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Partial square at ω1 is implied by MM
but not by PFA

by

Hiroshi Sakai (Kobe)

Abstract. We prove the results stated in the title.

1. Introduction. The square principle, introduced by Jensen [9], and
its weak versions, play important roles in Set Theory. Using these square
principles, we can construct non-compact objects such as Suslin trees and
non-reflecting stationary sets. Thus propositions asserting some compactness
tend to imply the failure of square principles. For example, it was shown by
Magidor [12] that the stationary reflection principle at δ+ implies the failure
of �δ. It is also known, from work of Todorčević [17], that PFA implies the
failure of �(δ) for any regular δ ≥ ω2.

In this paper we study consequences of forcing axioms for the partial
square principle at ω1. In particular we study the consequences of Martin’s
Maximum, MM, and the Proper Forcing Axiom, PFA. First we recall the
partial square principle. Below, for a set A of ordinals, otp(A) denotes the
order type of A, and Lim(A) denotes the set of all limit points in A, i.e.
Lim(A) = {α ∈ A | sup(A ∩ α) = α}.

Definition 1.1. Let δ be an uncountable cardinal. For S ⊆ Lim(δ+) let

�δ(S) ≡ there exists a sequence 〈cα | α ∈ S〉 such that

(i) cα is a club in α with otp(cα) ≤ δ for each α ∈ S,
(ii) if α ∈ S and β ∈ Lim(cα), then β ∈ S and cβ = cα ∩ β.

A sequence 〈cα | α ∈ S〉 satisfying (i) and (ii) is called a �δ(S)-sequence.

The above partial square was used in [2], [7], [10], [13], [15], etc.
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Note that �δ(Lim(δ+)) is equivalent to Jensen’s �δ introduced in [9].
In fact it is easy to see that �δ holds if and only if �δ(C) holds for some
club C ⊆ Lim(δ+). On the other hand, it is not hard to see that if S is a
nonstationary subset of δ+, then �δ(S) holds.

As for �δ(S) for a stationary S ⊆ Lim(δ+), the following was shown by
Shelah:

Fact 1.2 (Shelah [15]). Suppose that δ and ρ are regular cardinals with
ρ < δ. Then there exists S ⊆ Lim(δ+) such that

(i) �δ(S) holds,
(ii) the set {α ∈ S | cf(α) = ρ} is stationary in δ+.

On the other hand, it is known that the following partial square principle
�p
δ is independent of ZFC for a regular uncountable cardinal δ (see §6):

Definition 1.3. For a regular uncountable cardinal δ let

�p
δ ≡ there exists S ⊆ Lim(δ+) such that

(i) �δ(S) holds,
(ii) the set {α ∈ S | cf(α) = δ} is stationary in δ+.

(The superscript “p” in �p
δ stands for “partial”.)

We study consequences of MM and PFA for �p
ω1 . For simplicity of our

notation we omit the subscript ω1 in �ω1(S) and �p
ω1 :

Notation. Let �(S) and �p denote �ω1(S) and �p
ω1 , respectively.

It is not hard to see that MM does not imply the failure of �p (see
Thm. 6.4). Our first result is the following:

Theorem 1.4. MM implies �p.

On the other hand, we also prove that PFA does not imply �p:

Theorem 1.5. If there exists a supercompact cardinal, then there exists
a forcing extension in which PFA holds but �p fails.

Theorem 1.4 will be proved in §3, and Theorem 1.5 in §5. In §6 we make
a remark that �p

δ for a regular cardinal δ ≥ ω2 is independent of MM.
In §5 and §6 we discuss the consistency of the failure of the partial

square. For this we use a strong stationary reflection principle, which was
introduced by Magidor [12] and implies the failure of the partial square. In
§4 we present facts on this strong stationary reflection principle which we
use in §5 and §6.

2. Preliminaries. Here we present our notation and basic facts used
in this paper. For those which are not presented below, consult Jech [8].
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For a function f and X ⊆ dom(f) we let f [X ] := {f(x) | x ∈ X}. For
a regular cardinal δ and an ordinal κ > δ let Eκδ := {α < κ | cf(α) = δ}.
Moreover for ordinals δ and κ with δ ≤ κ let Eκ<δ := {α < κ | cf(α) < δ}.
For i = 0, 1 let E2

i := Eω2
ωi .

For a regular cardinal δ and a set W , [W ]δ denotes the set of all x ⊆W
with |x| = δ. A set C ⊆ [W ]δ is said to be a club in [W ]δ if for some function
F : <ωW →W , C is the set of all x ∈ [W ]δ closed under F . A set X ⊆ [W ]δ

is said to be stationary in [W ]δ if X ∩C 6= ∅ for any club C in [W ]δ, i.e. for
any function F : <ωW →W there exists x ∈ X which is closed under F .

LetM be a structure such that there exists a well-ordering of its universe
definable over M, and suppose that x ⊆ M. Then SkM(x) denotes the
Skolem hull of x in M, i.e. the smallest M with x ⊆M ≺M.

For a limit ordinal δ, a set M is said to be internally approachable (i.a.)
of length δ if there exists a ⊆-increasing sequence 〈Mξ | ξ < δ〉 such that⋃
ξ<δMξ = M and such that 〈Mξ | ξ < δ′〉 ∈ M for any δ′ < δ. A sequence
〈Mξ | ξ < δ〉 witnessing the internal approachability of M is called an
internally approaching (i.a.) sequence to M .

We use an ideal I[λ] over a regular cardinal λ ≥ ω2, which was introduced
by Shelah [14]. First we recall the definition of I[λ]. Suppose that λ ≥ ω2 and
that E ⊆ λ. Then E ∈ I[λ] if and only if there exist a sequence 〈bα | α < λ〉
of bounded subsets of λ and a club C ⊆ λ such that for any limit ordinal
α ∈ C ∩ E we can take an unbounded b ⊆ α with otp(b) = cf(α) and
{b ∩ β | β < α} ⊆ {bβ | β < α}. We use the following fact:

Fact 2.1 (Shelah [14]). Let δ be a regular uncountable cardinal.

(1) Suppose that λ is a regular cardinal > δ and that E is a stationary
subset of Eλ<δ with E ∈ I[λ]. Then E remains stationary in V P for
any <δ-closed poset P.

(2) Suppose that 2<δ = δ. Then Eδ+<δ ∈ I[δ+].

Next we give our notation on forcing.
Let P be a poset. We also let P denote the base set of P. The order of P

is denoted as ≤P, but we usually omit the subscript P. A poset Q is said to
be a suborder of P if Q ⊆ P and ≤Q = ≤P ∩ (Q×Q).

A P-name is a set consisting of pairs (ẋ, p) such that ẋ is a P-name of
lower rank and such that p ∈ P. If (ẋ, p) belongs to a P-name Ẋ, then p
forces that ẋ ∈ Ẋ. For an ordinal κ we say that Ṡ is a nice P-name for a
subset of κ if there exists a sequence 〈Aα | α < κ〉 of antichains in P such
that Ṡ = {(α̌, p) | p ∈ Aα}.

For A ⊆ P and p ∈ P we say that p meets A if there is q ∈ A with q ≥ p.
For A0, A1 ⊆ P we say that A0 refines A1 if all elements of A0 meet A1.
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P is said to be ω1-stationary preserving if ωV
P

1 = ωV1 and every stationary
subset of ω1 in V remains stationary in V P.

Let δ be a regular uncountable cardinal. We say that P has the δ-chain
condition (δ-c.c.) if there is no antichain A in P with |A| = δ.

A subset A ⊆ P is said to be directed if for any p, q ∈ A there exists
r ∈ A with r ≤ p, q. Furthermore P is said to be <δ-directed closed if every
directed A ⊆ P with |A| < δ has a lower bound in P.

P is said to be <δ-Baire if for any p ∈ P and any family A of maximal
antichains in P with |A| < δ, there exists p∗ ≤ p which meets all A ∈ A.
P is <δ-Baire if and only if a forcing extension by P does not add any
new sequences of ordinals of length < δ. P is said to be σ-Baire if P is
<ω1-Baire.

For a regular cardinal δ and an ordinal κ ≥ δ let Col(δ, κ) denote the
poset <δκ ordered by reverse inclusion. Moreover let Col(δ,<κ) be the <δ-
support product of 〈Col(δ, κ′) | δ ≤ κ′ < κ〉. Thus if κ is an inaccessible
cardinal, then Col(δ,<κ) is the Lévy collapse forcing κ to be δ+. Further-
more for an ordinal λ > κ let Col(δ, [κ, λ)) be the <δ-support product of
〈Col(δ, κ′) | κ ≤ κ′ < λ〉.

