal if and only if 0 is weakly compact.

In the proof of Theorem the reaping number t(k) of s is defined,
and the space NU(t(k)) is embedded in (8k \ k) \ {y}. The inequalities
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k < t(k) < 2% hold in ZFC, so GCH gives t(x) = 1, and the embedded
space is not normal.

In the proof of Theorem we consider a point y of X \ X. The analog
of t(k) is 6y, a cardinal which depends on the point y (not just the space X).
The upper bound 6, < 2% is proved as in [1], but the lower bound & < 6,
requires assuming that y is a regular z-ultrafilter.

DEFINITION 3.2. Let y be a z-ultrafilter on a space X. We say that y is
k-regular if there is a subset Z of y such that Z is locally finite and | Z]| = k.
We say that y is regular if y is w(X)-regular.

If X is a discrete space of cardinality x, then any ultrafilter on X is a
z-ultrafilter (because every subset of X is an open set, a closed set, and a z-
set). In this case, a k-regular ultrafilter is exactly an (w, k)-regular ultrafilter
as defined in [2]. The notion of regular ultrafilter appears implicitly in papers
from the mid-1950’s, for example [5].

THEOREM 3.3 ([7, Section 12.7]). Let K be an infinite cardinal. There
is a maximal ideal M in C(k) such that |C(k)/M| > k. In fact, no set of
power at most k is cofinal in the ordered field C(k)/M. If 2% = k™, then
Cf(C()/M) = |C(r)/M] = 2°.

Proof. Because k is infinite, there is a bijection «a — s, from « to [k]
For each a € k, set Z, = {v € kK : @ € s4}. By construction, {Z, : o € K}
has the finite intersection property: if s = s, € [k]<%, then v € ({Z, :
a € s}. Extend {Z, : a € Kk} to a z-ultrafilter y, and set M = {f € C(k) :
{0} ey}

Given B = {go : @ < k} C C(k), define

f(v) =1+ max{ga(y) : @ € 54}

The maximum exists because s, is finite, and f is continuous because x is
discrete. Let g, € B be arbitrary. For every v € Z,,

ga(7) < max{gy : & € 5y} < f(7). =

We can generalize the previous theorem to show that if X is a para-
compact space, and y is a regular z-ultrafilter on X, then C'(X)/M, has
cofinality greater than x, where M, is the maximal ideal of functions f such
that {x € X : f(z) = 0} € y. We have also generalized the notion of “x*-
good” to z-ultrafilters and proved the analogous theorem. If y is a k*-good
z-ultrafilter on a paracompact space X, then C'(X)/M, is an 7,-set, where
kT =R,.

DEFINITION 3.4. Let UR(k) be the assertion that every uniform ultra-
filter on a set of cardinality  is k-regular. Let UR assert that UR(x) holds

for every infinite k. Informally, we read UR as “every uniform ultrafilter is
regular”.

<w
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The most familiar example of a nonregular ultrafilter is a countably com-
plete free ultrafilter on a measurable cardinal. Hence UR implies that there
are no measurable cardinals. Like the assumption that there are no measur-
able cardinals, UR is safe. The assumption of Theorem GCH + UR, is
a consequence of V = L. Hence UR does not imply that ZFC is consistent.
On the other hand, it has been shown that -UR does imply that ZFC is
consistent. In fact, it is plausible to conjecture that —UR is equiconsistent
with “there exists a measurable cardinal”. See [3].

LEMMA 3.5. Assume UR(k). That is, every uniform ultrafilter p on a set
of cardinality k is k-regular. Let X be a metrizable space of weight k which
18 locally compact. Then every uniform z-ultrafilter y on X is k-regular.

Proof. Let C be the collection of open subsets of X that have compact
closure. Because X is locally compact, C covers X. Let R be a locally finite
open refinement of C.

