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Partial square at w, is implied by MM
but not by PFA

by

Hiroshi Sakai (Kobe)

Abstract. We prove the results stated in the title.

1. Introduction. The square principle, introduced by Jensen [9], and
its weak versions, play important roles in Set Theory. Using these square
principles, we can construct non-compact objects such as Suslin trees and
non-reflecting stationary sets. Thus propositions asserting some compactness
tend to imply the failure of square principles. For example, it was shown by
Magidor [12] that the stationary reflection principle at §* implies the failure
of Os. It is also known, from work of Todorcevié¢ [I7], that PFA implies the
failure of [J(9) for any regular 6 > ws.

In this paper we study consequences of forcing axioms for the partial
square principle at wi. In particular we study the consequences of Martin’s
Maximum, MM, and the Proper Forcing Axiom, PFA. First we recall the
partial square principle. Below, for a set A of ordinals, otp(A) denotes the
order type of A, and Lim(A) denotes the set of all limit points in A, i.e.
Lim(A) ={a € A |sup(ANa) = a}.

DEFINITION 1.1. Let § be an uncountable cardinal. For S C Lim(67) let
05(S) = there exists a sequence (cq | @ € S) such that
(i) cq is a club in a with otp(c,) < 0 for each o € S,
(ii) if o € S and B € Lim(cy), then 8 € S and ¢z = ¢ N B.
A sequence (¢, | a € S) satisfying (i) and (ii) is called a [5(.S)-sequence.
The above partial square was used in [2], [7], [10], [13], [15], etc.
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Note that Og(Lim(d)) is equivalent to Jensen’s s introduced in [9].
In fact it is easy to see that [s holds if and only if (s(C') holds for some
club C' C Lim(6"). On the other hand, it is not hard to see that if S is a
nonstationary subset of 41, then [Js(S) holds.

As for Og(S) for a stationary S C Lim(d1), the following was shown by
Shelah:

FAacT 1.2 (Shelah [15]). Suppose that 6 and p are reqular cardinals with
p < 6. Then there exists S C Lim(61) such that

(i) Os(5) holds,
(ii) the set {a € S| cf(a) = p} is stationary in 6.
On the other hand, it is known that the following partial square principle
005 is independent of ZFC for a regular uncountable cardinal § (see :
DEFINITION 1.3. For a regular uncountable cardinal ¢ let
OF = there exists S C Lim(d*) such that
(i) Os(5) holds,
(ii) the set {a € S| cf(a) = &} is stationary in 7.

({3l

(The superscript “p” in (0} stands for “partial”.)

We study consequences of MM and PFA for [0Y,. For simplicity of our
notation we omit the subscript wy in O, (S) and O, :

NOTATION. Let J(S) and 0P denote U, (S) and OO, , respectively.

It is not hard to see that MM does not imply the failure of [P (see
Thm. . Our first result is the following:

THEOREM 1.4. MM implies (IP.
On the other hand, we also prove that PFA does not imply [IP:

THEOREM 1.5. If there exists a supercompact cardinal, then there exists
a forcing extension in which PFA holds but TP fails.

Theorem [T.4] will be proved in §3], and Theorem [I.5]in 5| In 6] we make
a remark that Dép for a regular cardinal § > w is independent of MM.

In 5] and §6] we discuss the consistency of the failure of the partial
square. For this we use a strong stationary reflection principle, which was
introduced by Magidor [12] and implies the failure of the partial square. In
{4 we present facts on this strong stationary reflection principle which we
use in g5 and

2. Preliminaries. Here we present our notation and basic facts used
in this paper. For those which are not presented below, consult Jech [§].
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For a function f and X C dom(f) we let f[X]:= {f(x) | x € X}. For
a regular cardinal § and an ordinal kK > ¢ let £ := {a < K | cf(a) = 0}.
Moreover for ordinals ¢ and x with § < k let €55 := {a < s | cf(a) < §}.
For i = 0,1 let E? := £22.

For a regular cardinal § and a set W, [W]° denotes the set of all 2 C W
with |z| = 6. A set C C [W]° is said to be a club in [W]° if for some function
F:<“W — W, C is the set of all z € [W]° closed under F. A set X C [W]°
is said to be stationary in [W1]° if X NC # () for any club C in [W]?, i.e. for
any function F': <“W — W there exists x € X which is closed under F.

Let M be a structure such that there exists a well-ordering of its universe
definable over M, and suppose that 2 C M. Then Sk (z) denotes the
Skolem hull of z in M, i.e. the smallest M with x C M < M.

For a limit ordinal §, a set M is said to be internally approachable (i.a.)
of length ¢ if there exists a C-increasing sequence (Mg | & < 0) such that
Ug<s Me = M and such that (M | £ < ') € M for any 0’ < J. A sequence
(M¢ | ¢ < 0) witnessing the internal approachability of M is called an
internally approaching (i.a.) sequence to M.

We use an ideal I[\] over a regular cardinal A > ws, which was introduced
by Shelah [I4]. First we recall the definition of I[A]. Suppose that A > w9 and
that £ C \. Then E € I[)\] if and only if there exist a sequence (b, | & < )
of bounded subsets of A and a club C' C X such that for any limit ordinal
a € CNE we can take an unbounded b C «a with otp(b) = cf(a) and
{bNp| B <a}l C{bg|p < a}. We use the following fact:

Fact 2.1 (Shelah [14]). Let § be a regular uncountable cardinal.

(1) Suppose that X is a regular cardinal > ¢ and that E is a stationary
subset of 525 with E € I[\]. Then E remains stationary in V¥ for
any <d-closed poset P.

(2) Suppose that 2<° = §. Then 555 e I[07].

Next we give our notation on forcing.

Let IP be a poset. We also let P denote the base set of P. The order of P
is denoted as <p, but we usually omit the subscript P. A poset Q is said to
be a suborder of P if Q C P and <g = <pN (Q x Q).

A P-name is a set consisting of pairs (&, p) such that & is a P-name of
lower rank and such that p € P. If (&, p) belongs to a P-name X, then p
forces that & € X. For an ordinal x we say that S is a nice P-name for a
subset of  if there exists a sequence (A, | @ < k) of antichains in P such
that S = {(&,p) | p € Aa}.

For A C P and p € P we say that p meets A if there is ¢ € A with ¢ > p.
For Ag, A1 C P we say that Ag refines Ap if all elements of Ay meet Aj.
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P is said to be wy -stationary preserving if wYP = w}/ and every stationary
subset of wy in V remains stationary in V.

Let 0 be a regular uncountable cardinal. We say that P has the d-chain
condition (6-c.c.) if there is no antichain A in P with |A| = 4.

A subset A C P is said to be directed if for any p,q € A there exists
r € A with r < p, q. Furthermore P is said to be <{§-directed closed if every
directed A C P with |A| < J has a lower bound in P.