Next we give our notation and a basic fact on projections between posets.
Let P and Q be posets. A map π : P→ Q which has the following properties
is called a projection:

(i) π is surjective and order preserving.
(ii) For any p ∈ P and any q ∈ Q with q ≤Q π(p) there exists p∗ ∈ P

such that p∗ ≤P p and π(p∗) = q.

Suppose that π : P→ Q is a projection and that H is a Q-generic filter.
Then, in V [H], P/H denotes the poset obtained by restricting P to π−1[H ].
It is standard that Q ∗ (P/Ḣ) is forcing equivalent to P, where Ḣ is the
canonical Q-name for a Q-generic filter. (See Abraham [1, §1].)

Finally we present our notation and a fact on forcing axioms:
For a poset P and an uncountable cardinal δ let FAδ(P) and FA++

δ (P) be
the following forcing axioms:

FAδ(P) ≡ For any p ∈ P and any family A of maximal antichains in
P with |A| ≤ δ there exists a filter G ⊆ P containing p such
that G ∩A 6= ∅ for all A ∈ A.

FA++
δ (P) ≡ For any p ∈ P, any familyA of maximal antichains in P with

|A| ≤ δ and any family R of P-names for stationary subsets
of δ with |R| ≤ δ there exists a filter G ⊆ P containing p
such that G ∩ A 6= ∅ for all A ∈ A and such that ṘG :=
{ξ < δ | ∃p ∈ G, p 
 “ ξ ∈ Ṙ ”} is stationary in δ for all
Ṙ ∈ R.
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Recall that PFA is FAω1 for all proper posets and that MM is FAω1 for all
ω1-stationary preserving posets. We let PFA++ denote FA++

ω1
for all proper

posets. PFA++ was introduced by Baumgartner [3], and he observed that if
κ is a supercompact cardinal, and 〈Pα, Q̇β | α ≤ κ, β < κ〉 is the standard
iteration for PFA, which was also introduced by him (see Devlin [4]), then
this iteration in fact forces PFA++.

Let P be a poset and M be a set. g ⊆ P ∩M is called an (M,P)-generic
filter if g is a filter on P∩M such that g∩A 6= ∅ for every maximal antichain
A ∈M in P.

We use the following fact. (1) is proved in Woodin [18, proof of Thm.
2.53]:

Lemma 2.2. Suppose that P is a poset, that δ is an uncountable cardinal
and that FAδ(P) holds. Let p ∈ P, and let θ be a regular cardinal > δ with
P ∈ Hθ.

(1) There are stationary many M ∈ [Hθ]δ with the following properties:

(i) δ ⊆M and p ∈M .
(ii) There exists an (M,P)-generic filter containing p.

(2) If P is <δ-Baire, then there are stationary many M ∈ [Hθ]δ with
the properties (i), (ii) above and the following:

(iii) M is internally approachable of length δ.

(3) If FA++
δ (P) holds, then there are stationary many M ∈ [Hθ]δ with

the property (i) above and the following:

(iv) There exists an (M,P)-generic filter g containing p such that
Ṙg = {ξ < δ | ∃q ∈ g, q 
 “ ξ ∈ Ṙ ”} is stationary in δ for any
P-name Ṙ ∈M for a stationary subset of δ.

If P is <δ-Baire in addition, then there are stationary many M ∈
[Hθ]δ with the properties (i), (iii) and (iv).

In the proof of the above lemma we use the following well-known lemma:

Lemma 2.3 (folklore). Let θ be a regular uncountable cardinal, ∆ be a
well-ordering of Hθ, and M be a structure obtained by adding countable
many constants, functions and predicates to 〈Hθ,∈, ∆〉. Suppose that M is
an elementary submodel of M and that d ⊆ D ∈M . Then

SkM(M ∪ d) = {f(b) | b ∈ <ωd, f : |b|D → Hθ, f ∈M}.
Proof. Let N be the set on the right side. Then SkM(M ∪ d) ⊇ N

clearly. We prove the reverse inclusion. Before starting we prepare a notation.
For each formula ϕ(u, v0, . . . , vm−1, w0, . . . , wn−1) of the language forM let
hϕ : m+nHθ → Hθ be the Skolem function for ϕ in M. That is, for any
a = 〈a0, . . . , am−1〉 ∈ mHθ and any b = 〈b0, . . . , bn−1〉 ∈ nHθ, if there
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exists x with M |= ϕ(x, a0, . . . , am−1, b0, . . . , bn−1), then hϕ(a, b) is the ∆-
least such x, otherwise hϕ(a, b) = 0.

To show that SkM(M ∪ d) ⊆ N , take an arbitrary x ∈ SkM(M ∪ d).
Then there exists a formula ϕ(u, v0, . . . , vm−1, w1, . . . , wn−1), a∗ ∈ mM and
b∗ ∈ nd such that hϕ(a∗, b∗) = x. Let f : nD → Hθ be the function such
that f(b) = hϕ(a∗, b) for every b ∈ nD. Then f ∈ Hθ, and f is definable in
M from parameters D and a∗, both of which are in M . Hence f ∈ M by
the elementarity of M . Moreover x = f(b∗). Therefore x ∈ N .

Proof of Lemma 2.2. Let ∆ be a well-ordering of Hθ, and suppose that
M is a structure obtained by adding countably many constants, functions
and predicates to 〈Hθ,∈, ∆,P, p, δ〉. For (1) it suffices to find M ∈ [Hθ]δ
with the properties (i) and (ii) such that M ≺M. For (2) or (3) it suffices
to find such M with (iii) or (iv), respectively.

First we can take N ∈ [Hθ]δ such that N is i.a. of length δ and such
that N ≺ M. Here note that δ ⊆ N . Let A be the set of all maximal
antichains in P which belong to N , and let R be the set of all P-names in N
for stationary subsets of δ. By FAδ(P) take a filter G ⊆ P containing p and
intersecting all elements of A. Here note that if FA++

δ (P) holds, then we
can take G so that ṘG is stationary for all Ṙ ∈ R. For each A ∈ A let pA
be the unique element of G ∩ A, and let d := {pA | A ∈ A}. Moreover let
M := SkM(N ∪ d). Clearly δ ∪ {p} ⊆ M ≺ M. It suffices to prove the
following:

(a) g := G ∩M is an (M,P)-generic filter.
(b) If P is <δ-Baire, then M is i.a. of length δ.
(c) If ṘG is stationary in δ for every Ṙ ∈ R, then Ṙg is stationary in δ

for every P-name Ṙ ∈M for a stationary subset of δ.

(a) Let A∗ ∈M be a maximal antichain in P. We show that g ∩A∗ 6= ∅.
By Lemma 2.3 there exist b∗ = 〈p∗0, . . . , p∗n−1〉 ∈ <ωd and a function

f : nP → Hθ in N such that f(b∗) = A∗. We may assume that f(b) is a
maximal antichain in P for every b ∈ nP.

For each i < n take Ai ∈ A with p∗i = pAi . Let K be the set of all
b ∈

∏
i<nAi which have a lower bound. Here we say that b = 〈p0, . . . , pn−1〉

has a lower bound if {p0, . . . , pn−1} has a lower bound in P. Note that if
b, b′ ∈ K and b 6= b′, then b and b′ have no common lower bound. This is
because each Ai is an antichain.

For each b ∈ K let Ab be the ∆-least maximal antichain below b which
refines f(b). Let A◦ :=

⋃
b∈K Ab. Then it is easy to see that A◦ is a maximal

antichain in P and that A◦ ∈ N . That is, A◦ ∈ A.
Here note that pA◦ must be in Ab∗ . Otherwise pA◦ is incompatible with

at least one of p∗0, . . . , p
∗
n−1, and this contradicts that all pA◦ , p∗0, . . . , p

∗
n−1
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belong to the filter G. Moreover recall that Ab∗ refines f(b∗) = A∗. Let p∗

be the unique element of A∗ with p∗ ≥ pA◦ .
Then p∗ ∈ G because p∗ ≥ pA◦ ∈ G. Moreover p∗ ∈ M because p∗ is

definable from pA◦ , A
∗ ∈M . Therefore p∗ ∈ g ∩A∗ 6= ∅.

(b) Let 〈Nξ | ξ < δ〉 be an i.a. sequence to N . We may assume that
|Nξ| < δ for each ξ < δ. For each ξ < δ let Aξ := A∩Nξ, dξ := {pA | A ∈ Aξ}
and

Mξ := {f(b) | b ∈ <ωdξ, f : |b|P→ Hθ, f ∈ Nξ}.

