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Abstract. Let K be a subfield of the real field, D⊆K be a discrete set and f :Dn→K
be such that f(Dn) is somewhere dense. Then (K, f) defines Z. We present several appli-
cations of this result. We show that K expanded by predicates for different cyclic multi-
plicative subgroups defines Z. Moreover, we prove that every definably complete expansion
of a subfield of the real field satisfies an analogue of the Baire category theorem.

1. Introduction. Let K be a subfield of the field of real numbers.

Theorem A. Let D ⊆ K be discrete, n ∈ N and let f : Dn → K be
such that f(D) is somewhere dense. Then (K, f) defines Z.

A set is somewhere dense if its topological closure has interior. Theo-
rem A generalizes earlier work of the author in [6] where the result is shown
for K = R and D closed and discrete. The proof in [6] relies crucially on the
topological completeness of R and hence does not work for subfields of the
real field. One can even construct a subfield K and a function f : D → K
that satisfy the assumptions of Theorem A, but the parameter-free formula
that defines Z in (R, f) does not define Z in (K, f). The work in the current
paper shows how results from [6] can still be used to establish Theorem A.

A subset of a subfield K of R is discrete in the induced topology on K
if and only if it is discrete in the order topology on R. However, there are
discrete subsets D of K that are closed in the induced topology on K, but
are not closed in R. Such discrete sets may even fail to be well ordered by
the ordering on R. To make use of the results of [6] we establish the following
theorem.

Theorem B. Let D ⊆ K be a discrete set. Then there is a discrete set
E ⊆ K such that E is closed in R, (K,D) and (K,E) are interdefinable and
there is a surjection g : E → D definable in (K,D).
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The proof of Theorem A will be presented in Section 4. In Section 2 we
prove a generalization of Miller’s lemma on asymptotic extraction of groups
from [8] that plays a key role in the proof of Theorem A. Section 3 gives a
proof of Theorem B.

In the rest of this introductory section, several applications of Theorems
A and B will be discussed.

Two discrete subgroups. For any α ∈ K×, let

αZ := {αk : k ∈ Z}.
In [1] van den Dries established that the structure (K,αZ) is model-theore-
tically tame when K is a real closed field subfield of the real field. In partic-
ular, he showed that Z is not definable in that structure. Theorem A allows
us to show that this is not the case in the structure (K,αZ, βZ).

Theorem C. Let α, β ∈ K>0 with logα(β) /∈ Q. Then (K,αZ, βZ) de-
fines Z.

Proof. The set αZ ∪ βZ is discrete and definable in (K,αZ, βZ). Let
g : K>0 × K>0 → K be the function mapping (a, b) to ab. The image of
(αZ ∪ βZ)× (αZ ∪ βZ) under g is αZβZ and hence dense in K>0. Therefore
(K,αZ, βZ) defines Z by Theorem A.

An analogue of the Baire category theorem. An expansion K of K
is definably complete if every bounded subset of K definable in K has a
supremum in K. For details, see Miller [7]. Given a subset Y of K2 and
a ∈ K, we denote {b : (b, a) ∈ Y } by Ya.

Theorem D. Let K be a definably complete expansion of K. Then K
is definably Baire, that is, there exists no set Y ⊆ K2

>0 definable in K such
that

(i) Yt is nowhere dense for all t ∈ K>0,
(ii) Ys ⊆ Yt for all s, t ∈ K>0 with s < t, and
(iii)

⋃
t∈K>0

Yt = K.

Proof. Suppose K is not definably Baire. By Fornasiero [3, Corollary 6.6],
there is a closed and discrete set D ⊆ K definable in K and f : D → K
definable in K such that the image of f is dense in K. By Theorem A, Z is
definable in K. Thus K is definably Baire by [3, Lemma 6.2].

Definable versions of standard facts from real analysis hold in definably
complete expansions of ordered fields that satisfy the conclusion of Theo-
rem D. For details, see the work of Fornasiero and Servi in [4].

Optimality of dichotomies over R. By Theorem B, the dichotomy
in [6, Theorem 1.2] extends to discrete subsets of R as follows.
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Theorem E. Let R be an o-minimal expansion of R and let D ⊆ R be
discrete. Then either

• (R, D) defines Z, or
• every subset of R definable in (R, D) has interior or is nowhere dense.

However, by the following result, neither in Theorem E nor in [6, The-
orem 1.2] can the statement ‘is nowhere dense’ be replaced by ‘is a finite
union of discrete sets’.

Theorem F. There is a closed and discrete set D ⊆ R such that (R, D)
does not define Z, but defines a set that is not Fσ.

