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Abstract. We show that the Fatou components of a semi-hyperbolic rational map are
John domains. The converse does not hold. This compares to a famous result of Carleson,
Jones and Yoccoz for polynomials, in which case the two conditions are equivalent.

We show that a connected Julia set is locally connected for a large class of non-
uniformly hyperbolic rational maps. This class is more general than semi-hyperbolicity and
includes Collet–Eckmann maps, topological Collet–Eckmann maps and maps satisfying a
summability condition (as considered by Graczyk and Smirnov).

1. Introduction. Hyperbolic rational dynamics is very well understood
and the Julia sets of hyperbolic maps have good geometric and statistical
properties. Allow critical points in the Julia set and one may lose these
good properties. During the last two decades various classes of rational maps
have been considered which display some form of non-uniform hyperbolicity.
Such classes include sub-hyperbolic maps ([5], [11], [21]), semi-hyperbolic
maps ([6], [23]), Collet–Eckmann maps ([15], [14], [9]), topological Collet–
Eckmann maps ([15], [17]), recurrent Collet–Eckmann maps ([12]) and maps
satisfying a summability condition ([8]). Maps from these classes retain some
of the good geometric and statistical properties of the hyperbolic setting.
The main result of Carleson, Jones and Yoccoz [6] states equivalence for
polynomial maps between a geometric condition, John regularity of the basin
of infinity, and a topological condition on critical orbits, semi-hyperbolicity.

In Theorem 1, we extend the result of Carleson et al. to the rational
setting: semi-hyperbolicity implies John regularity for all components of the
Fatou set. This result has been obtained previously by Yin [23] for rational
maps with connected Julia set. In contrast to what was shown by Carleson
et al. in the case of polynomials, there are several known counterexamples
to the converse in the rational setting.
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In Theorem 2, we prove local connectivity of connected Julia sets for all
of the classes of rational maps mentioned in the first paragraph.

Carleson et al. use a criterion for John regularity of a simply connected
domain in terms of the hyperbolic metric, applied for the basin of attraction
of infinity A∞. For the general case when the Julia set is not connected,
thus A∞ is not simply connected, a more involved proof is needed.

We propose a new approach, using Herron’s characterization of John
regularity [10] in terms of the quasihyperbolic metric. His criterion works for
all domains. We thus provide a proof that covers both cases, of a connected
and disconnected Julia set.

Let f be a rational map of degree at least 2. We say that f is semi-
hyperbolic if it has no parabolic cycles and all critical points in its Julia set
J are non-recurrent. We say that x is non-recurrent if x /∈ ω(x) where ω(x)
is the accumulation set of the orbit of x,

ω(x) =
⋂
N≥0

{fn(x) : n ≥ N}.

A domain Ω ⊆ C is an ε-John domain if there is z0 ∈ Ω such that for
all z1 ∈ Ω there exists an arc γ ⊆ Ω connecting z1 to z0 and for all z ∈ γ,

δ(z) ≥ εδ(z, z1),

where δ denotes the distance with respect to the spherical metric σ, and by
δ(z) we mean δ(z, ∂Ω).

A closed set A ⊆ C is called locally connected if for every τ > 0 there is
θ > 0 such that, for any two points a, b ∈ A with δ(a, b) < θ, we can find
a continuum B ⊆ A (i.e. a compact connected set containing at least two
points) such that

a, b ∈ B and diamB < τ.

As a consequence of the main result of [12] (see also Proposition 3.1
in [23]), semi-hyperbolic rational maps satisfy the Exponential Shrinking of
components condition (denoted ExpShrink). This property was proved in [6]
to hold for semi-hyperbolic polynomials. Przytycki [15, Section 4] showed
that ExpShrink is equivalent to the Topological Collet–Eckmann condition
(TCE ) and other conditions, for example the Uniform Hyperbolicity on Peri-
odic Orbits. These results were later extended by Przytycki, Rivera-Letelier
and Smirnov [17]. As TCE is a topological invariant, all the conditions above
have the same property.

A rational map f satisfies the Exponential Shrinking of components con-
dition if there are λ > 1 and r > 0 such that for all z ∈ J, n > 0 and every
connected component W of f−n(B(z, r)),

diamW < λ−n.
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We introduce a weaker version of ExpShrink. We say that a rational map
f satisfies the Summable Shrinking of components condition (SumShrink) if
there are r > 0 and a sequence (ωn)n≥1 of positive numbers such that∑

n>0

ωn <∞,

and for all z ∈ J, n > 0 and every connected component W of f−n(B(z, r)),

diamW < ωn.

This property rules out the existence of rotation domains, Cremer points
and parabolic cycles. Therefore, by the classification of periodic Fatou com-
ponents (see Theorem IV.2.1 in [5]), the Julia set of such a map without
attracting cycles is the Riemann sphere.

In this paper we prove the following facts.

Theorem 1. The Fatou components of a rational semi-hyperbolic map
are John domains. The converse does not hold.

Theorem 2. If the Julia set of a SumShrink rational map is connected
then it is locally connected.