We claim that |R| = k. Since y is free, X is not compact and therefore R
cannot be finite. Hence if K = w then |R| = k = w. Suppose that k > w. Let
B be a base for X of cardinality . Because R is locally finite, |R| < |B| = .
In the other direction, if R € R, then L(R) = w. Hencex = L(JR) < |R|-w.
By the same argument, for all S € [R]<® and Z € y, we have Z € |JS
because y is a uniform z-ultrafilter.

For each Z € y, set U(Z) = {U € R : UN Z # 0}. Observe that
P ={UZ): Z € yy U{X\S : S € [R]<"} has the finite intersection
property, and extend it to a uniform ultrafilter p on R.

Because p is k-regular, there is a point finite collection {U,, : @ € K} C p.
For each «, set Z, = cl|JU,. We now show that Z, € y. Let Z € y be
arbitrary. The collections U, and U(Z) are both members of p, so U, N
U(Z)#£D. Let U € Uy, NU(Z). Then UN Z # ) and therefore | JU, N Z # (.
Hence Z,NZ # 0, so Z, € y.

We have shown that {Z, : @ € k} is a subset of y; we must show that
it is locally finite. Because R is locally finite, for each x € X there is an
open set V such that x € V and {U € R : VNU # 0} is finite. Then
{a€k: (AU €elUy,) VNU # 0} is finite, and we are done. =

In the result above, the hypothesis “X is locally compact” can be re-
placed with the cumbersome “Let X have a cover C of open sets of weight
less than A, for some regular cardinal A less than or equal to k.

4. Pi-bases. In our constructions we will use locally finite pairwise dis-
joint collections & of open sets. The collections will come from an appropriate
m-base. Following Terasawa we use {* to denote | J£. Observe that such a
collection ¢ is locally finite and maximal disjoint if and only if £* is dense
in X.
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PROPOSITION 4.1 (Terasawa). Let X be a crowded metrizable space.
Then X has a mw-base
B=|]JB.

new

such that

(1) B, is a locally finite, mazimal disjoint family of nonempty open sets;

(2) B, refines By_1;

(3) for each B € B,,_1, there are three sets BW e B,,i=0,1,2, such
that c1 B® ¢ B and 1 BY Ncl BY =0 fori+# j;

(4) every open cover of X is refined by a locally finite, mazximal disjoint
subfamily of B.

Suppose y € X \ X. Terasawa remarks that the m-base in Proposition
[4.7] can be easily modified so that

(#) y ¢ clsgx B for all B € B.

This property of B was not, however, necessary in his proof that 5X \ {y}
is not normal; the butterfly sets did not need to be subsets of X \ X. To
show that (X \ X)\ {y} is not normal, our construction will require closed
subsets of SX \ X. The following propositions define a m-base B for two
types of metric spaces. For X locally compact, (#) is true for B for any
y € BX \ X. For X k“-like, given y € X \ X, we construct B so that (#)
is satisfied.

We say that a m-base B for a crowded metric space is nice if it satisfies
(1), (2) and (4) in Proposition In Section [5| we use the properties of a
nice m-base to construct locally finite collections. In the sections after |5| we
use a nice m-base with the additional properties (3) and (#).

The proofs of the next two results are omitted because they follow easily
from Proposition [4.1

PROPOSITION 4.2. Let X be a locally compact crowded metrizable space.
Then X has a w-base
B=|]JB.

necw

such that

(1) By, is a locally finite, maximal disjoint family such that cly B is
compact for each B € B;

(2) B4 refines By, and |{B’ € By41: B' C B}| =4 for all B € By;

(3) for B € By, there are B®, B! € B, 1 such that 1 B°Ncl B! = () and
cl B, cl1B! C B;

(4) every open cover of X is refined by a locally finite, mazimal disjoint
subfamily of B.
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PROPOSITION 4.3. Let k be an infinite cardinal and let X be a x“-like
metric space. Let y be a free z-ultrafilter on X. Then X has a w-base

B=|JB.

new

such that

(1) B, is a locally finite, mazimal disjoint family of nonempty open sets;

(2) B, refines By—1;

(3) |Bo| = & and for each B € B,_1, there are sets B € B,, n € &,
such that 1 B c B and c1 B™ Nl B =0 for n +1/;

(4) every open cover of X is refined by a locally finite, maximal disjoint
subfamily of B;

(5) cIB ¢y for all B € B.