P is said to be <§-Baire if for any p € P and any family A of maximal
antichains in P with |A| < ¢, there exists p* < p which meets all A € A.
P is <é-Baire if and only if a forcing extension by P does not add any
new sequences of ordinals of length < 4. P is said to be o-Baire if P is
<wi-Baire.

For a regular cardinal § and an ordinal xk > ¢ let Col(d, ) denote the
poset <%k ordered by reverse inclusion. Moreover let Col(8, <x) be the <4-
support product of (Col(d, k") | & < k' < k). Thus if  is an inaccessible
cardinal, then Col(, <) is the Lévy collapse forcing x to be §*. Further-
more for an ordinal A > & let Col(d, [k, A)) be the <d-support product of
(Col(6,K') | k < K < \).

Next we give our notation and a basic fact on projections between posets.
Let P and Q be posets. A map 7 : P — Q which has the following properties
is called a projection:

(i) m is surjective and order preserving.
(ii) For any p € P and any ¢ € Q with ¢ <g 7(p) there exists p* € P
such that p* <p p and 7(p*) = q.

Suppose that 7 : P — Q is a projection and that H is a Q-generic filter.
Then, in V[H], P/H denotes the poset obtained by restricting P to 7~ [ H ].
It is standard that Q = (P/H) is forcing equivalent to P, where H is the
canonical Q-name for a Q-generic filter. (See Abraham [I} §1].)

Finally we present our notation and a fact on forcing axioms:

For a poset P and an uncountable cardinal § let FA5(P) and FAS ™ (PP) be
the following forcing axioms:

FAs(P) = For any p € P and any family A of maximal antichains in
P with |A| < ¢ there exists a filter G C P containing p such
that GN A # () for all A € A.
FAgr+ (P) = For any p € P, any family A of maximal antichains in P with
|A| < ¢ and any family R of P-names for stationary subsets
of § with |R| < ¢ there exists a filter G C P containing p
such that GN A # 0 for all A € A and such that Rg =
{6 <6 TpeG, plk“Ee R is stationary in ¢ for all

ReR.
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Recall that PFA is FA,, for all proper posets and that MM is FA,, for all
wi-stationary preserving posets. We let PFAT' denote FA:;IJr for all proper
posets. PFAT was introduced by Baumgartner [3], and he observed that if
Kk is a supercompact cardinal, and (Pa,Qg | @« < K, < k) is the standard
iteration for PFA, which was also introduced by him (see Devlin [4]), then
this iteration in fact forces PFATT.

Let P be a poset and M be a set. ¢ C PN M is called an (M, P)-generic
filter if g is a filter on PN M such that gN A # ) for every maximal antichain
Ae M inP.

We use the following fact. (1) is proved in Woodin [18, proof of Thm.
2.53]:

LEMMA 2.2. Suppose that P is a poset, that § is an uncountable cardinal
and that FAs(IP) holds. Let p € P, and let 0 be a regular cardinal > & with
P e Hy.

(1) There are stationary many M € [Hq]® with the following properties:
(i) 0 C M andp e M.
(ii) There exists an (M,P)-generic filter containing p.
(2) If P is <6-Baire, then there are stationary many M € [Hy]® with
the properties (i), (ii) above and the following:
(iii) M is internally approachable of length §.

(3) If FA{T(P) holds, then there are stationary many M € [Hy)® with
the property (1) above and the following:

(iv) There exists an (M,IP)-generic filter g containing p such that
R, = {¢ < 0|3qg€g,qlk“& € R”} is stationary in 0 for any
P-name R € M for a stationary subset of 4.

If P is <d-Baire in addition, then there are stationary many M €
[Ho)® with the properties (i), (iii) and (iv).

In the proof of the above lemma we use the following well-known lemma:

LEMMA 2.3 (folklore). Let 0 be a regular uncountable cardinal, A be a
well-ordering of Hy, and M be a structure obtained by adding countable
many constants, functions and predicates to (Hg, €, A). Suppose that M is
an elementary submodel of M and that d C D € M. Then

SKM(M Ud) = {f(b) | be <¥d, f: "D - Hy, fe M}

Proof. Let N be the set on the right side. Then SkKM(M Ud) D N
clearly. We prove the reverse inclusion. Before starting we prepare a notation.
For each formula ¢ (u,vo, ..., Vm—1,wo, ..., w,—1) of the language for M let
hy @ ™t Hg — Hy be the Skolem function for ¢ in M. That is, for any
a = (ag,...,am-1) € ™Hy and any b = (by,...,bp—1) € "Hp, if there
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exists  with M = p(x,a0,...,am-1,bo,...,bn—1), then hy(a,b) is the A-
least such x, otherwise hy(a,b) = 0.

To show that Sk™(M U d) C N, take an arbitrary = € Sk™M(M U d).
Then there exists a formula ¢(u, vy, ..., Um—1, W1, ..., Wy—1), a* € ™M and
b* € ™d such that hy(a*,0*) = x. Let f : "D — Hy be the function such
that f(b) = hy(a*,b) for every b € "D. Then f € Hy, and f is definable in
M from parameters D and a*, both of which are in M. Hence f € M by
the elementarity of M. Moreover z = f(b*). Therefore z € N. u

Proof of Lemma[2.3. Let A be a well-ordering of Hy, and suppose that
M is a structure obtained by adding countably many constants, functions
and predicates to (Hg, €, A, P,p,6). For (1) it suffices to find M € [Hy]°
with the properties (i) and (ii) such that M < M. For (2) or (3) it suffices
to find such M with (iii) or (iv), respectively.

First we can take N € [Hy]? such that N is i.a. of length ¢ and such
that N < M. Here note that 6 € N. Let A be the set of all maximal
antichains in IP which belong to N, and let ‘R be the set of all P-names in N
for stationary subsets of §. By FAs(P) take a filter G C P containing p and
intersecting all elements of A. Here note that if FAY™(P) holds, then we
can take G so that R¢ is stationary for all R € R. For each A € A let pa
be the unique element of GN A, and let d := {pa | A € A}. Moreover let
M := SK™(N U d). Clearly 6 U {p} € M < M. It suffices to prove the
following;:

(a) g:= GN M is an (M, P)-generic filter.

(b) If P is <¢-Baire, then M is i.a. of length 0.

(c) If Re is stationary in & for every R € R, then Rg is stationary in
for every P-name R € M for a stationary subset of 4.

(a) Let A* € M be a maximal antichain in P. We show that g N A* # 0.

By Lemma there exist b* = (pg,...,p}_1) € ““d and a function
f:"P — Hy in N such that f(b*) = A*. We may assume that f(b) is a
maximal antichain in P for every b € "P.

For each ¢ < n take A; € A with pi = pa,. Let K be the set of all
b € [],.,, A; which have a lower bound. Here we say that b = (po,...,pn—1)
has a lower bound if {pg,...,pn—1} has a lower bound in P. Note that if
b,/ € K and b # V', then b and b’ have no common lower bound. This is
because each A; is an antichain.