We show that 〈Mξ | ξ < δ〉 is an i.a. sequence to M .
Clearly 〈Mξ | ξ < ω1〉 is⊆-increasing, and

⋃
ξ<ω1

Mξ = M by Lemma 2.3.
Thus it suffices to show that 〈Mξ | ξ < ζ〉 ∈ M for every ζ < δ. Here note
that 〈Mξ | ξ < ζ〉 is definable in 〈Hθ,∈〉 from parameters P, 〈Nξ | ξ < ζ〉
and 〈dξ | ξ < ζ〉. Moreover P, 〈Nξ | ξ < ζ〉 ∈ N ⊆ M . Therefore all we have
to show is that 〈dξ | ξ < ζ〉 ∈M for every ζ < δ.

Fix ζ < δ. Because P is <δ-Baire, there exists a maximal antichain A∗

in P which refines all maximal antichains in Aζ . We can take such A∗ in N
becauseAζ ∈ N . Then for each A ∈ Aζ , pA is the unique p ∈ A with p ≥ pA∗ .
Hence dξ = {p ∈

⋃
Aξ | p ≥ pA∗} for each ξ < ζ. Then 〈dξ | ξ < ζ〉 ∈ M

because pA∗ , 〈Aξ | ξ < ζ〉 ∈M ≺ 〈Hθ,∈〉.
(c) Suppose that ṘG is stationary in δ for all Ṙ ∈ R. Take an arbitrary

P-name Ṙ∗ ∈M for stationary subsets of δ. We show that Ṙ∗g is stationary
in δ.

By Lemma 2.3 there exist b∗ = 〈p∗0, . . . , p∗n−1〉 ∈ nd and a function f :
nP→ Hθ in N such that f(b∗) = Ṙ∗. We may assume that f(b) is a P-name
for a stationary subset of δ for every b ∈ nd. Moreover take Ai, i < n, and K
as in the proof of (a) above.

Then we can take a P-name Ṙ◦ ∈ N such that for any b ∈ K all
lower bounds of b force that Ṙ◦ = f(b). Recall that f(b∗) = Ṙ∗, that
b∗ = 〈p∗0, . . . , p∗n−1〉 and that p∗0, . . . , p

∗
n−1 ∈ G. Then it is easy to see that

Ṙ◦G = Ṙ∗g. Moreover Ṙ◦G is stationary in δ because Ṙ◦ ∈ R. Therefore Ṙ∗g is
stationary in δ.

3. MM implies �p. In this section we prove

Theorem 1.4. MM implies �p.

This will be done in §3.3. In the preceding subsections, we make prelim-
inaries for the proof.

3.1. ω1-stationary preserving σ-Baire posets. In the proof of The-
orem 1.4 we will construct an ω1-stationary preserving σ-Baire poset and
apply MM to it. Here we present a sufficient condition for a poset to be
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ω1-stationary preserving and σ-Baire. For this we use the notions of projec-
tively stationary sets and of strongly generic conditions:

Definition 3.1 (Feng–Jech [5]). Let W be a set with ω1 ⊆ W . Then
X ⊆ [W ]ω is said to be projectively stationary if the set {x ∈ X | x∩ω1 ∈ R}
is stationary in [W ]ω for every stationary R ⊆ ω1.

Definition 3.2. Let P be a poset and M be a set. Then p ∈ P is called a
strongly (M,P)-generic condition if {q ∈ P∩M | q ≥ p} is an (M,P)-generic
filter.

Note that if p is a strongly (M,P)-generic condition, then p meets A∩M
for every maximal antichain A ∈M in P.

Now we give a sufficient condition:

Lemma 3.3. Let P be a poset. Suppose that P satisfies the following:

(∗) For every sufficiently large regular cardinal θ and every p ∈ P the
following set is projectively stationary:

{M ∈ [Hθ]ω | a strongly (M,P)-generic condition below p exists}.
Then P is ω1-stationary preserving and σ-Baire.

Proof. Assume (∗). Let θ be a sufficiently large regular cardinal.
To show that P is σ-Baire, suppose that p ∈ P and that A is a countable

family of maximal antichains in P. By (∗) we can take M ∈ [Hθ]ω and
p∗ ≤ p such that A ∪ {p} ⊆ M ≺ 〈Hθ,∈〉 and such that p∗ is a strongly
(M,P)-generic condition. Then p∗ ≤ p, and p∗ meets all elements of A. This
completes the proof of the σ-Baireness.

Next, to prove that P is ω1-stationary preserving, arbitrarily take p ∈ P,
a stationary R ⊆ ω1 and a P-name Ċ for a club in ωV1 . It suffices to find
p∗ ≤ p and ξ ∈ R such that p∗ 
 “ ξ ∈ Ċ ”.

By (∗) we can take M ∈ [Hθ]ω and p∗ ≤ p such that P, p, R, Ċ ∈ M ≺
〈Hθ,∈〉, such that M ∩ω1 ∈ R and such that p∗ is a strongly (M,P)-generic
condition. Let ξ := M ∩ω1. Then ξ ∈ R, and p∗ 
 “ ξ ∈ Ċ ” by the standard
argument.

3.2. Variant of diamond principle in [ω2]ω. In the proof of Theo-
rem 1.4 we use a certain diamond principle in [ω2]ω. Here we prove that MM
implies it.

For X ⊆ [ω2]ω we say that sup�X is injective if supx 6= sup y for any
distinct x, y ∈ X.

Lemma 3.4. Assume MM. Let S be a stationary subset of E2
0 . Then there

are X ⊆ [ω2]ω and a sequence 〈Bx | x ∈ X〉 with the following properties:

(i) supx /∈ x for each x ∈ X, {supx | x ∈ X} = S, and sup�X is
injective.
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(ii) Bx is a countable family of subsets of x for each x ∈ X.
(iii) For every sufficiently large regular cardinal θ, the set of all M ∈

[Hθ]ω such that

• M ∩ ω2 ∈ X,
• BM∩ω2 = {B ∩M | B ∈ P(ω2) ∩M}
is projectively stationary.

Lemma 3.4 follows from Facts 3.5, 3.6 and Lemma 3.7 below:

Fact 3.5 (Foreman–Magidor–Shelah [6]). MM implies that 2ω1 = ω2.

Fact 3.6 (Shelah [16]). If 2ω1 = ω2, then ♦ω2(S) holds for every sta-
tionary S ⊆ E2

0 .

Lemma 3.7. Suppose that S is a stationary subset of E2
0 and that ♦ω2(S)

holds. Then there exist X and 〈Bx | x ∈ X〉 satisfying (i)–(iii) in Lemma 3.4.

We prove Lemma 3.7. For this we need the following result:

Lemma 3.8. Suppose that S is a stationary subset of E2
0 and that ♦ω2(S)

holds. Then there exist X ⊆ [ω2]ω and a sequence 〈bx | x ∈ X〉 such that:

(i) supx /∈ x for each x ∈ X, {supx | x ∈ X} = S, and sup�X is
injective.

(ii) bx ⊆ x for each x ∈ X.
(iii) For every B ⊆ ω2 the set {x ∈ X | bx = B ∩ x} is projectively

stationary.

Proof. We may assume that S ⊆ E2
0 \ ω1. By ♦ω2(S) there exists a

sequence 〈Rα, fα, b′α | α ∈ S〉 with the following properties:

• For each α ∈ S, Rα is a stationary subset of ω1, fα is a function from
<ωα to α, and b′α ⊆ α.
• If R is a stationary subset of ω1, F is a function from <ωω2 to ω2, and
B ⊆ ω2, then there exists α ∈ S such that Rα = R, fα = F �<ωα and
b′α = B ∩ α.

For each α ∈ S, take xα ∈ [α]ω such that supxα = α, xα ∩ ω1 ∈ Rα and
xα is closed under fα. We can take such xα because α ∈ E2

0 \ ω1 and Rα is
stationary. Let X := {xα | α ∈ S}. Moreover let bx := b′supx ∩ x for each
x ∈ X. (Hence bxα = b′α ∩ xα for each α ∈ S.)

We show that these X and 〈bx | x ∈ X〉 witness the lemma. Clearly they
satisfy (i) and (ii). We check (iii).

Fix B ⊆ ω2. It suffices to show that for every stationary R ⊆ ω1 and
every function F : <ωω2 → ω2 there exists x ∈ X such that x∩ ω1 ∈ R, x is
closed under F and bx = B ∩ x.

Take an arbitrary stationary R ⊆ ω1 and an arbitrary function F :
<ωω2 → ω2. Then there exists α ∈ S with Rα = R, fα = F �<ωα and
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b′α = B∩α. So xα∩ω1 ∈ R, xα is closed under F , and bxα = b′α∩xα = B∩xα
by the choice of xα. Moreover xα ∈ X. Hence xα is as desired.