5. Locally finite collections and cofinalities. Let X be a crowded
metrizable space with a nice m-base B. Let = be the collection of maximal
pairwise disjoint, locally finite collections & C B.

REMARK 1. For each B,B’ € B, if BN B’ # () then either B = B/,
BC B or B'CB.

REMARK 2. If £, € = and B € £, then since both £* and n* are dense
in X, because of Remark 1, there is B’ € n such that either B= B, B C B’
or B C B.

Fix a free z-ultrafilter y on X and let 7, be the collection of open
neighborhoods of y in X. Let Ny = {XNO :y € 0,0 € 7(8X)}.
The collection N, is a free open filter on X. We write /\7y for the collec-
tion of open subsets U of X that are dense in some N € N, that is,
N C clU. Using /\7y, we define a strict partial order <, on =. For §,n € = let
L(&n) ={Be¢: B C B for some B € n}. Define £ <, n if L(&,n)* € N,.

The lemma below is analogous to Theorem [3.3

LEMMA 5.1. Let k = w(X). Suppose y € BX\X is a reqular z-ultrafilter.
Any subset {&y 1 v € A} of = where X < k is bounded.

Proof. Let {¢&y : v € k} C 5. We construct £ € = such that &, <, £ for
all v € k. Let {Z, : v € K} C y be a locally finite subcollection of y. Since
X is paracompact, there is a locally finite collection W = {W,, : v € &}
of open subsets of X such that Z, C W, for all a € s (see [4, Remark
5.1.19]). Note that W, € N,. For each z € X let F, = {y : z € clW,}
and set UY = X \ U{cIW, : v & F,} = X\ (U{W, : v ¢ F.}). For
v € Fylet C(x,y) ={B €& :x €clB} and set C, = [J{C(z,7) : v € F,.}.
Define U, = U2\ U{clB : B € & \ Cy, v € Fy}. Since &, is locally finite,
U, is an open neighborhood of z. Choose a finite set E, C X \ {z} such
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that |E, N B| > 1 for each B € C,. Let V, = U, \ E,. For B,B’ € B,
observe that if B C Vg, v € Fp, B' € {, and BN B’ # () then B C B’
The collection V = {V, : © € X} is an open cover of X. Let £ € = be a
maximal locally finite collection refining V. Suppose v € x. We will show
that L(£,,&)" contains W, NE*NES, and is therefore dense in W, and hence
& <y &

Let 2/ € W, N¢* N &;. So, there are x € X, B € &, and B’ € &, such
that B C V, and 2/ € BN B’. Since V, N W, # 0 it must be that v € Fj.
Following a previous observation, B C B’. Hence 2’/ € L(&,,£)*. m

If we assume that 2% = k™, we may write = as {(, : v € k7 }. We define
{& : v € xT} by induction, using Lemma to define &, greater than
{&n : @ < v} U{{}. The result is a <,-increasing sequence {&, : v € KT}
cofinal in =.

If y is a remote point, then the partial order (=, <) is a total order. We
can show, without using axioms beyond ZFC, that if y is a remote point,
then the cofinality of (=, <) is equal to the cofinality of C(X)/M,.

6. H’s and L’s. Suppose y is a z-ultrafilter on a crowded metric space X
with weight x. Following Logunov [9] and Terasawa [12], in this section we
use a cofinal sequence from = to define a sequence of closed sets intersecting
to y.

Suppose {&, : v € 0y} is a cofinal <,-increasing sequence in =. We note
now that 6, < 2" and make extra assumptions on 6, later. Without loss of
generality we may assume that &, N By = 0. If &, N By # 0, replace &, with
(&,\Bo)U{B € By : (3B' € &,nBy) BC B'}. Let N, = {U C &, : U* € N}
and let

];I,y = ﬂ{clgxu* U € ./\/-7}

CLAIM. For each v € 8,, y € H,.