For each b € K let Ay be the A-least maximal antichain below b which
refines f(b). Let A° := [Jyc g Ap- Then it is easy to see that A° is a maximal
antichain in P and that A° € N. That is, A° € A.

Here note that p4o must be in Ap«. Otherwise p4o is incompatible with
at least one of pg,...,p,_;, and this contradicts that all pso,pg,...,p5_1
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belong to the filter G. Moreover recall that Ay« refines f(b*) = A*. Let p*
be the unique element of A* with p* > pge..

Then p* € G because p* > pao € G. Moreover p* € M because p* is
definable from p 4o, A* € M. Therefore p* € g N A* # ().

(b) Let (N¢ | € < &) be an i.a. sequence to N. We may assume that
|Ne| < d for each & < 6. For each & < ¢ let A := ANNg, d¢ := {pa | A € A¢}
and

Mg :={f(b) | be <“d, f: PP — H,, fe N}

We show that (Mg | £ < 6) is an i.a. sequence to M.

Clearly (M | § < wi) is C-increasing, and (g, M¢ = M by Lemma
Thus it suffices to show that (M, | £ < () € M for every ( < 6. Here note
that (Mg | £ < () is definable in (Hp, €) from parameters P, (N¢ | £ < ()
and (de¢ | £ < (). Moreover P, (N¢ | £ < () € N C M. Therefore all we have
to show is that (d¢ | £ < () € M for every ¢ < 6.

Fix ¢ < §. Because P is <d-Baire, there exists a maximal antichain A*
in P which refines all maximal antichains in A;. We can take such A* in N
because A: € N. Then for each A € A¢, pa is the unique p € A with p > p-.
Hence d¢ = {p € |JA¢ | p > pa~} for each € < ¢. Then (d¢ | £ < () e M
because pa«, (A¢ | £ < () € M < (Hy, €).

(c) Suppose that Re is stationary in § for all R € R. Take an arbitrary
P-name R* € M for stationary subsets of . We show that R* is stationary
in 0.

By Lemma there exist b* = (p§,...,p;_;) € "d and a function f :
"P — Hy in N such that f(b*) = R*. We may assume that f(b) is a P-name
for a stationary subset of § for every b € "d. Moreover take A;, i < n, and K
as in the proof of (a) above.

Then we can take a P-name R° € N such that for any b € K all
lower bounds of b force that R° = f(b). Recall that f(b*) = R*, that
b* <p0,...,pn 1) and that p§,...,p:_; € G. Then it is easy to see that
RG = R* Moreover R is stationary in 8 because R° € R. Therefore R* is
statlonary ind. m

3. MM implies [JP. In this section we prove

THEOREM [[.4, MM implies [IP.

This will be done in In the preceding subsections, we make prelim-
inaries for the proof.

3.1. wi-stationary preserving o-Baire posets. In the proof of The-
orem we will construct an w;-stationary preserving o-Baire poset and
apply MM to it. Here we present a sufficient condition for a poset to be
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wi-stationary preserving and o-Baire. For this we use the notions of projec-
tively stationary sets and of strongly generic conditions:

DEFINITION 3.1 (Feng-Jech [5]). Let W be a set with w; € W. Then
X C [W]¥ is said to be projectively stationary if the set {x € X | xNw; € R}
is stationary in [W]“ for every stationary R C wj.

DEFINITION 3.2. Let P be a poset and M be a set. Then p € P is called a
strongly (M, P)-generic condition if {g € PNM | ¢ > p} is an (M, P)-generic
filter.

Note that if p is a strongly (M, P)-generic condition, then p meets AN M
for every maximal antichain A € M in P.
Now we give a sufficient condition:

LEMMA 3.3. Let P be a poset. Suppose that P satisfies the following:

(%) For every sufficiently large regular cardinal 6 and every p € P the
following set is projectively stationary:

{M € [Hg]” | a strongly (M,P)-generic condition below p exists}.
Then P is wy-stationary preserving and o-Baire.

Proof. Assume (x). Let 6 be a sufficiently large regular cardinal.

To show that P is o-Baire, suppose that p € P and that A is a countable
family of maximal antichains in P. By (%) we can take M € [Hy|* and
p* < p such that AU {p} € M < (Hp, €) and such that p* is a strongly
(M, P)-generic condition. Then p* < p, and p* meets all elements of A. This
completes the proof of the o-Baireness.

Next, to prove that P is wi-stationary preserving, arbitrarily take p € P,
a stationary R C w; and a P-name C for a club in w}/. It suffices to find
p* < pand £ € R such that p* IF “¢ € C”.

By (%) we can take M € [Hg]* and p* < p such that P,p,R,C € M <
(Hg, €), such that M Nw; € R and such that p* is a strongly (M, P)-generic
condition. Let £ := M Nw;. Then £ € R, and p* I “£ € ok by the standard
argument. =

3.2. Variant of diamond principle in [ws]*“. In the proof of Theo-
rem 1.4 we use a certain diamond principle in [ws]¥. Here we prove that MM
implies it.

For X C [w9]* we say that sup[X is injective if supx # supy for any
distinct =,y € X.

LEMMA 3.4. Assume MM. Let S be a stationary subset of Eg. Then there
are X C [w2]¥ and a sequence (B | x € X) with the following properties:
(i) supx ¢ z for each v € X, {supz | x € X} = S, and sup|X is
injective.
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(ii) By is a countable family of subsets of x for each x € X.

(iii) For every sufficiently large regular cardinal 0, the set of all M €
[Ho|“ such that

o M Nuwy € X,
® Byrw, ={BNM|B¢eP(w)NM}

18 projectively stationary.
Lemma [3-4] follows from Facts [3.5] 3.6 and Lemma [3.7] below:
Fact 3.5 (Foreman—Magidor—Shelah [6]). MM implies that 2 = ws.

FAcT 3.6 (Shelah [16]). If 2¥' = wo, then {uw,(S) holds for every sta-
tionary S C E3.

LEMMA 3.7. Suppose that S is a stationary subset of EZ and that {»,,,(95)
holds. Then there exist X and (B, | x € X) satisfying (1)—(iii) in Lemmal[3.4]

We prove Lemma (3.7} For this we need the following result:

LEMMA 3.8. Suppose that S is a stationary subset of E2 and that .y, (S)
holds. Then there exist X C |we]¥ and a sequence (b, | x € X) such that:

(i) supz ¢ z for each x € X, {supz | z € X} = S, and sup[X is
injective.

(ii) by C x for each xz € X.

(iii) For every B C wy the set {x € X | by = B Na} is projectively
stationary.

Proof. We may assume that S C E2 \ wi. By $u,(S) there exists a
sequence (R, fo, b, | @ € S) with the following properties:

e For each a € 5, R, is a stationary subset of wi, f, is a function from
““a to a, and b, C a.

e If R is a stationary subset of wi, F'is a function from <“ws to ws, and
B C wo, then there exists a € S such that R, = R, fo = F[~“«a and
b, = BNa.