In [19], Rivera-Letelier shows that if a rational map has a fully invariant
attracting John domain Ω, then it is semi-hyperbolic. The idea of the proof
is the following. The map satisfies ExpShrink (see Corollary 4) and TCE (see
Section 4 in [15]). The Julia set is the boundary of Ω. By the John property
of Ω, the Julia set is porous. He shows that the Julia set of a TCE map is
not porous in a neighborhood of a recurrent critical point. So there are no
recurrent critical points in J and therefore the map is semi-hyperbolic.

Several counterexamples to this implication are known in the general
case. Probably the most interesting is an example of a rational map without
neutral cycles, with all Fatou components being Jonn domains with uniform
constant but which has a recurrent critical orbit in the Julia set. This ex-
ample is given by Rivera-Letelier [19], using a construction of Roesch [20].
In [23], Yin presents an example given by Carsten Petersen of a rational
map whose Julia set is the unit circle but which has a parabolic fixed point
(therefore it is not semi-hyperbolic). We use a construction of Yampolsky
and Zakeri [22] of a rational map of degree two having two Siegel disks which
are John domains, each having a recurrent critical point on the boundary.

We prove in Proposition 10 that if the Julia set of a semi-hyperbolic
rational map is connected then there exists ε > 0 such that each Fatou
component is an ε-John domain. This implies a stronger version of local
connectivity, namely θ depends linearly on τ , in the notation of the defini-
tion. This is related to the Julia set being fractal as defined in [6]: small balls
centered on J are pushed forward to the large scale with bounded degree.
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This gives control on the geometric distortion so J resembles itself at any
scale. Using the fact that semi-hyperbolic rational maps satisfy ExpShrink,
it is fairly easy to check that semi-hyperbolicity is equivalent to the Ju-
lia set being fractal. See Theorem 2.1 in [6] for the complete proof in the
polynomial case. In the rational case, this has been proven by Yin [23].

TCE is defined (see Section 4 in [15], for example) by the existence of
a radius r > 0, a bound for criticality M ≥ 1 and a lower bound P > 0
for the density of times n > 0 such that the degree of the nth pullback of
B(fn(x), r) is bounded by M , independently of x ∈ J . Semi-hyperbolicity
is therefore equivalent to TCE with P = 1, that is, the degree is uniformly
bounded for all times. We may also remark that hyperbolicity is equivalent
to TCE with P = 1 and M = 1.

The assumption that J is connected in Proposition 10 can be replaced
by the condition that there are only finitely many multivalent Fatou com-
ponents. If this condition fails then it is not hard to show that there are
two critical points that are separated by infinitely many Fatou components.
A priori, this situation cannot be excluded. Similar phenomena may occur
even for hyperbolic dynamics see examples of dynamics in the last chapter
of [2].

In [6], the existence of the basin of attraction of infinity, which is super-
attracting in the polynomial case, and properties of the hyperbolic metric
are used to prove relations between the geometry of the Fatou set and the
dynamics. John regularity can be better understood in full generality (for
domains which are not simply connected) using the quasi-hyperbolic met-
ric, as demonstrated in [10]. In our construction we emulate features like
equipotential curves and geodesic rays in an arbitrary attracting cycle of a
rational map.

Let γ ⊆ Ω be an arc. We define its quasi-hyperbolic length by

lqh(γ) =
�

γ

|dσ(z)|
δ(z)

.

This induces the quasi-hyperbolic distance distqh(·, ·) on Ω by the standard
construction. Let also l(γ) define the length of γ with respect to the spherical
metric.

The quasi-hyperbolic distance has been used in [10] to give an alternative
definition of John domains. It has also been extensively employed in [9]
and [8] to study Hölder regularity (defined in Section 3) and more general
integrable domains (defined on page 83).

In the polynomial case, local connectivity of connected Julia sets is eas-
ier to check. Assume J is connected and denote by A∞ the basin of attrac-
tion of infinity. Then A∞ is simply connected, so if it is a John or even
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a Hölder domain, the Riemann mapping extends to a Hölder continuous
map on D. Therefore, by Carathéodory’s theorem, J = ∂A∞ is locally con-
nected.

Every John domain is a Hölder domain and every Hölder domain is
an integrable domain. Graczyk and Smirnov [8] show that every connected
component of the boundary of an integrable domain is locally connected.
Suppose that all Fatou components of a rational map are integrable do-
mains. A priori, this does not imply that J is locally connected even if
it is connected, since in general there are infinitely many Fatou compo-
nents.

2. Further remarks. A stronger version of John regularity, uniformly
John property, is considered in [1]. In the case of simply connected domains
it is equivalent to John regularity. Polynomials whose basin of infinity has
this property are characterized in terms of topological properties of critical
orbits in the Julia set.

Graczyk and Smirnov [9] proved that Fatou components of a Collet–
Eckmann map (see definition below) are Hölder domains. The converse
problem was considered by Przytycki [15]. Hölder regularity implies the
Collet–Eckmann property provided the orbit of each critical point in the
Julia set of a polynomial does not accumulate at other critical points. The
existence of a fully invariant Fatou component is essential, as is the case in
Corollary 4.