Proof of Lemma 3.7. Before starting we prepare a notation. For each
D ⊆ On × On and each γ ∈ On, let D(γ) denote the set {β ∈ On |
〈γ, β〉 ∈ D}.

Now we start the proof. By Lemma 3.8 we can take X ⊆ [ω2]ω and a
sequence 〈dx | x ∈ X〉 such that:

(i′) supx /∈ x for each x ∈ X, {supx | x ∈ X} = S, and sup�X is
injective.

(ii′) dx ⊆ x× x.
(iii′) For every D ⊆ ω2 × ω2 the set {x ∈ X | dx = D ∩ (x × x)} is

projectively stationary.

For each x ∈ X let Bx = {dx(γ) | γ ∈ x}. We show that X and 〈Bx | x ∈ X〉
witness Lemma 3.7. Clearly (i) and (ii) in Lemma 3.4 hold. We check (iii).

Let θ be a sufficiently large regular cardinal. Take an arbitrary stationary
R ⊆ ω1 and an arbitrary function F : <ωHθ → Hθ. It suffices to find
M ∈ [Hθ]ω such that M ∩ ω1 ∈ R, M is closed under F , M ∩ ω2 ∈ X and
BM∩ω2 = {B ∩M | B ∈ P(ω2) ∩M}

First take N ⊆ Hθ such that |N | = ω2 ⊆ N , P(ω2) ∩ N 6= ∅ and N is
closed under F . Moreover take an enumeration 〈Bγ | γ ∈ ω2〉 of P(ω2) ∩N .
For each x ∈ [ω2]ω let

Mx := clF (x ∪ {Bγ | γ ∈ x}) ⊆ N,

where clF (a) denotes the closure of a under F . Then let C be the set of all
x ∈ [ω2]ω with Mx ∩ ω2 = x and P(ω2) ∩Mx = {Bγ | γ ∈ x}. Finally let D
be a subset of ω2 × ω2 such that D(γ) = Bγ for each γ ∈ ω2.

Note that C is a club in [ω2]ω. Hence, by (iii′), there exists x ∈ X∩C such
that x∩ω1 ∈ R and dx = D∩ (x×x). Then Mx ∈ [Hθ]ω, Mx ∩ω2 = x ∈ X,
Mx ∩ ω1 = x ∩ ω1 ∈ R, and Mx is closed under F . Moreover

BMx∩ω2 = Bx = {dx(γ) | γ ∈ x} = {D(γ) ∩ x | γ ∈ x}
= {Bγ ∩ x | γ ∈ x} = {B ∩ x | B ∈ P(ω2) ∩Mx}
= {B ∩Mx | B ∈ P(ω2) ∩Mx}.

Thus Mx is as desired.

3.3. Proof of Theorem 1.4. Before proving the theorem we present a
poset to which we apply MM:

Definition 3.9. Suppose that S ⊆ E2
0 and that ~c = 〈cα | α ∈ S〉 is a

�(S)-sequence. (S may be bounded in ω2.) Then let P(~c ) be the following
poset:
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• P(~c ) = S.
• α ≤P(~c ) β if and only if β ∈ Lim(cα) ∪ {α} for each α, β ∈ S.

For g ⊆ P(~c ) let
cg :=

⋃
α∈g

cα.

Note that α ≤P(~c ) β if and only if cβ is an initial segment of cα. The
following lemma can be easily proved. The proof is left to the reader.

Lemma 3.10. Let S be a subset of E2
0 and ~c = 〈cα | α ∈ S〉 be a �(S)-

sequence.

(1) Suppose that g is a filter on P(~c ). Then cg is a club in sup cg of order
type ≤ ω1. Moreover, if β ∈ Lim(cg), then β ∈ S, and cβ = cg ∩ β.

(2) Suppose that the following (∗∗) holds:

(∗∗) P(~c ) \ γ is dense in P(~c ) for every γ < ω2.

Let θ be a sufficiently large regular cardinal and M be an elementary
submodel of 〈Hθ,∈,~c 〉. Suppose also that g is an (M,P(~c ))-generic
filter. Then sup cg = sup(M ∩ ω2).

Proof of Theorem 1.4. Assume MM. We want to prove that �(S) holds for
some S ⊆ Lim(ω2) with S ∩ E2

1 stationary.
Our proof is composed of two steps. First we construct a �(E2

0)-sequence
~c = 〈cα | α ∈ E2

0〉 so that P(~c ) satisfies (∗) in Lemma 3.3 and (∗∗) in
Lemma 3.10. Then, using Lemma 2.2, we show that ~c can be extended to a
�(S)-sequence for some S ⊆ Lim(ω2) with S ∩ E2

1 stationary.

Step 1: Construction of ~c = 〈cα | α ∈ E2
0〉. First take a stationary

partition 〈Tβ | β ∈ E2
0〉 of E2

0 , i.e. 〈Tβ | β ∈ E2
0〉 is a pairwise disjoint

sequence of stationary subsets of E2
0 such that

⋃
{Tβ | β ∈ E2

0} = E2
0 . By

Lemma 3.4, for each β ∈ E2
0 we can take Xβ ⊆ [ω2]ω and 〈Bβx | x ∈ Xβ〉

with the following properties:

(i) supx /∈ x for each x ∈ Xβ, {supx | x ∈ Xβ} = Tβ, and sup�Xβ is
injective.

(ii) Bβx is a countable family of subsets of x for each x ∈ Xβ.
(iii) For every sufficiently large regular cardinal θ the set of all M ∈

[Hθ]ω such that

• M ∩ ω2 ∈ Xβ,
• BβM∩ω2

= {B ∩M | B ∈ P(ω2) ∩M}
is projectively stationary.

By induction on α ∈ E2
0 we construct a �(E2

0)-sequence ~c = 〈cα |
α ∈ E2

0〉. Suppose that α ∈ E2
0 and that 〈cβ | β ∈ E2

0 ∩ α〉 has been



120 H. Sakai

defined to be a �(E2
0 ∩ α)-sequence. Then take cα as follows: First let

βα := the unique element of E2
0 with α ∈ Tβα ,

xα := the unique element of Xβα with supxα = α.

If βα /∈ xα or there exists β ∈ E2
0 ∩ xα with Lim(cβ) 6⊆ xα, then let cα be an

arbitrary unbounded subset of α of order type ω.
Suppose that βα ∈ xα and that Lim(cβ) ⊆ xα for every β ∈ E2

0 ∩ xα.
Then note that 〈cβ | β ∈ E2

0 ∩ xα〉 is a �(E2
0 ∩ xα)-sequence. Let

Pα := P(〈cβ | β ∈ E2
0 ∩ xα〉).

Note also that βα ∈ Pα ⊆ xα.
Recall that Bβαxα is a countable family of subsets of xα. Hence we can take

a filter gα on Pα such that:

(iv) βα ∈ gα.
(v) gα ∩ b 6= ∅ for every b ∈ Bβαxα which is a maximal antichain in Pα.

If sup cgα = α, then let cα := cgα . Otherwise, take an unbounded c ⊆ α such
that otp(c) = ω and βα = min c, and let cα := cβα ∪ c.

This completes the choice of cα. Using Lemma 3.10(1), it is easy to check
that 〈cβ | β ∈ E2

0 ∩α+ 1〉 is a �(E2
0 ∩α+ 1)-sequence. Note that if βα ∈ xα

and Lim(cβ) ⊆ xα for every β ∈ E2
0 ∩ xα, then βα ∈ Lim(cα).

Now we have constructed a �(E2
0)-sequence ~c = 〈cα | α ∈ E2

0〉. We show
that P(~c ) satisfies (∗) and (∗∗):

Claim 1. P(~c ) satisfies (∗∗) in Lemma 3.10.

Proof. Take an arbitrary β∗ ∈ E2
0 and an arbitrary γ∗ < ω2. We must

find α∗ ∈ E2
0 \ γ∗ with α∗ ≤P(~c ) β

∗.
Let θ be a sufficiently large regular cardinal. Because Xβ∗ is stationary in

[ω2]ω, we can take M ≺ 〈Hθ,∈,~c 〉 such that β∗, γ∗ ∈M and M ∩ω2 ∈ Xβ∗ .
Let α∗ := sup(M ∩ ω2). Clearly α∗ ∈ E2

0 \ γ∗.
Note that α∗ ∈ Tβ∗ . So βα∗ = β∗. Note also that xα∗ = M ∩ ω2. Hence

βα∗ ∈ xα∗ by the choice of M . Moreover Lim(cβ) ⊆ xα∗ for every β ∈
E2

0 ∩ xα∗ because M ≺ 〈Hθ,∈,~c 〉 and each cβ is a countable set. Then
β∗ = βα∗ ∈ Lim(cα∗) by the choice of cα∗ . Thus α∗ ≤P(~c ) β

∗. Claim 1

Claim 2. P(~c ) satisfies (∗) in Lemma 3.3.