For each a € S, take z, € [a]¥ such that supz, = @, 4 Nw; € R, and
T is closed under f,. We can take such x, because o € Eg \ w1 and R, is
stationary. Let X := {z | a € S}. Moreover let b, := b,,, Nz for each
x € X. (Hence b,, = b, Nz, for each o € S.)

We show that these X and (b, | € X) witness the lemma. Clearly they
satisfy (i) and (ii). We check (iii).

Fix B C ws. It suffices to show that for every stationary R C w; and
every function F': <“wy — wy there exists z € X such that ztNw; € R, x is
closed under F and b, = BN x.

Take an arbitrary stationary R C w; and an arbitrary function F' :
<Wwy — wg. Then there exists a € S with Ry, = R, fo = F|~“«a and

<
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b, = BNa. So x4Nwy € R, x4 is closed under F, and b,, = b, Nz, = BNz,
by the choice of x,. Moreover z, € X. Hence x, is as desired. =

Proof of Lemma [3.7. Before starting we prepare a notation. For each
D C On x On and each v € On, let D(v) denote the set {3 € On |
(v,B) € D}.

Now we start the proof. By Lemma we can take X C [wq]“ and a
sequence (d, | x € X)) such that:

(i") supz ¢ x for each z € X, {supx | z € X} = S, and sup|X is
injective.
(it") dy Cx x x.
(iii") For every D C wy X wo the set {x € X | dy = DN (z x z)} is
projectively stationary.

For each x € X let B, = {dz(y) | v € «}. We show that X and (B, | z € X)
witness Lemma [3.7} Clearly (i) and (ii) in Lemma [3.4 hold. We check (iii).

Let 6 be a sufficiently large regular cardinal. Take an arbitrary stationary
R C wy and an arbitrary function F : <“Hy — Hy. It suffices to find
M € [Hp]¥ such that M Nw; € R, M is closed under F, M Nwy € X and
Brinw, ={BNM|BePw)NM}

First take N C Hy such that |[N| = we € N, P(wa) NN # () and N is
closed under F'. Moreover take an enumeration (B, | v € wa) of P(w2) N N.
For each = € [wa]® let

M, =clp(xU{B,|v€x}) CN,
where clp(a) denotes the closure of a under F'. Then let C' be the set of all
x € [wo]¥ with M, Nwo = x and P(wz) N M, = {B, | v € z}. Finally let D
be a subset of wy X wo such that D(v) = B, for each v € wo.
Note that C'is a club in [ws]“. Hence, by (iil’), there exists x € XNC such
that zNwy € Rand d, = DN (z x ). Then M, € [Hy|*, My Nws =x € X,
M, Nwi =zNwi € R, and M, is closed under F'. Moreover

BMzﬂwQ :Bx:{dx(7) "}/Ex} = {D(’}/)mx | ’}/El‘}
={ByNz|yeca}={BNx|BePw)N M}
={BNM;|BecP(w) N M}.

Thus M, is as desired. =

3.3. Proof of Theorem Before proving the theorem we present a
poset to which we apply MM:

DEFINITION 3.9. Suppose that S C E3 and that ¢ = (¢, | @ € S) is a
0(S)-sequence. (S may be bounded in ws.) Then let P(¢) be the following
poset:
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o P(¢)=275.
e a <p(g B if and only if § € Lim(c,) U {a} for each o, 3 € S.

For g CP(@) let
cq = U Ca-

acg

Note that o <p(z) 0 if and only if cg is an initial segment of c,. The
following lemma can be easily proved. The proof is left to the reader.

LEMMA 3.10. Let S be a subset of E3 and &= {(co | a € S) be a 1(S)-
sequence.

(1) Suppose that g is a filter on P(C). Then cq is a club in sup ¢4 of order
type < wi. Moreover, if B € Lim(cy), then B € S, and cg = ¢4 N .
(2) Suppose that the following (xx) holds:

(xx) P(C) \ v is dense in P(C) for every v < wa.
Let 0 be a sufficiently large reqular cardinal and M be an elementary

submodel of (Hg, €,¢). Suppose also that g is an (M,P(Z))-generic
filter. Then sup ¢y = sup(M Nws).

Proof of Theorem . Assume MM. We want to prove that [J(.S) holds for
some S C Lim(wy) with S N E? stationary.

Our proof is composed of two steps. First we construct a [J(F3)-sequence
¢ = (ca | @ € E?) so that P(¢) satisfies () in Lemma and (k*) in
Lemma [3.10, Then, using Lemma we show that ¢ can be extended to a
0(S)-sequence for some S C Lim(wg) with S N E? stationary.

STEP 1: Construction of ¢ = (co | a € E?). First take a stationary
partition (T | 8 € E3) of EZ, ie. (Is | B € E?) is a pairwise disjoint
sequence of stationary subsets of E3 such that (J{Ts | 3 € E3} = EZ. By
Lemma for each 3 € E3 we can take Xg C [wg]* and (B |z e X3)
with the following properties:

(i) supz ¢ x for each x € X3, {supx | x € Xg} = Tp, and sup[Xj is
injective.

(ii) BY is a countable family of subsets of z for each z € X 3-

(iii) For every sufficiently large regular cardinal 6 the set of all M €
[Hg]“ such that

o MNuwy e Xg,
o By, ={BNM|BePw)nM}
is projectively stationary.

By induction on a € E} we construct a [J(E3)-sequence ¢ = (c, |
o € E?). Suppose that a € E? and that (cg | 3 € E2 N a) has been
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defined to be a O(EZ N «)-sequence. Then take ¢, as follows: First let
Ba := the unique element of Eg with o € Tj,,
Zq := the unique element of Xz, with supz, = a.

If B, & x4 or there exists 3 € E3 N x, with Lim(cg) € 4, then let ¢, be an
arbitrary unbounded subset of « of order type w.

Suppose that §, € z, and that Lim(cg) C z, for every 8 € Eg N Tq.
Then note that (cs | 8 € EZ Nx4) is a O(E3 N z4)-sequence. Let

Py = P({cg| B € Eg Nzqa)).
Note also that 3, € P, C z,.

Recall that ng is a countable family of subsets of x,. Hence we can take
a filter g, on P, such that:

(iV) Ba € Ya-
(V) gaNb# 0 for every b € ng which is a maximal antichain in P,,.

If sup ¢g, = , then let ¢, := ¢4, . Otherwise, take an unbounded ¢ C « such
that otp(c) = w and 3, = minc, and let ¢, :=cg, Uc.

This completes the choice of ¢,. Using Lemma (1), it is easy to check
that (cg | B € EZNa+1)is a O(EZ Na+ 1)-sequence. Note that if 3, € 4
and Lim(cg) C x, for every 8 € EZ N x4, then B, € Lim(cy).

