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On the lengths of bad sequences of monomial ideals over
polynomial rings

by

Florian Pelupessy and Andreas Weiermann (Ghent)

Abstract. We give bad (with respect to the reverse inclusion ordering) sequences of
monomial ideals in two variables with Ackermannian lengths and extend this to multiple
recursive lengths for more variables.

1. Introduction. Quite recently Diane Maclagan [4] has proven the
following interesting theorem:

Theorem 1.1. Every infinite sequence of monomial ideals in a polyno-
mial ring contains an ideal that is a subset of an ideal that occurs earlier in
that sequence.

Monomial ideals play an important role in commutative algebra and al-
gebraic combinatorics. Because the above theorem has several applications
in computer algebra, it is of interest to study the logical and combinato-
rial issues surrounding it. Aschenbrenner and Pong [1] did this extensively
from the viewpoint of the theory of well partial orders and they computed
several related interesting ordinal invariants. We complement this, in par-
ticular Proposition 3.25 of their paper which concerns a finitary version of
Maclagan’s theorem (Theorem 2.1 in this note). We show that already in
two variables there are bad sequences with linear complexity bounds which
have non-primitive recursive lengths. We also extend this, for arbitrary n,
to n-fold recursive lower bounds of such lengths with higher numbers of
variables.

This is somewhat surprising because upper bounds for the lengths of
increasing chains of ideals with linear complexity bounds that arise from
the similarly shaped Hilbert basis theorem are primitive recursive for any
fixed number of variables (Moreno Soćıas [5]).
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An interesting consequence of our result is that Theorem 2.1 is one of
the rare examples of finitary theorems arising from practice that are not
provable in IΣ2, the theory of Peano Arithmetic with the induction axioms
limited to Σ2 formulas (this follows from a result from proof theory that
provides upper bounds to provable existence; for an introduction to this
area we recommend Wilfried Buchholz’ lecture notes on his web-page [2]).

2. Preliminaries. We assume basic familiarity with ordinals below ε0

and their Cantor normal forms, abbreviated CNF. For those ordinals in CNF
we take fundamental sequences:

α+ 1[i] = α,

α+ ωα+1 · (m+ 1)[i] = α+ ωα+1 ·m+ ωα · i,
α+ ωγ · (m+ 1)[i] = α+ ωγ ·m+ ωγ[i],

for limit γ. Primitive recursive functions are functions Nd → N built from
constant functions, projections and the successor function using composition
and primitive recursion. Multiple recursive functions are also closed under
multiple nested recursion as in [6]. We call a function Ackermannian if it
eventually dominates every primitive recursive function. We use the fast
growing hierarchy

F0(i) = i+ 1, Fα+1(i) = F (i)
α (i), Fγ(i) = Fγ[i](i).

In this definition the (i) in the exponent denotes i-fold composition. The
function Fω is Ackermannian and every multiple recursive function can be
bounded by an Fα with α < ωω

ω
.

For a field K, we consider ideals in the polynomial ring K[X0, . . . , Xd, Y ];
monomial ideals are ideals generated by monomials. If we have a set G
of monomials we denote by G the ideal generated by G. Observe that a
monomial is an element of 〈G〉 if and only if there is a monomial from
G that divides it. For a set G of generators set |G| := max{n0 + · · · +
nd + m : Xn0

0 . . . Xnd
d Y m ∈ G}. For an ideal I we take as its complexity

|I| := min{|G| : 〈G〉 = I}.
Theorem 2.1. For every l, d there exists an M such that for every se-

quence I0, . . . , IM of monomial ideals in K[X0, . . . , Xd, Y ] with |Ii| ≤ l + i
for all i ≤M , there exist i < j < M with Ii ⊇ Ij.

Proof. Maclagan’s theorem with König’s lemma.

Denote such an M by Md(l). The remainder of this note will prove:

Main Theorem 2.2. We have:

(1) M0 is Ackermannian.
(2) (d, l) 7→Md(l) is not multiply recursive.
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3. Two variables. We first examine the case d = 0 using ordinals below
ωk+1.