Proof. By Friedman et al. [5, 2.3], there is a discrete set D such that
(R, D) does not define Z, but sets that are not Fσ. By Theorem B, we can
assume that D is closed.

Notation. In the rest of the paper K will always be a fixed subfield
of R. As before, we do not distinguish between the field K and its underlying
set. We will use a, b, c for elements of K. The letters l, n,m,N will always
denote natural numbers. When we say definable, we mean definable with
parameters. Given a subset A of Kn ×Km and a ∈ Km, we denote the set
{b : (b, a) ∈ A} by Aa.

2. Asymptotic extraction

Lemma 1. Let K be an expansion of K and let S ⊆ K>0×K l be definable
in K such that for every n ∈ N and every ε ∈ K ∩ (0, 1/2), there is b ∈ K l

such that

(1) Sb ⊆
⋃
m∈N,m≤n(m− ε,m+ ε), and

(2) |Sb ∩ (m− ε,m+ ε)| = 1 for every m ∈ N with m ≤ n.

Then K defines Z.

Proof. For ε ∈ K>0 define Bε as the set of all b ∈ K l that satisfy the
following two properties:

(i) |a1 − a2| ≥ 1− ε for all a1, a2 ∈ Sb with a1 6= a2, and
(ii) |a1 − a2| ≤ 1 + ε for all a1, a2 ∈ Sb with Sb ∩ (a1, a2) = ∅.

For b ∈ Bε, let λ(b) be the smallest element of Sb. Such an element exists,
since Sb ⊆ K>0. Set

S′b := {a− λ(b) : a ∈ Sb}.
Finally, define

W := {c ∈ K : ∀ε ∈ K ∩ (0, 1/2) ∃b ∈ Bε (c− ε, c+ ε) ∩ S′b 6= ∅}.
We will finish the proof by showing that W = N.
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Let n ∈ N and ε ∈ K ∩ (0, 1/2). By our assumption on S, there is b ∈ K l

such that

Sb ⊆
⋃

m∈N,m≤n

(
m− ε

2
,m+

ε

2

)
and

∣∣∣∣Sb ∩ (m− ε

2
,m+

ε

2

)∣∣∣∣ = 1

for m ≤ n. Hence |a1 − a2| ∈ (1 − ε, 1 + ε) for two adjacent elements
a1, a2 ∈ Sb. Thus b ∈ Bε. Since λ(b) ∈ (0, ε/2), we have |S′b∩(n−ε, n+ε)| = 1.
Hence n ∈W .

Let c ∈ K be such that c ∈ (n, n + 1) for some n ∈ N. Let ε ∈ K>0 be
such that 2(n+ 1)ε ≤ min{c− n, n+ 1− c} and let b ∈ Bε. Since b ∈ Bε,

S′b ∩ (n, n+ 1) ⊆ (n− nε, n+ nε) ∩ (n+ 1− (n+ 1)ε, n+ 1 + (n+ 1)ε).

Because of our choice of ε, we have c−ε > n+nε and c+ε < n+1−(n+1)ε.
Hence (c− ε, c+ ε) ∩ S′b = ∅ and c /∈W .

Lemma 1 is a generalization of Miller’s lemma on asymptotic extraction
of groups from [8, p. 1484]. Miller’s lemma and an analogue for subfields
of R can easily be deduced from Lemma 1 by arguments similar to those
given in [8].

3. Defining discrete sets that are closed in R. We say a set X ⊆ K
is closed in R if it is closed in the order topology on R.

Lemma 2. Let D ⊆ K>0 be discrete and closed in R. There are A ⊆ K>0

and a bijection g : D → A such that g is definable in (K,D) and |a− b| ≥ 1
for all distinct a, b ∈ A.

Proof. Let σ : D → D be the successor function on the well ordered set
(D,<). Define g : D → K by

d 7→ d ·max({(σ(e)− e)−1 : e ∈ D, e < d} ∪ {1}).

The maximum in the definition of g always exists in K, because the set
{e ∈ D : e < d} is finite. The function g is strictly increasing and definable
in (K,D). The image of D under g is discrete and closed as subset of R. By
construction, the distance between two elements of g(D) is at least 1.

Lemma 3. Let D ⊆ K>0 be an infinite discrete set. Then (K,D) defines
an infinite discrete set A ⊆ K>0 that is closed in R.

Proof. For every ε ∈ K>0, we define (1)

Bε := {d ∈ D : (d− ε, d+ ε) ∩D = {d}}.