Relations between derivative growth and the geometry of Fatou compo-
nents have also been studied in [4]. All aforementioned regularity conditions
are discussed there in a systematic way.

In [18] it is proven that polynomial derivative growth on repelling peri-
odic orbits of a polynomial implies that the basin of attraction of infinity is
an integrable domain. More precisely, it is required that the derivative on
repelling periodic orbits of period n is of order at least n5+ε. As a conse-
quence, if the Julia set is connected then it is locally connected. This result
has been improved in [16]: only growth of order n3+ε is required and the
result holds for attracting cycles of rational maps.

Let us define the summability condition as considered by Graczyk and
Smirnov [8]. Let f be a rational map of degree at least 2, J its Julia set and
Crit its critical set. For technical reasons we assume that critical orbits in
the Julia set do not contain critical points, but an additional construction
overcomes this obstacle. Let

σn := min{|(fn)′(f(c))| : c ∈ Crit ∩J}.

Suppose also that f has no parabolic periodic points. We say that f satisfies
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the summability condition with exponent α if
∞∑
n=1

(σn)−α <∞.

This condition generalizes the Collet–Eckmann condition which requires ex-
ponential growth of (σn)n≥1. Let also µmax be the maximal multiplicity
of critical points in J . Proposition 7.2 in [8] shows that if f satisfies the
summability condition with exponent

α =
1

1 + µmax
,

then f satisfies SumShrink, so Theorem 2 applies.

3. John regularity. In this section we prove the aforementioned re-
sults. The first tool relates the quasi-hyperbolic metric to John regularity.
In [10], the hypothesis of Lemma 3 is shown to be an equivalent definition
of John regularity. We only need one implication. As its proof is reasonably
short, we include it for completeness. As a general remark, all derivatives
are spherical derivatives unless specified otherwise.

Lemma 3. Let Ω ⊆ C be a domain, z0 ∈ Ω and M > 0. Suppose that
for all z1 ∈ Ω there exists an arc γ ⊆ Ω connecting z1 to z0 such that for
each (orientation preserving) arc γ′ ⊆ γ connecting w1 to w0 with

lqh(γ′) ≥M,

one has
δ(w1) ≤ 1

2
δ(w0).

Then Ω is an ε(M)-John domain.

For simply connected domains, quasi-hyperbolic and hyperbolic metrics
are comparable. In this case the previous lemma has been used in [6] (see
also [11]). In [7] it is proved that quasi-hyperbolic geodesics can replace arbi-
trary paths in the definition of John regularity only in the simply connected
case.

Proof of Lemma 3. Let γ be a concatenation γ0 · γ1 · . . . · γm of arcs
with lqh(γi) ≤ M for i = 0, . . . ,m. Let w0 = z0, w1, . . . , wm = z1 be their
endpoints. By hypothesis we may assume that for all i = 0, . . . ,m− 1,

δ(wi) = 2−iδ(w0).

Set δ+i = max{δ(z) : z ∈ γi} and δ−i = min{δ(z) : z ∈ γi}. Then one may
observe that

M ≥ lqh(γi) ≥
δ+i�

δ−i

dx

x
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and therefore

(1) δ+i ≤ e
Mδ−i .

As a consequence, for all i = 0, . . . ,m,

l(γi) ≤ lqh(γi)δ+i ≤MeMδ(wi) ≤MeM2−iδ(w0),

so for all z ∈ γi,
(2) δ(z, z1) ≤ 2−i(2MeMδ(w0)).

Using inequality (1), for all z ∈ γi and i = 0, . . . ,m,

δ(z) ≥ e−Mδ(wi) = e−M2−iδ(w0),

which combined with (2) shows that for all z ∈ γ,

δ(z) ≥ e−2M

2M
δ(z, z1).

Hölder regularity is more general than John regularity. In the particular
case when the domain Ω is simply connected, it is equivalent to the condi-
tion that the Riemann mapping ϕ : D → Ω can be extended to a Hölder
continuous mapping on the closed unit disk (see Lemma 6 in [9]). In this
case ∂Ω is locally connected by Carathéodory’s theorem.

Let us write A(·) > B(·) whenever A has order at most O(B), that is,
there are constants C0 > 0 and C1 > 0 such that

A(·) ≤ C0B(·) + C1.

We also write A(·) ≈ B(·) when A(·) > B(·) and B(·) > A(·).
A domain Ω ⊆ C is a Hölder domain if there is z0 ∈ Ω such that for all

z ∈ Ω,
distqh(z, z0) > − log δ(z).

As a consequence of Proposition 3 in [9], the Main Theorem and the
Complement to the Main Theorem (page 49) in [17] we obtain the following
fact. See also Proposition 5.2 in [15].

Corollary 4. Let f be a rational map of degree at least 2. If f satis-
fies ExpShrink then all connected components of the Fatou set are Hölder
domains. If f has a fully invariant attractive Fatou component that is a
Hölder domain, then f satisfies ExpShrink.