Proof. If U* and V* are dense in N and N’ from N, then U* N V* is
dense in N N N’, which is also in N,. Hence, N, is a filter on &,. Every

U e Ny is dense in some N € N, the trace of a neighborhood of y on X.
Therefore, y € clgx U for all U € Ny. "

CLAIM. For each vy € 0,, H, C X\ X.

Proof. By Proposition (5), for any B € &, since y ¢ clgx B it must
be that & \ {B} € N,. Fix € X. Since &, is locally finite, = {B € &, :
z € clgx B} is finite and hence & \ U € N,. Also, = ¢ clgx (&, \ U)* and
therefore z ¢ H,. m

CrLAaM. If~ <~ then Hy, C Hy.
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Proof. Let o/ < ~ and let U € N,. We will show that H, C
clgx U*. Since v < v, & <y & and therefore L(&y,&) € N,. Hence
UNL(Ey, &) € Ny. Since U, L(&y, &) C &y we find that U* N L&y, &) =
UNLE, &) Let W=UNL(Ey, &) and V={V €&, :VNU # 0 for
some U € W}. Since &7 is dense in X, clx V* D W*. Furthermore, V' € &,
U e L&y, &) and VNU # 0 imply that V' C U. Therefore V* C W* and
hence clx V* = clx W*. Since W* ¢ Ny and V* is dense in W* we deduce
that V € N,. Therefore, H, C clgx V* = clgx W* C clgx U*. u

Cram. ({H,:v€0,} ={y}.

Proof. We have seen that y € (\{H, : v € 6,}. Let O’ € 7,. We will find
v € 0y such that H, C O'. Let W/,U’ € 7, be such that

ClﬁX W' cw'c Cl/gX U cCO.

Let O=0'NX,U=UNXand W =W'NX.So,clx WCUCcCeclxUCO.
Let V = X \ clx W. Then {U, V'} is an open cover of X. By Proposition [4.2]
there is £ € = that refines {U,V'}. Let v € 6, be such that £ <, &,. Note
that W € N,. Since £ <, &, we have L(§,&,)" € Ny and WNL(§, &))" € /\7y.
Let W =WNL(E) andlet V ={B €&, : BNW # 0}. Since & is dense
in X and W is open, cly V* D W. Hence V* € Ny. On the other hand, if
B €V then BN L(&,&)* # (0 and therefore B C B’ for some B’ € £. Since
¢ refines {U,V'}, either BC B’ C U or BC B’ C V. Since BNW # ), it
cannot be the case that B C V. Therefore B C U and hence V* C U and
clx V* C clx U C O. Then, since X is normal, clgx V* C O’. Since V C &,
and V* € ./\7'y we have H, C clgx V* C O’ as desired. =

Next, we will use the cofinal sequence to inductively define a pair of
locally finite collections, £9 and £}, from B such that cl(£9)* Nel(£9)* = 0.
In this induction, we must do ¢, many tasks, and each step of the induction
can have at most k predecessors. Therefore, we assume 2 = k1 to get
6, < r*. The constructions of the L’s for the two types of spaces are not the
same. However, in either case, the pairs will be used for the same purpose:
to “split” the H,’s.

6.1. X is locally compact. We are able to arrange the cofinal sequence
of collections {&, : v € 6,} as “step functions”, which makes the definition
of the L’s easier than in the x*-like case. List By = {B,g : a € s} and
Bi ={Bas: a € K, o € "4} in such a way that By, C By, if o extends o’.
We may assume that for a € k and o €%4, cly B, s~oNclx B, ,~1 =0 and
clx By o~0,¢lx By g~1 C Ba,o. Notice that the collections £ from = that
have the property that By s, B € § implies |o| = |o’| form an unbounded
set in =. To see this, let ¢ € = and let n(a) = max{|o| : Ba, € '} + 1.
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Then the collection § = {Bys : @ € K, 0 € n(@)4} has the property that
£ >, & since L(E,6) =¢.

