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Dualization in algebraic K-theory and the invariant e1

of quadratic forms over schemes

by

Marek Szyjewski (Katowice)

Abstract. In the classical Witt theory over a field F , the study of quadratic forms
begins with two simple invariants: the dimension of a form modulo 2, called the dimension
index and denoted e0 : W (F ) → Z/2, and the discriminant e1 with values in k1(F ) =
F ∗/F ∗2, which behaves well on the fundamental ideal I(F ) = ker(e0).

Here a more sophisticated situation is considered, of quadratic forms over a scheme
and, more generally, over an exact category with duality. Our purposes are:

• to establish a theory of the invariant e1 in this generality;
• to provide computations involving this invariant and show its usefulness.

We define a relative version of e1 for pairs of quadratic forms with the same value of e0.
This is first done in terms of loops in some bisimplicial set whose fundamental group
is the K1 of the underlying exact category, and next translated into the language of
4-term double exact sequences, which allows us to carry out actual computations. An
unexpected difficulty is that the value of the relative e1 need not vanish even if both
forms are metabolic. To make the invariant well defined on the Witt classes, we study
the subgroup H generated by the values of e1 on the pairs of metabolic forms and define
the codomain for e1 by factoring out this subgroup from some obvious subquotient of K1.
This proves to be a correct definition of the small k1 for categories; it agrees with Milnor’s
usual k1 in the case of fields.

Next we provide applications of this new invariant by computing it for some pairs of
forms over the projective line and for some forms over conics.

1. Introduction. To obtain a proper generalization of the classical no-
tion of the discriminant of a quadratic form

e1 : W (F )→ k1(F ),

e1(〈a1, . . . , an〉) = (−1)n(n−1)/2a1 · · · · · an mod F ∗2

to symmetric bilinear forms over schemes, the framework of exact categories
with duality seems to be the best one, as it involves K-theory.
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Section 2 contains a short review of the required results from K-theory;
the details are partially published [11]–[13] or will be published subsequently
[14]. The group K1(M) = π1(ΩBQ(M), 0) of an exact category M is gen-
erated by loops corresponding to short double exact sequences, and the
presentation of K1(M) by these generators and relations, due to Nenashev,
is known (see Section 2.5 below). In general a double exact sequence of ar-
bitrary length defines a loop in ΩBQ(M) (or in another K-theory space
of M). As K-theory spaces we use the G-construction G(M) and its self-
dual version, denoted T (M) here and in [14, App. B], or W (M) in [13].
We are interested in exact categories with a duality functor D (Section 2.1
below); in that case an action of the two-element group {1, D} on K1(M)
arises.

The main example of an exact category with a duality functor is the cate-
gory of locally free sheaves of OX -modules of finite rank on a scheme X with
the duality functor D : V 7→ V ˆ⊗L (L a line bundle) with either the canon-
ical isomorphism of V with its double dual (for symmetric L-valued forms)
or the negative of this isomorphism (for skew symmetric L-valued forms).

For each of the Witt groups W+(X,L) = W (X,L), W−(X,L) of a
scheme X of forms with values in a line bundle L there is a natural homo-
morphism

e0 : W±(X,L)→ E0(X,L)

where E0(X,L) is a certain subfactor of K0(X), a member of the family

En(X,L) = En+(X,L), En−(X,L)

of subfactors of Kn(X), namely the Tate cohomology groups of {1, D} with
values in the group K1(X) (see Definition 3.2 below). The homomorphism
e0 (depending on L) is induced by the forgetful functor and reduces to the
usual dimension index e0 in the classical case of X = Spec(F ), F a field of
characteristic different from 2. The pull-back

W2(X,L) //

��

W (X,L)

e0

��
W (X,L) e0 // E0(X,L)

i.e. the set of pairs ([(V, α)], [(W,β)]) of Witt classes with equal e0 values,
may be parametrized by a set W(X,L) of pairs of exact sequences{

0← V
b←− B a←− A← 0, α

0←W ←−
b′
B ←−

a′
A← 0, β

with the same objects A,B (we call such a pair a common resolution of
V,W ) and (skew-)self-dual isomorphisms α : V → V ˆ⊗L, β : W →Wˆ⊗L
representing given Witt classes:
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0← V ← B ← A← 0, α
0←W ← B ← A← 0, β

7→ ([(V, α)], [(W,β)])

(Corollary 3.2). In this case we define the relative discriminant ε1(α÷ β) ∈
E1(X,L) (Definition 3.4) by the formula

ε1(α÷ β) = class of d.e.s. DA
Da

�−−−−�−−−−
Da′

DB
Db◦α◦b←−−−−−−←−−−−−−
Db′◦β◦b′

B
a←−�←−�
a′
A

(we say that the double exact sequence is obtained by gluing the common
resolution with its L-dual along α and β). This relative discriminant map
ε1 :W(X,L)→ E1(X,L) is additive:

ε1((α⊕ α′)÷ (β ⊕ β′)) = ε1(α÷ β) + ε1(α′ ÷ β′),
it vanishes on pairs of equal forms:

ε1(α÷ α) = 0,
and its value does not depend on the choice of a common resolution (The-
orem 3.3), but need not be constant on Witt equivalence classes. In fact,
there exist pairs of hyperbolic forms with the same e0 values and nontrivial
relative discriminant (Example 3.1).

Let H(X,L) be the subgroup of E1(X,L) consisting of the relative dis-
criminants of pairs of hyperbolic forms with equal e0 values. Consider the set
of common resolutions of pairs of hyperbolic forms, and the natural map of
this set into E0

−(X,L). The relative discriminant map is constant on each fi-
bre of this map (Prop. 3.5): if a pair of hyperbolic forms with equal e0 values
defines the trivial element of the group E0

−(X,L), then the relative discrim-
inant of the pair is trivial. It follows that E0

−(X,L) maps onto H(X,L). In
particular H(X,L) is trivial provided E0

−(X,L) is trivial.
Note that even in the case of a projective line over a field the group

H(X,OX) is nontrivial (Remark 3.1).
We define (Definition 3.5) the first k-group of X (with respect to the

dualization D : V 7→ HomOX (V,L)) as

k1(X,L) = E1(X,L)/H(X,L)

and the discriminant map (depending on L)

e1 : I(X,L)→ k1(X,L), e1(ϕ) = ε1(ϕ÷ 0) mod H(X,L),

where I(X,L) = Ker e0 (Definition 3.6). In the classical case of X =
Spec(F ), F a field of characteristic different from 2, there is no nontriv-
ial line bundle L, I(X) is the fundamental ideal of the Witt ring W (X),
E0
−(X) = 0, k1(X) = E1(X) = Ḟ /Ḟ 2 and

e1(〈a1, . . . , a2n〉) = ε1(〈a1, . . . , a2n〉 ÷ 0) = (−1)2n(2n−1)/2a1 · · · an
is the usual discriminant of a quadratic form (Example 3.2).
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The discriminant map is clearly functorial: given a morphism f : X → Y
of schemes, the functor f∗ induces homomorphisms of all groups involved,
and

e1 ◦ f∗ = f∗ ◦ e1.

In the particular case of a variety X over a field F such that K1(X) =
K1(F )⊗Z K0(X) the E1-groups of X are

E1(X,L) = k1(F )⊗Z E
0(X,L)⊕ µ2(F )⊗Z E

0
−(X,L),

E1
−(X,L) = k1(F )⊗Z E

0
−(X,L)⊕ µ2(F )⊗Z E

0(X,L),

where µ2(F ) is the group of square roots of 1 in F .
If X is a variety over F (so all Witt groups of X are W (F )-modules),

the map e1 satisfies
I(F )I(X,L) ⊂ Ker e1

(Theorem 3.9). The framework of exact categories with duality provides
uniform notation for the cases of symmetric and skew-symmetric forms, and
different line bundles L.

There are some immediate applications of the relative discriminant to
classes of metabolic spaces in a Grothendieck group. The discriminant map
is applied to the Witt group of symmetric bilinear forms over an anisotropic
conic with values in a line bundle.

The paper depends on bisimplicial computations done by Sasha Nena-
shev.

2. Witt groups and K-theory

2.1. Dualization and forms. Exact categories and their higher al-
gebraic K-theory were defined in [18] by D. Quillen as follows. An exact
category M is an additive category M (with the isomorphism class of each
object forming a set), embedded as a full subcategory of an abelian cate-
gory A, and closed under extensions in A. Quillen also gave an axiomatic
definition of an exact category:

Definition 2.1. An exact category M = (M,E) is an additive category
M (with the isomorphism class of each object forming a set), with a family
E of exact (in A) sequences

(2.1) 0→M ′
α→M

β→M ′′ → 0

(called admissible exact sequences) satisfying the following conditions:

(a) all split exact sequences of objects of M are in E; if (2.1) is in E,
then α is a kernel of β in M and β is a cokernel of α in M;
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(b) a composition of admissible epimorphisms (monomorphisms) is an
admissible epimorphism (monomorphism);

A // α //
  

β◦α   @
@

@
@

B
��
β

��

A B
αoooo

C C

β

OOOO

α◦β

____? ?
?

?

a (co)base change of an admissible epimorphism (monomorphism) is
an admissible epimorphism (monomorphism);

C // α
′
//___ C qA B A×B C

α′ // //___

ϕ′

��

C

ϕ

��
A

ϕ

OO

// α // B

ϕ′

OO

A
α // // B

(c) if M →M ′′ possesses a kernel in M and the composition N →M →
M ′′ is an admissible epimorphism, then M → M ′′ is an admissible
epimorphism; the dual statement for monomorphisms holds true.

Kerα //M
α // //___ M ′′ Cokerα Moo

��

M ′ooαoo_ _ _
}}

}}{{{{{{{

N

OO == =={{{{{{{{
N

For example, given an admissible exact sequence (2.1) and a map N
ϕ→

M ′′ the sequence

0→M ′
α−→M ×M ′′ N

p2−→ N → 0

is an admissible exact sequence.
It is known now that condition (c) is a consequence of (a)–(b) (Keller,

[5, App. A]).
We will use � and � to denote admissible monomorphisms and admis-

sible epimorphisms respectively.
An admissible subobject is a kernel of an admissible epimorphism.
Recall that an exact functor between exact categories is an additive func-

tor which takes admissible exact sequences to admissible exact sequences.

2.2. Q-construction. Given an exact category (M,A,E), the category
QM has the same objects as M, and a morphism from M to M ′ in QM is
a class of diagrams

M
β
� N

α
� M ′

up to an isomorphism which induces the identity on M and M ′.
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The composition of morphisms M
β
� N

α
� M ′ and M ′

δ
� N ′

γ
� M ′′ in

QM is defined by fiber product:

M
β◦p1

�−−− N ×M ′ N ′
γ◦p2

�−−−→M ′.

It is clear that composition is well-defined and associative. If we assume

that the isomorphism classes of diagrams M
β
� N

α
� M ′ form a set for each

M,M ′, then QM is a well defined category.
Each admissible monomorphism N

α
� M gives rise to a morphism α! :

N →M in QM represented by the diagram

α! : N
1N
� N

α
� M,

and morphisms of this type are called injective.

Dually, each admissible epimorphism M
β
� N defines a morphism β! :

M → N in QM represented by the diagram

β! : M
β
� N

1N
� N,

and such morphisms are called surjective.

Note that (M
β
� N

α
� M ′) = α! ◦ β!. There is a dual decomposition:

given a map M
β
� N

α
� M ′ the fiber product

N // α //

β
����

M ′

δ
����

M // γ //M×NM ′

defines a decomposition

M
β
� N

α
� M ′ = δ! ◦ γ!.

Conversely, a diagram M
γ

� N ′
δ
� M ′ by means of a fiber sum M qN ′ M ′

defines a morphism M
β
� N

α
� M ′ = α!◦β! with the decomposition. In fact,

this is an alternative way to define morphisms in QM. It may be convenient
to regard a morphism in the category QM as a bicartesian square

N

2

// α //

β
����

M ′

δ

����
M // γ // N ′

and agree that usually we omit one corner of the square for short. The 2

sign indicates that the square is bicartesian.
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Proposition 2.1.

(a) If α and α′ are composable monomorphisms in M, then (α ◦ α′)! =
α! ◦ α′! in QM.

(b) If β and β′ are composable epimorphisms in M, then (β′◦β)! = β!◦β′!
in QM.

(c) (1M )! = (1M )! = 1M .
(d) For a bicartesian square

N // α //

2β
����

M ′

δ

����
M //

γ
// N ′

with admissible arrows in M we have α! ◦ β! = δ! ◦ γ! in QM.

2.2.1. The universal property of the Q-construction. Suppose we are
given a category C and for each object M in M an object hM of C, and

for each N
α
� M ′ (resp. M

β
� N) in M a map α! : hN → hM ′ (resp.

β! : hM → hN) such that the properties (a)–(d) of Proposition 2.1 hold.
Then it is clear that this data induces a unique functor F : QM → C,
F (M) = hM , compatible with the operations α 7→ α!, β 7→ β!.

This universal property of the Q-construction shows that an exact func-
tor F : M → M′ between exact categories induces a functor QM → QM′,
M 7→ FM , α! 7→ (Fα)!, β! 7→ (Fβ)!. Also for the dual category Mo of an
exact category there is an isomorphism of categories

QMo = QM

such that the injective arrows in the former correspond to surjective arrows
in the latter and conversely.

2.2.2. Isomorphisms. For an isomorphism N
α
� M the maps α! : N →

M and α−1! : N →M are equal, since there is a commutative diagram

N N
1Noooo // α //

α

��

M

N M
α−1
oooo // 1M //M

Conversely, a map in QM which is both injective and surjective is an iso-
morphism and it is of the form α! = α−1! for a unique isomorphism α in M.

2.2.3. Zero maps. Let 0M : 0 � M and 0M : M � 0 denote unique
maps in the additive category M. The set MorQM(0,M) is in 1-1 correspon-
dence with the set of admissible subobjects of M (i.e. admissible monomor-
phisms N

α
� M up to automorphism of N over M) since each such mor-
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phism by the definition is given by the diagram

0Mα : 0
0N
� N

α
� M.

Thus the set MorQM(0,M) is partially ordered, with the smallest element
0M! and the greatest element 0!

M . There are decompositions 0M! = α! ◦ 0N!
and 0Mα = α! ◦ 0!

N in view of commutativity of

0×NN = 0 // //

2

N // α //

����

M N×NN = N

2

N // α //M

0 // //

����

N

α!

<<xxxxxxxxx
N

����

N

α!

==||||||||

0
0N!

88qqqqqqqqqqqq
0

0!
N

88qqqqqqqqqqqqq

Dually, given an admissible epimorphism M
β
� M ′′ with kernel N

α
� M ,

there are decompositions 0!
M = β! ◦ 0!

M ′′ and 0Mα = β! ◦ 0M
′′

! in view of
commutativity of

N = Kerβ = 0×M ′′ M // α //

����

M

β
����

0 // //M ′′

Proposition 2.2. An admissible exact sequence (2.1) produces the fol-
lowing commutative diagram in QM:

0

M ′

0

M

M ′′

0

0!
M′

##HHHHHHHHHHHHHHHHH

0Mα

��

0M
′′

!

{{vvvvvvvvvvvvvvvvv

0M
′

!

JJ�����������������

0M!

[[77777777777777

0!
M′′

TT*****************

0!
M

CC��������������

β!

**UUUUUUUUUUUUUU
α!

ttiiiiiiiiiiiiii

Proof. We have the decompositions 0M! = α! ◦ 0M
′

! and 0Mα = α! ◦ 0!
M ′ .

Quillen [18, I.2, Theorem 1 p. 18] proved
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Theorem 2.3. The fundamental group π1(B(QM), 0) is canonically iso-
morphic to the Grothendieck group K0(M).

It is obvious from the proof that the class [M ] ∈ K0(M) corresponds
under this isomorphism to the loop |0!

M | − |0M! | formed by the path |0!
M |

corresponding to the 1-simplex 0!
M : 0→M and |0M! | corresponding to the

1-simplex 0M! : 0→M .
This theorem motivates the following definition:

Definition 2.2. The higher algebraic K-theory groups of an exact cate-
gory M are the homotopy groups of the classifying space of the categoryQM:

Ki(M) = πi+1(B(QM), 0).

A K-theory space is a topological space X(M) homotopy equivalent to
ΩB(QM), i.e. such that

Ki(M) = πi(X(M), ∗)
(see e.g. Nenashev [13]).

2.3. Duality

Definition 2.3. A duality or a structure of a Hermitian category on M
(cf. [19, p. 241]) is a pair (D, δ), where the dualization functor D : M→M
is an exact contravariant functor and δ : 1M → D2 is a natural isomorphism
such that (Dδ) ◦ δD = 1D, i.e. the diagram

DM

δDM
??������ 1 //________

D3M
D(δM )

��?????

DM

commutes for every object M of M.

Note that by definition the dual of an admissible exact sequence is an
admissible exact sequence.