Now we have constructed a J(E?)-sequence ¢ = (¢, | @ € E3). We show
that P(¢) satisfies () and (x):

CrLAamM 1. P(€) satisfies (xx) in Lemma[3.10}

Proof. Take an arbitrary 8* € E2 and an arbitrary v* < ws. We must
find o* € E2 \ v* with o* <p@) 5"

Let 0 be a sufficiently large regular cardinal. Because Xg- is stationary in
[wa]“, we can take M < (Hy, €,€) such that §*,v* € M and M Nwy € Xg-.
Let o* := sup(M Nws). Clearly a* € E2 \ v*.

Note that a® € Tg«. So B, = (*. Note also that o+ = M Nws. Hence
Bar € xq+ by the choice of M. Moreover Lim(cg) C o+ for every § €
E2 N x4+ because M < (Hg,€,¢) and each cg is a countable set. Then
B* = Bar € Lim(cax) by the choice of co+. Thus a* <pg) 3. #Claim @

CLAIM 2. P(C) satisfies () in Lemma[3.3]

Proof. Suppose that 0 is a sufficiently large regular cardinal and that
B* € E3 = P(¢). We prove that there are projectively stationary many
M € [Hp]“ such that a strongly (M,P(¢))-generic condition below §* exists.
Let Y be the set of all M € [Hg]* such that:

(vi) B*,¢€ M < (Hp, €).
(Vii) MNwy € Xﬁ*.

(viii) By, = {BNM | B € P(wz) N M}.
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Then Y is projectively stationary in [Hg]“ by (iii). It suffices to show that
sup(M Nws) is a strongly (M, P(¢))-condition below 5* for each M € Y.

Fix M € Y, and let a* := sup(M Nwy). Then B, = [% and x4+ =
M Nwy. Hence B+ € zo+, and Lim(cg) C x4+ for each 8 € Eg N o+ Note
also that Po« = P(¢) N M. So gq+ is a filter on P(¢) N M containing 3*
by (iv). Moreover gq+ is an (M, P(&))-generic filter by (v) and (viii).

Here note that supcy_ . = sup(M Nws) = o by Lemma (2) and
Claim Hence cox = ¢y, and 80 go+ = {8 € P(C)NM | B >p(e) a*}. There-
fore o is a strongly (M, P(¢))-generic condition below 5*. mciaim B Jstep 1

STEP 2: Euxtension of ¢. Let 0 be a sufficiently large regular cardinal,
and let Z be the set of all N € [Hyp]“* such that:

(ix) N < (Hp,€,C).
(x) N is i.a. of length w;.
(xi) There exists an (N, P(¢))-generic filter.

By Claim [2[ and Lemma P(¢) is wi-stationary preserving and o-Baire.
Hence Z is stationary in [Hg|“* by MM and Lemma[2.2]

Note that sup(NNws) € E? for each N € Z because N is i.a. of length w;.
Hence S := {sup(N Nwsy) | N € Z} is a stationary subset of E?.

For each a € S’ choose N, € Z with sup(N,Nws2) = o and an (N, P(¢))-
generic filter go. Moreover let ¢, := ¢g, for each a € S’. Note that supc, = «
by Claim [If and Lemma [3.10(2). Then, by Lemma 1), ¢q is a club of «
of order type w1, and if 3 € Lim(c,), then 3 € E3, and cg = ¢, N B

Now let S := EZ U S’. Then SN E? = 5 is stationary. Moreover (c, |
a € S) is a [(S)-sequence. gtep 2

This completes the proof of Theorem .

4. Strong stationary reflection principle. In §o/and §6| we will dis-
cuss the consistency of the failure of the partial square. For this we will use
the following stationary reflection principle, which implies the failure of the
partial square:

DEFINITION 4.1. Let k be a successor cardinal of some regular uncount-
able cardinal §. Then let

OSR; = For any stationary S C & 25 there exists a club C' C x such that
S Na is stationary in « for any o € C'NEF.

OSR;,, was introduced by Magidor [12], and OSR;, is its straightforward
generalization.
First we prove that OSR},. implies the failure of OIf. This can be shown by

the same argument as the fact that the usual stationary reflection principle
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for stationary subsets of Eg implies the failure of [J,,,, which is also shown
in [12]:

LEMMA 4.2. Let § be a regular uncountable cardinal, and let k := 5.
Then OSRY, implies the failure of Of.

Proof. Assume [J}. We prove that OSR}; fails.

Let (cq | @ € S) be a witness of (I} First note that SNEL; is stationary
in k because SN &Y is stationary in &, and S Na contains a club ¢, C « for
any o € SN EJ. Moreover the correspondence 3 — otp(cg) is regressive on
SNELs. Hence by Fodor’s lemma there exist * and a stationary S* C SNEE
such that otp(cg) = £* for all § € S*.

Note that Lim(c,)NS™ contains at most one element, the £*th element of
Ca, for any a € SNEF. Thus S* Na is nonstationary in « for all € SNEY.
Here recall that S* is a stationary subset of ££5 and that SNEF is stationary.

Therefore S* witnesses the failure of OSR},. =

In the rest of this section we discuss the construction of models of OSRY,.

Magidor [12] proved that, after a weakly compact cardinal is Lévy col-
lapsed to wa, there exists a <ws-Baire ws-c.c. poset forcing OSR(, . If a
weakly compact cardinal is Lévy collapsed to ws, then FAj)'lJr holds for all
o-closed posets of size < wy = 2*! (see Lemma [6.2| below). In fact this forc-
ing axiom implies the existence of a <ws-Baire ws-c.c. poset forcing OSR7,, .
Here we prove the following proposition which generalizes this fact:

PROPOSITION 4.3. Let § be a regular uncountable cardinal. Assume that
FA(S+Jr holds for all <§-directed closed posets of size < 2° and that 52; €
I[6F). Then there is a (2°)-c.c. <6 -Baire <§-directed closed poset which
forces OSRj. .

Note that if 6 = wi, then 82; = E? € Iwy] = I[67]. Thus the second
assumption of the proposition holds if & = w;.

The rest of this section is devoted to the proof of Proposition 4.3| Fix a
regular uncountable cardinal §, and let x := 6.

The poset forcing OSRY will be one of the following OSR}-iterations,
which are essentially d-support iterations of club shootings through x:

DEFINITION 4.4. We say that (B,,S, | 4 < v, v < v) is an OSR-
iteration of length v if it satisfies the following:

(i) Each B, is a poset, and each S, is a nice B,-name for a stationary

subset of (£5,)Y.

(ii) Each B, is the poset of all partial functions p on x such that:

e |dom(p)| < k.
e plv e B, for all v < pu.
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e If v € dom(p), then p(v) is a closed bounded subset of x, and
plv Ik “S, Na is stationary” for any a € p(v) N EF.

(ili) For p,q € By, p < ¢ if and only if dom(p) 2 dom(q), and p(v)
end-extends ¢(v) for every v € dom(q).