Therefore, we may assume that {£, : v € 6,} is a sequence of collections
that have the property that for each v € 0, and o € k if By o, Bao € &
then |o| = |0’|. For each v € 6, define the function n(v,-) : K — w such that
& = {Bao : a € K, 0 €4}, Notice that for any 7/ < v < 6, the set
L(&,&y)" is dense in {B, : o € S}* for any nonempty set S C &.

Defining the L%’s. For v € 6, and 7 = 0,1 define [,’% ={B
o et}

CLAIM. For all v € 0y, clgx (U LY) Nelgx (U L) = 0.

a0 L O E K,

Proof. For each a € k and o € 4, cly B, g~0 Nelx B, ,~1 = 0. Also,
ByoNBypg = ) for o # 3 € ”(7’0‘)4, and for ¢ = 0,1 we have cly B, o~i C
By and clx B, g~; C Bq,g. Therefore

ClX Ba,a"i ﬂ ClX Ba,ﬁ”j == @
for i,7 =0, 1. So,
J{elx By grp s o € "4} 0| J{elx B, prg i 0 € 004} = .

Now, since {B, g : @ € r} is a locally finite family and since clx B
B, g for each o € |J,,c,, "4 and i = 0,1, we have

C

a,07 1

necw

clx (U /52) Necly (U E}Y) = U{ch By oro:0 € g, o € K}
N Jfelx Bypm1 10 € "4, a € v} = 0.

Finally, since clx(U£9) Nclx(UJL)) = 0 we conclude that clgx(UJL9) N
Aox(ULL) = 0.

Since clgx (U £9)Nelgx (U L) = 0, y can be in at most one of clgx (I £)
or clgx (U £}). Without loss of generality, assume y ¢ clgx (L) for each
v € by

Consider a finite collection {&,, : ¢ € m} C {& : v € 6,} such that
v < v for i < j < m and let U(i,j) = L(&,,&,,). It is the case that
U(i,j)* € N, for each i < j and hence U = ({U(i,5)* : i < j < m} € N,
For any B € &, such that BN U # () we observe that {B’ € v; : B C B}
refines {B’ € v; : B’ C B} whenever 0 < j <i <m.

A special case of the following claim, in particular when @ is constant,
is proven in [12, Lemma 3] and in [9, Proposition 6].

Cram 6.1. For any p < 8, and & : D C [p,0,) — 2, the collection
{H,} U {clgx (U Ef(w) : v € D} has nonempty intersection.
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Proof. Let p < 6, and @ : D — 2 for some D C [p,0,). We will show
that {clgx U* : U € N,}U{clsx (U 5475(7)) : v > p} has the finite intersection
property. Let Ui,..., U, € N, and let v1,...,v» € D be such that v, >
--- =1 > p. Since N, is a filter, U = ({U; : 1 < i < n} € N, and therefore
V =U* € Ny. For i < j < m, let U(i,j)* = L(&,,&,,;) and notice that
U=MNU@G,7)":i<j<m}e Ny. Let By s € &, be such that B, , C V
and Ba o, NU # (. As noted before, {B € v; : B C By} refines {B € v, :
B C By} whenever 0 < j < ¢ < m. Define o’ € n(yma)+1y ag follows:
') = 75 o' (n(vi,a) + 1) = &(v;) for each 1 < i < m and o'(k) =0
otherwise. Then B, , C B, since o’ extends o and hence B, o, C U*.
Furthermore, B, » C |J Efi(%) since o’ extends 0’| ,,(y,.0)+1 = ' In(yi,0) " P(Vi)

and B S [3(%). [

k3

ava'lln('yi,a) Aé(’ﬁ)

6.2. X is x“-like. Consider a finite collection {{,, : i € n} C {&, :
v € By} such that v; < v; for i < j < nandlet U(i,j) = L(§,;, ;). It is
the case that U(i,j)* € N, for each i < j and hence U = ({U(4,)* : i <
j<n}e /\7'y. It is tempting to assume that, as in the locally compact case,
{B €&, : BCclU} # 0. However, there may not exist B € &, such that
{B' € v; : B’ C B} refines {B’ € ; : B’ C B} whenever 0 < j <i <n.