Proof. Using the aforementioned results, if f satisfies ExpShrink, then
almost every point z0 in C satisfies the backward Collet–Eckmann condition
(denoted by CE2(z0)). A point z0 satisfies CE2(z0) if there are constants
C > 0 and λ > 1 such that for all n > 0 and y ∈ f−n(z0),

|(fn)′(y)| > Cλn.

We have seen that periodic Fatou components of f are attractive. As they
contain points z0 with CE2(z0), they are Hölder domains. With a bit of
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work, one can see that a pullback of a Hölder domain by a rational map is
still a Hölder domain.

Conversely, if f has a fully invariant attractive Fatou component Ω that
is a Hölder domain, then there is z0 ∈ Ω satisfying the previous inequality
for all n > 0 and y ∈ f−n(z0) ∩ Ω. As Ω is fully invariant, z0 satisfies
CE2(z0), which in turn implies ExpShrink.

For any set A ⊆ C and ε > 0 we denote by B(A, ε) the ε-neighborhood
of A,

B(A, ε) = {z ∈ C : dist(z,A) < ε}.
Let us describe a classical construction inside a fixed (or periodic) at-

tracting Fatou component.

Lemma 5. Let f be a rational map of degree at least 2 and Ω a fixed
attracting Fatou component. Then for all ε > 0 there exists a connected
domain V with V ⊆ Ω satisfying

• f(V ) ⊆ V ;
• Ω ∩ f−1(f(V )) = V ;
• Ω \ f(V ) ⊆ B(∂Ω, ε).

Proof. Let p ∈ Ω with f(p) = p and |f ′(p)| < 1. Then all orbits in Ω are
attracted by p, that is, for all z ∈ Ω,

lim
n→∞

fn(z) = p.

For any open W ⊆ Ω that contains p, we define nW : Ω → N such that
nW (z) is the smallest iterate of z that enters W . As Ω is the immediate
basin of attraction of p, nW is well defined on Ω.

Let W = B(p, r0) for some r0 > 0 such that ∂W does not intersect
critical orbits and f(W ) ⊆W . Therefore ∂f−k(W ) is smooth and f−k(W ) ⊆
f−(k+1)(W ) for all k ≥ 0. For all k ≥ 0, let Wk = Compp f−k(W ) be the
connected component of f−k(W ) that contains p. Note that W k ⊆ Ω for all
k ≥ 0. Let also

{p, p1, . . . , pm} = f−1(p) ∩ Ω.
Then there are arcs γ1, . . . , γm ⊆ Ω connecting p to p1, . . . , pm. By compact-
ness, there is k0 ≥ 0 such that for all i = 1, . . . ,m,

γi ⊆Wk0 .

Then for all k ≥ k0, Wk has the following properties:

• f(Wk) ⊆Wk;
• f−1(Wk) ∩ Ω = Wk+1.

Indeed, f−1(Wk)∩Ω is connected for all k ≥ k0. Otherwise it would contain
a preimage of p in Ω outside Wk0 ⊆Wk+1.
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By compactness there is k1 ≥ k0 such that Ω ⊆ Wk1 is contained in an
ε-neighborhood of ∂Ω ⊆ J . We set V = Wk1+1.

Let us state a simplified version of a classical distortion control tool, the
Koebe Theorem. As derivatives and distances are expressed with respect to
the spherical metric we add a condition on the diameter of the image of the
unit disk.

Koebe Theorem. There exists κ > 0 and for all D > 1 there is ρ > 0
such that if g : D→ D is univalent then

B(g(0), κ|g′(0)|) ⊆ g(D),

and for all z ∈ B(0, ρ),

D−1 ≤
∣∣∣∣g′(z)g′(0)

∣∣∣∣ ≤ D.
For more general statements of this theorem, see Theorem 1.3 and Corol-

lary 1.4 in [13] or Lemma 2.5 in [3].
The following lemma will be used together with Koebe’s Theorem and

is a direct consequence of the Monodromy Theorem.

Lemma 6. Let U be a simply connected open set, g a rational map and
U ′ a connected component of g−1(U). If g has no critical points in U ′ then
it is univalent on U ′, and U ′ is simply connected.

Unless otherwise explicitly stated, f is assumed to be a rational map of
degree at least 2; J denotes its Julia set, F its Fatou set and Crit the set of
critical points of f .

Let us prove a bound for the quasi-hyperbolic length of pullbacks of arcs
in the Fatou set.

Lemma 7. Let dc > 0 be the distance from J to the critical orbits in F .
There exists a universal constant K > 1 such that if γ ⊆ F ∩ B(J, dc/2) is
an arc and γ′ is a connected component of f−k(γ) for some k > 0, then

lqh(γ′) ≤ Klqh(γ).

Proof. By hypothesis, for any z ∈ γ and k > 0, all branches of f−k are
univalent on B(z, δ(z)). Indeed, B(z, δ(z)) ⊆ F ∩ B(x, dc) for some x ∈ J
so all preimages of B(z, δ(z)) are simply connected by Lemma 6, as they
do not contain critical points. Koebe’s Theorem shows that the statement
holds locally. The lemma follows by compactness of γ′.