We focus our attention on the following three examples:

1. Let M be the category of finite-dimensional vector spaces over some
fixed field F , DV = V ∗ = HomF (V, F ),

D(f)(φ) = φ ◦ f
and δV : V → D2V = V ∗∗ the canonical isomorphism of V and its double
dual:

δV (v)(φ) = φ(v)

for φ : V → F . The condition (Dδ) ◦ δD = 1D means that the map defined
by

ψ 7→ δDV (ψ), δDV (ψ)(φ) = φ(ψ),
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composed with D(δV ),
D(δV )(χ) = χ ◦ δV ,

produces the map ψ 7→ (v 7→ ψ(v)), i.e. the map ψ 7→ ψ. If f : V ×V → F is
a symmetric bilinear form, then it is customary to factor out the kernel and
deal exclusively with nonsingular symmetric bilinear forms. For such a form
there is an isomorphism—the adjoint linear map φ : V → DV—defined by
φ(v)(w) = f(v, w). The symmetry f(v, w) = f(w, v) of f is equivalent to
the condition (Dφ) ◦ δV = φ.

2. Let M be the category of vector bundles on a scheme X. We set

DV = Vˆ = HomOX (V,OX),
Dϕ = ϕˆ = − ◦ ϕ :Wˆ→ Vˆ for ϕ : V → W

and δV : V → D2V = Vˆˆ is the canonical isomorphism of a V with its
double dual. In this case we define a symmetric bilinear form as its adjoint,
an isomorphism ϕ : V → Vˆ such that ϕˆ ◦ δV = Dϕ ◦ δV = ϕ. Note that on
the fibers a family of usual symmetric bilinear forms arises, parametrized
by points of X.

3. Let M be the category of vector bundles on a scheme X, and L a line
bundle on X. We set

DV = Vˆ⊗OX L = HomOX (V,L), Dϕ = ϕˆ⊗OX 1L,

and let
δV : V → D2V = (Vˆ⊗OX L)ˆ⊗OX L

be a composition of canonical isomorphisms (note that D2V ∼= Vˆˆ ⊗
(Lˆ ⊗OX L) ∼= Vˆˆ). An isomorphism ϕ : V → Vˆ ⊗OX L is an L-valued
symmetric bilinear form if (ϕˆ⊗ 1L) ◦ δV = Dϕ ◦ δV = ϕ.

Changing δV to the negative of the canonical isomorphism

V ∼→ (Vˆ⊗OX L)ˆ⊗OX L
gives a formalism for L-valued skew-symmetric bilinear forms.

One may easily generalize concepts known for example 1 to the other
two.

Definition 2.4. For a category M with a duality (D, δ) a morphism
ϕ : V → DV is a self-dual morphism if Dϕ ◦ δV = ϕ, or the diagram

V
ϕ //

δV
��

DV

1
��

D2V
Dϕ // DV

commutes. A symmetric bilinear form (or a symmetric bilinear space) is a
self-dual isomorphism ϕ : V → DV .
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Compare [2, Def. 1.1.2] and the following remark.

Example 2.1. (0, 0) is a symmetric bilinear form for arbitrary (D, δ).

There are obvious notions of isomorphism of symmetric bilinear forms
and of direct sum of symmetric bilinear forms. In all three examples there
is a well defined bi-exact tensor product of symmetric bilinear forms.

Definition 2.5. Let ϕ : V → DV be a symmetric bilinear form. For
an admissible monomorphism α : U � V an orthogonal complement U⊥ of
U

α
� V is a kernel of the composition V

ϕ−→ DV
Dα−−→DU , so there is an exact

sequence

0→ U⊥ � V
(Dα)◦ϕ−−−−−→ DU.

The kernel U⊥ exists, since α is admissible.
A direct generalization of the above notions to self-dual morphisms which

are not isomorphisms is impossible.

Example 2.2. Let M be a full subcategory of the category of finitely
generated abelian groups, having free abelian groups as objects, and exact
sequences of free abelian groups as admissible exact sequences, with the
dualization functor

DA = HomZ(A,Z).

Multiplication by 2 is a self-dual map, and even a bimorphism (a monomor-
phism and an epimorphism) in M. It is a symmetric bilinear map which
is not a form. It has a nontrivial cokernel Z/2Z in the ambient abelian
category, but the functor D is not defined on Z/2Z.

Example 2.3. Let ϕ : V → DV be a self-dual morphism. The morphism
ϕ has a kernel in the ambient abelian category, but it need not have a kernel
in the category M; even if it does have a kernel in M, it may differ from
the kernel in the ambient abelian category (e.g. consider the opposite to the
category M of the last example, and the same morphism), unless the kernel
in the ambient abelian category is an object of M.

To avoid the situation described in the last example, we define admissible
symmetric bilinear maps as follows:

Definition 2.6. An admissible symmetric bilinear map (briefly: an
a.s.b.m.) ϕ : V → DV is a self-dual morphism which has a decomposi-
tion ϕ = µ ◦ η with µ an admissible monomorphism and η an admissible
epimorphism.

Remark 2.1. This is a terminological novelty: a symmetric bilinear form
is nonsingular by definition; a symmetric bilinear map may be singular.
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An a.s.b.m. ϕ has both a kernel and a cokernel, and Cokerϕ ∼= DKerϕ.
An a.s.b.m. is a symmetric bilinear form iff Kerϕ = 0. If ϕ : V → DV is an
a.s.b.m. and ϕ = µ ◦ η, then there is a commutative diagram

V
η // //

δV ∼
��

W

ψ

��

// µ // DV

D2V
Dµ // // DW //Dη // DV

with an isomorphism ψ which must be self-dual. Thus every a.s.b.m. is of
the form

ϕ = Dη ◦ ψ ◦ η
for a symmetric bilinear form ψ and an admissible epimorphism η.

If ϕ : V → DV is an a.s.b.m. with a decomposition as above, α : U → V
is a morphism, Kerϕ = (R � V ) factors through α,

(R � V ) = (R
β−→ U

α−→ V )

and β : R→ U has a cokernel in M, then β is an admissible monomorphism.
If, in addition, α : U → V is an admissible monomorphism and Cokerβ =
U � S, then S → W is an admissible monomorphism. Thus it has an
orthogonal complement S⊥ in the symmetric bilinear space (W,ψ). Then
V ×W S⊥ is an object of M, V ×W S⊥ → S⊥ is an admissible epimorphism,
and V ×W S⊥ → V is an admissible monomorphism. Moreover, V ×W S⊥ �
V is a kernel of Dα◦ϕ and R→ V ×W S⊥ is an admissible monomorphism.

Definition 2.7. Let ϕ : V → DV be an a.s.b.m. If α : U � V is an
admissible subobject such that Kerϕ factors through α with cokernel in M,
then the orthogonal complement U⊥ � V of α : U � V is the kernel of
Dα ◦ ϕ,

(U⊥ � V ) = Ker(Dα ◦ ϕ).

An orthogonal complement of an admissible subobject is itself an admis-
sible subobject, since the sequence

U⊥ � V � DS

is admissible. Moreover, Kerϕ factors through U⊥ � V with cokernel in M.
If ϕ : V → DV is a symmetric bilinear form and κ : V � V/U is a co-

kernel of an admissible subobject j : U � V , then ϕ induces an isomorphism
U⊥ ∼= D(V/U):

0 // D(V/U) Dκ // DV
Di // DU // 0

0 // U⊥
j //

ϕ

OO�
�
�

V
Di◦ϕ //

ϕ

OO

DU // 0
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Lemma 2.4. If i : U → V is an admissible subobject such that Kerϕ
factors through U with cokernel in M, then U⊥⊥ = U .

Proof. Dualization of the exact sequence

0→ U⊥
j−→ V

Di◦ϕ−−−→ DU → 0

yields an exact sequence

0→ D2U
Dϕ◦D2i−−−−−→ DV

Dj−−→ D(U⊥)→ 0.

Since Kerϕ factors through U , it follows from the next lemma that the
sequences

0→ D2U
D2i−−→ D2V

Dj◦Dϕ−−−−→ D(U⊥),

0→ U
D2i◦δU−−−−→ D2V

Dj◦Dϕ−−−−→ D(U⊥),

0→ U
δV ◦i−−−→ D2V

Dj◦Dϕ−−−−→ D(U⊥),

0→ U
i−→ V

Dj◦ϕ−−−→ D(U⊥)

are exact in the ambient abelian category. Hence (U i−→ V ) = Ker(Dj ◦ ϕ),
i.e. U = U⊥⊥.

Lemma 2.5. Assume there are morphisms

α : A→ B, β : B → C, γ : C → D

in an abelian category. If Kerβ factors through α, then the exactness of

0→ A
β◦α−−→ C

γ−→ D

implies the exactness of

0→ A
α−→ B

γ◦β−−→ D.

The subobjects U,U⊥ of V may have various mutual positions; two par-
ticular cases are important.

Definition 2.8. Let ϕ : V → DV be an a.s.b.m., and let i : U → V be
a morphism. Then i : U → V is nonsingular if Di ◦ ϕ ◦ i : U → DU is an
isomorphism.

Note that every nonsingular i : U → V is a direct summand with com-
plementary summand U⊥ → V .

Definition 2.9. Let ϕ : V → DV be an a.s.b.m., and let i : U → V
be an admissible monomorphism such that Kerϕ factors through i. Then
i : U → V is totally isotropic (or sublagrangian) if it factors through j :
U⊥ → V (i.e. there exists an α′ : U → U⊥ such that i = j ◦ α′) and the
cokernel U⊥/U is in M.
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Of course, for an a.s.b.m. ϕ : V → DV all nontrivial subobjects are
nonsingular only if it is a symmetric bilinear form. Nevertheless, there are
symmetric forms with singular nontrivial subobjects. If i : U → V is nonsin-
gular, then Di ◦ ϕ ◦ i : U → DU is an isomorphism, the induced symmetric
bilinear form ϕ|U .

If ϕ : V → DV is a symmetric bilinear form and i : U → V is totally
isotropic, then Di◦ϕ induces an isomorphism V/U⊥ → DU and a morphism
V/U → DU . If U � V is totally isotropic, then U → U⊥ is an admissible
monomorphism.

Definition 2.10. Let ϕ : V → DV be an a.s.b.m. An admissible
monomorphism α : U → V is a Lagrangian (or a metabolizer) if it is the ker-
nel of Dα◦ϕ (Dα◦ϕ◦α = 0 and given β : T → V such that Dα◦ϕ◦β = 0,
there exists a unique β : T → U such that α ◦ β = β), i.e. the diagram

U // α //

δU
��

V
Dα◦ϕ //

ϕ

��

DU

1
��

D2U
Dϕ◦D2α // DV

Dα // // DU

with exact rows commutes. An a.s.b.m. ϕ : V → DV is metabolic if it
possesses a Lagrangian.

If (V, ϕ) is a metabolic space (“space” means that ϕ is an isomorphism),
then in addition the map Dα ◦ ϕ is an epimorphism and Dϕ ◦ D2α is a
monomorphism. In such a case Di ◦ϕ induces an isomorphism V/U → DU .

Example 2.4. A hyperbolic form[
0 1DV
δV 0

]
: V ⊕DV → DV ⊕D2V ∼= V ⊕DV

is a metabolic space with the Lagrangian V
[ 1
0 ]
−−→ V ⊕DV .

Example 2.5. For an arbitrary symmetric bilinear form (V, ϕ), the form[
ϕ 0
0 −ϕ

]
: V ⊕ V → DV ⊕DV

has the Lagrangian V
[ 1
1 ]
−−→ V ⊕ V , so it is metabolic.

Example 2.6. For an arbitrary self-dual map α : U → DU (i.e. with
Dα ◦ δU = α) the split metabolic space

H(U,α) =

(
U ⊕DU,

[
α 1DU
δU 0

])
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is metabolic, since the subobject[
0

1DU

]
: DU → U ⊕DU

is a Lagrangian:

Ker

(
D

[
0

1DU

][
α 1DU
δU 0

])
= Ker

(
[0, 1D2U ]

[
α 1DU
δU 0

])

= Ker [δU , 0] =

[
0

1DU

]
.

Example 2.7. For a split metabolic spaceH(U,α) =
(
U⊕DU,

[ α 1DU
δU 0

])
and an arbitrary map γ : U → DU , there is an isomorphism H(U,α) ∼=
H(U,α+ γ +Dγ ◦ δU ). The isomorphism is given by[

1U 0
γ 1DU

]
: U ⊕DU → U ⊕DU

since(
D

[
1U 0
γ 1DU

])[
α 1DU
δU 0

][
1U 0
γ 1DU

]

=

[
1DU Dγ

0 1D2U

][
α 1DU
δU 0

][
1U 0
γ 1DU

]

=

[
1DU Dγ

0 1D2U

][
α+ γ 1DU
δU 0

]
=

[
α+ γ +Dγ ◦ δU 1DU

δU 0

]
.

It follows that a split metabolic space need not be hyperbolic; it is so for
symmetric bilinear forms over a field of characteristic 2.

Example 2.8. If

U
i

�−→ V
j
−� W

is an admissible exact sequence, then
[
i 0
0 Dj

]
: U ⊕ DW → V ⊕ DV is a

Lagrangian for the hyperbolic space
(
V ⊕DV,

[
0 1
δV 0

])
. In fact,

D

[
i 0
0 Dj

]
◦

[
0 1
δV 0

]
=

[
Di 0
0 D2j

]
◦

[
0 1
δV 0

]

=

[
0 Di

D2j ◦ δV 0

]
=

[
0 Di

δW ◦ j 0

]



248 M. Szyjewski

and the sequence

U ⊕DW

h
i 0
0 Dj

i
�−−−−−→ V ⊕DV

h
0 Di

δW ◦j 0

i
−−−−−−−−−� DU ⊕D2W

is exact, since if for any
[
f
g

]
: K → V ⊕DV the equality[

0 Di

δW ◦ j 0

][
f

g

]
=

[
Di ◦ g
δW ◦ j ◦ f

]
=

[
0
0

]
holds, then g factors through KerDi, g = Dj◦g. Therefore f factors through
Ker(δW ◦ j) = Ker j, f = i ◦ f̄ , so[

f

g

]
=

[
i 0
0 Dj

][
f̄

g

]
.

2.4. Witt groups

Proposition 2.6. Let ϕ : V → DV be an a.s.b.m. If i : U � V is
totally isotropic and

(U i−→ V ) = (U i−→ U⊥
j−→ V ),

and if κ : U⊥ → U⊥/U is the natural map, then ϕ induces a unique sym-
metric bilinear form ϕ̃ : U⊥/U → D(U⊥/U) such that

Dκ ◦ ϕ̃ ◦ κ = Dj ◦ ϕ ◦ j.

Proof. By assumption there is an exact sequence U⊥
j

�−→ V
(Di)◦ϕ−−−−→ DU.

Hence

0 = D(Di ◦ ϕ ◦ j) = Dj ◦Dϕ ◦D2i,

0 = 0 ◦ δU = Dj ◦Dϕ ◦D2i ◦ δU = Dj ◦Dϕ ◦ δV ◦ i = Dj ◦ ϕ ◦ i,
and i factors through Ker(Dj ◦ ϕ). Moreover

0 = Dj ◦ ϕ ◦ i = Dj ◦ ϕ ◦ j ◦ i,
so i factors through Ker(Dj◦ϕ◦j) and there is an induced map ϕ : U⊥/U →
D(U⊥) such that

ϕ ◦ κ = Dj ◦ ϕ ◦ j.
The commutative diagram

U // i //
��

i
��

V

1

��

Di◦ϕ // DU

U⊥ //
j //

κ
����

V
Dj◦ϕ // // D(U⊥)

Di

OOOO

U⊥/U

ϕ

55llllllllllllllll
D(U⊥/U)

OO
Dκ

OO
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has exact columns, and the induced map ϕ : U⊥/U → D(U⊥) has the
property

Di ◦ ϕ ◦ κ = Di ◦Dj ◦ ϕ ◦ j = D(j ◦ i) ◦ ϕ ◦ j = Di ◦ ϕ ◦ j = 0,

which yields
Di ◦ ϕ = 0,

since κ is an epimorphism. It follows that ϕ factors through Dκ : D(U⊥/U)
→ D(U⊥); let ϕ̃ : U⊥/U → D(U⊥/U) be such that ϕ = Dκ ◦ ϕ̃. This
induced map ϕ̃ is the unique map which has the property that

Dκ ◦ ϕ̃ ◦ κ = Dj ◦ ϕ ◦ j.
since Dκ is a monomorphism and κ is an epimorphism. It follows that ϕ̃ is
symmetric, since Dϕ̃ ◦ δU⊥/U has the same property:

D(Dκ ◦ ϕ̃ ◦ κ) ◦ δU⊥ = D(Dj ◦ ϕ ◦ j) ◦ δU⊥ ,
Dκ ◦Dϕ̃ ◦D2κ ◦ δU⊥ = Dj ◦Dϕ ◦D2j ◦ δU⊥ ,
Dκ ◦Dϕ̃ ◦ δU⊥/U ◦ κ = Dj ◦Dϕ ◦ δV ◦ j,

Dκ ◦ (Dϕ̃ ◦ δU⊥/U ) ◦ κ = Dj ◦ ϕ ◦ j,
Dϕ̃ ◦ δU⊥/U = ϕ̃.

It is easy to check that ϕ̃ is an isomorphism.

In the above case (V, ϕ) and (U⊥/U, ϕ̃) are said to be directly Witt equiv-
alent.

