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Abstract. We prove that every many-sorted ω-categorical theory is completely in-
terpretable in a one-sorted ω-categorical theory. As an application, we give a short proof
of the existence of non-G-compact ω-categorical theories.

1. Introduction. A many-sorted structure can be easily transformed
into a one-sorted one by adding new unary predicates for the different sorts.
However ω-categoricity is not preserved. In this article we present a general
method for producing ω-categorical one-sorted structures from ω-categorical
many-sorted structures. This is stated in Corollary 3.2, the main theorem
in this paper. Our initial motivation was to understand Alexander Ivanov’s
example (in [4]) of an ω-categorical non-G-compact theory. In Corollary 3.3
we apply our results to offer a short proof of the existence of such theo-
ries.

Our method is based on the use of a particular theory TE of equivalence
relations En on n-tuples. The quotient by En is an imaginary sort containing
a predicate Pn which can be used to copy the nth sort of the given many-
sorted theory. Since the complexity of TE is part of the complexity of the
ω-categorical one-sorted theory obtained by our method, it is important
to classify TE from the point of view of stability, simplicity and related
properties. It turns out that TE is non-simple but it does not have SOP2.
A similar example of a theory with such properties has been presented by
Shelah and Usvyatsov in [7]. Their proof, as ours, relies on Claim 2.11 of [3],
which is known to have some gaps. A revised version of [3] has been posted
on arxiv.org. In the meantime Kim and Kim have obtained a new proof of
the same result: Proposition 2.3 in [5].

2010 Mathematics Subject Classification: Primary 03C45; Secondary 03C35.
Key words and phrases: many-sorted structures, ω-categoricity, G-compactness, strong
order property, stably embedded predicates.

DOI: 10.4064/fm214-3-5 [285] c© Instytut Matematyczny PAN, 2011



286 E. Casanovas et al.

The one-sorted theory TE is interdefinable with some many-sorted theory
T ∗ which is presented and discussed in Section 2. In order to describe T ∗

we need a version of Fräıssé’s amalgamation method that can be applied
to the many-sorted case (see Lemma 2.1). In Section 3 some results of the
third author [8] on stable embeddedness are extended and used to prove
Corollary 3.2. Section 4 is devoted to classifying TE from the stability point
of view.

A previous version of these results appeared in the second author’s Ph.D.
dissertation [6]. They have been corrected in some points and in general they
have been elaborated and made more compact.

2. T ∗ and Fräıssé’s amalgamation. Let L be a countable many-
sorted language with sorts Si (i ∈ I), and let K be a class of finitely gener-
ated L-structures (1). We call an L-structure M a Fräıssé limit of K if the
following hold:

1. K = Age(M), where Age(M) is the class of all finitely generated
L-structures which are embeddable in M .

2. M is at most countable.
3. M is ultra-homogeneous, i.e., any isomorphism between finitely gen-

erated substructures extends to an automorphism of M .

By a well-known argument, K can only have one Fräıssé limit, up to isomor-
phism.

Lemma 2.1. Let K be as above. Then the following are equivalent:

(a) The Fräıssé limit of K exists and is ω-categorical.
(b) K has the amalgamation property AP, the joint embedding property

JEP, the hereditary property HP (i.e., finitely generated L-structures
which are embeddable in elements of K belong themselves to K) and
satisfies

(∗) for all i1, . . . , in ∈ I there are only finitely many quantifier-free
types of tuples (a1, . . . , an) where the aj are elements of sort Sij
in some structure A ∈ K.

If the Fräıssé limit of K exists, it has quantifier elimination.

Proof. (a)⇒(b). It is well known that the age of an ultra-homogeneous
structure has AP, JEP and HP. All quantifier-free types which occur in
elements of K are quantifier-free types of tuples of the Fräıssé limit. So
property (∗) follows from the Ryll-Nardzewski theorem.

(1) We allow empty sorts if L has no constant symbols of that sort.
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(b)⇒(a). The quantifier-free type qftp(ā) determines the isomorphism
type of the structure generated by ā. Hence (∗) implies that K contains at
most countably many isomorphism types. The existence of the Fräıssé limit
M follows now from AP, JEP and HP.