(1) This definition was first used by Fornasiero in [2, Remark 4.16] for defining closed
and discrete sets from discrete sets in definably complete expansions of fields.
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Note that Bε ⊇ Bδ for ε, δ ∈ K>0 with ε ≤ δ. If there is ε ∈ K such that Bε
is infinite, then this Bε is unbounded, discrete and closed in R. So we can
reduce to the case that Bε is finite for every ε ∈ K.

Let ε ∈ K>0 be such that Bε contains at least two elements. Let g :
(0, ε)→ D be the function that maps

δ 7→ max({(d1 − d2)−1, d1 − d2 : d1, d2 ∈ Bδ, d1 > d2} ∪ {1}).
Then g((0, ε)) is infinite, since D is. On the other hand, for every δ ∈
(0, ε), g((δ, ε)) is finite and g → ∞ as δ → 0+. Hence for every N ∈ N,
(1, N) ∩ g((0, ε)) is finite and thus g((0, ε)) is closed in R.

Proof of Theorem B. Let D be a discrete subset of K. By replacing D
by

{−(d− 1)−1 : d ∈ D≤0} ∪ {1 + d : d ∈ D>0},
we can assume that D ⊆ K>0. By Lemmas 2 and 3, there is an infinite set
A ⊆ K>0 definable in (K,D) such that |a1 − a2| ≥ 1 for all a1, a2 ∈ A with
a1 6= a2. Let σ : A → A be the successor function on the well ordered set
(A,<). We now construct a discrete set E that is closed in R and encodes
all the information about D. For every a ∈ A, set

Ba := {d ∈ D : d < a and (d− a−1, d+ a−1) ∩D = {d}}.
The set Ba is finite and definable in (K,D) for every a ∈ A. Moreover,
Ba1 ⊆ Ba2 for a1, a2 ∈ A with a1 ≤ a2. Since D is discrete, D =

⋃
a∈ABa.

Further for a ∈ A, define

Ca := {a+ d/a : d ∈ Ba}.
Then Ca is finite, definable in (K,D) and

Ca ⊆ (a, a+ 1) ⊆ (a, σ(a)).

Finally set F :=
⋃
a∈ACa. Since F ∩ (a, σ(a)) = Ca is finite for every a ∈ A,

the set F is discrete and closed in R. Now define

E := F ∪ {−a : a ∈ A}.
Then E is discrete and closed in R, since A and F are. Moreover, A and F
are definable in (K,E), because A,F ⊆ K>0.

It remains to show that there is a surjection f : E → D definable in
(K,E). Let h : K → A be a function mapping a real number x to the
largest a ∈ A with a < x if such an a exists, and to 0 otherwise. Note that
h is definable in (K,E), because A is. Define a function g : K → K by

g(a) := h(a)(a− h(a)).

The image of Ca under g is Ba for each a ∈ A, because Ca ⊆ (a, σ(a)).
Hence the image of F under g is D, since F =

⋃
a∈ACa. Let d ∈ D. Then
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let f : E → D be the function that maps a ∈ E to g(a) if a ∈ F , and to d
otherwise. The image of E under f is D and f is definable in (K,E), since
g and F are.

Lemma 4. Let D ⊆ K>0 be discrete and closed in R. There are E ⊆
K>0, n ∈ N and a bijection g : Dn → E such that g is definable in (K,D)
and E discrete and closed in R.

Proof. By Lemma 2, we can assume that the distance between two ele-
ments of D is at least 1. Let h : K>0 ×Kn → K be defined by

(x0, x1, . . . , xn) 7→ x0 +
n∑
i=1

xi
(nx0)i

.

Consider g : Dn → K defined by

(d1, . . . , dn) 7→ h(max{d1, . . . , dn}, d1, . . . , dn).

It is easy to show that g is injective and g(Dn) is discrete and closed in R.

4. Proof of Theorem A. Let D be a discrete subset of K and let
f : Dn → K be a function such that f(Dn) is somewhere dense. By The-
orem B we can reduce to the case that D is closed in R. After a simple
modification, we can assume that D ⊆ K>1. By Lemmas 2 and 4 we can
assume that n = 1 and that the distance between two distinct elements of
D is at least 1. Composing f with a semialgebraic function we can even
assume that f(D) ⊆ (1, 2).

We recall several definitions from [6]. Let ϕ(x, y) be the formula

∀u ∈ D [f(u) < y < f(u)(1 + u−2)]→ (u < x1/7 ∨ u ≥ x).

Note that for all a, b ∈ K,

(R, f) |= ϕ(a, b) iff (K, f) |= ϕ(a, b).

For c ∈ R, define

Ac := {d ∈ D : f(d) < c < f(d)(1 + d−2) ∧ ϕ(d, c)}.