Example 2.9. A metabolic form is directly Witt equivalent to 0 = (0, 0).

Example 2.10. Let ϕ : V →DV be an a.s.b.m. with a kernel k : R � V .
Then R⊥=V :

δV (R⊥) = δV (Ker(Dk ◦ ϕ)) = δV (Ker(Dk ◦Dϕ ◦ δV ))

= Ker(Dk ◦Dϕ) = Ker(D(ϕ ◦ k)) = KerD(R 0→ DV )

= Ker(D2V
0→ DR) = D2V

so R⊥ = V and (V, ϕ) is directly Witt equivalent to (V/R, ϕ̃).

In general Witt equivalence is the transitive completion of direct Witt
equivalence.

Definition 2.11. Two symmetric bilinear forms ϕ : V → DV and
ψ : U → DU are Witt equivalent, (V, ϕ) ≈ (U,ψ), if there exist metabolic
forms χ1 : M1 → DM1 and χ2 : M2 → DM2 such that

(V, ϕ)⊕ (M1, χ1) ∼= (U,ψ)⊕ (M2, χ2).

Remark 2.2. In the classical algebraic theory of quadratic forms, (V, ϕ)
∼= (W,ψ) or ϕ ∼= ψ denotes isomorphism, (V, ϕ) = (W,ψ) or ϕ = ψ denotes
Witt equivalence, and ϕ ≈ a signifies that ϕ represents a. There is no notion
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of representing elements in the present categorical context, so we may reserve
= for the identity relation and ≈ for Witt equivalence.

Proposition 2.7. Two a.s.b.m. ϕ : V → DV and ψ : U → DU are
Witt equivalent, (V, ϕ) ≈ (U,ψ), iff the space (V ⊕ U,ϕ ⊕ (−ψ)) is Witt
equivalent to 0.

Proof. It is obvious that if for some metabolic (W,µ) the form (V⊕U⊕W,
ϕ⊕ (−ψ)⊕ µ) is metabolic, then

(V, ϕ)⊕ ((U,ψ)⊕ (U,−ψ)⊕ (W,µ)) ∼= (U,ψ)⊕ (V ⊕ U ⊕W,ϕ⊕ (−ψ)⊕ µ)

so (V, ϕ) and (U,ψ) are Witt equivalent.
Conversely, if (V, ϕ) ≈ (U,ψ) and (V, ϕ)⊕ (W,µ) ∼= (U,ψ)⊕ (W ′, µ′) for

some metabolic (W,µ), (W ′, µ′), then the graph of this isomorphism is a
Lagrangian in

(V, ϕ)⊕ (W,µ)⊕ (U,−ψ)⊕ (W ′,−µ′),
so (V ⊕ U,ϕ⊕ (−ψ)) is Witt equivalent to 0.

Even for projective modules over a ring, Witt equivalence of spaces of
equal rank is weaker than isomorphism.

Example 2.11. For X = SpecZ, the well known lattice Γ8 generated by
all ei+ej , and 1

2

∑8
i=1 ei in the Euclidean space R8 with the usual scalar prod-

uct defines a rank 8 free abelian group together with a self-dual isomorphism
β : Γ8 → Hom(Γ8,Z) which is not isomorphic to 8 · 〈1〉 = 〈1, 1, 1, 1, 1, 1, 1, 1〉
since the integer β(u)(u) is even for arbitrary u ∈ Γ8 (see [10, Chapt. 2]).
Nevertheless, Γ8 and 8 · 〈1〉 are Witt equivalent, since (Theorem 4.3 of [10,
Chapt. 2]) the space Γ8 ⊕ 8 · 〈−1〉 is hyperbolic.

Example 2.12. For X = SpecR[x, y] it is known that W (R) →
W (R[x, y]) is an isomorphism (the Karoubi theorem). Parimala [15] pro-
duced a sequence of invertible symmetric matrices

Sn =


4 + y2n(1 + x2) xyn(1 + y2n) 0 yn(1 + x2y2n)
xyn(1 + y2n) 1 + x2y4n −yn(1 + x2y2n) 0

0 −yn(1 + x2y2n) 4 + y2n(1 + x2) xyn(1 + y2n)
yn(1 + x2y2n) 0 xyn(1 + y2n) 1 + x2y4n


such that over R[x, y]:

• S0 is congruent to the identity matrix,
• if m 6= n, then Sm is not congruent to Sn,
• for n > 0 the bilinear space Pn=(R[x, y]4, Sn) is not extended from R,
• for n > 0 the bilinear space Pn = (R[x, y]4, Sn) is indecomposable (so

it has no orthogonal base).
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Thus for n > 0 the bilinear space Pn is not isomorphic to any symmetric
bilinear space of dimension four extended from R. On the other hand, over
the field R(x, y) the space Pn is isomorphic to a totally positive space〈

1 + x2y4n,
4 + 2x2y4n + y2n + y6nx4

1+x2y4n
,

4 + 4x2y4n

4+2x2y4n+y2n+y6nx4
,

16
4+4x2y4n

〉
and the map W (R) ∼= W (R[x, y]) → W (R(x, y)) is an injection, so over
R[x, y] this form is Witt equivalent to 4 · 〈1〉.

The symmetric bilinear space Pn extends from SpecR[x, y] = A2
R to the

whole projective plane P2
R (Theorem 4.1 of [7]).

Note that a space Witt equivalent to 0 need not be metabolic, even in the
exact category of finitely generated projective modules over a commutative
ring.

It is easy to see that Witt equivalence is transitive.

Proposition 2.8. Let ϕ : V → DV be an a.s.b.m. If i : U → V is
totally isotropic, has a decomposition

(U i−→ V ) = (U i−→ U⊥
j−→ V )

and κ : U⊥ � U⊥/U , then (V, ϕ) and (U⊥/U, ϕ̃) are Witt equivalent.

Proof. The a.s.b.m. (V, ϕ)⊕ (U⊥/U,−ϕ̃) is metabolic, since the map[
j

κ

]
: U⊥ → V ⊕ U⊥/U

coincides with its orthogonal complement: first

[Dj ◦ ϕ −Dκ ◦ ϕ̃]

[
j

κ

]
= 0,

and secondly U⊥⊥ = U , so there are exact sequences

U⊥
j

� V
Di◦ϕ
−−−−−� DU, U

i
� V

Dj◦ϕ
−−−−−� DU⊥.

If [Dj ◦ ϕ −Dκ ◦ ϕ̃]
[
f
g

]
= 0 for a map

[
f
g

]
: K → V ⊕ U⊥/U , then

Dj ◦ ϕ ◦ f −Dκ ◦ ϕ̃ ◦ g = 0,
Di ◦Dj ◦ ϕ ◦ f −Di ◦Dκ ◦ ϕ̃ ◦ g = 0,
D(j ◦ i) ◦ ϕ ◦ f −D(κ ◦ i) ◦ ϕ̃ ◦ g = 0,

Di ◦ ϕ ◦ f = 0.
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Now, f factors through (U⊥
j−→ V ) = Ker(Di ◦ ϕ), i.e. f = j ◦ f̄ and

Dj ◦ ϕ ◦ f −Dκ ◦ ϕ̃ ◦ g = 0,
Dj ◦ ϕ ◦ j ◦ f̄ −Dκ ◦ ϕ̃ ◦ g = 0,
Dκ ◦ ϕ̃ ◦ κ ◦ f̄ −Dκ ◦ ϕ̃ ◦ g = 0,

Dκ ◦ ϕ̃ ◦ (κ ◦ f̄ − g) = 0,
ϕ̃ ◦ (κ ◦ f̄ − g) = 0,

κ ◦ f̄ − g = 0,
g = κ ◦ f̄ ,

and
[
f
g

]
=
[ j◦f̄
κ◦f̄
]

=
[
j
κ

]
◦ f̄ . Thus

[
j
κ

]
: U⊥ → V ⊕ U⊥/U is the kernel

of [Dj ◦ ϕ − Dκ ◦ ϕ̃], which is an orthogonal complement of
[
j
κ

]
: U⊥ →

V ⊕ U⊥/U .

Definition 2.12. The Witt group W (M, D, δ) of a duality (D, δ) con-
sists of all Witt equivalence classes of symmetric bilinear spaces with the
operation ⊕ induced by direct sum.

In the case of vector spaces over a field F of characteristic different
from 2 every metabolic form is hyperbolic and the Witt ring of the duality
of example 1 is the usual Witt ring W (F ) of the field F . In the case of
example 2, of dualization DV = V ˆ of vector bundles, we obtain the usual
Witt ring W (X) of a scheme X, introduced by Knebusch [6]. The third
example is less known (but not new, see e.g. [3]); it yields the Witt group
W (X,L) of (Witt classes of) L-valued symmetric bilinear forms of X. Note
that the usual Witt rings of Severi–Brauer varieties are known [16], as also
are the Witt groups of L-valued symmetric bilinear forms [17].

2.5. Description of K1(M). A double short exact sequence, briefly
d.s.e.s., is a pair of admissible short exact sequences with the same objects:(

C
β
� B

α
� A

C
δ
� B

γ
� A

)
.

We will abbreviate the above notation to

(∗) C
β

�−
δ
B

α←�
γ
A

and refer to C
β
� B

α
� A as the upper short exact sequence, and to C

δ
�

B
γ

� A as the lower short exact sequence of the d.s.e.s. (∗). We use a quite
unusual convention: if the sequence is depicted vertically, with arrows going
from top to bottom, then the upper exact sequence is to the left of the
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arrow, as if the arrow were rotated like a rigid body together with its upper
and lower sides.

The d.s.e.s. (∗) defines a path in the K-theory space of the category M,
e.g. in the G-construction of M from (A,A) to (B,B) and, together with
the d.s.e.s.’s

A
1A

�−−
1A

A � 0, B
1B

�−−
1B

B � 0

a loop ` = `(α, γ;β, δ),

` :

(A,A)
(∗) // (B,B)

(0, 0)

ddHHHHHHHHH

::vvvvvvvvv

It is easy to realize an element of K1(M) = π2(B(QM), 0) produced by
a double exact sequence: each of the exact sequences in the pair produces
a complex of dimension 2 of parachute form, which appears when one glues
together three 0 vertices of the pentagonal diagram of Proposition 2.2. So
one may put one parachute inside the other and glue together equal paths

on the border. The result for the double exact sequence A
α

�−→�−→
α′

B
β
−�−�
β′

C is

topologically equivalent to the “pretzel” surface
∣∣A α

�−→�−→
α′

B
β
−�−�
β′

C
∣∣ with two

holes as in the figure:

(2.2)

•B

•
0

•
C

•
A

One obtains an element of π2(B(QM), 0) putting a baloon inside this
surface and inflating it. More formally this surface results from an octagon
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with sides oriented as the border of the diagram

(2.3) 0
0!
A //

0Bα
@@@

  @@0C!
��

A

α!
��

0
0A!oo

0B!
~~

��~~
0A!
��

C β! // B Aα′!
oo

0

0!
C

OO

0!
B~~~

>>~~

0!
C

// C

β′!
OO

0
0C!

oo

0Bα′@@

__@@
0!
A

OO

Theorem 2.9. K1(M) may be described as follows:

(a) Every element of K1(M) is represented by the loop ` = `(α, γ;β, δ)
of a d.s.e.s.

(b) K1(M) is an abelian group generated by all d.s.e.s. in M, subject to
the following relations:

(i) the class of (the loop of ) the d.s.e.s. with equal upper and lower
short exact sequences is zero;

(ii) (3× 3 lemma) for any diagram of six d.s.e.s.’s

A′′
��

i i′

��

A
b

b′
oooo

��
h h′

��

A′oo
a

a′
oo

��
g g′

��
B′′

l l′
����

B
d

d′
oooo

k k′
����

B′oo
c

c′
oo

j j′
����

C ′′ C
f

f ′
oooo C ′ooe

e′
oo

such that the diagram of the upper short exact sequences com-
mutes, and the diagram of the lower exact sequences commutes,
the alternate sums of rows and columns coincide:

`(a, a′; b, b′)− `(c, c′; d, d′) + `(e, e′; f, f ′)
= `(g, g′; j, j′)− `(h, h′; k, k′) + `(i, i′; l, l′).

Proof. (a): [11, Theorem 2.1]; (b): [12, Theorem].

Given an object A of M and α ∈ Aut(A) we put

`(α) = `(0→ A, 0→ A;A 1→ A,A
α→ A).

Remark 2.3. In fact, a pair α, α′ ∈ Aut(A) gives rise to two double
short exact sequences:

(2.4) A
α

�−
α′
A � 0
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and

(2.5) 0 � A
α←−�
α′

A

whose classes are opposite to each other in K1(M). There is a choice of
signs: we choose the class of (α′)−1α in K1(M) to be given by (2.5).

Lemma 2.10 ([12, Lemma 3.2]). Given an object A of M,

(i) the class `(α) of the automorphism α =
[

0 1
−1 0

]
∈ Aut(A ⊕ A) in

K1(M) vanishes;
(ii) the class of the d.s.e.s. of the form

A
[0,1]

�−−−−
[−1,0]

A⊕A
[

1
0

]
←−−�[

0
1

] A
vanishes in K1(M).

We define the action of the dualization functor D on K1(M) by∣∣A α
�−→�−→
α′

B
β
−�−�
β′

C
∣∣ =

∣∣DC Dβ′
�−−→�−−→
Dβ

DB
Dα′

−−−�−−−�
Dα

DA
∣∣.

2.6. Nenashev’s K-theory space T (M). It is difficult to do computa-
tions with spheroids, so we follow the idea of Nenashev: we use a bisimplicial
space, homotopy equivalent to ΩB(QM). Since it is vital to this investi-
gation, we restate here the notions and results of [13, Sect. 2.4], and an
unpublished result of Nenashev, the 3× 4 lemma.

The definition of the loop corresponding to a four-term double exact se-
quence may also be stated in terms of a self-dual K-theory space T (M) intro-
duced by A. Nenashev as a bisimplicial set, a mixture of G(M) and G(Mop):
a (p, 0)-simplex of T (M) is a p-simplex of G(M) and a (0, q)-simplex of
T (M) is a q-simplex of G(Mop). Both the embeddings G(M)→ T (M) and
G(Mop) → T (M) are homotopy equivalences. More precisely T (M) is the
result of the Nenashev mapping cone construction C(1,−1) applied to the
square

M
diag
��

MIdoo

Id
��

M×M M
diagoo

(see [13, Sect. 2.4]).
Let M be an exact category. Then T (M) is the following bisimplicial set.
A (p, q)-simplex is given by five families of objects:

Ai,k, A
′
i,k, Aj/i,k, Ai,l/k, Aj/i,l/k
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for i, j = 0, 1, . . . , p, i < j, k, l = 0, 1, . . . , q, k < l, and eight families of
admissible short exact sequences:

Ai,k � Aj,k � Aj/i,k, Ai,l/k � Ai,k � Ai,l,

A′i,k � A′j,k � Aj/i,k, Ai,l/k � A′i,k � A′i,l,

Ai,l/k � Aj,k � Ai,l, Ai,l/k � A′j,k � A′i,l,

Ai,l/k � Aj,l/k � Aj/i,l/k, Aj/i,l/k � Aj/i,k � Aj/i,l,

such that all diagrams

Ai,l/k // //
��

��

Aj,l/k // //
��

��

Aj/i,l/k
��

��

Ai,l/k // //
��

��

Aj,l/k // //
��

��

Aj/i,l/k
��

��
Ai,k // //

����

Aj,k // //

����

Aj/i,k

����

A′i,k // //

����

A′j,k // //

����

Aj/i,k

����
Ai,l // // Aj,l // // Aj/i,l A′i,l // // A′j,l // // Aj/i,l

commute.
In other words a (p, q)-simplex is a pair of admissible filtrations-cofiltra-

tions

(2.6)



A0,0
// //

����

A1,0
// //

����

A2,0
// //

����

· · · // //Ap,0

����
A0,1

// //

����

A1,1
// //

����

A2,1
// //

����

· · · // //Ap,1

����
...

����

...

����

...

����

...

����
A0,q

// //A1,q
// //A2,q

// // · · · // //Ap,q

A′0,0 // //

����

A′1,0 // //

����

A′2,0 // //

����

· · · // //A′p,0

����
A′0,1 // //

����

A′1,1 // //

����

A′2,1 // //

����

· · · // //A′p,1

����
...

����

...

����

...

����

...

����
A′0,q // //A′1,q // //A′2,q // // · · · // //A′p,q
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with fixed common: subquotients Aj/i,k, subkernels Ai,l/k, induced cofiltra-
tions of subquotients and induced filtrations of subkernels.

The degeneracy maps are defined by duplicating a row or a column in
both diagrams (2.6) and reindexing. The boundaries are defined by deleting
a row or a column in both diagrams of (2.6) and reindexing.

Obviously all (p, 0)-simplexes for p = 0, 1, 2, . . . form a simplicial subset
isomorphic to G(M) and all (0, p)-simplexes for p = 0, 1, 2, . . . form a simpli-
cial subset isomorphic to G(Mop). Moreover, Nenashev proved the following
theorem.