If two sequences ā and b̄ have the same quantifier-free type in M , there
is an automorphism of M which maps ā to b̄ and so it follows that ā and
b̄ have the same type in M . Consider a formula ϕ(x̄) and the set Pϕ(x) =
{qftp(ā) : M |= ϕ(ā)}. Then

M |= ϕ(ā) ⇔ qftp(ā) ∈ Pϕ ⇔ M |=
∨
p∈Pϕ

p(ā).

Now, (∗) implies that Pϕ is finite and that in M all p = qftp(ā) are finitely
axiomatizable, that is, p = 〈χp〉 for some quantifier-free χp(x). Then M |=
ϕ(ā)⇔

∨
p∈Pϕ

χp(ā). So M has quantifier elimination and it is ω-categorical
since there are only finitely many possibilities for the χp, depending only on
the number and the sorts of the free variables of ϕ.

It is easy to see that the theory of the Fräıssé limit is the model-
completion of the universal theory of K.

Definition 2.2. Let L∗ be the language with countably many sorts
S, S1, . . . , function symbols fi : Si → Si, and constants ci ∈ Si, and let T 0

be the theory of all L∗-structures A with

fi(ā) = ci ⇔ ā has some repetition

for all ā ∈ Si(A). Furthermore let K∗ be the class of all finitely generated
models of T 0.

Lemma 2.3. K∗ satisfies the conditions of Lemma 2.1.

Proof. The class of all models of T 0 has AP and JEP and therefore
also K∗. Property (∗) follows easily from the fact that fi(am1 . . . , ami) = ci
for all i > k and {am1 . . . , ami} ⊂ {a1, . . . , ak},

We define M∗ to be the Fräıssé limit of K∗ and T ∗ to be the complete
theory of M∗. Then T ∗ is the model-completion of T 0.

Recall the following definition from [2]:

Definition 2.4. Let T be a complete theory and P a 0-definable predi-
cate. P is called stably embedded if every definable relation on P is definable
with parameters from P .

Remarks.

1. For many-sorted structures with sorts (Si)i∈I this generalizes to the
notion of a sequence (Pi)i∈I of 0-definable Pi ⊂ Si being stably em-
bedded.
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2. While the definition is meant in the monster model, an easy compact-
ness argument shows that, if P (M) is stably embedded in M for some
weakly saturated (2) model M , then this is true for all models.

3. If M is saturated then P is stably embedded if and only if every
automorphism (i.e. elementary permutation) of P (M) extends to an
automorphism of M . This was claimed in [2] only for the case that
|M | > |T |. But the proof can easily be modified to work for the
general case. One has to use the fact that if A has smaller size
than M , then any type over a subset of dcleq(A) can be realized
in M .

4. If M is ω-categorical, it can be proved that for every finite tuple
a ∈ M there is a finite tuple b ∈ P such that every relation on P
which is definable over a can be defined using the parameter b.

Lemma 2.5. In T ∗ the sequence of sorts (S1, S2, . . .) is stably embedded.

Proof. Clear since tp(ā/S1, . . .) = tp(ā/f1(ā), . . .). See also the discus-
sion in [2].

For a complete theory T and a 0-definable predicate P the induced struc-
ture on P consists of all 0-definable relations on P . Note that the automor-
phisms of P with its induced structure are exactly the elementary permu-
tations of P in the sense of T .

Lemma 2.6. In T ∗ the induced structure on (S1, S2, . . .) equals its L∗>0-
structure, where L∗>0 is the sublanguage of L∗ which has only the sorts
S1, S2, . . . and the constants c1, c2, . . . .

Proof. Quantifier elimination.

Let T ∗>0 denote the theory of all L∗>0-structures, where all sorts Si are
infinite. Clearly T ∗>0 is the restriction of T ∗ to L∗>0.

Lemma 2.7. Every model of T ∗>0 can be expanded to a model of T ∗.

Proof. It is easy to see that the following amalgamation property is
true:

Let N be a model of T 0 with infinite sorts Si(N). Let A be a finitely
generated substructure of N , and B ∈ K∗ an extension of A. Then B
can be embedded over A in an extension N ′ of N which is a model of T 0

and such that Si(N ′) = Si(N) for all i.

If a model of T ∗>0 is given, we expand it arbitrarily to a model N of T 0 and
apply the above amalgamation property repeatedly in such a way that the
union of the resulting chain is a model of T ∗ which has the same sorts Si
as N .