Further for c ∈ R let vc : D \ {f−1(c)} → R be given by

vc(x) :=
x−2f(x)
c− f(x)

.

The following fact is the key step in the proof of [6, Theorem 1.1].

Fact 5 (see [6, p. 2166]). There is an increasing sequence (dn)∞n=1 of
elements in D with the following properties: for all m,n ∈ N≥1,
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(i) if m < n, then

f(dm)
(

1 +
d−2
m

m+ 1/m

)
< f(dn)

(
1 +

d−2
n

n+ 1/n

)
and

f(dn)
(

1 +
d−2
n

n

)
< f(dm)

(
1 +

d−2
m

m

)
< 2;

(ii) if d ∈ D, n ≥ 2 and d7
n−1 < d < dn, then

f(d)(1 + d−2) < f(dn) or f(d) > f(dn)(1 + d−2
n );

(iii) dn > d49
n−1 for n ≥ 2.

It is in the construction of this sequence that the density of f(D) is used.
In particular, property (i) in Fact 5 depends crucially on this assumption.
It is worth pointing out that so far we have not said anything about the
definability of the range of the sequence. From now on, fix a sequence (dn)∞n=1

of elements in D given by Fact 5. Given m,n ∈ N, we will write [m,n]N for
[m,n] ∩ N.

Lemma 6. For every n ∈ N, there is c ∈ K such that

(1) νc(Ac ∩ [d2, dn]) ⊆
⋃
m∈[2,n]N

(m,m+ 1/m), and
(2) |νc(Ac ∩ [d2, dn]) ∩ (m,m+ 1/m)| = 1 for every m ∈ [2, n]N.

Proof. Take n ∈ N. Let c ∈ K such that

f(dn)
(

1 +
d−2
n

n+ 1/n

)
< c < f(dn)

(
1 +

d−2
n

n

)
.

It is left to show that

(I) for every m ∈ [2, n]N, νc(dm) ∈ (m,m+ 1/m), and
(II) Ac ∩ [d2, dn] = {dm : m ∈ [2, n]N}.

We proceed as in [6, p. 2167]. For (I), let m ≤ n. By Fact 5(i),

(∗) f(dm)
(

1 +
d−2
m

m+ 1/m

)
< c < f(dm)

(
1 +

d−2
m

m

)
.

After rearrangements, (∗) is equivalent to νc(dm) ∈ (m,m+ 1/m).
For (II), let d ∈ Ac ∩ [d2, dn]. For a contradiction, suppose there is m ∈

N>2 such that dm−1 < d < dm. By (∗), we have

f(dm−1) < c < f(dm−1)(1 + d−2
m−1).

Since ϕ(d, c) holds, dm−1 < d1/7. Hence d7
m−1 < d < dm. Thus by Fact 5(ii),

f(d)(1 + d−2) < f(dm) or f(d) > f(dm)(1 + d−2
m ).

By (∗) again, we get

f(d)(1 + d−2) < c or f(d) > c.

Hence the inequality f(d) < c < f(d)(1 + d−2) fails and thus d /∈ Ac.
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Let m ∈ N>1 and m ≤ n. We have to show that dm ∈ Ac. By (∗), it only
remains to establish ϕ(dm, c). Therefore let d ∈ D with d

1/7
m ≤ d < dm. By

Fact 5(iii), d49
m−1 < dm. Hence

d7
m−1 < d1/7

m ≤ d < dm.

As in the above argument, we find that f(d) < c < f(d)(1 + d−2) does not
hold. Hence ϕ(dm, c) and dm ∈ Ac. Thus (II) holds.

Proof of Theorem A. Let S ⊆ K>0 ×K3 be the set

{(a, b1, b2, b3) ∈ K>0 ×K3 : b2, b3 ∈ Ab1 ∧ a+ νb1(b2) ∈ νb1(Ab1 ∩ [b2, b3])}.
We will now show that S satisfies the assumption of Lemma 1. Let n ∈ N
and ε ∈ K ∩ (0, 1/2). Choose N ∈ N so large that N−1 < ε. By applying
Lemma 6 to N + n, there is c ∈ K such that

νc(Ac ∩ [d2, dN+n]) ⊆
⋃

m∈[2,N+n]N

(m,m+ 1/m)

and

|νc(Ac ∩ [d2, dN+n]) ∩ (m,m+ 1/m)| = 1 for m ∈ [2, N + n]N.

Since N−1 < ε, we get

S(c,dN ,dN+n) ⊆
⋃

m∈N,m≤n
(m− ε,m+ ε)

and |S(c,dN ,dN+n) ∩ (m− ε,m+ ε)| = 1 for every m ∈ N with m ≤ n.
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