Theorem 2.11 ([13, Theorem 2.5]). The embeddings

G(M) = T·,0(M) ↪→ T (M)

and

G(Mop) = T0,·(M) ↪→ T (M)

are homotopy equivalences.

Thus the geometric realization of T (M) is a K-theory space:

Kn(M) = πn(T (M)).

The main advantage of this particular K-theory space is its self-duality.
Namely, for any bisimplicial set X let X be the bisimplicial set

Xm,n = Xn,m.

There is a canonical homeomorphism of the geometric realizations

φX : |X| → |X|

which takes x×∆m×∆n to x×∆n×∆m for any x ∈ Xn,m. The set T (M) is
self-dual in the sense that T (Mop) = T (M), which yields a homeomorphism

|T (Mop)| = |T (M)| → |T (M)|.

A duality functor D : M→Mop induces a bisimplicial map

T (M)→ T (Mop) = T (M)

which maps a (p, q)-simplex (2.6) onto the (q, p)-simplex
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DA0,0
// //

����

DA0,1
// //

����

DA0,2
// //

����

· · · // //DA0,q

����
DA1,0

// //

����

DA1,1
// //

����

DA1,2
// //

����

· · · // //DA1,q

����
...

����

...

����

...

����

...

����
DAp,0 // //DAp,1 // //DAp,2 // // · · · // //DAp,q

DA′0,0 // //

����

DA′0,1 // //

����

DA′0,2 // //

����

· · · // //DA′0,q

����
DA′1,0 // //

����

DA′1,1 // //

����

DA′1,2 // //

����

· · · // //DA′1,q

����
...

����

...

����

...

����

...

����
DA′p,0 // //DA′p,1 // //DA′p,2 // // · · · // //DA′p,q


with subquotients DAi,l/k and subkernels DAj/i,k. Then G(M) = T·,0(M)
is mapped onto G(Mop) = T0,·(M).

There is a commutative diagram of spaces

|T (M)| D // |T (M)|
φT (M) // |T (M)|

|G(M)|

OO

D // |G(Mop)|

OO

A vertex (i.e. a (0, 0)-simplex) of T (M) is a pair of objects (P, P ′) of M.
Thus, given a pair of objects, think of it as a vertex in the triangulation of

the geometric realization |T (M)|. We indicate this by writing
(P,P ′)
• .

Given two vertices (P0, P
′
0) and (P1, P

′
1), there may generally be edges of

two types connecting (P0, P
′
0) to (P1, P

′
1), namely (1, 0)- and (0, 1)-simplices;

imagine something like

(P0,P ′0) (P1,P ′1)

• //•
in both cases. The (1, 0)-edges are in one-to-one correspondence with the
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pairs of short exact sequences of the form

(2.7) (P0 � P1 � P1/0, P
′
0 � P ′1 � P1/0),

and it is essential that the cokernel objects in them are identical. The (1, 0)-
simplices in T (M) are therefore the same as the edges in the G-construction.
In fact, the (−, 0)-part of T (M) is isomorphic to G(M), which gives an
embedding G(M) ⊂ T (M).

The (0, 1)-simplices connecting (P0, P
′
0) to (P1, P

′
1) are given by pairs of

short exact sequences

(2.8) (P0 � P1 � P0\1, P
′
0 � P ′1 � P0\1)

in M with identical kernel objects. This is the same as the edges in G(Mop),
and in fact, G(Mop) embeds into T (M) as its (0,−)-part.

A (1, 1)-simplex (a cell of square shape in the geometric realization) is
defined by a pair of diagrams

(2.9)

A0,1/0 // //
��

��

A1,1/0 // //
��

��

A1/0,1/0
��

��

A0,1/0 // //
��

��

A1,1/0 // //
��

��

A1/0,1/0
��

��
A0,1 // //

����

A1,1 // //

����

A1/0,1

����

A′0,1 // //

����

A′1,1 // //

����

A1/0,1

����
A0,0 // // A1,0 // // A1/0,0 A′0,0 // // A′1,0 // // A1/0,0

with identical upper horizontal and rightmost vertical short exact sequences.
The vertices of this “square” are the pairs (Ai,j , A′i,j) with i, j ∈ {0, 1}. Its
four edges are given by the corresponding pairs of short exact sequences in
these diagrams.

The map D : |T (M)| → |T (M)| takes a vertex (P, P ′) to (DP,DP ′). If
a (1, 0)-edge e from (P0, P

′
0) to (P1, P

′
1) is given by (2.7), then

De = (DP0 � DP1 � DP1/0, DP
′
0 � DP ′1 � DP1/0),

which is a (0, 1)-simplex.
Recall that by Theorem 2.9 given a double short exact sequence u =(

C
β

�−
δ
B

α←�
γ
A
)
, we may associate to it a 3-edge loop

`(u) =
( (0,0) (A,A) (B,B) (0,0)

• e(A) //• e(u) //• •e(B)oo
)

in G(M) = T·,0(M), where e(A) =
(
0 −→ A

1−→ A, 0 −→ A
1−→ A

)
is the

canonical edge from the base point (0, 0) to (A,A) (similarly for B), and
e(u) is the (1, 0)-simplex given by u.
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The map D : |T (M)| → |T (M)| takes the loop `(u) to the loop

D`(u) =
( (0,0) (DA,DA) (DB,DB) (0,0)

• De(A) //______ • De(u) //_______ • •De(B)oo_ _ _ _ _ _
)

in G(Mop) = T0,·(M), where De(A) =
(
0 0←− DA

1←− DA, 0 0←− DA
1←− DA

)
(the same for B), and

De(u) =
(
DA

Dα
�−− DB Dβ←−−� DC, DA

Dγ
�−− DB Dδ←−� DC

)
.

There is also the dual d.s.e.s.

Du =
(
DA

Dα
�−−
Dγ

DB
Dβ←−−�
Dδ

DC
)

and its loop

`(Du) =
( (0,0) (DC,DC) (DB,DB) (0,0)

• e(DC) //• e(Du) //• •e(DB)oo
)

We restate here Proposition 3.1, Corollary 3.2 and Lemma 3.3 of [13]:

Proposition 2.12. D`(u) is homotopic to `(Du) in T (M).

Corollary 2.13. If m(u) is the class of `(u) in K1(M), then Dm(u) =
m(Du).

Lemma 2.14. For any object X in M put eop(X) =
(
0 0←− X

1←− X, 0 0←−
X

1←− X
)
∈ T0,1(M). Then the loop

( (0,0) (X,X) (0,0)

• e(X) //• •
eop(X)

oo
)

in T (M) is contractible.

Proof. A contracting 2-cell is given by the (1, 1)-simplex

0 // //
��

��

X
1 // //

��
1
��

X
��
1
��

0 // //
��

��

X
1 // //

��
1
��

X
��
1
��

0 // //

����

X
1 // //

����

X

����

0 // //

����

X
1 // //

����

X

����
0 // // 0 // // 0 0 // // 0 // // 0

Proof of Proposition 2.12. By Lemma 2.14, we can replace the edges
De(A) = eop(DA) and De(B) = eop(DB) in D`(u) by e(DA) and e(DB)
respectively, and the edge e(DC) in `(Du) by eop(DC). It then follows that
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D`(u)`(Du)−1 is homotopic to the contour of the (1, 1)-simplex

DC // 1 //
��

1
��

DC // //
��

Dβ

��

0
��

��

DC // 1 //
��

1
��

DC // //
��

Dδ
��

0
��

��
DC // Dβ //

����

DB //Dα //

Dα
����

DA

1
����

DC // Dδ //

����

DB // Dγ //

Dγ
����

DA

1
����

0 // // DA
1
// // DA 0 // // DA

1
// // DA

Definition 2.13. Given a four-term double exact sequence D
c1

�−
c2
C

b1←−
b2

B
a1←−�
a2

A, let B
u1−−� X1 be Coker a1, B

u2−−� X2 be Coker a2, X1
v1

�−→ C be

Ker c1 and X2
v2

�−→ C be Ker c2. The corresponding element `
(
D

c1
�−
c2

C
b1←−
b2

B
a1←−�
a2

A
)

of K1(M) is the class of the loop

(B,B)

•
(0,0) •

66mmmmmmm
((QQQQQQQ •
hhQ Q Q Q

(X1,X2)

•
66mmmmmmm

(C,C)

consisting of the paths:

• e(B) from (0, 0) to (B,B) given by the (1, 0)-simplex B
1

�−
1
B � 0;

• from (X1, X2) to (B,B) given by the (0, 1)-simplex(
X1

u1
� B

a1
� A

X2
u2
� B

a2
� A

)
;

• from (C,C) to (X1, X2) given by the (1, 0)-simplex(
D

c1
� C

v1
� X1

D
c2
� C

v2
� X2

)
;

• e(C) from (0, 0) to (C,C) given by the (1, 0)-simplex C
1

�−
1
C � 0.

Remark 2.4. There is another choice of signs: given a double short exact
sequence (∗),

`(α, γ;β, δ) = `
(
C

β
�−
δ
B

α←−
γ
A � 0

)
and `(α, γ;β, δ) is the negative of `

(
0 � C

β←−
δ
B

α←�
γ
A
)
.
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Here are some standard ways to replace a pair of adjoint edges in a
combinatorial path by another pair of edges and get a homotopic path as a
result.

• Suppose we are given a pair of (1, 0)-simplices sharing the source:

(2.10) • • e2 //e1oo •
(Q,Q′) (P,P ′) (R,R′)

Then e1 and e2 are given by data of the form

e1 = (P � Q � M, P ′ � Q′ � M),
e2 = (P � R � N, P ′ � R′ � N).

Following [4] we choose push out objects S = Q qP R, S′ = Q′ qP ′ R′ and
consider the two (2, 0)-simplices

•
(Q,Q′)

t1

ẽ2 //•
(S,S′)

•
(P,P ′)

e1

OO ??������������������
e2

//•
(R,R′)

t2

ẽ1

OO

given by the diagrams

t1 =



N N

M // //M ⊕N

OOOO

M // //M ⊕N

OOOO

P // // Q // //

OOOO

S

OOOO

P ′ // // Q′ // //

OOOO

S′

OOOO


,

t2 =



N N

M // //M ⊕N

OOOO

M // //M ⊕N

OOOO

P // // R // //

OOOO

S

OOOO

P ′ // // R′ // //

OOOO

S′

OOOO


.

This enables us to replace the 2-edge path (2.10) by the homotopic path

• ẽ2 //• •ẽ1oo

(Q,Q′) (S,S′) (R,R′)

Note that everything here is happening in the G(M)-part of T (M).
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• Given a pair of (0, 1)-simplices with a common source

(2.11) • •e1oo_ _ _ _ _ _ e2 //______ •
(Q,Q′) (P,P ′) (R,R′)

where

e1 = (P � Q � M, P ′ � Q′ � M ′),
e2 = (P � Q � N, P ′ � Q′ � N ′),

take the pullbacks S = Q ×P R, S′ = Q′ ×P ′ R′ and form the two (0, 2)-
simplices

t1 =



N
��

��

N
��

��
M
��

��

M ⊕Noooo
��

��

M
��

��

M ⊕Noooo
��

��
P Qoooo Soooo P ′ Q′oooo S′oooo


,

t2 =



N
��

��

N
��

��
M
��

��

M ⊕Noooo
��

��

M
��

��

M ⊕Noooo
��

��
P Roooo Soooo P ′ R′oooo S′oooo


.

The whole picture has the form

•
(Q,Q′)

t1

ẽ2 //______ •
(S,S′)

•

e1

OO�
�
�
�
�
�

e2
//______

??�
�

�
�

�
�

�
�

�
(P,P ′)

•

ẽ1

OO�
�
�
�
�
�

(R,R′)

t2

It follows that the path

• ẽ2 //______ • •ẽ1oo_ _ _ _ _ _
(Q,Q′) (S,S′) (Q,Q′)

is homotopic to the given one. Everything here lies in the G(Mop)-part of
T (M).

• Suppose we are given a (0, 1)-simplex followed by a (1, 0)-simplex:

(2.12) • e2 //______ • e2 //•
(P,P ′) (Q,Q′) (R,R′)
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where

e1 = (P � Q � M, P ′ � Q′ � M),
e2 = (Q � R � N, Q′ � R′ � N).

Choose pushout objects S = P qQ R, S′ = P ′ qQ′ R′ and consider the
(1, 1)-simplex given by the diagrams

M // //
��
��

M // //
��
��

0
��
��

Q // //

����

R // //

����

N

����
P // // S // // N

M ′ // //
��
��

M ′ // //
��
��

0
��
��

Q′ // //

����

R′ // //

����

N ′

����
P ′ // // S′ // // N ′

It looks like

• e2 //
(Q,Q′)

•
(R,R′)

•

e1

OO�
�
�
�
�
�
�

ẽ2
//

(P,P ′)
•

ẽ1

OO�
�
�
�
�
�
�

(S,S′)

which enables us to replace the path (2.12) by the homotopic path

• ẽ2 //• ẽ1 //______ •
(P,P ′) (S,S′) (R,R′)

• Given a path of the form

(2.13) • e1 //• e2 //______ •
(P,P ′) (Q,Q′) (R,R′)

where

e1 = (P � Q � M, P ′ � Q′ � M),
e2 = (Q �� R N, Q′ �� R′ N),

choose pullbacks S = P ×Q R and S′ = P ′ ×Q′ R′ and consider the (1, 1)-
simplex

N // //
��
��

N // //
��
��

0
��
��

S // //

����

R // //

����

M

����
P // // Q // //M

N ′ // //
��
��

N ′ // //
��
��

0
��
��

S′ // //

����

R′ // //

����

M ′

����
P ′ // // Q′ // //M ′
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Thus we can replace (2.13) by

• ẽ2 //______ • ẽ1 //•
(P,P ′) (S,S′) (R,R′)

where

ẽ1 = (S � R � M, S′ � R′ � M),

ẽ2 = (Q � R � N, Q′ � R′ � N).

The main technical tool for computations with four-term double exact
sequences is the following proposition proved by A. Nenashev:

Proposition 2.15 (3× 4 lemma). Suppose we are given a diagram

(2.14)

D′

��
d′1 d′2
��

C ′
h′1

h′2

oooo
��

c′1 c′2
��

B′
g′1

g′2

oo
��

b′1 b′2
��

A′oo
f ′1

f ′2

oo
��

a′1 a′2
��

D

d1 d2
����

C
h1

h2

oooo

c1 c2
����

B
g1
g2

oo

b1 b2
����

Aoo
f1

f2
oo

a1 a2
����

D′′ C ′′
h′′1

h′′2

oooo B′′
g′′1

g′′2

oo A′′oo
f ′′1

f ′′2

oo

which consists of three double four-term exact sequences and four d.s.e.s.,
such that each of the two diagrams with indices i = 1 or 2 commutes. Let
q′, q, and q′′ denote the horizontal double four-term exact sequences and lA,
lB, lC , lD the vertical double short exact sequences. Then

`(q′)− `(q) + `(q′′) = −`(lA) + `(lB)− `(lC) + `(lD)

in K1(M).

Proof. We simplify things and do not display the unnecessary parts of
loops, in the following sense. Let T̃ (M) denote the bisimplicial subset of
T (M) which consists of the diagonal bisimplices, i.e. the bisimplices given
by pairs of identical diagrams. It is easily seen to be contractible and we can
therefore compute K1(M) = π1(T (M)) as the relative fundamental group:
π1(T (M)) = π1(T (M), T̃ (M)). In this context, we can omit the side edges
of the type e(X) in the definition of `(q) and `(l) and work with relative
loops; `(l) (resp. `(q)) amounts then to the single edge e(l) (resp. the pair
of edges (e0,1(q), e1,0(q))).



266 M. Szyjewski

With the notation of Definition 2.13, the given 3 × 4 diagram may be
cut into two 3× 3 diagrams:

(2.15)

D′

��
d′i
��

C ′
h′ioooo

��
c′i
��

X ′ioo
v′ioo

��
x′i
��

X ′i
��

x′i
��

B′

��
b′i
��

u′ioooo A′oo
f ′ioo

��
a′i
��

D

di
����

C
hioooo

ci
����

Xi
oovioo

xi
����

Xi

xi
����

B

bi
����

uioooo Aoo
fioo

ai
����

(i = 0, 1)

D′′ C ′′
h′′ioooo X ′′i

oo
v′′ioo X ′′i B′′

u′′ioooo A′′oo
f ′′ioo

The same argument as in the proof of Proposition 2.12 lets us replace the
(1, 0)-edge e(lC) from (C ′, C ′) to (C,C) by a homotopic (rel. T̃ (M)) (0, 1)-
edge from (C ′′, C ′′) to (C,C). The element

`(q′′) + `(lC)− `(q)− `(lB) + `(q′)

can thus be represented by the following path:

(2.16) •
(B′,B′)

e1,0(lB)

��

•
e0,1(q′)oo_ _ _ _ _ _ _

e1,0(q′)
//

(X′1,X
′
2)

•
(C′,C′)

•(B,B)

•
e0,1(q)

ggP P P P P P P
e1,0(q)

''PPPPPPPPPPPPPP
(X1,X2)

• (C,C)

•
(B′′,B′′)

•
e0,1(q′′)

oo_ _ _ _ _ _ _
e1,0(q′′) //

(X′′1 ,X
′′
2 )

•
e0,1(lC)

OO�
�
�

(C′′,C′′)

We will now construct several homotopies in order to show that the above
expression equals −`(lA) + `(lD).