(2) M is weakly saturated if every type over the empty set is realized in M .
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Corollary 2.8. There is an ω-categorical one-sorted theory TE with a
series of 0-definable infinite predicates P1, P2, . . . in T eq

E such that

1. (P1, P2, . . .) is stably embedded.
2. The many-sorted structure induced on (P1, P2, . . .) is trivial.
3. For every sequence κ1, κ2, . . . of infinite cardinals there is a model N

of TE such that |Pi(N)| = κi.

Proof. The language LE of TE will contain, for each i, a symbol Ei
for an equivalence relation between i-tuples. Let M = (S, S1, S2, . . .) be a
model of T ∗. For a, b ∈ Si define Ei(a, b) ⇔ fi(a) = fi(b). Then TE is the
theory of ME = (S,E1, E2, . . .). The Si live in M eq

E as M i
E/Ei and the ci are

0-definable in M eq
E . We set Pi = Si \ {ci}.

It is easy to see that TE as constructed in the proof is the model-
completion of the theory of all structures (M,E1, E2, . . .) where En is an
equivalence relation on Mn with one equivalence class consisting of all n-
tuples which contain a repetition. That TE has quantifier elimination can
be proved as follows: Every formula ϕ(x̄) of LE is equivalent to a quantifier-
free L∗-formula ϕ′(x̄). Further, ϕ′(x̄) is a boolean combination of formu-
las of the form fi(x̄′)

.= fi(x̄′′) and fi(x̄′)
.= ci, which are equivalent to

quantifier-free LE-formulas: fi(x̄′)
.= fi(x̄′′) is equivalent to Ei(x̄′, x̄′′), and

fi(x′1, . . . , x
′
i)
.= ci is equivalent to

∨
1≤k<l≤i x

′
k
.= x′l.

3. Expansions of stably embedded predicates. Let T be com-
plete theory with two sorts S0 and S1. We consider S1 as a structure of
its own carrying the structure induced from T , and denote by T �S1 the
theory of S1.

Lemma 3.1. Let T be complete theory with two sorts S0 and S1. Let
T̃1 be a complete expansion of T �S1. Assume that S1 is stably embedded.
Then

1. T̃ = T ∪ T̃1 is complete (3) ([8, Lemma 3.1]).
2. S1 is stably embedded in T̃ and T̃ �S1 = T̃1.
3. If T and T̃1 are ω-categorical, then T̃ is also ω-categorical.

Proof. 1. Let M̃ = (M0, M̃1) and M̃ ′ = (M ′0, M̃
′
1) be saturated models

of T̃ of the same cardinality, and M = (M0,M1) and M ′ = (M ′0,M
′
1) their

restrictions to the language of T . Since T and T̃1 are complete, there are
isomorphisms f : M → M ′ and g : M̃1 → M̃ ′1. Then gf−1 is an auto-

(3) Actually we have: S1 is stably embedded if and only if eT is complete for all

complete expansions eT1.
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morphism of M ′1. Since M ′1 is stably embedded in M ′, gf−1 extends to an
automorphism h of M ′. Now hf is an isomorphism from M to M ′ which
extends g.

2. We use the same notation as in the proof of 1. Let M̃ be a saturated
model of T̃ . We have to show that every automorphism f of M̃1 extends to
an automorphism of M̃ . But f extends to an automorphism of M , which is
automatically an automorphism of M̃ .

3. Start with two countable models M̃ and M̃ ′ and proceed as in the
proof of 1.

Corollary 3.2. Every many-sorted ω-categorical theory T is completely
interpretable in a one-sorted ω-categorical theory T̃ . This means that T is
induced by T̃ via the interpretation.

Proof. Let T be a complete theory with countably many sorts P1, P2, . . . .
We consider T as an expansion of TE�(P1, P2, . . .) and set T̃ = TE ∪T . Then
T̃ is a one-sorted complete theory. We have T̃ �(P1, P2, . . .) = T . If T is
ω-categorical, T̃ is also ω-categorical.

Corollary 3.3 (Ivanov). There is a one-sorted ω-categorical theory
which is not G-compact.