If (B,,S, | u < v, v < v) is an OSR-iteration, then B, is also called an
OSR;.-iteration.

First we present basic properties of OSR}:-iterations:
LEMMA 4.5. All OSR -iterations have the (2°)T-c.c.

Proof. Suppose that A is a subset of B, with |A| = (2°)*. We find
distinct p, ¢ € A which are compatible.

By the A-system lemma we may assume that there is e C v of size
< 0 such that dom(p) N dom(q) = e for all distinct p,q € A. Note that
{ple | p € A}| < 2° < |A|. Hence we can take distinct p,q € A such that
ple = qle. Then p U ¢ is a common extension of p and ¢. m

Next we examine the closure property of OSR?-iterations. It is easy to see
that OSR}-iterations are <d-directed closed. Below we prove a more general
fact for the later use. More precisely, we prove that appropriate complete
suborders of OSR} -iterations and their quotients of OSR};-iterations are both
<d-directed closed:

DEFINITION 4.6. Suppose that [ := (B, S, | p < v, v < w)is an OSRY-
iteration. U C v is said to be a @-complete subset of v if for any v € U and
any (&, p) € S, we have dom(p) C U. For a B-complete U C v and each
1 < v let B,y be the suborder of B, such that

B,u={peB,|dom(p) CU}.

LEMMA 4.7. Suppose that B := (B, S, | p < v, v < wv) is an OSR:-
iteration and that U is a @—complete subset of v. Then the following hold
for every p < w:

(1) plU € B,y for every p € B,,.

(2) The map p— plU is a projection from B, to B,y .

(3) Byu is <d-directed closed.

(4) IFB, “B,/H, v is <d-directed closed”, where H,, 17 is the canonical
B,,u-name for a B, i-generic filter.

Proof. We show the lemma by induction on p < v. Suppose that p < wv
and that the conclusion holds for all v < p. We prove it for p.

(1) Take an arbitrary p € B,,. It suffices to show that r := p[U € B,,.

First suppose that p is a limit ordinal. To see that r € B, it suffices to
show that r[v € B, for all v < p and that |[dom(r)| < . The latter is clear
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because 7 is a restriction of p which belongs to B,. The former easily follows
from the induction hypothesis (1) for v < p.

Next suppose that p is a successor ordinal, and let v := p— 1. Then note
that r[v € B,. This implies that » € B, if v ¢ dom(r). So suppose that
v € dom(r). It suffices to show that r|v IFg, “S, N« is stationary” for all
acr(v)NE;.

Fix a € r(v) N &J. First note that S, is a B, -name because v € U, and

U is @—complete. Moreover plv kg, S, N« is stationary” because p € B,.
Then

rlv=(plv)|U g, , © S, N« is stationary”

because the restriction to U is a projection from B, to B,y by the in-
duction hypothesis (2). But cf(a) = J, and V® is a <d-closed forcing ex-
tension of VB»U by the induction hypothesis (4) for v. Therefore r[v g,
“S, N« is stationary”.

(2) Clearly the map p — p[U from B, to B, is order preserving and
surjective. Suppose that p € B, and ¢ < p[U in B, ;. We show that there
exists p* < p in B, with p*|U = q.

Let p* := qU (p[n\ U). Then by induction on v < p we can easily prove
that p*[v € B, and that p*[v < plv, qlv in B,. Thus p* is as desired.

(3) Suppose that A C B, iy is directed and that |A| < J. We must find a
lower bound p* of A.

Let ¢, :=J{p(v) | p € AAv € dom(p)} for each v € | J{dom(p) | p € A},
and let p* be a function on |J{dom(p) | p € A} such that p*(v) = ¢, U
{sup ¢, }. First note that each p*(v) is a closed bounded subset of k. Note
also that if supc, € ¢, then supc, ¢ £ because |A| < §. Then by induction
on v < u we can easily prove that p*[v € B, and that p*[v is a lower bound
of {plv | p € A}. Therefore p* is as desired.

(4) Suppose that H, i is a B, y-generic filter over V. In V[H,, ] suppose
that A C B,/H, v is directed and that |A| < §. We find a lower bound p*
of Ain B,/H, . Here recall that B,/H, v ={p € B, | p|U € H,y}.

First note that A is directed in B, by the definition of B,/H, 7. Note
also that A € V because B, iy is <d-closed by (3). In V' construct p* from
A as in the proof of (3). That is, let ¢, := J{p(v) | p € AAv € dom(p)} for
each v € | J{dom(p) | p € A}, and let p* be a function on | J{dom(p) | p € A}
such that p*(v) = ¢, U {supc,}. Then p* is a lower bound of A in B,. It
suffices to show that p* € B,/H, .

Note that p*|U is the greatest lower bound of {p[U | p € A} in B, y.
Moreover {p|U | p € A} € V, and {plU | p € A} C H,y because
A C B,/H,y. Therefore p*|[U € H,y by the genericity of H, . That
is, p € B,/H,y. w
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Note that if B = (B, Sy | 4 < v, v < v) is an OSR?-iteration, then every
p<wvisa B-complete subset of v. Thus B,, is <d-directed closed for every
i < v by Lemma (3) Moreover, if we let H,, be the canonical B,-name
for a B,-generic filter, then B, forces that B,/ H u 1s <d-directed closed by

Lemma [4.7(4).

Hence OSR-iterations preserve all cardinals < . They also preserve
all cardinals > (2°)* by Lemma But in general OSR-iterations do
not preserve the cardinality of k. We prove that under the assumption of
Proposition they are <x-Baire and so preserve the cardinality of «:

LEMMA 4.8. Assume that FA(';Hr holds for all <d-directed closed posets
of size < 2° and that E55 € I[k]. Then all OSR-iterations are <x-Baire.

This easily follows from Lemmas and below:

LEMMA 4.9. Let P be a poset which preserves all cofinalities < & and all
stationary subsets of 5. Assume that FA{™ (P * Col(d,k)) holds and that
ELs € I[k]. Then for any sufficiently large regular cardinal 0 and p € P there
are stationarily many M € [Hg]‘S with the following properties:

(i) MNKk €K, andp € M.
(ii) There is an (M,P)-generic filter g containing p such that

Serm={a<Mnk|3p €g,p IF“acS}

is stationary in M Nk for any P-name S € M for a stationary subset
of EL5.

Proof. Suppose that 0 is a sufficiently large regular cardinal and that
p € P. Let M be a structure obtained by adding countably many constants,
functions and predicates to (Hg, €,P,p). It suffices to find M € [Hg]® such
that M < M and such that M satisfies (i) and (ii).

By Lemma [2.2 we can take M € [Hg]® and an (M, P x Col(d, x))-generic
filter g containing p*@ such that § C M < M and such that Rg is stationary
in ¢ for any P % Col(d, k)-name R € M for a stationary subset of d. Note
that M Nk € Kk because § C M < M. So M satisfies (i).