1. Denote by Pi a pullback object for

X ′′i
v′′i

�−→ C ′′
ci

�− C, i = 1, 2,

and apply (2.13) to the edges

•
e1,0(q′′) //•

e0,1(lC) //_____ •

in (2.16). We get two other edges

•
ẽ0,1(lC) //_______ •

ẽ1,0(q′′) //•
(X′′1 ,X

′′
2 ) (P1,P2) (C,C)
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the homotopy being provided by the (1, 1)-simplex

(2.17)

C ′ //
1 //

��
c̃′i
��

C ′ // //
��

c′i
��

0
��

��
Pi //

ṽ′′i //

c̃i
����

C
h̃′′i // //

ci
����

D′′

1
����

(i = 1, 2).

X ′′i
//
v′′i // C ′′

h′′i // // D′′

The arrows c̃′i, c̃i, ṽ
′′
i , and h̃′′i in this diagram are induced by the arrows c′i,

ci, v′′i , and h′′i of (2.15).
2. As civi = v′′i xi, there is a unique arrow Xi

pi→ Pi with c̃ipi = x̃i and
ṽ′′i pi = vi (i = 1, 2). We leave it to the reader to deduce from Quillen’s third
axiom of an exact category that this arrow is an admissible monomorphism
(see the example after Definition 2.1) and we have the following pair of
diagrams:

(2.18)

Xi
// pi //

��
1

��

Pi
ri // //

��
ṽ′′i
��

D′
��
d′i
��

Xi
// vi //

����

C
hi // //

dihi
����

D

di
����

(i = 1, 2).

0 // // D′′
1 // // D′′

The arrows ri here are induced by the other arrows in the diagrams.

3. Denote by Ui a pushout object for B
b′i

�− B′
u′i

�−→ X ′i, i = 1, 2, and

apply (2.12) to the edges • •
e1,0(lB)oo •

e0,1(q′)oo_ _ _ _ _ _ in (2.16). We then get
two other edges

• •
ẽ0,1(q′)oo_ _ _ _ _ _ •

ẽ1,0(lB)oo
(B,B) (U1,U2) (X′1,X

′
2)

the homotopy being provided by the (1, 1)-simplex

(2.19)

A′ //
1 //

��
f ′i
��

A′ // //
��
f̃ ′i
��

0
��

��
B′ //

b′i //

u′i
����

B
b′′i // //

ũ′i
����

B′′

1

����

(i = 1, 2).

X ′i
//
b̃′i // Ui

b̃′′i // // B′′
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4. Dualizing 2, we get admissible epimorphisms Ui
si
� Xi with siũ

′
i = ui

and sib̃
′
i = x′i (i = 1, 2) and the diagrams

(2.20)

A′ //
1 //

��
a′i
��

A′ // //
��
fia
′
i

��

0
��

��
A // fi //

a′′i
����

B
ui // //

ũ′i����

Xi

1
����

(i = 1, 2).

A′′ //
ti // Ui

si // // Xi

The arrows ti here are induced by the other arrows in these diagrams. This
results in the following figure:

•
(B′,B′)

��

•oo_ _ _ _ _ _ //

��

(X′1,X
′
2)

•
(C′,C′)

•(B,B) •oo_ _ _ _ _ _ (U1,U2)

•
e0,1(s1,s2)

OO�
�
�
�

ggO O O O O O O
e1,0(q)

''OOOOOOOOOOOOOO

��

(X1,X2)

• //(P1,P2) • (C,C)

•
(B′′,B′′)

•oo_ _ _ _ _ _ //

OO�
�
�

(X′′1 ,X
′′
2 )

•

OO�
�
�

(C′′,C′′)

in which:

• the horizontal arrow from (P1, P2) to (C,C) is ẽ1,0(q′′);
• the horizontal arrow from (X ′′1 , X

′′
2 ) to (C ′′, C ′′) is e1,0(q′′);

• the vertical arrow from (X1, X2) to (P1, P2) is

e1,0(p1, p2) = (X1
p1

�−→ P1 � r1D
′, X2

p2
�−→ P2 � r2D

′),

and the shadowed areas are (1, 1)-simplices. The triangular contour with
vertices (X1, X2), (P1, P2), (C,C) is an admissible triple of edges in the G-
part of T (M), in the sense of [12, Definition, p. 207]. By [12, Prop. 4.5], the
diagrams (2.18) show that the associated d.s.e.s. is lD. Dually, the triangular
contour with vertices (X1, X2), (U1, U2), (B,B) is a (co)admissible triple in
the Gop-part (we leave it to the reader to dualize the definition and related
arguments), the associated d.s.e.s. being lA. Thus by [12, Prop. 4.5] and its
dual version, the path

(2.21) • •
e0,1(q′′)oo_ _ _ _ _

ẽ1,0(lC) //_____ • •
e0,1(s1,s2) //_____

e1,0(p1,p2)oo • •
ẽ1,0(lB)oo e1,0(q′) //•

(B′′,B′′) (X′′1 ,X
′′
2 ) (P1,P2) (X1,X2) (U1,U2) (X′1,X

′
2) (C′,C′)
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represents the element `(v′)− `(v) + `(v′′) + `(lC)− `(lB) + `(lA)− `(lD) in
π1(T (M), T̃ (M)), and it remains to show that this path is contractible.

5. We leave it to the reader to check the following elementary assertion:

Lemma 2.16. In an abelian category, given a commutative diagram

B′ // //

��

B // //

��

B′′

��
C ′ // // C // // C ′′

whose rows are s.e.s’s, there is a natural map C ′ qB′ B → C ×C′′ B′′ and
this map is an isomorphism.

Let Fi, i = 1, 2, denote a choice for the pullback/pushout object of the
lemma applied to the i-th arrows in the B-C-part of diagram (2.14). Then

C ′ qX′i Ui
∼= C ′ qX′i (X ′i qB′ B) ∼= C ′ qB′ B ∼= Fi,

Pi ×X′′i B
′′ ∼= (C ×C′′ X ′′i )×X′′i B

′′ ∼= C ×C′′ B′′ ∼= Fi

and we get the following picture:

•(X1,X2)

wwnnnnnnnnnnnnnn

''PPPPPPP

•(P1,P2)

''NNNNNNN •(U1,U2)

wwppppppppppppp

•
(F1,F2)

•(X′′1 ,X
′′
2 )

HH�
�

�
�

�
�

�
�

''OOOOOOO

55jjjjjjjjjj • (X′1,X
′
2)

VV...............

iiTTTTTTTTTTTTTTTTTTT

wwoooooooooooooo

•
(B′′,B′′)

GG�
�

�
�

�
�

� •
(C′,C′)

WW0000000000000

where the shadowed rectangles are as in (2.11) and (2.10) respectively. The
remaining rectangular contour can be filled by the (1, 1)-simplex

A′′ //
1 //

��
ti
��

A′′ // //
��

��

0
��

��
Ui // //

si

����

Fi // //

����

D′

1

����

(i = 1, 2).

Xi
// pi // Pi

ri // // D′

Thus the path (2.21) is homotopic to the two-edge path

(B′′,B′′) (F1,F2) (C′,C′)
• //______ • •oo
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The latter can be contracted to T̃ (M) by means of the (1, 1)-simplex

C ′ // 1 //
��

1

��

C ′ // //
��

��

0
��

��
C ′ // //

����

Fi // //

����

B′′

1
����

(i = 1, 2).

0 // // B′′
1

// // B′′

Corollary 2.17.

`
(
D

c
�−
c′
C

b←−
b′
B

a←−�
a′
A
)

+ `
(
H

h
�−
h′
G

g←−
g′
F

f←−�
f ′
E
)

= `

(
D ⊕H

h
c 0
0 h

i
�−−−−−h
c′ 0
0 h′

i C ⊕G
h
b 0
0 g

i
←−−−−h
b′ 0
0 g′

i B ⊕ F
h
a 0
0 f

i
←−−−−�h
a′ 0
0 f ′

i A⊕ E
)
.

Corollary 2.18.

`
(
D

c
�−
c′
C

b←−
b′
B

a←−�
a′
A
)

+ `
(
D

c′

�−
c
C

b′←−
b
B

a′←−�
a
A
)

= 0.

Lemma 2.19. For arbitrary automorphisms α, α′ ∈ Aut(A) and arbitrary

exact sequences A
b

� B
c

� C, F
f
� E

e
� A we have

`
(

0 � A
α←−
α′
A � 0

)
= `
(
F

f
�−
f
E

e◦α◦b←−−−−
e◦α′◦b

B
c←�
c
C
)

in K1(M).

Proof. Apply the 3× 3 lemma and the 3× 4 lemma to the diagrams

0
��

��

Aoooo
��

e e

��

Aoo
α

α′
oo

��
1 1
��

F
��

1 1
��

E
f

f
oooo

��
f f

��

Aoo
e◦α
e◦α′
oo

��

��
F F

1

1
oooo 0oooo

0
��

��

0oooo
��

��

Coo
��

a a

��

Coo
1

1
oo

��
1 1
��

F

1 1

����

E
f

f
oooo

1 1

����

B
e◦α◦b
e◦α′◦b
oo

b b

����

Coo
c
c

oo

����
F E

f

f
oooo A

e◦α
e◦α′
oo 0oooo

Lemma 2.20.

`
(
D

c
�−
c′
C

b←−
b′
B

a←−�
a′
A
)

+ `
(
D

c′

�−−
c′′

C
b′←−
b′′
B

a′←−�
a′′

A
)

= `
(
D

c
�−−
c′′

C
b←−
b′′
B

a←−�
a′′

A
)
.
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Proof. Apply the 3× 4 lemma to the diagram

D
��

[ 1
0 ] [ 0

1 ]

��

C
c

c′′
oooo

��

[ 1
0 ] [ 0

1 ]

��

B
b

b′′
oo

��

[ 1
0 ] [ 0

1 ]

��

Aoo
a

a′′
oo

��

[ 1
0 ] [ 0

1 ]

��
D ⊕D

[0 1] [−1 0]

����

C ⊕ C

h
c 0
0 c′

i
h
c′ 0
0 c′′

ioooo

[0 1] [−1 0]

����

B ⊕B

h
b 0
0 b′

i
h
b′ 0
0 b′′

ioooo

[0 1] [−1 0]

����

A⊕A

h
a 0
0 a′

i
h
a′ 0
0 a′′

ioooo

[0 1] [−1 0]

����
D C

c′

c′
oooo B

b′

b′
oo Aoo

a′

a′
oo

3. The group E1(X) and the invariant e1. For the sake of complete-
ness we state the following obvious fact:

Lemma 3.1. Let M be a small exact category. For A,B ∈ Ob(M) the
following conditions are equivalent:

(i) the equality [A] = [B] in K0(M) holds;
(ii1) there exist P,Q,R ∈ Ob(M) and α, β, α′, β′ ∈ Mor(M) such that

the sequences

0← R
β←− Q α←− A⊕ P ← 0,

0← R
β′←− Q α′←− B ⊕ P ← 0

are exact admissible;
(ii2) there exist P,Q,R ∈ Ob(M) and γ, µ, γ′, µ′ ∈ Mor(M) such that

the sequences

(3.1)
0← A⊕ P µ←− Q γ←− R← 0,

0← B ⊕ P µ′←− Q γ′←− R← 0

are exact admissible.

Moreover, if (M, D, δ) is an exact category with duality, then one may as-
sume that in each case P carries a hyperbolic form χ : P → DP .

Proof. It is obvious that each of conditions (ii1), (ii2) implies [A] = [B] in
K0(M). Assume that (i) holds. By [18, Theorem 1],K0(M) = A/B is a factor
group of the free abelian group A generated by the classes of isomorphic
objects in Ob(M) modulo the subgroup B generated by the expressions

[Y ]− [X]− [Z]
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for all admissible exact sequences Z � Y � X. Thus if [A] = [B], then
there exist two admissible exact sequences

Z � Y
i

� X, W � V
j

� U

and an isomorphism

ρ : B ⊕X ⊕ Z ⊕ V ∼→ A⊕ Y ⊕ U ⊕W.
Thus for

P = X ⊕ U,
Q = A⊕ Y ⊕ U ⊕W ∼= B ⊕X ⊕ Z ⊕ V,
R = Z ⊕W,

α =


1A 0 0
0 i 0
0 0 1U
0 0 0

 : A⊕X ⊕ U → A⊕ Y ⊕ U ⊕W,

α′ = ρ ◦


1B 0 0
0 1X 0
0 0 0
0 0 j

 : B ⊕X ⊕ U → A⊕ Y ⊕ U ⊕W,

(ii1) holds. Analogously (i) implies (ii2) for the same Q,

P = Z ⊕W, R = X ⊕ U
and suitable morphisms.

If there is a duality in M, then substitution of P ⊕DP for P , Q⊕DP
for Q, and α ⊕ 1DP for α, etc., yields an analogous exact sequence with a
hyperbolic form χ defined on P .

We will refer to the pair of exact sequences A⊕ P � Q � R, B ⊕ P �
Q � R with hyperbolic P as a common resolution of A⊕P , B⊕P . Let us
rephrase the last result in a more convenient form:

Corollary 3.2. Given two a.s.b.m. ϕ : A → DA, ψ : B → DB such
that [A] = [B] in K0(M), there exist:

• a hyperbolic form (P, χ),
• an object Q,
• admissible epimorphisms πA : Q→ A⊕ P , and πB : Q→ B ⊕ P with

kernels R ⇒ Q having a common source R,
• a.s.b.m. DπA◦(ϕ⊕χ)◦πA : Q→ DQ and DπB◦(ψ⊕χ)◦πB : Q→ DQ

Witt equivalent to ϕ and ψ respectively.
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For Witt equivalence compare Example 2.10.

Definition 3.1. Let M be an exact category with a duality (D, δ). With
a.s.b.m. α : Q → DQ, β : Q → DQ with respective kernels γ, γ′ : R � Q,
we associate a self-dual double exact sequence

(3.2) DR
Dγ

�−−−
Dγ′

DQ
α←−
β
Q

γ←−�
γ′
R.

In particular, with symmetric bilinear forms ϕ : A ∼→ DA, ψ : B ∼→ DB
such that [A] = [B] in K0(M), and a common resolution A⊕ P � Q � R,
B ⊕ P � Q � R with hyperbolic (P, χ) we associate a self-dual double
exact sequence

(3.3) DR
Dγ

�−−−
Dγ′

DQ
Dµ◦(ϕ⊕χ)◦µ←−−−−−−−−−
Dµ′◦(ψ⊕χ)◦µ′

Q
γ←−�
γ′
R

with admissible γ, γ′. We will refer to this double exact sequence as gluing
a common resolution with its dual.

We want to refine this to a map defined on Witt equivalence classes, so
we shall define an appropriate target group.

3.1. E-groups. An exact dualization functor D : M → M defines an
action of the two-element group {1, D} on the K-groups of M (by action
on d.s.e.s.) One of the objectives of this paper is the study of the following
groups for n = 1:

Definition 3.2. For D : Kn(M)→ Kn(M) the En-groups of the exact
category M with duality D are

En(M;D) = En+(M;D) = Ker(1−D)/Im(1 +D),
En−(M;D) = Ker(1 +D)/Im(1−D).

Equivalently one may define the En-groups as the homology groups of
the complex

(3.4) · · · 1+D−−−→ Kn(M) 1−D−−−→ Kn(M) 1+D−−−→ Kn(M) 1−D−−−→ · · ·
or the Tate cohomology groups

En(M;D) = Ĥ2p({1, D},Kn(M)), En−(M;D) = Ĥ2p−1({1, D},Kn(M)).

Note that the case n = 0 was used extensively in [21]–[23]. Let us recall
that in those papers we used the map

e0 : W (M)→ E0(M)

induced by the forgetful functor, and more general maps e0 : W±(M, D, δ)
→ E0(M;D). The group

E0
−(M;D) = {x ∈ K0(M) : Dx = −x}/{y −Dy : y ∈ K0(M)}
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also occurred. Each pair of hyperbolic spaces (M ⊕ DM,
[

0 1
δM 0

]
), (N ⊕

DN,
[

0 1
δN 0

]
) such that

[M ⊕DM ] = [N ⊕DN ] in K0(M)

defines an element [M ]− [N ] of E0
−(M;D).

Now we are interested in the case when for two symmetric bilinear forms
(A,ϕ), (B,ψ) the equality

e0(A,ϕ) = e0(B,ψ)

holds. By Corollary 3.2, e0(A,ϕ) = e0(B,ψ) iff there exist M,N ∈ Ob(M)
such that

[A⊕M ⊕DM ] = [B ⊕N ⊕DN ] in K0(M).

Definition 3.3. Given two symmetric bilinear forms (A,ϕ), (B,ψ) and
admissible exact sequences

A
β
� P

α
� Q, B

ν
� P

µ
� Q

denote

ε1

(
A

β
� P

α
� Q, ϕ

B
ν
� P

µ
� Q, ψ

)
= `
(
DQ

Dα
�−−
Dµ

DP
Dβ◦ϕ◦β←−−−−−
Dν◦ψ◦ν

P
α←�
µ
Q
)
.