Proof. By [1] there is a many-sorted ω-categorical theory T which is not
G-compact. Interpret T in a one-sorted ω-categorical theory T̃ as in Corol-
lary 3.2. Then T is not G-compact either. For this, one has to check that if T̃
is G-compact, then every 0-definable subset with its induced structure is also
G-compact. This follows from the following description of G-compactness:
a, b of length ω are in the relation ncω if a and b are the first two elements
of an infinite sequence of indiscernibles. A complete theory is G-compact
if the transitive closure of ncω is type-definable. (Note that (a, b) is in the
transitive closure of ncω if and only if a and b have the same Lascar-strong
type.)

4. Classification of TE

Proposition 4.1. TE has TP2, the tree property of the second kind, and
therefore it is not simple.

Proof. We show that ϕ(x; y, u, v) = E2(xy, uv) has TP2. Let (bi : i < ω),
(ci : i < ω), and (di : i < ω) be pairwise disjoint sequences of different
elements such that ¬E2(cidi, cjdj) for i 6= j. For i, j ∈ ω, let āij = bicjdj . By
compactness we can see that for any η ∈ ωω, the set {ϕ(x; āiη(i)) : i < ω} is
consistent, and since the cidi’s are in different E2-classes for each i < ω, the
set {ϕ(x; āij) : j < ω} is 2-inconsistent.
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Lemma 4.2 (Independence lemma). Let a, b, c, d′, d′′ be tuples in the
monster model of TE, and F a finite subset. Assume that a and c have
only elements from F in common. If d′a ≡F d′b ≡F d′′b ≡F d′′c, then there
exists some d such that d′a ≡F da ≡F dc ≡F d′′c.

a

6

d′� b - d′′

6

c�d-

Proof. Let A, B, C, D′ and D′′ denote the set of elements of the tuples
a, b, c, d′ and d′′, respectively. We note first that we can assume that F
is contained in A, B and C, since otherwise we can increase a, b and c
by elements from F . Then we note that if A and D′ intersect in a sub-
tuple f , this tuple also belongs to B and C and therefore to F . So we con-
clude that A ∩D′ is contained in F and similarly that C ∩D′′ is contained
in F .

It suffices to find an LE-structure M extending AC and containing a
new tuple d with the same quantifier-free type as d′ over A and as d′′

over C. Take as d a new tuple of the right length which intersects A and
B in the subtuple f . We then have d′a ≡eq

F da ≡eq
F dc ≡eq

F d′′c, where
g ≡eq

F h means that g and h satisfy the same equality formulas over F ,
i.e. gi = gj iff hi = hj and gi = fj iff hi = fj . If D denotes the elements
of d, it follows that the intersection of any two of A, C and D belongs
to F .

It remains to define the relations En on ACD. Let E0
n denote the part of

En which is already defined on AC. Let E′n be the relation En transported
from AD′ to AD via the identification d′ 7→ d, and E′′n the relation En
transported from CD′′ to CD via the identification d′′ 7→ d. Note that
d′ ≡F d′′ implies that E′n and E′′n agree on DF . We define En on ACD as
the transitive closure of

E0
n ∪ E′n ∪ E′′n ∪ Erep

n ∪∆,

where Erep
n is the set of all pairs of n-tuples from ACD which contain rep-

etitions, and ∆ is the identity on (ACD)n.
We have to show that the new structure defined on AC agrees with the

original structure. Also we must check that the structure on AD (and CD)
agrees with the structure on AD′ (and CD′) via d 7→ d′ (and d 7→ d′′). Using
the fact that an n-tuple which e.g. belongs to AC and AD belongs already
to A, it is easy to see that we have to show the following: For all n-tuples
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x ∈ A, y ∈ C and z ∈ DF ,

1. E′n(x, z) ∧ E′′n(z, y)⇒ E0
n(y, x),

2. E′′n(z, y) ∧ E0
n(y, x)⇒ E′n(x, z),

3. E0
n(y, x) ∧ E′n(x, z)⇒ E′′n(z, y).

Let z′ and z′′ be the subtuples of D′F and D′′F which correspond to z.