Proof. Suppose that θ is a sufficiently large regular cardinal and that
β∗ ∈ E2

0 = P(~c ). We prove that there are projectively stationary many
M ∈ [Hθ]ω such that a strongly (M,P(~c ))-generic condition below β∗ exists.

Let Y be the set of all M ∈ [Hθ]ω such that:

(vi) β∗,~c ∈M ≺ 〈Hθ,∈〉.
(vii) M ∩ ω2 ∈ Xβ∗ .
(viii) Bβ

∗

M∩ω2
= {B ∩M | B ∈ P(ω2) ∩M}.
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Then Y is projectively stationary in [Hθ]ω by (iii). It suffices to show that
sup(M ∩ ω2) is a strongly (M,P(~c ))-condition below β∗ for each M ∈ Y .

Fix M ∈ Y , and let α∗ := sup(M ∩ ω2). Then βα∗ = β∗, and xα∗ =
M ∩ ω2. Hence βα∗ ∈ xα∗ , and Lim(cβ) ⊆ xα∗ for each β ∈ E2

0 ∩ xα∗ . Note
also that Pα∗ = P(~c ) ∩ M . So gα∗ is a filter on P(~c ) ∩ M containing β∗

by (iv). Moreover gα∗ is an (M,P(~c ))-generic filter by (v) and (viii).
Here note that sup cgα∗ = sup(M ∩ ω2) = α∗ by Lemma 3.10(2) and

Claim 1. Hence cα∗ = cgα∗ , and so gα∗ = {β ∈ P(~c )∩M | β ≥P(~c ) α
∗}. There-

fore α∗ is a strongly (M,P(~c ))-generic condition below β∗. Claim 2 aStep 1

Step 2: Extension of ~c. Let θ be a sufficiently large regular cardinal,
and let Z be the set of all N ∈ [Hθ]ω1 such that:

(ix) N ≺ 〈Hθ,∈,~c 〉.
(x) N is i.a. of length ω1.

(xi) There exists an (N,P(~c ))-generic filter.

By Claim 2 and Lemma 3.3, P(~c ) is ω1-stationary preserving and σ-Baire.
Hence Z is stationary in [Hθ]ω1 by MM and Lemma 2.2.

Note that sup(N∩ω2) ∈ E2
1 for each N ∈ Z because N is i.a. of length ω1.

Hence S′ := {sup(N ∩ ω2) | N ∈ Z} is a stationary subset of E2
1 .

For each α ∈ S′ choose Nα ∈ Z with sup(Nα∩ω2) = α and an (Nα,P(~c ))-
generic filter gα. Moreover let cα := cgα for each α ∈ S′. Note that sup cα = α
by Claim 1 and Lemma 3.10(2). Then, by Lemma 3.10(1), cα is a club of α
of order type ω1, and if β ∈ Lim(cα), then β ∈ E2

0 , and cβ = cα ∩ β.
Now let S := E2

0 ∪ S′. Then S ∩ E2
1 = S′ is stationary. Moreover 〈cα |

α ∈ S〉 is a �(S)-sequence. aStep 2

This completes the proof of Theorem 1.4.

4. Strong stationary reflection principle. In §5 and §6 we will dis-
cuss the consistency of the failure of the partial square. For this we will use
the following stationary reflection principle, which implies the failure of the
partial square:

Definition 4.1. Let κ be a successor cardinal of some regular uncount-
able cardinal δ. Then let

OSR∗κ ≡ For any stationary S ⊆ Eκ<δ there exists a club C ⊆ κ such that
S ∩ α is stationary in α for any α ∈ C ∩ Eκδ .

OSR∗ω2
was introduced by Magidor [12], and OSR∗κ is its straightforward

generalization.
First we prove that OSR∗δ+ implies the failure of �p

δ . This can be shown by
the same argument as the fact that the usual stationary reflection principle
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for stationary subsets of E2
0 implies the failure of �ω1 , which is also shown

in [12]:

Lemma 4.2. Let δ be a regular uncountable cardinal, and let κ := δ+.
Then OSR∗κ implies the failure of �p

δ .

Proof. Assume �p
δ . We prove that OSR∗κ fails.

Let 〈cα | α ∈ S〉 be a witness of �p
δ . First note that S ∩Eκ<δ is stationary

in κ because S ∩ Eκδ is stationary in κ, and S ∩α contains a club cα ⊆ α for
any α ∈ S ∩ Eκδ . Moreover the correspondence β 7→ otp(cβ) is regressive on
S∩Eκ<δ. Hence by Fodor’s lemma there exist ξ∗ and a stationary S∗ ⊆ S∩Eκ<δ
such that otp(cβ) = ξ∗ for all β ∈ S∗.

Note that Lim(cα)∩S∗ contains at most one element, the ξ∗th element of
cα, for any α ∈ S ∩Eκδ . Thus S∗ ∩α is nonstationary in α for all α ∈ S ∩Eκδ .
Here recall that S∗ is a stationary subset of Eκ<δ and that S∩Eκδ is stationary.
Therefore S∗ witnesses the failure of OSR∗κ.

In the rest of this section we discuss the construction of models of OSR∗κ.
Magidor [12] proved that, after a weakly compact cardinal is Lévy col-

lapsed to ω2, there exists a <ω2-Baire ω3-c.c. poset forcing OSR∗ω2
. If a

weakly compact cardinal is Lévy collapsed to ω2, then FA++
ω1

holds for all
σ-closed posets of size ≤ ω2 = 2ω1 (see Lemma 6.2 below). In fact this forc-
ing axiom implies the existence of a <ω2-Baire ω3-c.c. poset forcing OSR∗ω2

.
Here we prove the following proposition which generalizes this fact:

Proposition 4.3. Let δ be a regular uncountable cardinal. Assume that
FA++

δ holds for all <δ-directed closed posets of size ≤ 2δ and that Eδ+<δ ∈
I[δ+]. Then there is a (2δ)+-c.c. <δ+-Baire <δ-directed closed poset which
forces OSR∗δ+.

Note that if δ = ω1, then Eδ+<δ = E2
0 ∈ I[ω2] = I[δ+]. Thus the second

assumption of the proposition holds if δ = ω1.
The rest of this section is devoted to the proof of Proposition 4.3. Fix a

regular uncountable cardinal δ, and let κ := δ+.
The poset forcing OSR∗κ will be one of the following OSR∗κ-iterations,

which are essentially δ-support iterations of club shootings through κ:

Definition 4.4. We say that 〈Bµ, Ṡν | µ ≤ υ, ν < υ〉 is an OSR∗κ-
iteration of length υ if it satisfies the following:

(i) Each Bµ is a poset, and each Ṡν is a nice Bν-name for a stationary
subset of (Eκ<δ)V .

(ii) Each Bµ is the poset of all partial functions p on µ such that:

• |dom(p)| < κ.
• p�ν ∈ Bν for all ν < µ.
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• If ν ∈ dom(p), then p(ν) is a closed bounded subset of κ, and
p�ν 
 “ Ṡν ∩ α is stationary ” for any α ∈ p(ν) ∩ Eκδ .

(iii) For p, q ∈ Bµ, p ≤ q if and only if dom(p) ⊇ dom(q), and p(ν)
end-extends q(ν) for every ν ∈ dom(q).

If 〈Bµ, Ṡν | µ ≤ υ, ν < υ〉 is an OSR∗κ-iteration, then Bυ is also called an
OSR∗κ-iteration.

First we present basic properties of OSR∗κ-iterations:

Lemma 4.5. All OSR∗κ-iterations have the (2δ)+-c.c.

Proof. Suppose that A is a subset of Bυ with |A| = (2δ)+. We find
distinct p, q ∈ A which are compatible.

By the ∆-system lemma we may assume that there is e ⊆ υ of size
≤ δ such that dom(p) ∩ dom(q) = e for all distinct p, q ∈ A. Note that
|{p�e | p ∈ A}| ≤ 2δ < |A|. Hence we can take distinct p, q ∈ A such that
p�e = q�e. Then p ∪ q is a common extension of p and q.