Theorem 3.3. Given two a.s.b.m. (A,ϕ), (B,ψ), and two common res-
olutions

A
β
� P

α
� Q, A

b
� R

a
� S,

B
ν
� P

µ
� Q, B

d
� R

c
� S,

we get

ε1

(
A

β
� P

α
� Q, ϕ

B
ν
� P

µ
� Q, ψ

)
− ε1

(
A

b
� R

a
� S, ϕ

B
d
� R

c
� S, ψ

)
∈ (1 +D)K1(M).

Proof. The class

ε1

(
A

β
� P

α
� Q, ϕ

B
ν
� P

µ
� Q, ψ

)
− ε1

(
A

b
� R

a
� S, ϕ

B
d
� R

c
� S, ψ

)

= ε1

(
A

β
� P

α
� Q, ϕ

B
ν
� P

µ
� Q, ψ

)
+ ε1

(
B

d
� R

c
� S, ψ

A
b

� R
a

� S, ϕ

)
corresponds to the double long exact sequence:
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DA⊕DB
��

h
0 Dν
Db 0

ih
Dβ 0
0 Dd

i
��

P ⊕R

h
ϕ◦β 0

0 ψ◦d
i

h
0 ϕ◦b
ψ◦ν 0

ioooo

��

Q⊕ Soo
[α 0

0 c ]h
µ 0
0 a

ioo

��
DQ⊕DS

��

DP ⊕DR

h
Dα 0
0 Dc

i
h
Dµ 0
0 Da

ioooo

h
Dµ 0
0 Da

ih
Dα 0
0 Dc

i
��

P ⊕R

»
ϕ 0

0 ψ

–
»
ψ 0

0 ϕ

–oo Q⊕ Soo
[α 0

0 c ]h
µ 0
0 a

ioo

DQ⊕DS DQ⊕DSoo

where
ϕ = Dβ ◦ ϕ ◦ β, ϕ = Db ◦ ϕ ◦ b, ψ = Dd ◦ ψ ◦ d, ψ = Dν ◦ ψ ◦ ν.

It follows that if

t = `
(
DQ⊕DS

h
Dα 0
0 Dc

i
�−−−−−−h
Dµ 0
0 Da

i DP ⊕DR
»
ϕ 0

0 ψ

–
←−−−−»
ψ 0

0 ϕ

– P ⊕R [α 0
0 c ]

←−−−�h
µ 0
0 a

i Q⊕ S
)
,

u = `
(
DQ⊕DS

h
Dα 0
0 Dc

i
�−−−−−−h
Dµ 0
0 Da

i DP ⊕DR
h
Dβ 0
0 Dd

i
←−−−−−−�h

0 Dν
Db 0

i DA⊕DB
)
,

v = `
(
DQ⊕DS

h
Dα 0
0 Dc

i
�−−−−−−h
Dµ 0
0 Da

i DP ⊕DR
h
Dβ◦ϕ 0

0 Dd◦ψ
i

←−−−−−−−−−�h
0 Dν◦ψ

Db◦ϕ 0

i A⊕B
)
,

then u = v (since these d.s.e.s.’s are isomorphic) and t = u+Dv = u+Du
by the 3× 4 lemma, since there is a commutative diagram

DA⊕ DB
��

h
0 Dν
Db 0

ih
Dβ 0
0 Dd

i
��

P ⊕R

h
ϕ◦β 0

0 ψ◦d
i

h
0 ϕ◦b
ψ◦ν 0

ioooo

��

Q⊕ Soo
[α 0

0 c ]h
µ 0
0 a

ioo

��
DQ⊕DS

��

DP ⊕DR

h
Dα 0
0 Dc

i
h
Dµ 0
0 Da

ioooo

h
Dµ 0
0 Da

ih
Dα 0
0 Dc

i
��

P ⊕R

»
ϕ 0

0 ψ

–
»
ϕ 0

0 ψ

–oo Q⊕ Soo
[α 0

0 c ]h
µ 0
0 a

ioo

DQ⊕DS DQ⊕DSoo

with exact rows and columns.



276 M. Szyjewski

Definition 3.4. The relative discriminant ε1(ϕ ÷ ψ) of a pair (A,ϕ),
(B,ψ) of a.s.b.m.’s with common resolution is

ε1(ϕ÷ ψ) = ε1

(
A

β
� P

α
� Q, ϕ

B
ν
� P

µ
� Q, ψ

)
mod (1 +D)K1(M).

This is well defined by Theorem 3.3. Clearly

(3.5) ε1(ϕ÷ ψ) ∈ Ker(1−D)

by the very construction.

Lemma 3.4. If (A,ϕ) is metabolic and ι : L � A is a Lagrangian, then

ε1

(
ϕ÷

[
0 1
δL 0

])
= 0.

Proof. If L ι−→ A is a Lagrangian, then the sequence

DL
Dι◦ϕ

�−−− A
ι

� L

is exact. Thus one may form exact sequences

A
[1,0]

�−−− A⊕ L
[ 0
1 ]
←−−� L,

L⊕DL �−−−−−−h
1 0

Dι◦ϕ 0

i A⊕ L←−−�
[ ι0 ]

L.

Since

Dϕ ◦D2ι ◦ δL = Dϕ ◦ δA ◦ ι = ϕ ◦ ι,

gluing them with their duals yields a double exact sequence

DL
[Dι,0]

�−−−−
[0,1]

DA⊕DL

h
ϕ 0
0 0

i
←−−−−−−−h

0 ϕ◦ι
Dι◦ϕ 0

i A⊕ L [ 0
1 ]
←−−�
[ ι0 ]

L,

which may be “resolved” as follows: apply the 3× 4 lemma to the commu-
tative diagram
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L
��

[ϕ◦ι0 ] [ϕ◦ι0 ]

��

L⊕ L
[−1,0]

[0,1]
oooo

��

h
−ι 0
0 1

i h
−ι 0
0 1

i
��

Loo
[ 0
1 ]

[ 1
0 ]

oo

1 −1

��
DL

1 −1

��

DA⊕DLoooo

h
Dι 0
0 1

i h
Dι 0
0 1

i
����

A⊕ Loo

[Dι◦ϕ,0] [Dι◦ϕ,0]

����

Loooo

DL DL⊕DL
[0,1]

[−1,0]
oooo DL

[ 0
1 ]

[ 1
0 ]

oo

Then Lemma 2.10(b) applied to the upper and the lower d.s.e.s. shows that

ε1

(
ϕ÷

[
0 1
δL 0

])
= {−1}([L] + [DL]) = (1 +D)({−1}[L])

(here {−1} ∈ K1(M) corresponds to −1 ∈ Aut(L)), so a metabolic form
and its hyperbolic form produce exactly 0 in E1(M, D).

Proposition 3.5. If
(
K ⊕ DK,

[
0 1
δK 0

])
and

(
L ⊕ DL,

[
0 1
δL 0

])
are hy-

perbolic spaces such that [K ⊕DK] = [L⊕DL] in K0(M), and

[K]− [L] ≡ 0 mod (1−D)K0(M),

then
ε1
([

0 1
δK 0

]
÷
[

0 1
δL 0

])
≡ 0 mod (1 +D)K1(M).

Proof. Denote H(X) = X⊕DX for an object X. The second assumption
implies the existence of objects X,Y of M such that [K] − [L] = ([X] −
[DX])− ([Y ]− [DY ]), i.e.

[K ⊕DX ⊕ Y ] = [L⊕X ⊕DY ].

The common resolution may be chosen in a special way: as a direct sum

H(K ⊕X ⊕ Y ⊕R⊕ S) � P ⊕ P ′ ⊕DR⊕DS � Q⊕Q′,
H(L⊕X ⊕ Y ⊕R⊕ S) � P ⊕ P ′ ⊕DR⊕DS � Q⊕Q′

of exact sequences

(K ⊕DX ⊕ Y )⊕R
[κρ ]

�−− P
α
� Q,

(L⊕X ⊕DY )⊕R
[ lr ]

�−− P
a

� Q,
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and

(DK ⊕X ⊕DY )⊕ S

h
κ′
σ

i
�−−− P ′ α′←−� Q′,

(DL⊕DX ⊕ Y )⊕ S

h
l′
s

i
�−−− P ′ a′←−� Q′,

with added DR
1
� DR � 0 and DS

1
� DS � 0 respectively.

This common resolution glued with its dual yields the double exact se-
quence

DQ⊕DQ′
h
Da 0 0 0
0 Da′ 0 0

i
�−−−−−−−−−h
Dα 0 0 0
0 Dα′ 0 0

i DP ⊕DP ′ ⊕R⊕ S
24 0 u Dρ 0
Du 0 0 Dσ
δ◦ρ 0 0 0
0 δ◦σ 0 0

35
←−−−−−−−−−−−−24 0 v Dρ 0

Dv 0 0 Ds
δ◦r 0 0 0
0 δ◦s 0 0

35
P ⊕ P ′ ⊕DR⊕DS

"α 0
0 α′
0 0
0 0

#
←−−−−�" a 0

0 a′
0 0
0 0

# Q⊕Q′,

which is a direct sum of the double exact sequence

DQ′
[Dα′, 0]

�−−−−−
[Da′, 0]

DP ′ ⊕R

h
Du Dσ
δ◦ρ 0

i
←−−−−−−h
Dv Ds
δ◦r 0

i P ⊕DS [α0 ]
←−−�

[ a0 ]
Q

with one isomorphic to its dual.

The assumption on the class in the group E0
−(M;D) is necessary:

Example 3.1. Let X be a projective line X = ProjF [x, y] over a
field F , where x, y are homogeneous coordinates. Consider vector bundles
on X with the dualization

DA = Aˆ = Hom(A,OX)

and the canonical isomorphism A→ Aˆˆ as δA. The equality

[OX(−1)] + [OX(1)] = 2[OX ]

in K0(X) follows from the exactness of the sequence

OX(1)
[x,y]

�−−− OX ⊕OX
[−yx ]
←−−−� OX(−1).
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Consider the hyperbolic forms

ϕ =
[
0 1
1 0

]
: OX(−1)⊕OX(1)→ OX(1)⊕OX(−1),

ψ =
[
0 1
1 0

]
: OX ⊕OX → OX ⊕OX .

The common resolution

OX ⊕OX
[ 0 1 0
0 0 1 ]

�−−−−− OX(−1)⊕OX ⊕OX

»
1
0
0

–
←−−� OX(−1),

OX(−1)⊕OX(1)

h
1 0 0
0 x y

i
�−−−−− OX(−1)⊕OX ⊕OX

»
0
−y
x

–
←−−−� OX(−1)

glued with its dual yields the double exact sequence

(3.6) OX(1)
[1,0,0]

�−−−−−
[0,−y,x]

OX(1)⊕O2
X

»
0 0 0
0 0 1
0 1 0

–
←−−−−−�"

0 x y
x 0 0
y 0 0

#

OX(−1)⊕O2
X

»
1
0
0

–
←−−−�»

0
−y
x

– OX(−1).

Since the short double exact sequence

OX(−1)⊕O2
X

»
1 0 0
y 1 0
x 0 1

–
�−−−−−

1
OX(−1)⊕O2

X � 0

produces 0 in K1(X), the class of (3.1) in K1(X) is, by the 3 × 4 lemma,
the same as the class of the double exact sequence

OX(1)
[1,0,0]

�−−−−−
[0,−y,x]

OX(1)⊕O2
X

»
0 0 0
x 0 1
y 1 0

–
←−−−−−"

0 x y
x 0 0
y 0 0

# OX(−1)⊕O2
X

»
1
−y
−x

–
←−−−�»

0
−y
x

– OX(−1),
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which in turn is the middle row of the commutative diagram

OX(1)

��

O2
X

[y,x]

[y,x]
oooo

��

» y x
−1 0
0 1

– » y x
−1 0
0 1

–
��

OX(−1)oo

h−x
y

i
h−x
y

ioo
��

»
1
0
0

– »
1
0
0

–
��

OX(1) OX(1)⊕O2
X

oooo

[1,y,−x] [1,y,−x]

����

OX(−1)⊕O2
X

oo

[ 0 1 0
0 0 1 ] [ 0 1 0

0 0 1 ]

����

OX(−1)oooo

��
OX(1) O2

X

[−x,y]

[x,y]
oooo OX(−1).oo

h−y
−x
i

[−yx ]
oo

It follows that the relative discriminant is the class of the short double exact
sequence

OX(1)
[−x,y]

�−−−−
[x,y]

O2
X

h−y
−x
i

←−−−�

[−yx ]
OX(−1),

which occurs in the commutative diagram

0
��

��

0oo
��

��

0oo
��

��
OX(1)

11

����

O2
X

[−x,y]

[x,y]
oooo

h
−1 0
0 1

i
1

����

OX(−1)oo

h−y
−x
i

[−yx ]
oo

1 −1

����
OX(1) O2

X

[x,y]

[x,y]
oooo OX(−1)oo

h
y
−x
i

h
y
−x
ioo

It follows from Theorem 2.9 that the relative discriminant equals

−{−1}[OX ]− {−1}[OX(−1)] = {−1}([OX ]− [OX(−1)])

({−1} has order 2 in K1(F )), which is not 0.

Remark 3.1. It is easy to see that if the classes of symmetric bilinear
forms ϕ, ψ are equal in the Grothendieck group of symmetric bilinear spaces,
then ε1(ϕ÷ψ) = 0. It follows that the Grothendieck ring of symmetric bilin-
ear spaces of the projective line over a field F differs from the Grothendieck
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ring of symmetric bilinear spaces of the field F , in contrast to the case of
Witt rings.

As an example shows, to define an invariant of Witt equivalence one
must factor out the relative discriminants of pairs of hyperbolic forms.

Definition 3.5. Let H(M;D, δ) be the subgroup of E1(M;D) gener-
ated by the classes of all the relative discriminants ε1(µ÷ ν) of pairs of hy-
perbolic spaces (the class of hyperbolic spaces depends on δ). The k1-group
of (M;D, δ) is the factor group

k1(M;D) = E1(M;D)/H(M;D, δ).

For applications it is important (by Proposition 3.5) that to compute
the group H(M;D, δ) it is enough to compute the relative discriminants of
pairs of hyperbolic spaces corresponding to nonzero elements of E0

−(M;D).

Corollary 3.6. There is a natural surjective homomorphism E0
−(M;D)

→ H(M;D, δ). In particular H(M;D, δ) = 0 whenever E0
−(M;D) = 0.

Proof. Consider the pullback X = X(M;D, δ),

X //

��

K0(M)

1+D
��

K0(M) 1+D // K0(M)

There are two homomorphisms defined on X:

• ([K], [L]) 7→ [K]− [L] mod (1−D)K0(M) ∈ E0
−(M;D),

• ([K], [L]) 7→ ε1(H(K), H(L)) ∈ E1(M;D).

Proposition 3.5 states that the kernel of the first is contained in the kernel
of the second, so there is a homomorphism E0

−(M;D)→ E1(M;D).
Whenever two hyperbolic forms H(A), H(B) such that [H(A)] = [H(B)]

in K0(M) are given, we have

[A] +D[A] = [B] +D[B],
[A]− [B] = D[B]−D[A] = −D([A]− [B])

so [A] − [B] defines an element of E0
−(M;D) which maps onto the class

ε1(H(A)÷H(B)).

For instance, for the projective line X = P1
F from Example 3.1, the group

(3.7) H(X) = H(M;D, δ) = µ2(F ) · E0
−(X)

has two elements: 0 and {−1}([OX ]− [OX(−1)]).

Corollary 3.7. If for symmetric bilinear spaces (A,ϕ) and (B,ψ) there
are metabolic forms (M,µ), (M ′, µ′), (N, ν) and (N ′, ν ′) with common res-
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olutions

A⊕M � P � Q, B ⊕N � P � Q,

A⊕M ′ � R � S, B ⊕N ′ � R � S,

then the difference

ε1(ϕ⊕ µ÷ ψ ⊕ ν)− ε1(ϕ⊕ µ′ ÷ ψ ⊕ ν ′)
belongs to H(M;D, δ).

Proof. This is a formal consequence of Theorem 3.3 and the fact that
the difference of the double exact sequences

DQ � DP ← P � Q, DS � DR← R � S

is the class of the direct sum of the first one and of the second one turned
upside-down:

DQ⊕DS � DP ⊕DR← P ⊕R � Q⊕ S.
Denote by u its class in K1(M). Next choose a common resolution

M ′ ⊕N ⊕W � U � T, M ⊕N ′ ⊕W � U � T

for some metabolic (W,ω). Since

ε1(µ′ ⊕ ν ⊕ ω ÷ µ⊕ ν ′ ⊕ ω) ≡ 0 mod H(M;D, δ),

the class v in K1(M) defined by the direct sum

DQ⊕DS ⊕DT � DP ⊕DR⊕DU ← P ⊕R⊕ U � Q⊕ S ⊕ T
is congruent to u modulo H(M;D, δ). But this class corresponds to the
common resolution of the isomorphic forms

(X, ξ) = (A⊕M ⊕B ⊕N ′ ⊕M ′ ⊕N ⊕W,ϕ⊕ µ⊕ ψ ⊕ ν ′ ⊕ µ′ ⊕ ν ⊕ ω),
(Y, υ) = (B ⊕N ⊕A⊕M ′ ⊕M ⊕N ′ ⊕W,ψ ⊕ ν ⊕ ϕ⊕ µ′ ⊕ µ⊕ ν ′ ⊕ ω).