The following statements are Lemmas 3 and 5 in [12]. See also Lemma 1.4
in [14].

Lemma 8. Let g be a rational map, z ∈ C and 0 < r < R < 1. Let W and
W ′ be connected components of g−1(B(z,R)) and g−1(B(z, r)) respectively,



76 N. Mihalache

with W ′ ⊆W and diamW < 1. If degW (g) ≤ µ then

diamW ′

diamW
< 64

(
r

R

)1/µ

.

If A is an annulus and C1, C2 are the connected components of C \ A
then we denote

dist(C \A) = dist(C1, C2).

We also write

dist(∂A) = inf{r > 0 : ∂C1 ⊆ ∂C2 +B(0, r) and ∂C2 ⊆ ∂C1 +B(0, r)}
for the Hausdorff distance between the two components of the boundary
of A. Let us remark that

(3) dist(C \A) ≤ dist(∂A),

with equality only when A is a round annulus.

Lemma 9. Let A ⊆ C be an annulus and C1, C2 the components of
C \ A. For each α > 0 there exists δα > 0 that depends only on α such that
if modA ≥ α then

dist(C \A) ≥ δα min(diamC1, diamC2).

Proof of Theorem 1. Let f be semi-hyperbolic. Then by the aforemen-
tioned results all periodic components of its Fatou set are attracting, as f
satisfies ExpShrink. If J = C then there is nothing to prove.

Let us first show that an attracting periodic Fatou component Ω is a
John domain. Without loss of generality we may assume that f(Ω) = Ω.
Let λ > 1 and r > 0 be provided by the ExpShrink property of f . As there
are no parabolic cycles, critical orbits in the Fatou set do not accumulate
on the Julia set. By possibly decreasing r we may assume that for all z ∈ J ,
n ≥ 0 and each component U of f−n(B(z, r)),

U ∩ Crit ⊆ J,
where Crit is the set of critical points of f . As the critical orbits in the Julia
set are not recurrent, we may also assume that there exists µ ≥ 1 such that

(4) degU f
n ≤ µ.

As f is locally holomorphic, we may assume that the diameter of any
such pullback U is sufficiently small, so that, by induction, it is simply
connected.

Let V be given by Lemma 5 with ε = r/100. We continue to use the
notations Wk, nW (z) and p introduced during its proof. Let also Vn =
f−n(V ) ∩ Ω = Wk1+n+1 and n(z) = nV (z) for all z ∈ Ω. If n(z) > 0
for some z ∈ Ω then

fn(z) ∈ V \ f(V ),
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thus for all k > 0,
n−1(k) = Vk \ Vk−1.

For all z ∈ Ω we construct an arc γz ⊆ Ω without self-intersections that
connects z to p and avoids critical orbits with the exception of p if it is
critical. By compactness, there exists L > 0 such that for all z ∈ V there is
an arc γz ⊆ V that connects z to p with

lqh(γz) ≤ L,
and such that γ′z = γz \ f(V ) has at most one connected component. Let
z ∈ Ω \ V and m = n(z) except if z ∈ ∂Vn(z)−1 when m = n(z) − 1. Let
y = fm(z) ∈ V \ f(V ) and let γ′z = f−m(γ′y) connect z to z′ ∈ ∂Vm−1. We
define inductively γz as the concatenation

γz = γ′z · γz′ .
Figure 1 illustrates this inductive procedure for m = 1.

y

γ′y

f−1

Ω
z

z′
γ′z

p f(V ) V V1

Fig. 1. Construction of γz

By construction, this family of arcs is invariant under f outside f(V ).
That is, for all z ∈ Ω \ V , we have

(5) f(γz) \ f(V ) = γf(z) \ f(V ).

Using Lemma 7 and the inclusion V ⊆ V1 we conclude that for all z ∈ Ω,

(6) lqh(γz) > n(z).

Let z ∈ Ω \ V . Then y = fn(z)(z) ∈ V \ f(V ), therefore δ(y) < r/4.
Using ExpShrink we obtain

δ(z) ≤ λ−n(z).

One may also remark that

δ(∂V )‖f ′‖−n(z)
∞ ≤ δ(z).

As a consequence of these inequalities we conclude that for all z ∈ Ω,

(7) − log δ(z) ≈ n(z).
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Remark. Relations (6) and (7) show that Ω is a Hölder domain. This
is an alternative proof of the direct implication of Corollary 4, as we do
not use (4). With a similar construction, a stronger version of (6) and an
estimate of δ(z) that implies (7) have been proved in Lemma 7 of [9].

Set γz(k) = γz ∩ V k \ Vk−1 and γkz = γz \ Vk−1 for all k = 1, . . . , n(z).
By the previous relation and Lemma 7 there exists A > 1 such that for all
z ∈ Ω \ V and 0 < k < n(z),

Ak · l(γz(k)) >
�

γz(k)

|dξ|
δ(ξ)

= lqh(γz(k)) ≤ KL,

therefore by summation

(8) l(γkz ) > A−k.