Defining the E@’s. We define {ﬁ’7 1 € 2, v € 0y} by induction on y € 6,,.

Let P = {p : dom(p) € [6,]<%,ran(p) C 2}. Let v, = max(dom(p)) and
n(p) = |p|. Define p|; to be the function p restricted to the first ¢ elements
of dom(p). We say B € B and p € P are aligned if for each v € dom(p) and
B’ € &, such that B’ N B # (), we have B’ C B. We will define £(B, p) for
each B and p and set

£ = J{L(B,p) : 9p =7 and p(y) = i}.
If B and p are not aligned, set £(B,p) = 0.

STAGE v = 0. There are two p € P with dom(p) = {0}, namely p° =
{(0,0)} and p' = {(0,1)}. Notice that B € B is aligned with p° or p! if
there exists B’ € & such that B’ C B, and that there are x such B. List
as {(By,py) : v € k} all pairs (B,p) such that p = p” or p = p! and B is
aligned with p, so that each (B, p) appears in the list x times. We will define
a sequence {L(v) : v € k} and for each p and B aligned with p, we will set
L(B.p) = L) : (B.p) = (Bup)}.

Suppose we have defined L(u) € B for each u < v such that L(u) C V,
C B, where V, is some element of &. Also assume that if L(u), L(p) C
V € &, then p = p/. We now define L(v). For each V € & such that
V' N B, # 0 there is n € £ such that V C B;. Furthermore, since & is dense
in X, for each € k there is V € & such that V C B). For each p < v,
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L(p) is contained in an element V of § and |v| < . Therefore, there are
many 7 € x such that for all 4 < v, B} N L(u) = (. So, let 79 be one such n
and choose L(v) € B so that L(v) C V,, C B C B, for some V, € &.

For p = p® or p! and each B aligned with p, set

L(B,p) ={L(v) : (B,p) = (By,pv)}-
Let
b= U{E(B,p) :p=p' and B is aligned with p}.

Notice that if L(v),L(u) C B' € & then v = pu. So, since & is locally
finite, cl(|J £Y) is disjoint from cl(|J £§). Since each (B, p) is listed  times,
{v : L(By,p,) € B}| = k. Consequently, [{n € k : there is L € L(B,p),
L C B"}| = k.

INDUCTION HYPOTHESIS. Let B and p be aligned such that -, < v and

n(p) > 1. Then, for k many 7 € &, there is a sequence {L; : 0 < i < n(p),
L; € L(B,pl|;)} such that

Ln(p),l C Ln(p),g c---CcLyc B"CB.
Also, for each v <, cl(lJ Eg,) is disjoint from cl(|J £}).

STAGE ~. Consider all (B, p) such that v, = v and B is aligned with p.
We have assumed 2¥ = k™. So, v < kT and hence there are <x many p with
vp = 7. Therefore, we can list the collection of such (B,p) as {(By,py) :
v € Kk} in such a way that each (B,p) appears k times. Assume we have
defined L(u) € B for each p < v so that L(p) C V), C B, where V,, is some
element of &,. Also assume that if L(u), L(p') C V € &,, then p = p. Let
n € k be such that there is {L; : 0 < ¢ < n(py), Li € L(By,py|i)} with
Lnp)-1 C Lyp,—2 C --- C Lo C B) C B,. Since we have defined L(u)
for |v| < kK many p, by the inductive hypothesis we may also assume that n
satisfies By N L(pu) = 0 for all pu < v.