We show that g :={g e PN M | ¢ «0 e g} witnesses property (ii) for M.
Note that g is an (M, P)-generic filter containing p. Take an arbitrary P-name
S € M for a stationary subset of & Z5- We show that ,S"g, M 1s stationary.

First note that cf (k) = § in VFP*Col0r) Let f € M be a PxCol(d, k)-name
for an increasing continuous cofinal map from J to , and let Re M bea
P % Col(d, k)-name for f~1[S].

Here note that S remains stationary in VE*Col@#) by the <d-closure of
Col(6, k) and the fact that £%; € I[x] in V¥ (see Fact . Hence R is a
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P % Col(J, x)-name for a stationary subset of 6. Then Rj is stationary in &
by the choice of M and g. Moreover fg ={{a)edxk]|Iregrl
“f (§) = a”} is an increasing continuous cofinal map from ¢ to M N k, and
f3lRg] = Sy.ar. Therefore S,y is stationary in M N k. w

LEMMA 4.10. Assume that EZ5 € I[k]. Let B = B, Sy | p < v, v<uv)

be an OSR} -iteration, U be a I@—complete subset of v and p be a condition
in By, 7. Moreover let 8 be a sufficiently large regqular cardinal. Assume that
M € [Hp]®, that M < <H9,€,I§, U,p) and that M satisfies conditions (i)
and (ii) in Lemma for P =B, . Let g be an (M,B, 17)-generic filter
witnessing (ii). Then g has a lower bound in B, ir.

Proof. For each v € M NU let ¢, := |J{q(v) | ¢ € g}. Then ¢, is club
in M Nk for every v € M NU because g is an (M, B, 7)-generic filter. Let
v* := M Nk, and let p* be a function on M NU such that p*(v) = ¢, U{y*}.
It suffices to show that p* € B,,. (Then p* € B, 17, and clearly p* is a lower
bound of g.)

By induction on g < v we prove that p*[p € B,. Suppose that u < v
and that p*[v € B, for every v < u. We show that p*[p € B,. If 4 is a limit
ordinal, then this follows from the fact that |dom(p*)| < |M| = 6.

Suppose that u is a successor ordinal, and let v:=pu—1. If v ¢ M NU,
then p* I € B, clearly. Thus we also assume that v € M N U. It suffices to
show that if o € p*(v) NEY, then p*|v kg, © S, N« is stationary ”. Take an
arbitrary o € p*(v) N Ef.

First suppose that o € ¢,. So there exists ¢ € g such that a € g(v).
Then qlv IFg, S, N is stationary” because ¢ € B,. But p*|v < q¢lv.
Hence p*|v IFg, © S, Nais stationary”.

Next suppose that a = ~+*. Note that S, can be seen as a B, y-name
because v € U. Moreover S, is stationary in &5 L5 in VEBu.U by Lemma
Fact [2.1)and the fact that £%5 € I[x] (in V®). Then s := (S,)g.ar is station-
ary in v* by the assumption on M and g. Note that s is the set of all 8 < v*
such that ¢[v IFg, “3 € S, for some ¢ € g. Moreover p*[v is a lower bound
of {qlv | ¢ € g}. Hence p*|v IFp, “S, N ~* D s”. Here note that B, pre-
serves stationary subsets of v* because B, is <d-closed, and cf(y*) < d. So
s remains stationary in V. Therefore p*|v IFg, ¢ ‘S, N~* is stationary”. m

Proof of Lemma . Let B = (B,,S, | 4 < v, v < v) be an OSRE-
iteration. Suppose that p € B,, and that A is a family of maximal antichains
in B, with |A| < §. We will find p* < p meeting all maximal antichains in A.

First take a B-complete U C v such that |U| < 2° and such that
{p} UUA C B, . We can easily find such U by the (2°)*-c.c. of B,. Then
By.u| < 29 and B, is <d-directed closed by Lemma Then, by the as-
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sumptions of Lemmal[4.8 B, i satisfies the assumptions on P in Lemma 4.9}
Thus we can take M € [Hg)® such that A C M < (Ho, E,@, U, p) and such
that M satisfies conditions (i) and (ii) in Lemma [£.9)for P = B,, 7. Let g be
an (M, B, r7)-generic filter witnessing (ii). Then there is a lower bound p*
of g in B, y by Lemma

Here note that p* is a lower bound of g also in B,,. Hence p* < p because
p € g. Note also that each A € A is a maximal antichain in B, ;; which
belongs to M. Thus p* meets all A € A by the (M, B, r)-genericity of g.
Therefore p* is as desired. m

Now Proposition easily follows from what we have proved:

Proof of Proposition |{.5. Let v := 2% - (2%)%. Then by the (29)*-c.c. of
OSR}-iterations we can construct an OSR}-iteration (B, S, | p < v,v < wv)
such that for any B,-name S for a stationary subset of £F £ there exists
v < v with IFp, “G = Sl, 7. Now B, is <d-directed closed by Lemma
and <k-Baire by Lemma Moreover B,, forces OSR}, by the construction
of B,. m

5. PFA does not imply [P. In this section we prove

THEOREM [L.5] If there exists a supercompact cardinal, then there exists
a forcing extension in which PFA holds but TP fails.

In fact we prove the following result which implies the above theorem by
Lemma

THEOREM 5.1. PFA is consistent with OSR(,,. More precisely, if there

exists a supercompact cardinal, then there exists a forcing extension in which
both PFA and OSR?,, hold.

Recall that if & is a supercompact cardinal, and (P, Qg |a <k, B<K)
is the standard iteration for PFA, then PFAT™™ and 2! = k = ws hold in VP,
Hence, by results in the previous section, in V' we can construct an OS R,-
iteration forcing OSRY,,. Thus the following lemma implies Theorem

LEMMA 5.2. If PFATT holds, then B, forces PFA for any OSR;,, -itera-
tion (B, S, | u < v, v < v).

Proof. Assume that PFAT* holds and that B = B, S, | p < v, v<v)
is an OSR], -iteration. Suppose that p € B,, that Q is a B,-name for a
proper poset and that A is a family of B,-names for maximal antichains
in Q with |A] < w;. It suffices to find p* < p and a B,-name H such that
p* forces that H is a filter on Q and that HNA # () for all A € A. We work
in V.
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Take a sufficiently large regular cardinal 0. Note that B,, * Q is proper
and that FAT holds for B, % Q % Col(wy,ws") by PFAT*. Note also that
EL2 = E} € I[ws]. Then by Lemma we can take M € [Hg]*! and an
(M, B, * Q)-generic filter & such that:

(i) M Nwy €wsy, and AC M < (Hg, €,B,p).
(ii) px ly € k. ' .
(iii) Sk.s is stationary in M N wy for any B, * Q-name S € M for a
stationary subset of (E2)Y.