We may therefore find n0 > 0 such that for all z ∈ Ω \ n−1(n0),

l(γn0
z ) ≤ r

100
.

For z ∈ Ω and z′ ∈ γz we denote by γz
′
z the arc γ′ ⊆ γ that connects (or

lifts) z to z′. By compactness and using relations (7) and (6), for all η > 0
there exists M > 0 such that if n(z′) ≤ n0 then

(9) lqh(γz
′
z ) ≥M ⇒ δ(z) ≤ ηδ(z′).

Let γw
′

w ⊆ Ω\Vn0 with lqh(γw
′

w ) ≥ KM where K is provided by Lemma 7.
We show that if η is sufficiently small then

(10) δ(w) ≤ 1
2
δ(w′).

By Lemma 3 this means that Ω is a John domain.
Let m = n(w′)−n0 so n(z′) = n(fm(w′)) = n0. Let also z = fm(w) and

x, x′ ∈ ∂Ω ⊆ J with δ(x, z) = δ(z) and δ(x′, z′) = δ(z′). By property (5),

γz
′
z = fm(γw

′
w ),

and δ(z′) < r/100, l(γz
′
z ) < r/100. Figure 2 illustrates this construction. By

the choice of γw
′

w , Lemma 7 and inequality (9),

δ(z) < ηδ(z′).

Let U be the connected component of f−m(B(x, r)) that contains w
and w′. Let also y, y′ ∈ U be preimages of x and x′ respectively, under
the same branch of f−m (i.e. connected by a homeomorphic pullback of
the path [x, z] · γz′z · [z′, x′] that contains w and w′). Let B0 = B(z, δ(z)),
B1 = B(z, r/8), B2 = B(z′, r/4), B3 = B(z′, r/2) and U0, U1, U2, U3 their
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z

z′

f−m

Ω

w
w′

Fig. 2. Pullback of γz′
z

respective pullbacks by f−m such that w ∈ U0 ⊂ U1 ⊂ U2 ⊂ U3 ⊂ U . By
Lemma 8,

δ(w) ≤ diamU0 ≤ 64 diamU1

(
8δ(z)
r

)1/µ

≤ 64η1/µ diamU2

(
8δ(z′)
r

)1/µ

.

Therefore

(11) δ(w) < 64η1/µ diamU2,

as 8δ(z′) < r.
As mod(B3 \ B2) > C0, a universal constant (the modulus is a con-

stant in the Euclidean metric), an application of the Grötzsch inequality
on conformal pullbacks of subannuli of B3 \ B2 that separate U2 from the
complement of U3 shows that

mod(U3 \ U2) > C0/µ.

For an explicit construction one may check the proof of Lemma 8 in [12].
By Lemma 9 there exists d > 0 that depends only on µ such that

B(w′, ddiamU2) ⊆ U3.

Let D = B(0, r′) for some 0 < r′ < 1. The spherical, Euclidean and
hyperbolic metric ρD on D are (uniformly in r′) comparable on B(0, r′/2).
Therefore there exists β ∈ (0, 1) that does not depend on r′ such that for
all 0 < θ ≤ β/2,

B(0, βθr′) ⊆ {ζ ∈ D : ρD(0, ζ) < θ} ⊆ B(0, β−1θr′).

Let D′ = B(w′, d · diamU2) and

θ = 2βδ(z′)/r,

which is bounded from below as n(z′) = n0. Then

B(w′, βθd · diamU2) ⊆ {ζ ∈ D′ : ρD′(w′, ζ) < θ} ⊆ {ζ ∈ U3 : ρU3(w′, ζ) < θ}
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and by the Schwarz Lemma

fm(B(w′, βθd · diamU2)) ⊆ {ζ ∈ B3 : ρB3(z′, ζ) < θ}
⊆ B(z′, β−1θr/2) = B(z′, δ(z′)).

Therefore βθd · diamU2 ≤ δ(w′), which combined with inequality (11) and
the lower bound for θ shows inequality (10), provided η is sufficiently small.

We have shown that each periodic Fatou component is a John domain.
There are only finitely many such components. As any other component
is a pullback of a periodic one, it is enough to show that pullbacks of Ω
are John domains. Let Ω′ be such a component with fp(Ω′) = Ω and V ′ =
f−p(Vn0) ⊆ Ω′. We may recall that for all z ∈ Ω, γz avoids critical orbits. For
w ∈ Ω′ let z = fp(w) and γw be the component of f−p(γz) that contains w.
It connects w to a preimage of p in Ω′. Paths γw

′
w ⊆ Ω′ \ V ′ are lifted to

γz
′
z ⊆ Ω with n(z′) = n0. Lemma 7 applies to γz

′
z and its pullback γw

′
w ,

and the previous argument shows inequality (10). As there are only finitely
many preimages of p in Ω′, it follows that Ω′ is a John domain.