Next we examine the closure property of OSR∗κ-iterations. It is easy to see
that OSR∗κ-iterations are <δ-directed closed. Below we prove a more general
fact for the later use. More precisely, we prove that appropriate complete
suborders of OSR∗κ-iterations and their quotients of OSR∗κ-iterations are both
<δ-directed closed:

Definition 4.6. Suppose that ~B := 〈Bµ, Ṡν | µ ≤ υ, ν < υ〉 is an OSR∗κ-
iteration. U ⊆ υ is said to be a ~B-complete subset of υ if for any ν ∈ U and
any (α̌, p) ∈ Ṡν we have dom(p) ⊆ U . For a B-complete U ⊆ υ and each
µ ≤ υ let Bµ,U be the suborder of Bµ such that

Bµ,U = {p ∈ Bµ | dom(p) ⊆ U}.

Lemma 4.7. Suppose that ~B := 〈Bµ, Ṡν | µ ≤ υ, ν < υ〉 is an OSR∗κ-
iteration and that U is a ~B-complete subset of υ. Then the following hold
for every µ ≤ υ:

(1) p�U ∈ Bµ,U for every p ∈ Bµ.
(2) The map p 7→ p�U is a projection from Bµ to Bµ,U .
(3) Bµ,U is <δ-directed closed.
(4) 
Bµ,U “ Bµ/Ḣµ,U is <δ-directed closed”, where Ḣµ,U is the canonical

Bµ,U -name for a Bµ,U -generic filter.

Proof. We show the lemma by induction on µ ≤ υ. Suppose that µ ≤ υ
and that the conclusion holds for all ν < µ. We prove it for µ.

(1) Take an arbitrary p ∈ Bµ. It suffices to show that r := p�U ∈ Bµ.
First suppose that µ is a limit ordinal. To see that r ∈ Bµ, it suffices to

show that r�ν ∈ Bν for all ν < µ and that |dom(r)| < κ. The latter is clear
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because r is a restriction of p which belongs to Bµ. The former easily follows
from the induction hypothesis (1) for ν < µ.

Next suppose that µ is a successor ordinal, and let ν := µ−1. Then note
that r�ν ∈ Bν . This implies that r ∈ Bµ if ν /∈ dom(r). So suppose that
ν ∈ dom(r). It suffices to show that r�ν 
Bν “ Ṡν ∩ α is stationary ” for all
α ∈ r(ν) ∩ Eκδ .

Fix α ∈ r(ν)∩Eκδ . First note that Ṡν is a Bν,U -name because ν ∈ U , and
U is ~B-complete. Moreover p�ν 
Bν “ Ṡν ∩ α is stationary ” because p ∈ Bµ.
Then

r�ν = (p�ν)�U 
Bν,U “ Ṡν ∩ α is stationary ”

because the restriction to U is a projection from Bν to Bν,U by the in-
duction hypothesis (2). But cf(α) = δ, and V Bν is a <δ-closed forcing ex-
tension of V Bν,U by the induction hypothesis (4) for ν. Therefore r�ν 
Bν
“ Ṡν ∩ α is stationary ”.

(2) Clearly the map p 7→ p�U from Bµ to Bµ,U is order preserving and
surjective. Suppose that p ∈ Bµ and q ≤ p�U in Bµ,U . We show that there
exists p∗ ≤ p in Bµ with p∗�U = q.

Let p∗ := q ∪ (p�µ \U). Then by induction on ν ≤ µ we can easily prove
that p∗�ν ∈ Bν and that p∗�ν ≤ p�ν, q�ν in Bν . Thus p∗ is as desired.

(3) Suppose that A ⊆ Bµ,U is directed and that |A| < δ. We must find a
lower bound p∗ of A.

Let cν :=
⋃
{p(ν) | p ∈ A∧ν ∈ dom(p)} for each ν ∈

⋃
{dom(p) | p ∈ A},

and let p∗ be a function on
⋃
{dom(p) | p ∈ A} such that p∗(ν) = cν ∪

{sup cν}. First note that each p∗(ν) is a closed bounded subset of κ. Note
also that if sup cν /∈ cν , then sup cν /∈ Eκδ because |A| < δ. Then by induction
on ν ≤ µ we can easily prove that p∗�ν ∈ Bν and that p∗�ν is a lower bound
of {p�ν | p ∈ A}. Therefore p∗ is as desired.

(4) Suppose that Hµ,U is a Bµ,U -generic filter over V . In V [Hµ,U ] suppose
that A ⊆ Bµ/Hµ,U is directed and that |A| < δ. We find a lower bound p∗

of A in Bµ/Hµ,U . Here recall that Bµ/Hµ,U = {p ∈ Bµ | p�U ∈ Hµ,U}.
First note that A is directed in Bµ by the definition of Bµ/Hµ,U . Note

also that A ∈ V because Bµ,U is <δ-closed by (3). In V construct p∗ from
A as in the proof of (3). That is, let cν :=

⋃
{p(ν) | p ∈ A∧ ν ∈ dom(p)} for

each ν ∈
⋃
{dom(p) | p ∈ A}, and let p∗ be a function on

⋃
{dom(p) | p ∈ A}

such that p∗(ν) = cν ∪ {sup cν}. Then p∗ is a lower bound of A in Bµ. It
suffices to show that p∗ ∈ Bµ/Hµ,U .

Note that p∗�U is the greatest lower bound of {p�U | p ∈ A} in Bµ,U .
Moreover {p�U | p ∈ A} ∈ V , and {p�U | p ∈ A} ⊆ Hµ,U because
A ⊆ Bµ/Hµ,U . Therefore p∗�U ∈ Hµ,U by the genericity of Hµ,U . That
is, p∗ ∈ Bµ/Hµ,U .
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Note that if ~B = 〈Bµ, Ṡν | µ ≤ υ, ν < υ〉 is an OSR∗κ-iteration, then every
µ ≤ υ is a ~B-complete subset of υ. Thus Bµ is <δ-directed closed for every
µ ≤ υ by Lemma 4.7(3). Moreover, if we let Ḣµ be the canonical Bµ-name
for a Bµ-generic filter, then Bµ forces that Bυ/Ḣµ is <δ-directed closed by
Lemma 4.7(4).

Hence OSR∗κ-iterations preserve all cardinals ≤ δ. They also preserve
all cardinals ≥ (2δ)+ by Lemma 4.5. But in general OSR∗κ-iterations do
not preserve the cardinality of κ. We prove that under the assumption of
Proposition 4.3 they are <κ-Baire and so preserve the cardinality of κ:

Lemma 4.8. Assume that FA++
δ holds for all <δ-directed closed posets

of size ≤ 2δ and that Eκ<δ ∈ I[κ]. Then all OSR∗κ-iterations are <κ-Baire.

This easily follows from Lemmas 4.9 and 4.10 below:

Lemma 4.9. Let P be a poset which preserves all cofinalities ≤ δ and all
stationary subsets of Eκ<δ. Assume that FA++

δ (P ∗ Col(δ, κ)) holds and that
Eκ<δ ∈ I[κ]. Then for any sufficiently large regular cardinal θ and p ∈ P there
are stationarily many M ∈ [Hθ]δ with the following properties:

(i) M ∩ κ ∈ κ, and p ∈M .
(ii) There is an (M,P)-generic filter g containing p such that

Ṡg,M := {α < M ∩ κ | ∃p′ ∈ g, p′ 
 “α ∈ Ṡ ”}

is stationary in M∩κ for any P-name Ṡ ∈M for a stationary subset
of Eκ<δ.

Proof. Suppose that θ is a sufficiently large regular cardinal and that
p ∈ P. LetM be a structure obtained by adding countably many constants,
functions and predicates to 〈Hθ,∈,P, p〉. It suffices to find M ∈ [Hθ]δ such
that M ≺M and such that M satisfies (i) and (ii).

By Lemma 2.2 we can take M ∈ [Hθ]δ and an (M,P ∗ Col(δ, κ))-generic
filter ḡ containing p∗∅̌ such that δ ⊆M ≺M and such that Ṙḡ is stationary
in δ for any P ∗ Col(δ, κ)-name Ṙ ∈ M for a stationary subset of δ. Note
that M ∩ κ ∈ κ because δ ⊆M ≺M. So M satisfies (i).

We show that g := {q ∈ P∩M | q ∗ ∅̌ ∈ ḡ} witnesses property (ii) for M .
Note that g is an (M,P)-generic filter containing p. Take an arbitrary P-name
Ṡ ∈M for a stationary subset of Eκ<δ. We show that Ṡg,M is stationary.