Let V' € &, be such that L,,,)—1 NV # 0. Let L(v) be an element of B
such that

Lv) 2 (VN Ln(py)—l) C Ln(pl,)—2 C---CLyCB]CB,.
Set L(B,p) ={L(v) : (By,p,) = (B,p)} and observe that

(Ues.m) nN{UcB.pl) i <n)} #0.

Now, set L1 = (J{L(B,p) : 7p = and p(v) = i}. This concludes stage .

n(pv

For each p and B aligned with p, we have

(Uem.m) nN{ULs. ol i < nlw)} 0.

Therefore, if dom(p) \ {7,} = {7 : 1 <4 <n(p)}, we deduce that ﬂ{/jgg%) :
i <n(p)} N B+ 0.
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CLAM 6.2. For any p < 6, and @ : D C [p,0,) — 2, the collection
{H,} U {clgx (U Ef(v)) : v € D} has nonempty intersection.

Proof. Let p < 6, and @ : D — 2 for some D C [p,0,). We will show
that {clgx U* : U € N,}U{clzx (U £$(7)) : v > p} has the finite intersection
property. Let Ui,..., U, € N, and let v1,...,vm € D be such that v, >
-+ > > p. For each i < m, L(§,,&,,) € N, since &, > &,. Hence, U =
{1 <i<n}N{L(, &) : 1 <i<m}eN,. Let p be the function @
restricted to {; : 1 <i < m}. Note that if B € U then B is aligned with p.
From the previous construction we conclude that ({|J Lﬁg'ﬁ) i <m}NB

£0. u

7. Theorems

THEOREM 7.1. Let X be a crowded metrizable space of weight x that is
either k”-like or locally compact. Let y € X \ X. Suppose that 2% = k™

and 9;% = 0,. Then there is a closed copy of NU(0y) in (BX \ X)\ {y}.

Proof. We follow the argument found in [I] to embed NU(6,) into
(BX \ X)\ {y}, using the L,’s to play the role of the reaping sets.

The induction. Denote by 0, the discrete space of size 0,. We define a
1-1 function g from 6, into a compact subset of SX \ X such that

(1) y € clgx g[A] if and only if |A| = 6,,.
(2) If A, B € [0,]<% and AN B = () then clgx g[A] Nclgx g[B] =0

By assumption, we have 9;99 = 0,. List 0, U {(A,B) : A,B € [0,]<%
and AN B = 0} as {T), : n € 0,} in such a way that if 7, = (A, B), then
n > sup(AU B), and if T}, € 6, then n > T;,. For p € 0, let D, = {n: T, =
(A,B) and pe AUB}U{n:p e T,}. Note that D, C [p,0,).

For each p € 6, we define @, : D, — 2 and choose g(p) to be any element
of K, = N({H,} U{clgx(ULX™) : v € D,}). We define &, by induction.

Let n € 0, and assume we have defined @,|,np,. If Tj, € 0y, let 5(n) =0
for all B8 < T;,. If T}, = (A, B), let @3(n) =0 for all 3 € A and let $5(n) =1
for all # € B. By Claims and K, # 0 for each p € 6, so we may
choose g(p) € K.

To show (1), let A C 6, be such that |A| < 6,. There is v € 0, with A C
[0,7). Let n satisfy T;, = . Note that n > ~. For any p < v =T;,, ?,(n) = 0.
So, for p€ A, K, C E%. But y ¢ clgx (U Lg). Hence, y ¢ clgx g[A]. For the
other direction, let A C 6, be such that |A| = 6,. Since §,, is regular, A is
unbounded in 6. Let U € N. There is v € 6, such that H, C U. For p > ~,
g(p) € H, C Hy, C U. Hence y € clgx g[A].

To show (2), let A, B € [0,]<% be such that ANB = (). Let n be such that
T, = (A, B). Then, for each p € A, ®,(n) = 0, and for each p € B, ?,(n) = 1.
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Hence g(p) € K, C clgx (L)) for p € A and g(p) € K, C clgx (U L;) for
p € B. But clgx (U L)) Nclgx (UL)) = 0. Hence clgx g[A] Nclgx g[B] = 0.
Note (2) implies g is one-to-one.