By Theorem 3.3 this class is congruent modulo H(M;D, δ) to the class of

0 � DX
ξ←−
ξ
X � 0.

It follows that u ≡ 0 modulo H(M;D, δ).

The goal of this paper is to define the discriminant map:

Definition 3.6. Let I(M;D, δ) = Ker e0. The discriminant map

e1 : I(M;D, δ)→ k1(M;D)

is defined as follows:

if [A⊕M ⊕DM ] = [N ⊕DN ] in K0(M),

then e1(A,ϕ) = ε1(ϕ⊕ µ÷ ν) modH(M;D, δ),
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where µ : M⊕DM → DM⊕M and ν : N⊕DN → DN⊕N are hyperbolic
forms.

Let us state several elementary properties of these notions.

Proposition 3.8. For arbitrary exact categories with duality (M, (D, δ)),
(N, (D′, δ′)),

(i) the En-groups are elementary 2-groups (groups of exponent 2).
(ii) if f : M→ N is an exact functor which commutes with the duality,

then f induces homomorphisms

f : W (M;D, δ)→W (N;D′, δ′), f : I(M;D, δ)→ I(N;D′, δ′),
f : En(M;D, δ)→ En(N;D′, δ′), f : En−(M;D, δ)→ En−(N;D′, δ′),
f : k1(M;D, δ)→ k1(N;D, δ)

such that the diagrams

W (M;D, δ) e0 //

f

��

E0(M;D)

f

��
W (N;D′, δ′) e0 // E0(N;D′)

I(M;D, δ) e1 //

f
��

k1(M;D)

f
��

I(N;D′, δ′) e1 // k1(N;D′)

commute.

Proof. (i) If (1±D)a = 0, then 2a = (1∓D)a ≡ 0 mod Im(1∓D).

The following example provides a motivation for the notation e1 and
I(M;D, δ), and shows that the above defined notion generalizes the usual
notion of the discriminant of a quadratic form.

Example 3.2. Let M be the category of vector spaces over a field F
with the usual dualization. In this case it is obvious that e0 coincides with
the usual dimension index, so I(M) = I(F ). Moreover, E0

−(F ) = 0, so
k1(M) = E1(M). Note that D acts trivially on K1(F ), so

E1(F ) df= E1(M) = K1(F )/2K1(F ) = k1(F ),

hence the new notation k1(F ) is consistent with the one introduced in [9].
Moreover,

E1
−(F ) df= E1

−(M) = µ2(F ) = {1,−1}.
The group E1(F ) ∼= F ∗/F ∗2 is usually denoted by g(F ) (the square classes
group) in the theory of quadratic forms. If e0(A,ϕ) = 0, then A is an even-
dimensional vector space, dim(A) = 2k, so there exists an isomorphism
ρ : B ⊕B∗ → A of a space B ⊕B∗ supporting a hyperbolic form χ, with A.
Thus one may choose the exact sequences (3.1) in a special way:

A
ρ←− B ⊕B∗ ← 0← 0, B ⊕B∗ 1←− B ⊕B∗ ← 0← 0.
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The double exact sequence (3.3)

0 �−−�−− B ⊕B∗
χ←−−−−−←−−−−−

ρ∗◦ϕ◦ρ
B ⊕B∗ �� 0

defines the element

det(ϕ) det(χ) = (−1)k det(ϕ) = (−1)2k(2k−1)/2 det(ϕ) mod 2K1(F ),

which is exactly the discriminant of (A,ϕ).

The additional E1-group E1
−(F ) = µ2(F ) = {1,−1} has no direct inter-

pretation yet.

Example 3.3. If M is the category of vector bundles on a scheme X
with the usual dualization (D = ˆ = HomOX (−,OX)), then we write

W (X) = W (M), I(X) = I(M), En(X) = En(M), k1(X) = k1(M).

Let f : Y → X be a morphism of schemes, and N be the category of
vector bundles on Y . The exact functor f∗ : M → N commutes with the
dualization, so it induces homomorphisms on E-groups and Witt groups, and
homomorphisms of E0 and W commute with e0. Thus the homomorphism of
Witt groups maps I(X) into I(Y ), and commutes with e1. This means that
if, in particular, Y is a point, then the above defined discriminant reduces
to the usual discriminant on fibers.

It is known that there exist symmetric bilinear forms of even rank (and
hence with e0 trivial on fibers) which have nontrivial global e0, say on split
projective quadrics of even dimension. So there is no reason to expect in
general that local discriminants determine the value of e1.

The following property of e1 provides a motivation for adopting the clas-
sical notation I(X) for the notion defined above:

Theorem 3.9. Consider the category PX of locally free sheaves of finite
rank on a variety X over a field F with a line bundle L (possibly trivial),
the usual duality functor DA = HomOX (A,L) and δ either the canonical
isomorphism, or its negative. Let moreover c ∈ Ḟ be a nonzero constant.
Then for each form (A,ϕ) such that e0(ϕ) = 0 we have

e1(c · ϕ) = e1(ϕ) in k1(X).

Proof. Choose metabolic (M,µ), (N, ν) such that A⊕M and N have a
common resolution:

A⊕M
π
� P

ρ
� Q, N

π′

� P
ρ′

� Q.

Note that (M, c · µ) and (N, c · ν) are metabolic forms, and the four-term
double exact sequences needed to compute discriminants are the rows of the
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commutative diagram

DQ

1 1
��

DP
Dρ′

Dρoooo

1 1

��

P
cDπ◦(ϕ⊕µ)◦π

cDπ′◦(ϕ⊕µ)◦π′
oo

cc

��

Qoo
Dρ

Dρ′
oo

cc

��
DQ DP

ρ′

ρoooo P
Dπ◦(ϕ⊕µ)◦π

Dπ′◦(ϕ⊕µ)◦π′
oo Qoo

ρ

ρ′
oo

with isomorphic vertical arrows. It follows from the 3× 4 lemma that both
rows define the same class in K1(X), so e1(c · ϕ) = e1(ϕ).

Corollary 3.10. Under the assumptions of the theorem,

I(F ) · I(X) ⊂ Ker(e1).

4. The map e1 : I(X)→ k1(X) for a certain projective variety X.
Here we assume that the dualization (D, δ) is fixed, and suppress it in the
notation. It is easy to compute the E1-groups in the following particular
case:

Theorem 4.1. Assume that X is a quasiprojective variety over a field
F such that K1(X) = K0(X)⊗Z K1(F ). Then

E1(X) ∼= E1(F )⊗ E0(X)⊕ E1
−(F )⊗ E0

−(X),

E1
−(X) ∼= E1(F )⊗ E0

−(X)⊕ E1
−(F )⊗ E0(X).

Proof. The E-groups are the Tate cohomology groups of the group {1, D}:

E1(X) = Ĥ0({1, D},K1(F )⊗K0(X)),
E1
−(X) = Ĥ1({1, D},K1(F )⊗K0(X)).

By the universal coefficients formula there are exact sequences

0→ K1(F )⊗ Ĥ i({1, D},K0(X))→ E1
±(X)

→ Tor1(K1(F ), Ĥ i+1({1, D},K0(X)))→ 0,

i.e. exact sequences

0→ K1(F )⊗ E0(X)→ E1(X)→ Tor1(K1(F ), E0
−(X))→ 0,

0→ K1(F )⊗ E0
−(X)→ E1

−(X)→ Tor1(K1(F ), E0(X))→ 0.

E0(X) and E0
−(X) are elementary 2-groups (groups of exponent 2), so

K1(F )⊗ E0
±(X) = g(F )⊗ E0

±(X),

Tor1(K1(F ), E0
±(X)) = µ2(F )⊗ E0

±(X),

and the assertion is proved.

It is obvious that H(X) = H(M) ⊂ µ2(F )⊗ E0
−(X).
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Conjecture 4.2. Under the assumptions of Theorem 4.1,

H(X) = E1
−(F )⊗ E0

−(X), k1(X) = E1(F )⊗ E0(X).

Example 4.1. The projective space X = PnF = ProjF [x0, x1, . . . , xn]
with the usual dualization functor (D = HomOX (−,OX)) satisfies the as-
sumption of Theorem 4.1. In this case the E0-groups are known:

E0(X) = Z/2Z[OX ] and E0
−(X) =

{
0 for even n,
Z/2ZHn for odd n,

where H = 1 − [OX(−1)] is the class of a hyperplane section ([21, Prop.
2.1.3], [23, Prop. 5.1], [22, Cor. 3.4]). Thus:

E1(X) =
{
g(F ) · [OX ] for even n,
g(F ) · [OX ]⊕ µ2(F ) ·Hn for odd n,

H(X) =
{

0 for even n,
µ2(F ) ·Hn for odd n,

E1
−(X) =

{
µ2(F ) · [OX ] for even n,
µ2(F ) · [OX ]⊕ g(F )Hn for odd n.

It is known that the canonical map W (F )→W (X) induced by the inverse
image functor V 7→ V ⊗F OX for the structure map X → Spec (F ) is
an isomorphism ([1, Satz]). Therefore I(X) = I(F ) ⊗F OX and the map
e1 : I(X)→ k1(X) is surjective for even n.

For a field F of characteristic different from 2, the classes of hyperbolic
spaces form a cyclic direct summand of even order in the Grothendieck group
of symmetric bilinear spaces generated by hyperbolic planes ([24, Th. 1.1]).
This is not so for odd-dimensional projective spaces. First of all, there is an
infinite sequence of hyperbolic planes

hk = OX(k)⊕OX(−k) for k = 0, 1, 2, . . . .

Corollary 4.3. On the projective space X = PnF of odd dimension n
there exists a hyperbolic space whose class in the Grothendieck group of sym-
metric bilinear spaces is not a multiple of the standard hyperbolic plane
h0 =

(
O2
X ,
[

0 1
1 0

])
.

Proof. For the case n = 1 see Example 3.1. For n > 1 there exists a
pair of hyperbolic spaces with relative discriminant {−1}Hn 6= 0, since H
is nontrivial.

Let n = 2k − 1 and

A =
k−1∑
i=0

(
2k − 1

2i

)
hi,(4.1)



Dualization and the invariant e1 287

B =
k−1∑
i=0

(
2k − 1
2i+ 1

)
hi.(4.2)

The identity Hn+1 = 0 implies that A and B define equal classes in K0(X).
The proof of Corollary 3.6 shows that ε1(A ÷ B) is nonzero. Thus A,B
cannot both be multiples of the standard hyperbolic plane h0.

4.1. A conic. We compute the E0-groups and E1-groups of a projective
conic X:

q = z2
0 − az2

1 − bz2
2

for the anisotropic quadratic form 〈1,−a,−b〉 over a field F defined on the
space V over F with base v0, v1, v2 (z0, z1, z2 is the dual base of the dual
space V ∗), so that the projective conic

X = ProjS(V ∗)/(q)

has no rational points.
The Clifford algebra C(q) has generators

1, v0, v1, v2, v0v1, v0v2, v1v2, v0v1v2,

and relations

vivj = −vjvi for i 6= j,

v2
0 = 1, v2

1 = −a, v2
2 = −b.

The elements 1, v0v1, v0v2, v2v1 form a base of the even Clifford algebra C0,
which is isomorphic to the quaternion algebra

(a,b
F

)
:

(v0v1)2 = a, (v0v2)(v2v1) = −(v2v1)(v0v2),

(v0v2)2 = b, (v0v1)(v2v1) = −(v1v2)(v0v1),

(v2v1)2 = −ab, (v0v1)(v0v2) = −(v0v2)(v0v1) = v2v1.

We denote as usual

i = v0v1, j = v0v2, k = v2v1.

Let
ϕ = z0v0 + z1v1 + z2v2 ∈ Γ (X,OX(1)⊗ C1)

be the “generic zero vector” of q,

ϕ2 = (z0v0 + z1v1 + z2v2)2 = z2
0 − az2

1 − bz2
2 = 0.

The complex

· · · ϕ ·−→ OX(−n)⊗F Cn+2
ϕ ·−→ OX(1− n)⊗F Cn+1

ϕ ·−→ OX(2− n)⊗F Cn
ϕ ·−→ · · ·
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(subscripts in Cn are taken modulo 2) is exact and splits locally ([20, Prop.
8.2(a)]). For the bases 1, i, j, k of C0 and v0, v1, v2, v2v1v0 of C1 the maps
ϕ · − have the matrices

z0 −az1 −bz2 0
−z1 z0 0 bz2

−z2 0 z0 −az1

0 z2 −z1 z0

 for OX(2s− 1)⊗F C1
ϕ ·−→ OX(2s)⊗ C0,


z0 az1 bz2 0
z1 z0 0 −bz2

z2 0 z0 az1

0 −z2 z1 z0

 for OX(2s)⊗F C0
ϕ ·−→ OX(2s+ 1)⊗ C1.

Definition 4.1. The Swan sheaf U is defined as the cokernel

U = U0 = Coker(OX(−2)⊗F C0
ϕ ·−→ OX(−1)⊗F C1).

Let E±0 (X), E±0 (X,L) be the E-groups of the dualization

Aˆ = Hom(A,OX), AˆL = Hom(A,OX(−1)),

with canonical δ, δL respectively.

Proposition 4.4. The E-groups of X are:

E0(X) = (Z/2) · [OX ], E−0 (X) = (Z/2) · (2− [U ]),

E0(X,L) = 0, E−0 (X,L) = 0.

Proof. There is an exact sequence

0← OX(1)← O3
X ← OX(−1)3 ← OX(−2)← 0

inherited from the projective plane. Now to use the results of [20], note that
the sheaf OX(1) has the truncated canonical resolution

(4.3) 0← OX(1)← O3
X ← U ← 0.

The Swan sheaf U is a right module over

EndX(U) = C0(〈1,−a,−b〉) ∼=
(
a, b

F

)
.

The quaternion algebra D =
(a,b
F

)
is a skew field, so U is an indecompos-

able vector bundle. The sheaf U has rank 2, so there is a nonsingular skew
symmetric pairing U ⊗OX U →

∧2 U given by exterior multiplication. Thus

U ∼= HomOX (U ,
∧2 U).

Taking the highest exterior powers in the truncated canonical resolution
yields

OX(1)⊗
∧2 U ∼= OX ,

∧2 U ∼= OX(−1).
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It follows that

U ∼= HomOX (U ,OX(−1)) ∼= Uˆ⊗OX(−1).

The formula for the determinant of the tensor product shows that in
general∧2 U(n) =

∧2 (U ⊗OX(n)) ∼= (
∧2 U)⊗ (OX(n))⊗2 ∼= OX(2n− 1)

and

U(n) ∼= HomOX (U(n),OX(2n− 1)) ∼= U(n)ˆ⊗OX(2n− 1),

so U(n) carries a skew symmetric OX(2n− 1)-valued bilinear form.
It follows that K0(X) is a free abelian group of rank 2 with a free base

1 = [OX ], [U ] and identities

H3 = 0,
[OX(1)]− 3 + [U ] = 0 or [OX(1)]H = 2− [U ]

where H = 1 − [OX(−1)] is the class of the hyperplane section, as above.
By [21, Corollary 3.4.3] there is an additional identity

(4.4) [U ] + [Uˆ] = 4 or [U ] + [U(1)] = 4.

Thus

[U ] + [U(1)] = 3− [OX(1)] + 3[OX(1)]− [OX(2)] = 4,

1− 2[OX(1)] + [OX(2)] = 0 or H2 = 0.

The same result (thatH2 = 0) may be obtained easily by checking locally
that the sequence

0← OX(1) α←− O2
X

β←− OX(−1)← 0, α = [z0, z1], β =
[
z1

−z0

]
,

is exact. Here zi ∈ Γ (X,OX(1)) = HomX(OX(k),OX(k + 1)) are global
morphisms of OX -modules under consideration.

The condition H2 = 0 implies 2− [U ] = [OX(1)]H = H, and

0 = (2− [U ])2.

It follows that

[U ]2 = 4[U ]− 4,
[OX(1)] = 3− [U ] = 1 + (2− [U ]),

[OX(−1)] = [U ]− 1 = 1− (2− [U ]).

There is a ring isomorphism K0(X) ∼= Z[u]/(u2) which maps 2− [U ] onto
the coset of u and, by (4.4),

1ˆ = 1, uˆ = −u.
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Denote L = OX(−1). With respect to the base 1, 2− [U ] the involutions
ˆ and ˆL have matrices [

1 0
0 −1

]
and

[
1 0
−1 −1

]
respectively.

Now the assertion follows immediately.

Note that the discriminant map e1 is defined on the whole W (X,L).
The argument used in the above proof can be reformulated as follows:

Corollary 4.5. In K0(X) the action of the involutions induced by the
duality functors ˆ, ˆL respectively, is given by

(x+ y[U ])ˆ = (x+ 4y)− y[U ], (x+ y[U ])ˆL = −x+ (x+ y)[U ].