Let γ be a Jordan curve and D > 1. We say that γ is a D-quasicircle
if for all x, y ∈ γ, the subarc γ′ of γ of smaller diameter that joins x and y
satisfies

diam γ′ ≤ D dist(x, y).

Both components of the complement of a quasicircle on C are John domains.
Let us show that there exists a rational map whose Fatou components

are John domains but which is not semi-hyperbolic. Corollary 4.4 in [22]
provides a degree 2 rational map g which has two fixed Siegel disks ∆0 and
∆∞ with the following properties: ∂∆0 and ∂∆∞ are disjoint quasicircles,
each containing a critical point c0 and c∞ respectively.

∂∆0 and ∂∆∞ are forward invariant sets and by Theorem V.1.1 in [5],
the orbits of c0 and c∞ are dense in ∂∆0 and ∂∆∞ respectively, as g has
no other critical points. Therefore both critical points are recurrent. By
Theorems III.2.2, III.2.3, IV.2.1 and V.1.1 of [5], all Fatou components are
preimages of ∆0 or ∆∞. By Lemma 6, all Fatou components are simply con-
nected and univalent. It is not hard to check that a preimage of a quasidisk
(component of the complement of a quasicircle) under a rational map is a
John domain. Therefore all Fatou components of g are John domains but
both critical points are recurrent, thus g is not semi-hyperbolic.

An example of Carsten Lunde Petersen of a Blaschke product with a
parabolic fixed point, thus not semi-hyperbolic, is given in [23]. As its Julia
set is the unit circle, all Fatou components are John domains.

Let us show that if the Julia set of a semi-hyperbolic map is connected
then all Fatou components are John with a uniform constant. In the follow-
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ing section we use this result to show a stronger version of local connectivity
of the Julia set.

Proposition 10. Let f be a semi-hyperbolic rational map with con-
nected Julia set. There exists ε > 0 such that any Fatou component of f is
an ε-John domain.

Proof. Let U be a Fatou domain of f . We call U multivalent if f is not
univalent on U . As the Julia set is connected, all Fatou components are
simply connected, and therefore by Lemma 6 there are only finitely many
multivalent Fatou components.

We show that univalent pullbacks of Ω are uniformly John domains. The
general case can be treated with minor modifications. Let us use the notation
introduced in the previous proof and assume that fp : Ω′ → Ω is univalent.
By the proof of Theorem 1 there exists M > 0 that does not depend on the
choice of Ω′ such that if lqh(γw

′
w ) ≥M and γz

′
z = fp(γw

′
w ) ⊆ Ω \ Vn0 then

δ(w) ≤ 1
2
δ(w′).

Therefore the only obstacle to uniformity is related to lqh(γw) and δ(w)
when w ∈ V ′ ⇔ z ∈ Vn0 . As fp is univalent on Ω′, Lemma 7 applies to γz
for all z ∈ Ω. Therefore lqh(γw) is uniformly bounded (independently of the
choice of Ω′). To complete the proof we show that there is a bound R > 0
that depends only on Ω and Vn0 such that for all w,w′ ∈ V ′,

(12)
δ(w)
δ(w′)

≤ R.

Let g : Ω → Ω′ be a univalent branch of f−p. Let ρ = ρ(2) be provided
by Koebe’s Theorem. Let us cover V n0 with m balls B(xi, ri) such that for
all i = 1, . . . ,m,

ri ≤ ρδ(xi).
Then for all z, z′ ∈ Vn0 , ∣∣∣∣ g′(z)g′(z′)

∣∣∣∣ ≤ 4m.

If
S = sup

z,z′∈Vn0

δ(z)
δ(z′)

,

then again by the Koebe Theorem applied to g and g−1, we may define R
in inequality (12) by

R = κ−24mS.

4. Local connectivity. Let us show that connected Julia sets of semi-
hyperbolic maps satisfy a slightly stronger version of local connectivity. The
construction developed for this purpose is extended to prove Theorem 2.
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We use an alternative definition of simply connected John domains given
by Theorem 4.4 in [7]. As we only need the easy part of this theorem, we
include a proof for completeness.

If U is a simply connected domain, we say that the segment [a, b] is a
crosscut of U if [a, b] ∩ ∂U = {a, b} and [a, b] ⊆ U .

Lemma 11. Let U be an ε-John simply connected domain, [a, b] a cross-
cut of U , and U1, U2 the connected components of U \ [a, b]. Then

min(diamU1, diamU2) ≤ ε−1δ(a, b).

Proof. Let z0 be the base point of U with respect to which it is an
ε-John domain. Let also U ′ be the component of U \ [a, b] that does not
contain z0. Let x, y ∈ U ′ and γx, γy the paths that connect z0 to x and y
respectively, provided by the definition of John domains. Let x′ ∈ [a, b] ∩ γx
and y′ ∈ [a, b] ∩ γy. We may choose the order of x′, y′ ∈ [a, b] such that

δ(a, b) = δ(a, x′) + δ(x′, y′) + δ(y′, b).