First note that cf(κ) = δ in V P∗Col(δ,κ). Let ḟ ∈M be a P∗Col(δ, κ)-name
for an increasing continuous cofinal map from δ to κ, and let Ṙ ∈ M be a
P ∗ Col(δ, κ)-name for ḟ−1[Ṡ].

Here note that Ṡ remains stationary in V P∗Col(δ,κ) by the <δ-closure of
Col(δ, κ) and the fact that Eκ<δ ∈ I[κ] in V P (see Fact 2.1). Hence Ṙ is a
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P ∗ Col(δ, κ)-name for a stationary subset of δ. Then Ṙḡ is stationary in δ

by the choice of M and ḡ. Moreover ḟḡ := {〈ξ, α〉 ∈ δ × κ | ∃r ∈ ḡ, r 

“ ḟ(ξ) = α ”} is an increasing continuous cofinal map from δ to M ∩ κ, and
ḟḡ[Ṙḡ] = Ṡg,M . Therefore Ṡg,M is stationary in M ∩ κ.

Lemma 4.10. Assume that Eκ<δ ∈ I[κ]. Let ~B = 〈Bµ, Ṡν | µ < υ, ν < υ〉
be an OSR∗κ-iteration, U be a ~B-complete subset of υ and p be a condition
in Bυ,U . Moreover let θ be a sufficiently large regular cardinal. Assume that
M ∈ [Hθ]δ, that M ≺ 〈Hθ,∈, ~B, U, p〉 and that M satisfies conditions (i)
and (ii) in Lemma 4.9 for P = Bυ,U . Let g be an (M,Bυ,U )-generic filter
witnessing (ii). Then g has a lower bound in Bυ,U .

Proof. For each ν ∈ M ∩ U let cν :=
⋃
{q(ν) | q ∈ g}. Then cν is club

in M ∩ κ for every ν ∈ M ∩ U because g is an (M,Bυ,U )-generic filter. Let
γ∗ := M ∩κ, and let p∗ be a function on M ∩U such that p∗(ν) = cν ∪{γ∗}.
It suffices to show that p∗ ∈ Bυ. (Then p∗ ∈ Bυ,U , and clearly p∗ is a lower
bound of g.)

By induction on µ ≤ υ we prove that p∗�µ ∈ Bµ. Suppose that µ ≤ υ
and that p∗�ν ∈ Bν for every ν < µ. We show that p∗�µ ∈ Bµ. If µ is a limit
ordinal, then this follows from the fact that |dom(p∗)| ≤ |M | = δ.

Suppose that µ is a successor ordinal, and let ν := µ− 1. If ν /∈M ∩ U ,
then p∗�µ ∈ Bν clearly. Thus we also assume that ν ∈M ∩ U . It suffices to
show that if α ∈ p∗(ν)∩ Eκδ , then p∗�ν 
Bν “ Ṡν ∩ α is stationary ”. Take an
arbitrary α ∈ p∗(ν) ∩ Eκδ .

First suppose that α ∈ cν . So there exists q ∈ g such that α ∈ q(ν).
Then q�ν 
Bν “ Ṡν ∩ α is stationary ” because q ∈ Bυ. But p∗�ν ≤ q�ν.
Hence p∗�ν 
Bν “ Ṡν ∩ α is stationary ”.

Next suppose that α = γ∗. Note that Ṡν can be seen as a Bυ,U -name
because ν ∈ U . Moreover Ṡν is stationary in Eκ<δ in V Bυ,U by Lemma 4.7,
Fact 2.1 and the fact that Eκ<δ ∈ I[κ] (in V Bν ). Then s := (Ṡν)g,M is station-
ary in γ∗ by the assumption on M and g. Note that s is the set of all β < γ∗

such that q�ν 
Bν “β ∈ Ṡν ” for some q ∈ g. Moreover p∗�ν is a lower bound
of {q�ν | q ∈ g}. Hence p∗�ν 
Bν “ Ṡν ∩ γ∗ ⊇ s ”. Here note that Bν pre-
serves stationary subsets of γ∗ because Bν is <δ-closed, and cf(γ∗) ≤ δ. So
s remains stationary in V Bν . Therefore p∗�ν 
Bν “ Ṡν ∩ γ∗ is stationary ”.

Proof of Lemma 4.8. Let ~B = 〈Bµ, Ṡν | µ ≤ υ, ν < υ〉 be an OSR∗κ-
iteration. Suppose that p ∈ Bυ and that A is a family of maximal antichains
in Bυ with |A| ≤ δ. We will find p∗ ≤ p meeting all maximal antichains in A.

First take a ~B-complete U ⊆ υ such that |U | ≤ 2δ and such that
{p} ∪

⋃
A ⊆ Bυ,U . We can easily find such U by the (2δ)+-c.c. of Bυ. Then

|Bυ,U | ≤ 2δ, and Bυ,U is <δ-directed closed by Lemma 4.7. Then, by the as-
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sumptions of Lemma 4.8, Bυ,U satisfies the assumptions on P in Lemma 4.9.
Thus we can take M ∈ [Hθ]δ such that A ⊆ M ≺ 〈Hθ,∈, ~B, U, p〉 and such
that M satisfies conditions (i) and (ii) in Lemma 4.9 for P = Bυ,U . Let g be
an (M,Bυ,U )-generic filter witnessing (ii). Then there is a lower bound p∗

of g in Bυ,U by Lemma 4.10.
Here note that p∗ is a lower bound of g also in Bυ. Hence p∗ ≤ p because

p ∈ g. Note also that each A ∈ A is a maximal antichain in Bυ,U which
belongs to M . Thus p∗ meets all A ∈ A by the (M,Bυ,U )-genericity of g.
Therefore p∗ is as desired.

Now Proposition 4.3 easily follows from what we have proved:

Proof of Proposition 4.3. Let υ := 2κ · (2δ)+. Then by the (2δ)+-c.c. of
OSR∗κ-iterations we can construct an OSR∗κ-iteration 〈Bµ, Ṡν | µ ≤ υ, ν < υ〉
such that for any Bυ-name Ṡ for a stationary subset of Eκ<δ there exists
ν < υ with 
Bυ “ Ṡ = Ṡν ”. Now Bυ is <δ-directed closed by Lemma 4.7
and <κ-Baire by Lemma 4.8. Moreover Bυ forces OSR∗κ by the construction
of Bυ.

5. PFA does not imply �p. In this section we prove

Theorem 1.5. If there exists a supercompact cardinal, then there exists
a forcing extension in which PFA holds but �p fails.

In fact we prove the following result which implies the above theorem by
Lemma 4.2:

Theorem 5.1. PFA is consistent with OSR∗ω2
. More precisely, if there

exists a supercompact cardinal, then there exists a forcing extension in which
both PFA and OSR∗ω2

hold.

Recall that if κ is a supercompact cardinal, and 〈Pα, Q̇β | α ≤ κ, β < κ〉
is the standard iteration for PFA, then PFA++ and 2ω1 = κ = ω2 hold in V Pκ .
Hence, by results in the previous section, in V Pκ we can construct an OSR∗ω2

-
iteration forcing OSR∗ω2

. Thus the following lemma implies Theorem 5.1:

Lemma 5.2. If PFA++ holds, then Bυ forces PFA for any OSR∗ω2
-itera-

tion 〈Bµ, Ṡν | µ ≤ υ, ν < υ〉.

Proof. Assume that PFA++ holds and that ~B = 〈Bµ, Ṡν | µ ≤ υ, ν < υ〉
is an OSR∗ω2

-iteration. Suppose that p ∈ Bυ, that Q̇ is a Bυ-name for a
proper poset and that A is a family of Bυ-names for maximal antichains
in Q̇ with |A| ≤ ω1. It suffices to find p∗ ≤ p and a Bυ-name Ḣ such that
p∗ forces that Ḣ is a filter on Q̇ and that Ḣ ∩ Ȧ 6= ∅ for all Ȧ ∈ A. We work
in V .
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Take a sufficiently large regular cardinal θ. Note that Bυ ∗ Q̇ is proper
and that FA++ holds for Bυ ∗ Q̇ ∗ Col(ω1, ω2

V ) by PFA++. Note also that
Eω2
<ω1

= E2
0 ∈ I[ω2]. Then by Lemma 4.9 we can take M ∈ [Hθ]ω1 and an

(M,Bυ ∗ Q̇)-generic filter k such that:

(i) M ∩ ω2 ∈ ω2, and A ⊆M ≺ 〈Hθ,∈, ~B, p〉.
(ii) p ∗ 1Q̇ ∈ k.

(iii) Ṡk,M is stationary in M ∩ ω2 for any Bυ ∗ Q̇-name Ṡ ∈ M for a
stationary subset of (E2

0)V .