Since 6, is discrete, g is continuous. Extend g to B¢ : 80, — X \ X. It
follows from Beslagi¢ and van Douwen’s [I, Lemma 2.2] that the image of
Bg is a closed subset of (X \ X)\ {y} which is homeomorphic to NU(6,). =

THEOREM 7.2. (2% = k*) Let X be a metric space of weight r that
is either crowded locally compact or k“-like. Any regular z-ultrafilter is a
nonnormality point of BX \ X.

Proof. Since y is regular, by Lemma [5.1, 6, > . By the hypothesis,
6, = kT = 2% and hence 0, is regular and not a strong limit. By Lemma
NU(#,) is not normal. Hence, by Theorem y is a nonnormality point of
BX\ X. m

COROLLARY 7.3. Suppose GCH+UR. Let X be a crowded locally com-
pact metric space. Then each y € BX\ X is a nonnormality point of X\ X.

Proof. We have seen that if y € X \ X is uniform then it is a non-
normality point of X \ X. Suppose that y € X \ X is not uniform. That
is, there exists Z € y for which w(Z) < w(X). Let Z € y be such that
A = w(Z) is minimum. Then y is a uniform z-ultrafilter on the set Z, and
by UR, it is regular. However, it may be the case that Z has isolated points.
We aim to find a crowded locally compact closed subset Y of X with weight
A such that Z C Y. There is a cover of Z consisting of sets cl B from a
subcollection Z of By of size A. Let Y = |J{cIB : B € Z}. Since By is
locally finite, Y is closed. Each B € Z is crowded and has compact closure,
so Y is crowded locally compact.

So, y € clgx Y. Since X is normal and Y is closed, Y is C*-embedded
in X. Therefore, 5Y = clgx Y and y|y is uniform on Y. So, by the theorem,
y is a nonnormality point of the set (clgx Y) \ Y and hence a nonnormality
point of X \ X.

8. Questions. Gillman’s question [6], which started research in this
area, is still not completely answered.

PROBLEM 8.1. Let X be N. Let y be any point of BX \ X. Without extra
azioms of set theory, is (X \ X) \ {y} not normal? If yes, what if X is any
discrete space? If yes, what if X is any metrizable space?

There are many ways that our work can be extended. For example

PROBLEM 8.2. Assume GCH. For every crowded metrizable space X and
every y € BX \ X, is (BX \ X) \ {y} not normal?
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Katétov (see [4, 5.5.10]) showed that if there is a nonrealcompact metriz-
able (more generally, paracompact) space, then there is a measurable car-
dinal. In other words, if there is a countably complete free z-ultrafilter on
a metrizable (more generally, paracompact) space, then there is a count-
ably complete free ultrafilter on a set. Is there an analogue for nonregular
ultrafiters?

PROBLEM 8.3. If there is a nonregular ultrafilter on a metrizable (more
generally, paracompact) space, is there a nonregular ultrafilter on a set?

PROBLEM 8.4. What can be proved about 0, and the normality of
(BX \ X)\ {y} when y is a nonregular z-ultrafilter?

We do not know whether it is possible that 6, is an uncountable weakly
compact cardinal. It is possible that 6, = w. For example, let ¢ be a x-
complete ultrafilter on a measurable cardinal . Let X be x x R. Then X is
crowded, locally compact, metrizable. (If a nowhere locally compact example
is wanted, we can use Q in place of R.) For r € R let e, : K — X be defined
by e.(a) = (a, 1), and let fe, : Bk — X be the extension. Let y be Beg(q).
Then 0, = w. In fact, {Be;/,(q) : n € N} is a sequence converging to y. We
can show that (X \ X) \ {y} is not normal. Observe that neither Theorem
(X is not realcompact) nor Theorem [1.4] (y is nonregular) applies here.
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