Proof of 1: Assume E′n(x, z) and E′′n(z, y). We then have En(x, z′) and
En(z′′, y). Further, d′a ≡F d′b implies z′a ≡F z′b, which implies that there is
a tuple x′ in B such that z′x ≡F z′x′. So we see En(z′, x′). In turn d′b ≡F d′′b
implies z′x′ ≡F z′′x′ and hence En(z′′, x′). Now we can connect y and x as
follows: y En z′′ En x′ En z′ En x.

Proof of 2: Assume E′′n(z, y) and E0
n(y, x). We then have En(z′′, y). As

above we find a tuple y′ ∈ B such that En(z′′, y′) and En(z′, y′). The chain
x En y En z

′′ En y
′ En z

′ shows that E′n(x, z).
Proof of 3: Symmetrical to the proof of 2.

In order to state [5, Proposition 2.3] we need the following terminology:

(1) A tuple η̄ = (η0, . . . , ηd−1) of elements of 2<ω is ∩-closed if the set
{η0, . . . , ηd−1} is closed under intersection.

(2) Two ∩-closed tuples η̄ and ν̄ are isomorphic if they have the same
length and

(i) ηi � ηj iff νi � νj ,
(ii) ηai t� ηj iff νai t� νj for t = 0, 1.

(3) A tree (aη : η ∈ 2<ω) of tuples of the same length is modeled by
(bη : η ∈ 2<ω) if for every formula φ(x̄) and every ∩-closed η̄ there is
a ∩-closed ν̄ isomorphic to η̄ such that |= φ(bη̄)⇔ |= φ(aν̄).

(4) (bη : η ∈ 2<ω) is indiscernible if |= φ(bη̄)⇔ |= φ(bν̄) for all isomorphic
∩-closed η̄, ν̄.

Lemma 4.3 ([5, Proposition 2.3]; see also [3]). Let T be a complete the-
ory. Then any tree of tuples can be modeled by an indiscernible tree.

Definition 4.4. The formula ϕ(x, y) has SOP2 in T if there is a binary
tree (aη : η ∈ 2<ω) such that for every η ∈ 2ω, {ϕ(x, aη�n) : n < ω}
is consistent and for every incomparable η, ν ∈ 2<ω, ϕ(x, aη) ∧ ϕ(x, aν) is
inconsistent. The theory T has SOP2 if some formula ϕ(x, y) ∈ L has SOP2

in T .

Remark 4.5 (H. Adler). The formula ϕ(x, y) has SOP2 in T if and
only if ϕ(x, y) has TP1 the tree property of the first kind: there is a tree
(aη : η ∈ ω<ω) such that for every η ∈ ωω, {ϕ(x, aη�n) : n < ω} is consistent
and for every incomparable η, ν ∈ ω<ω, ϕ(x, aη) ∧ ϕ(x, aν) is inconsistent.

Proof. By compactness.
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Proposition 4.6. TE does not have SOP2.

Proof. We follow ideas from a similar proof in [7]. Assume ϕ(x, y) has
SOP2 in TE and the tree (aη : η ∈ 2<ω) witnesses it. Choose for every η a
tuple dη such that |= φ(dη, aν) for all ν ( η.

By Lemma 4.3 we can assume that the tree (dηaη : η ∈ 2<ω) is indis-
cernible. Let us now look at the elements a00, a〈〉, a01, d000, d010. We have by
indiscernibility

d000a00 ≡ d000a〈〉 ≡ d010a〈〉 ≡ d010a01.

If the tuples a00 and a01 are disjoint, we can apply the Independence
Lemma to a = a00, b = a〈〉, c = a01, d′ = d000, d′′ = d010 to get a tuple d
such that

d000a00 ≡ da00 ≡ da01 ≡ d010a01.

It follows that |= ϕ(d, a00) ∧ ϕ(d, a01), which contradicts the SOP2 of the
tree.

If a00 and a01 are not disjoint, we argue as follows: Assume that a00 and
a01 have an element f in common, say f = a00,i = a01,j . Then a00a01 ≡
a000a01 implies a000,i = a01,j . So we have a000,i = a00,i and it follows from
indiscernibility that f = a00,i = a〈〉,i = a01,i. Let F be the set of elements
which occur in both a00 and a01. We have seen that the elements of F occur
in a00, a〈〉 and a01 at the same places. Therefore

d000a00 ≡F d000a〈〉 ≡F d010a〈〉 ≡F d010a01

and we can again apply the Independence Lemma.
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