Let g := {p′ ∈ Bυ ∩M | p′ ∗ 1Q̇ ∈ k}. Then g is an (M,Bυ)-generic filter,
and Ṡg,M is stationary in M ∩ ω2 for any Bυ-name Ṡ ∈ M for a stationary
subset of (E2

0)V . (For the latter note that if Ṡ is a Bυ-name for a stationary
subset of (E2

0)V , then Bυ ∗ Q̇ forces Ṡ to remain stationary because Q̇ is
proper.) So by Lemma 4.10 we can take a lower bound p∗ ∈ Bυ of g.

Let ḣ := {(q̇, p′) | p′ ∗ q̇ ∈ k}. Then ḣ is a Bυ-name for a subset of Q̇.
Moreover it is easy to see that p∗ forces ḣ to be an (M [Ġ], Q̇)-generic filter,
where Ġ is the canonical name for a Bυ-generic filter, and M [G] denotes
the set {ẋG | ẋ is a Bυ-name in M} for a Bυ-generic filter G. In particular,
p∗ forces that ḣ ∩ Ȧ 6= ∅ for all Ȧ ∈ A. Let Ḣ be a Bυ-name for the filter
on Q̇ generated by ḣ. Then p∗ and Ḣ is as desired.

6. �p
δ for regular δ ≥ ω2. To end this paper we make a remark that

�p
δ for a regular δ ≥ ω2 is independent of MM.

First we prove that MM is consistent with the failure of �p
δ . In fact we

prove the following stronger fact:

Theorem 6.1. MM is consistent with OSR∗δ+ for a regular δ ≥ ω2. More
precisely: In V suppose that MM holds, that δ is a regular cardinal ≥ ω2 and
that there exists a weakly compact cardinal > δ. Then there exists a <δ-
directed closed <δ+-Baire forcing extension in which both MM and OSR∗δ+
hold.

For this we use the following well-known lemma:

Lemma 6.2 (folklore). Suppose that δ is a regular uncountable cardinal
and that κ is a weakly compact cardinal > δ. Then FA++

δ for all <δ-closed
posets of size ≤ 2δ holds in V Col(δ,<κ).

Proof. Let H be a Col(δ,<κ)-generic filter over V . In V [H] suppose that
P is a <δ-closed poset of size ≤ 2δ, that A is a family of maximal antichains
in P with |A| ≤ δ and that R is a family of P-names for stationary subsets
of δ with |R| ≤ δ. In V [H] we find a filter G∗ on P such that G∗ ∩A 6= ∅ for
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any A ∈ A and such that ṘG∗ is stationary in δ for all Ṙ ∈ R. Note that
2δ = κ in V [H]. So we may assume that P ⊆ κ.

Let Ṗ, Ȧ and Ṙ be Col(δ,<κ)-names for P, A and R, respectively. We
may assume that Ṗ, Ȧ, Ṙ ∈ Hκ+ in V . Then in V we can take a transitive
M ≺ 〈Hκ+ ,∈, δ, κ, Ṗ, Ȧ, Ṙ〉 of size κ. Moreover, in V we can take a transi-
tive N and an elementary embedding j : M → N whose critical point is κ.
This is because κ is weakly compact in V .

Note that M ⊆ N because P(κ) ∩M ⊆ N . Hence P,A,R ∈ M [H] ⊆
N [H]. Moreover in N [H] it is easy to see that P is <δ-closed, that A is a
family of maximal antichains in P with |A| ≤ δ and that R is a family of
P-names for stationary subsets of δ with |R| ≤ δ.

Here take a P×Col(δ, [κ, j(κ)))N [H]-generic filter G×I over V [H]. Below
we work in V [H][G× I].

Note that P × Col(δ, [κ, j(κ)))N [H] is isomorphic to Col(δ, [κ, j(κ)))N [H]

in N [H] because P is a <δ-closed poset of size ≤ κ. Thus H ∗ (G × I) can
be seen as a Col(δ,<j(κ))-generic filter over N . Hence j : M → N can be
naturally extended to an elementary embedding j : M [H]→ N [H][G][I]. In
N [H][G][I] let Ḡ be a filter on j(P) generated by j[G] = G ∈ N [H][G][I].

Then Ḡ∩j(A) 6= ∅ for all A ∈ A. Moreover for each Ṙ ∈ R, j(Ṙ)Ḡ = ṘG,
and ṘG is stationary in δ in N [H][G][I]. The latter is because Ṙ is a P-name
for a stationary subset of δ in N [H], and N [H][G][I] is a <δ-closed forcing
extension of N [H][G]. Note also that j(A) = j[A] and j(R) = j[R] because
|A| = |R| ≤ δ < κ in M [H]. Therefore in N [H][G][I] we see that Ḡ∩A′ 6= ∅
for all A′ ∈ j(A) and that Ṙ′

Ḡ
is stationary in δ for all Ṙ′ ∈ j(R).

Then, by the elementarity of j, in M [H] we can take a filter G∗ on P
such that G∗ ∩A 6= ∅ for all A ∈ A and such that ṘG∗ is stationary in δ for
all Ṙ ∈ R. Here note that P(δ) ∩ V [H] ⊆ M [H]. Hence ṘG∗ is stationary
also in V [H] for each Ṙ ∈ R. Thus G∗ is as desired.

In the proof of Theorem 6.1 we also use the following folklore. Its proof
is found in Larson [11]:

Fact 6.3 (folklore). MM is preserved by <ω2-directed closed forcing ex-
tensions.

Now we can easily prove Theorem 6.1:

Proof of Theorem 6.1. In V assume that MM holds, that δ is a regular
cardinal ≥ ω2 and that κ is a weakly compact cardinal > δ.

Let G be a Col(δ,<κ)-generic filter over V . Then κ = δ+ in V [G]. More-
over FA++

δ holds for all <δ-directed closed posets of size ≤ 2δ in V [G] by
Lemma 6.2. Furthermore Eκ<δ ∈ I[κ] in V [G] because 2<δ = δ (See Fact 2.1).
Then by Proposition 4.3 in V [G] there exists a <κ-Baire <δ-directed closed
poset B forcing OSR∗κ. Let H be a B-generic filter over V [G].
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Then OSR∗δ+ holds in V [G][H]. Moreover MM remains to hold in V [G][H]
by Fact 6.3 and the fact that V [G][H] is a <δ-directed closed forcing exten-
sion of V .

From Theorem 6.1 and Lemma 4.2 it follows that MM is consistent with
the failure of �p

δ for a regular δ ≥ ω2. Next we prove that MM is consistent
with �p

δ :

Theorem 6.4. MM is consistent with �p
δ for an uncountable cardinal δ.

More precisely: In V suppose that MM holds and that δ is an uncountable
cardinal. Then there exists a <δ+-directed closed forcing extension in which
both MM and �p

δ hold.

This follows from Fact 6.3 and the following lemma:

Lemma 6.5. Let δ be an uncountable cardinal. Then there exists a <δ+-
directed closed forcing extension in which �p

δ holds.

Proof. Let P be the following poset:

• P := {p | p is a �δ(s)-sequence for some bounded s ⊆ Lim(δ+)}.
• For p = 〈cα | α ∈ s〉 and p′ = 〈c′α | α ∈ s′〉 in P, p ≤ p′ if p is an

end-extension of p′, that is, s′ = s ∩ sup{α + 1 | α ∈ s′}, and cα = c′α
for all α ∈ s′.

If p = 〈cα | α ∈ s〉 ∈ P, then cα and s are denoted as cp,α and sp, respectively.
It is easy to see that P is <δ+-directed closed. We show that 
P �p

δ .
Note that if G is a P-generic filter, then clearly

⋃
G is a �δ(SG)-sequence,

where SG =
⋃
p∈G sp. Thus all we have to show is that SG∩Eδ

+

δ is stationary
in V [G].

In V take an arbitrary p ∈ P and an arbitrary P-name Ċ for a club
subset of δ+. It suffices to find p∗ ≤ p and α∗ ∈ Eδ+δ such that α∗ ∈ sp∗ and
such that p∗ 
 “α∗ ∈ Ċ ”. We work in V .

By induction on ξ we can easily construct a strictly descending sequence
〈pξ | ξ ≤ δ〉 below p so that

• spξ has the greatest element αξ for each ξ,
• if ξ is successor, then pξ 
 “ Ċ ∩ [αξ−1, αξ) 6= ∅ ”,
• if ξ is limit, then αξ = supη<ξ αη, and cpξ,αξ = {αη | η < ξ}.

Then it is easy to see that p∗ := pδ and α∗ := αδ are as desired.
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