Let g :={p’ € BuNM | p’x 1y € k}. Then g is an (M, B, )-generic filter,
and 5'97 A is stationary in M Nws for any B,-name S € M for a stationary
subset of (E2)". (For the latter note that if S is a B,-name for a stationary
subset of (EO)V then IB% % Q forces S to remain stationary because Q is
proper.) So by Lemma we can take a lower bound p* € B, of g.

Let h == {(¢,p) |p *{ € k:} Then h is a B,-name for a subset of Q.
Moreover it is easy to see that p* forces h to be an (M[G], Q)-generic filter,
where (' is the canonical name for a B,-generic filter, and M|[G] denotes
the set {&¢ | & is a B,-name in M} for a B,,-generic filter G. In particular,
p* forces that AN A # 0 for all A € A. Let H be a B,-name for the filter
on Q generated by h. Then p* and H is as desired. m

6. Dép for regular 6 > ws. To end this paper we make a remark that
5 for a regular 6 > ws is independent of MM.

First we prove that MM is consistent with the failure of [f. In fact we
prove the following stronger fact:

THEOREM 6.1. MM is consistent with OSR}, for a reqular § > wy. More
precisely: In'V suppose that MM holds, that 6 is a reqular cardinal > wo and
that there exists a weakly compact cardinal > §. Then there exists a <§-
directed closed <8 -Baire forcing extension in which both MM and OSR},
hold.

For this we use the following well-known lemma:

LEMMA 6.2 (folklore). Suppose that § is a regular uncountable cardinal
and that k is a weakly compact cardinal > §. Then FA;SH for all <d-closed
posets of size < 29 holds in V<K

Proof. Let H be a Col(d, <k)-generic filter over V. In V[H] suppose that
P is a <d-closed poset of size < 29, that A is a family of maximal antichains
in P with |A] < § and that R is a family of P-names for stationary subsets
of 6 with |R| < §. In V[H] we find a filter G* on P such that G*N A # () for
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any A € A and such that Rg- is stationary in ¢ for all R € R. Note that
2° = K in V[H]. So we may assume that I’ C .

Let P, A and R be Col(9, <r)-names for P, A and R, respectively. We
may assume that P, A, R € H,+ in V. Then in V we can take a transitive
M < (H.+,€,6,5,P, A, R) of size . Moreover, in V we can take a transi-
tive NV and an elementary embedding j : M — N whose critical point is «.
This is because x is weakly compact in V.

Note that M C N because P(k) N M C N. Hence P, A,R € M[H] C
N[H]. Moreover in N[H] it is easy to see that P is <d-closed, that A is a
family of maximal antichains in P with |A| < § and that R is a family of
P-names for stationary subsets of § with |R| < ¢.

Here take a IP x Col(6, [s, j(k))) N H]-generic filter G x I over V[H]. Below
we work in V[H][G x I].

Note that P x Col(d, [x,j(x)))NH] is isomorphic to Col(d, [x, j(x)))N ]
in N[H]| because P is a <d-closed poset of size < k. Thus H * (G x I) can
be seen as a Col(d, <j(k))-generic filter over N. Hence j : M — N can be
naturally extended to an elementary embedding j : M[H| — N[H]|[G][I]. In
N[H][G][I] let G be a filter on j(P) generated by j[G] = G € N[H][G][I].

Then GNj(A) # 0 for all A € A. Moreover for each R € R, j(R)s = Ra,
and R is stationary in & in N[H][G][I]. The latter is because R is a P-name
for a stationary subset of 0 in N[H]|, and N[H|[G][I] is a <d-closed forcing
extension of N[H][G]. Note also that j(A) = j[A] and j(R) = j[R] because
|A| = |R| < d < k in M[H]. Therefore in N[H][G][I] we see that GN A" # ()
for all A’ € j(A) and that R/G‘ is stationary in ¢ for all R’ € j(R).

Then, by the elementarity of j, in M[H] we can take a filter G* on P
such that G*N A # () for all A € A and such that Rg- is stationary in 6 for
all R € R. Here note that P(5) N V[H] C M[H]. Hence Rg- is stationary
also in V[H] for each R € R. Thus G* is as desired.

In the proof of Theorem we also use the following folklore. Its proof
is found in Larson [11]:

Fact 6.3 (folklore). MM is preserved by <wsq-directed closed forcing ex-
tenstons.

Now we can easily prove Theorem

Proof of Theorem[6.1. In V assume that MM holds, that ¢ is a regular
cardinal > wo and that x is a weakly compact cardinal > §.

Let G be a Col(d, <r)-generic filter over V. Then £ = 6T in V[G]. More-
over FAT™ holds for all <é-directed closed posets of size < 2° in V[G] by
Lemma Furthermore £%; € I[x] in V[G] because 2<° = § (See Fact.
Then by Proposition [4.3|in V[G] there exists a <x-Baire <d-directed closed
poset B forcing OSR};.. Let H be a B-generic filter over V[G].
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Then OSR}, holds in V[G][H]. Moreover MM remains to hold in V[G]|[H]
by Fact [6.3| and the fact that V[G][H] is a <d-directed closed forcing exten-
sionof V. m

From Theorem [6.1] and Lemma [£.2] it follows that MM is consistent with
the failure of Dg for a regular > wy. Next we prove that MM is consistent
with O}

THEOREM 6.4. MM 1is consistent with D(;p for an uncountable cardinal 6.
More precisely: In V' suppose that MM holds and that § is an uncountable
cardinal. Then there exists a <d*-directed closed forcing extension in which
both MM and OIY hold.

This follows from Fact and the following lemma:

LEMMA 6.5. Let § be an uncountable cardinal. Then there exists a <&+ -
directed closed forcing extension in which Of holds.

Proof. Let P be the following poset:

o P:={p]|pisa s(s)-sequence for some bounded s C Lim(51)}.

eForp={(cn|aes)yandp =(,|aes)inP, p<pifpisan

end-extension of p/, that is, s’ = sNsup{a+ 1| a € '}, and ¢, =
for all o € 5.
If p=(ca | @ € s) € P, then ¢, and s are denoted as ¢, o and sy, respectively.

It is easy to see that P is <dT-directed closed. We show that IFp O5.
Note that if G is a P-generic filter, then clearly | J G is a Os(S¢)-sequence,
where Sg = UpEG sp. Thus all we have to show is that Sg ﬂ5§+ is stationary
in VIG].

In V take an arbitrary p € P and an arbitrary P-name C for a club
subset of 6. It suffices to find p* < p and o* € 5§+ such that o* € s, and
such that p* IF “a* € C”. We work in V.

By induction on ¢ we can easily construct a strictly descending sequence
(pe | € < 6) below p so that

e sp. has the greatest element ag for each ¢,

o if ¢ is successor, then pg IF “C N g1, a¢) # 07,

e if ¢ is limit, then a¢ = sup, ¢ oy, and cp, o, = {ay | N < &}

Then it is easy to see that p* := ps and o := oy are as desired. =
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