More precisely: the map ˆ on K0(X) is induced by the functors:

• the identity from F -modules to F -modules (the summand x),
• the forgetful functor fromD-modules to F -modules (the summand 4y),
• the identity functor from D-modules to D-modules (the summand
y[U ]),

while the map ˆL is induced by the functors:

• the identity from F -modules to F -modules (the summand x),
• the natural functor from F -modules to D-modules (the summand
x[U ]),
• the identity functor from D-modules to D-modules (the summand
y[U ]).

Proposition 4.4 states that E−0 (X,L) = 0. Hence the group H is trivial
and k1(X,L) = E1(X,L).

To compute E1-groups let us recall some facts from the K-theory of
quaternion algebras.

The reduced norm is an injective homomorphism

Nrd : K1(D)→ K1(F )

such that for any splitting field E (E ⊗F D ∼= M2(E) is the matrix algebra
over E), if E/F is finite, then the diagram

(4.5)

K1(M2(E)) K1(E⊗FD)

N
��

K1(E)

NE/F
��

∼
OO

K1(D)

Nrdwwnnnnnnnnnnnn

K1(F )
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commutes [8]. It follows that K1(D) = Ḋ/[Ḋ, Ḋ] is isomorphic to the group
B of values of the quadratic form 〈1,−a,−b, ab〉 in K1F = Ḟ , and the
involution ˆ acts trivially on K1(D).

Note that the composition K1(F ) → K1(D) Nrd−−→ K1(F ) is the map
x 7→ x2. We will identify K1(D) with B via the map Nrd.

For example:

• If the involution ˆ : K0(X) → K0(X) maps x + y[U ] ∈ K0(X) to
x + 4y − y[U ], then ˆ : K1(X) → K1(X) maps x + y[U ] ∈ K1(X) to
x+ND/F (y)− y[U ]; if x = {ξ} ∈ K1(F ), y = {ζ} ∈ K1(D), then

x+ND/F (y) = {ξND/F (ζ)} = {ξNrd(ζ)2} ∈ K1(F ),

−y = {ζ−1} ∈ K1(D),

and we write Nrd(ζ−1) ∈ B instead of {ζ−1} ∈ K1(D).
• If the involution ˆL : K0(X) → K0(X) maps x + y[U ] ∈ K0(X) to

−x+ (x+ y)[U ], then ˆL : K1(X)→ K1(X) maps x+ y[U ] ∈ K1(X) to

−x+ (r(x) + y)[U ] = {ξ−1}+ {ξζ}[U ],

where r : K1(F ) → K1(D) is the canonical map; after identification of
K1(D) with B we write Nrd(ξζ) = ξ2 Nrd(ζ) ∈ B instead of {ξζ} ∈ K1(D).

It follows from Corollary 4.5 that in K1(X) = K1(F ) ⊕ K1(D)[U ] =
Ḟ ⊕B · [U ] for t ∈ Ḟ , u ∈ B we have

(t, u[U ])ˆ = (tu2, u−1[U ]), (t, u[U ])ˆL = (t−1, t2u[U ]).

Thus the following result is obvious.

Theorem 4.6. For a projective conic X: x2
0 − ax2

1 − bx2
2 = 0 given by

the anisotropic quadratic form 〈1,−a,−b〉 over a field F and the line bundle
L = OX(−1) let E1

±(X) = E1
±(PX ; ˆ, δ) and E1

±(X,L) = E1
±(PX ; ˆL, δL).

Then

E1(X) = g(F )[OX ]⊕ (µ2(F ) ∩B)[U ], E−1 (X) = µ2(F )[OX ]⊕B/B2,

E1(X,L) ∼= µ2(F )⊕B/Ḟ 2[U ], E−1 (X,L) ∼= µ2(F )⊕B/Ḟ 2.

The following computation looks strange, but will be used below, in the
proof of Proposition 4.13.

Consider twoOX(−1)-valued bilinear forms: the first is a skew symmetric
form

π : U → Uˆ⊗OX(−1) = UˆL

given by exterior multiplication U × U →
∧2 U = OX(−1), and the second

is the symmetric hyperbolic form[
0 1
1 0

]
: OX ⊕OX(−1)→ OX(−1)⊕OX = (OX ⊕OX(−1))ˆL.
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Then use the common resolution

0← OX(1)
[z0,−z1,z2]←−−−−−− O3

X
f←− U ← 0,

0← OX(1)
[z0,−z1,0]←−−−−−− O3

X

» 0 z1
0 z0
1 0

–
←−−−− OX ⊕OX(−1)← 0

to produce a four-term double exact sequence.

Proposition 4.7. The class of the double exact sequence

(4.6) OX(1)
[z0,−z1,z2]

�−−−−−−−
[z0,−z1,0]

O3
X

"
0 −z2 −z1
z2 0 −z0
z1 z0 0

#
←−−−−−−−−−"

0 0 z1
0 0 z0
z1 z0 0

# OX(−1)3

» z0
−z1
z2

–
←−−−−�» z0
−z1

0

– OX(−2)

in K1(X) = K1(F )[OX ]⊕K1(D)[U ] equals {−1}[OX ] + {1}[U ].

Proof. Two resolutions

0← OX(1)
[z0,−z1,z2]←−−−−−− O3

X
f←− U ← 0,

0← OX(1)
[z0,−z1,0]←−−−−−− O3

X

» 0 z1
0 z0
1 0

–
←−−−− OX ⊕OX(−1)← 0

glued with their ˆL-duals along π and
[

0 1
1 0

]
give the double exact sequence

(4.7) OX(1)
[z0,−z1,z2]

�−−−−−−−
[z0,−z1,0]

O3
X

"
0 −z2 −z1
z2 0 −z0
z1 z0 0

#
←−−−−−−−−−"

0 0 z1
0 0 z0
z1 z0 0

# OX(−1)3

» z0
−z1
z2

–
←−−−−�» z0
−z1

0

– OX(−2).

It may be resolved as follows: in the commutative diagram

OX(1)
��

1 1

��

O2
X[z0,−z1]

[z0,−z1]oooo
�� »

1 0
0 1
0 0

–»
1 0
0 1
0 0

–
��

OX(−1)oo
[ z1z0 ]

[ z1z0 ]
oo

��

»
0
0
−1

– »
0
0
1

–
��

0oo

��
OX(1)

��

O3
X

oooo

[0,0,1][0,0,1]

����

OX(−1)3oo

[ 1 0 0
0 1 0 ][ 1 0 0

0 1 0 ]

����

OX(−2)oooo

11

����
0 OXoo OX(−1)2

[z1,z0]

[z1,z0]oooo OX(−2)oo
[ z0
−z1 ]

[ z0
−z1 ]

oo
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all displayed d.s.e.s.’s but one have equal upper and lower part. Thus the
double exact sequence (4.7) defines the same element of K1(X) as the one
defined by the split d.s.e.s.

OX(−1)2
[ 1 0 0
0 1 0 ]

�−−−−−
[ 1 0 0
0 1 0 ]

OX(−1)3

»
0
0
−1

–
←−−−�»

0
0
1

– OX(−1).

The same element of K1(X) is defined by the automorphism of taking the
negative on OX(−1), since there is a commutative diagram of d.s.e.s.’s

0
��

��

OX(−1)oooo
��

��

OX(−1)
1

−1oooo
��

11

��
OX(−1)2

11

����

OX(−1)3

[ 1 0 0
0 1 0 ]

[ 1 0 0
0 1 0 ]

oooo

[ 1 0 0
0 1 0 ][ 1 0 0

0 1 0 ]

����

OX(−1)oo»
0
0
1

–
»

0
0
−1

–
oo

����
OX(−1)2 OX(−1)2

1

1oooo 0oooo

Since

{−1}[OX(−1)] = {−1}([U ]− 1) = {Nrd(−1)}[U ] + {−1}[OX ]

in K1(X), the assertion follows.

This computation is important for determining discriminants of genera-
tors of the Witt group W (X,L) found by Susane Pumplün [17, Cor. 4.4].

A (skew) symmetric isomorphism φ : U → DU(−1) yields an involution
∗ = ∗φ on EndX(U): if ψ ∈ EndX(U) then

ψ∗ = φ−1 ◦ (Dψ ⊗ 1OX(−1)) ◦ φ.
Proposition 4.8. The involution ∗π coincides with the conjugation α 7→

α on the quaternion algebra EndX(U) = C0 =
(a,b
F

)
:

(q0 + q1i+ q2j + q3k)∗
π

= q0 − q1i− q2j − q3k.

Proof. Replace U with isomorphic ϕU ⊂ OX ⊗C0. The exact sequence

ϕ · U ↪→ OX ⊗C0 � U(1)

splits locally, so it yields an exact sequence on each of the principal affine
open subsets

D(zm) = {(z0 : z1 : z2) : zm 6= 0} for m = 0, 1, 2.



294 M. Szyjewski

Locally, in D(zm), the module ϕ · U(D(zm)) as a submodule of O(D(zm))
⊗F C0 is generated by products of ϕ times v0, v1, v2, v2v1v0:

(4.8)

1
zm

(z0 − z1i− z2j),
1
zm

(−az1 + z0i+ z2k),

1
zm

(−bz2 + z0j − z1k),
1
zm

(bz2i− az1j + z0k).

The module U(1)|D(xm) = U|D(zm) is generated by the cosets of 1, i, j, k
modulo ϕ·U|D(zm). Thus the module

∧2 U|D(zm) is generated by the exterior
products

1 ∧ i, 1 ∧ j, 1 ∧ k, i ∧ j, i ∧ k, j ∧ k
subject to twelve identities of the form

(generator (4.8)) ∧ (one of 1, i, j, k) = 0,

e.g.
1
zm

(z11 ∧ i+ z21 ∧ j) = 0,
1
zm

(z01 ∧ i+ z21 ∧ k) = 0,

1
zm

(z01 ∧ i+ z2i ∧ j) = 0,
1
zm

(az1i ∧ j + z0i ∧ k) = 0,

1
zm

(bz21 ∧ j − z1j ∧ k) = 0.

Thus exterior multiplication

∧ : U ⊗ U →
∧2 U = OX(−1)

has in D(zm) the “Gram matrix”

1
zm


0 z2 −z1 −z0

−z2 0 −z0 −az1

z1 z0 0 −bz2

z0 az1 bz2 0

 .
Now it is easy to see that

αi ∧ β = −α ∧ βi, αj ∧ β = −α ∧ βj, αk ∧ β = −α ∧ βk
for all α, β ∈ U(D(zm)), so

(q0 + q1i+ q2j + q3k)∗
π

= q0 − q1i− q2j − q3k

holds in every D(zm), m = 0, 1, 2, and hence holds globally.

Corollary 4.9. For every pure quaternion γ ∈
(a,b
F

)
the map

π ◦ (· γ) : U → Uˆ(−1)

defines a nonsingular symmetric bilinear form with values in OX(−1).
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Proof. Locally

(π ◦ (· γ))(α)(β) = π(α · γ)(β) = (α · γ) ∧ β = −α ∧ (β · γ)
= (β · γ) ∧ α = (π ◦ (· γ))(β)(α).

Susane Pumplün proved the following fact:

Proposition 4.10. The Witt group W (X,L) is generated by the classes
of the forms

(4.9) p =
(
trF ′/F (OX′(−1)), trF ′/F (c id)

)
, c ∈ F ′.

Here F ′/F is a quadratic extension which splits 〈1,−a,−b〉 (splits
(a,b
F

)
).

Proof. [17, Cor. 4.4]; the canonical bundle I is our U .

We will refer to forms of the kind (4.9) as Pumplün generators.

Corollary 4.11. For every pure quaternion γ ∈
(a,b
F

)
there exists a

constant c ∈ Ḟ such that
π ◦ (· γ) = c · p

for a suitable Pumplün generator p.

Proof. The bundle U is indecomposable, so the assertion follows imme-
diately from [17, Prop. 4.1].

Note that if π ◦ (· γ) = c ·p, then π ◦ (· c−1γ) = p. Moreover the quadratic
extension F ′ needed to define the Pumplün generator p is F ′ = F (γ) ∼=
F [
√
−Nrd(γ)].

Proposition 4.12. For every Pumplün generator p there exist a pure
quaternion η ∈

(a,b
F

)
and a constant c ∈ F · such that

p ◦ (· η) = cπ.

Proof. By the Noether–Skolem theorem every involution of the algebra(a,b
F

)
is the composition of the canonical involution with an inner automor-

phism. Let γ ∈
(a,b
F

)
be a quaternion such that

(· ξ)∗p = γ−1ξγ

for all ξ ∈
(a,b
F

)
. A priori there are two cases. If γ = γ, then ∗p is conjugation,

and η is any pure quaternion. If γ 6= γ, then η = γ − γ is a pure quaternion
and

η∗
p

= γ−1δγ = −η
and in any case p ◦ (· η) is skew symmetric, since locally

(p ◦ (· η))(α)(β) = p(αη)(β) = p(α)(−βη) = −p(βη)(α) = −(p ◦ (· η))(β)(α).

Hence p ◦ (· η) must be a scalar multiple of π.
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Remark 4.1. It follows that the first case (when ∗p is conjugation) never
occurs: if p = π ◦ (· η−1) for a pure quaternion η, then

p(αγ)(β) = π(αγη−1)(β) = π(α)(βγη−1) = −π(α)(βη−1γ)(4.10)

= −π(α)(βη−1γηη−1) = −π(αη−1)(βη−1γη)

= π(αη−1)(βη−1γη) = p(α)(βη−1γη),

where
γ∗

p
= η−1γη = ηγη−1,

so
π−1 ◦ αˆL ◦ π = −α,

while the composition π ◦ α : U → UˆL is a symmetric bilinear form.

Proposition 4.13. If α is an invertible anti-selfadjoint endomorphism
of the sheaf U , then

e1(π ◦ α) = (−1,Nrd(α)Ḟ 2) ∈ µ2(F )⊕B/Ḟ 2.

Proof. The commutative diagram

(4.11)

0
��

��

0
��

��
0 UˆLoooo

1 1
����

Uπ
π◦αoo

α 1
����

0oooo

0 UˆLoooo Uπ
πoo 0oooo

implies that `
(
0 � U π◦α←−−

π
U � 0

)
is the element of K1(D) corresponding to

α ∈ Aut(U), which is obviously the reduced norm Nrd(α). By Lemma 2.19
the element `

(
0 � U π◦α←−−

π
U � 0

)
coincides with the element defined by

(4.12) OX(1)
[z0,−z1,z2]

�−−−−−−−
[z0,−z1,0]

O3
X

f◦π◦α◦Df←−−−−−−
f◦π◦Df

OX(−1)3

» z0
−z1
z2

–
←−−−−�» z0
−z1

0

– OX(−2).

Moreover by Lemma 2.20 the sum of the element of K1(X) defined by (4.12)
and the element defined by (4.7) coincides with the element defined by the
double exact sequence

OX(1)
[z0,−z1,z2]

�−−−−−−−
[z0,−z1,0]

O3
X

f◦π◦α◦Df←−−−−−−−"
0 0 z1
0 0 z0
z1 z0 0

# OX(−1)3

» z0
−z1
z2

–
←−−−−�» z0
−z1

0

– OX(−2)
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which represents e1(π ◦ α). Thus

e1(π ◦ α) = ε1

(
π ◦ α÷

[
0 1
1 0

])
= (−1,Nrd(α)).

Remark 4.2. The group B is generated by the reduced norms of pure
quaternions; in fact, every nonzero quaternion is either a pure quaternion
or a product of two pure quaternions.

Corollary 4.14. If Nrd(αβ) is not a square, then the forms π ◦α and
π ◦ β are not Witt equivalent.

This corollary may be partially reversed:

Proposition 4.15. If γ, δ are pure quaternions such that Nrd(γ) =
Nrd(δ), then for some c ∈ Ḟ the spaces (U , π ◦ (· γ)) and (U , c · π ◦ (· δ)) are
isomorphic.

Proof. If γ + δ = 0 then c = −1. The condition Nrd(γ) = Nrd(δ) yields

γ2 = −Nrd(γ) = −Nrd(δ) = δ2.

If γ + δ 6= 0 then for λ = γ + δ,

γλ = λδ, i.e. γ = λδλ−1.

Thus locally

(π ◦ (· γ))(α)(β) = π(αγ)(β) = π(αλδλ−1)(β)

=
1

Nrd(λ)
π(αλδλ)(β) =

1
Nrd(λ)

π(αλδ)(βλ)

=
1

Nrd(λ)
(π ◦ (· δ))(αλ)(βλ),

which means that ·λ ∈ EndX(U) is an isomorphism of Nrd(λ)π ◦ (· γ) and
π ◦ (· δ).

Corollary 4.16. The discriminant map e1 : W (X,L)→ µ2(F )⊕B/Ḟ 2

is given by the formula

e1
( n∑
m=1

π ◦ (·αm)
)

= ((−1)n,Nrd(α1 · · ·αn)).

Corollary 4.17. If n is odd or Nrd(α1 · · ·αn) is not a square, then
the element

∑n
m=1 π ◦ (·αm) is not zero in W (X,L).
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