As εδ(x, x′) ≤ δ(x′) ≤ δ(a, x′) and εδ(y′, y) ≤ δ(y′) ≤ δ(y′, b), the triangle
inequality completes the proof.

Proposition 12. If the Julia set of a semi-hyperbolic rational map is
connected then it is locally connected. Moreover, there is ε > 0 such that the
Julia set satisfies the condition defining local connectivity with τ = ε−1θ.

Proof. By Proposition 10 there is ε > 0 such that any Fatou component
U is a simply connected ε-John domain. Let τ > 0 and a, b ∈ J with
δ(a, b) < ετ . It is sufficient to find a continuum C ⊆ J that contains a and
b with

(13) diamC < τ

to show that J is locally connected and complete the proof.
Let us consider the segment [a, b]. We replace each connected component

(c, d) of [a, b]∩F with a piece of the boundary of the Fatou component U that
contains (c, d). Using the notation of Lemma 11 and assuming diamU1 ≤
diamU2, we replace (c, d) by ∂U1 \ (c, d). Letting C be the closure of the
union of all these components and of the points that were not replaced in
[a, b], it is not hard to see that C is a continuum that satisfies (13).

The following classical topology result has a straightforward proof, along
the lines of that of Proposition 12, which we omit.

Proposition 13. Let K ⊆ C be a continuum and (Un)n≥0 the sequence
of connected components of its complement C \ K. If all ∂Un are locally
connected and

lim
n→∞

diamUn = 0,

then K is locally connected.
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A domain regularity that is more general than Hölder regularity is con-
sidered in [8]. A domain Ω is called integrable if there exists z0 ∈ Ω and an
integrable function H : R+ → R+,

∞�

0

H(r) dr <∞,

such that Ω satisfies the following quasi-hyperbolic boundary condition: for
all z ∈ Ω,

δ(z) ≤ H(distqh(z, z0)).

Hölder domains correspond to exponentially fast integrable domains, that
is, with H(r) = exp(C − εr). However, John domains and Hölder domains
cannot be distinguished by their integrability function H.

An immediate consequence of Lemma 11.5 and Fact 11.1 in [8] is that
all connected components of the boundary of an integrable domain are lo-
cally connected. For any attracting periodic Fatou component of a rational
map, integrability is characterized in terms of derivative growth on back-
ward orbits inside the domain (see Lemma 11.1 in [8]). By Koebe’s Theorem,
SumShrink implies this condition, which yields the following fact.

Corollary 14. Periodic simply connected Fatou components of a
SumShrink rational map have locally connected boundary.

Theorem 11 in [8] shows that SumShrink holds for rational maps that sat-
isfy a certain summability condition, a generalization of the Collet–Eckmann
condition. This condition does not imply ExpShrink, nor is it a consequence
of it.

Suppose the Julia set is not connected, the components of the Fatou set
are integrable domains, and their diameter tends to 0. Then one may show
that the connected components of the Julia set are locally connected; only
minor modifications in the proof of Proposition 13 are needed.

Proof of Theorem 2. If J = C there is nothing to prove, therefore we
assume that the Fatou set is non-empty. As discussed in the introduction,
by SumShrink, the Fatou set consists of finitely many attracting periodic
components and their preimages. The Julia set is connected, therefore Fatou
components are simply connected. Thus the boundaries of periodic Fatou
components are locally connected by Corollary 14. Being pullbacks of locally
connected compact sets by rational maps (iterates of f), the boundaries of
all Fatou components are locally connected.

By Lemma 6, there are only finitely many multivalent Fatou components.
By Proposition 13, it is enough to show that the diameters of univalent
pullbacks of some Fatou component U tend to 0. Let

ϕ : D→ U
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be the Riemann mapping which extends continuously to D by Carathéo-
dory’s Theorem. Let A = U \ ϕ(B(0, R)) be an annulus with 0 < R < 1
such that

dist(∂A) < r/2,

where r is given by SumShrink and dist(∂A) denotes the Hausdorff distance
between the components of ∂A (see definition on page 76).

Let (Un)n≥0 be a sequence of univalent pullbacks of U = U0 such that
f(Un+1) = Un for all n ≥ 0. Let also (An)n≥1 be the corresponding pullbacks
of A. Then for all n > 0,

modA = modAn,

and using a cover of A with balls of radius r centered on ∂U ⊆ J , by
SumShrink,

lim
n→∞

dist(∂An) = 0.

Let Cn and Kn be the connected components of C \An with diamCn ≤
diamKn for all n > 0. Note that

(14) diam(Cn ∪An) ≤ diamCn + 2 dist(∂An).

If n is sufficiently large then dist(∂An) < 1/4 and by Lemma 9, diamCn <
1/2. Then Kn contains half the Riemann sphere. Therefore there is at most
one (sufficiently large) n such that Kn ⊆ Un. Therefore, for all but finitely
many n > 0,

Un = An ∪ Cn.
By Lemma 9 and inequalities (3) and (14),

lim
n→∞

diamUn = 0,

which completes the proof.
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