Definition 3.1. For α = ωα0 ·m0 + · · · + ωαr ·mr and β = ωβ0 · n0 +
· · ·+ωβs ·ns in CNF, with m0, . . .mr, n1, . . . , ns > 0, we write α ≺ β if there
is j such that αi = βi, mi = ni for i < j, αj = βj and mj < nj .

We will create ≺-descending sequences to prove Theorem 2.2. For two
variables it is also possible to do this using <-descending sequences, but we
will use some results from this section later, where <-descending sequences
do not work. Notice that α ≺ β implies α < β and that in this section the
αi and βi are in N. To relate ≺-descending sequences to bad sequences of
monomial ideals take, for α < ωω,

Φ(α) = 〈Xα0Y m0 , . . . , XαrY m0+···+mr〉,
where each of the generators has the form XαiY m0+···+mi .

Lemma 3.2. If α ≺ β < ωk+1, then Φ(α) 6⊆ Φ(β).

Proof. We use the notation from Definition 3.1. Take j such that αi = βi,
mi = ni for i < j, αj = βj and mj < nj . Suppose, for a contradiction, that
p = XαjY m0+···+mj ∈ Φ(β). Then there is some i ∈ {0, . . . , s} such that
XβiY n0+···+ni divides p, i.e. aj ≥ βi and m0 + · · ·+mj ≥ n0 + · · ·+ni. From
the first inequality and αj = βj we obtain j ≤ i. If j = i then the second
inequality and mk = nk for k < j yields mj ≥ nj ; if j < i then we similarly
obtain nj+1 + · · ·+ ni ≤ 0. In both cases we have a contradiction.

This implies that to show that M0 is Ackermannian it is sufficient to
construct certain ≺-descending sequences of Ackermannian lengths:

Definition 3.3. Take |α| = m0 + · · · + mr. Define Lα(l) to be the
maximum length of a sequence γ0 � · · · � γL of ordinals, <-below α with
|γi| ≤ l + i.

Corollary 3.4. M0(l + k) ≥ Lωk+1(l).

Lemma 3.5. Lω2k+2(l + 2) ≥ Fk(l) for l > 2.

Proof. We construct sequences that show this by recursion on k. (This
proof has been inspired by a similar lemma about sequences of fixed length
in [3].)

For k = 0: ω · (l + 1), ω · l + 2, ω · l + 1, ω · (l − 1) + 5, . . . , ω + 1 is a
≺-descending sequence of length greater than l + 1 = F0(l).

For k + 1: Take sequences ω2k+2 > γi0 � · · · � γiLi of length F
(i+1)
k (l)

with |γij | ≤ F
(i)
k (l)+2+ j (from IH, with i ranging from 0 to l−1). The idea

of the construction of the new sequence is to glue these sequences together
l − 1 times, using the length of γi to guarantee that the condition on the
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complexity bounds is met when appending γi+1:

ω2k+3 · (l + 2), . . . , ω2k+3 · 3,
ω2k+3 + ω2k+2 · (l + 1) + l, . . . , ω2k+3 + ω2k+2 · (l + 1) + 1,

ω2k+3 + ω2k+2 · l + γ0
0 , . . . , ω

2k+3 + ω2k+2 · l + γ0
L0
,

...

ω2k+3 + ω2k+2 + γl−1
0 , . . . , ω2k+3 + ω2k+2 + γl−1

Ll−1
.

The first two lines of this construction are there to ensure that the third line
can start with complexity 2l + 3. The next l − 1 lines then ensure that the
last line has length F

(l)
k (l) = Fk+1(l). More precisely we take the sequence:

(1) If 0 ≤ i < l:
βi = ω2k+3 · (l + 2− i),

(2) If l ≤ i < 2l:

βi = ω2k+3 + ω2k+2 · (l + 1) + (2l − i),

(3) For 0 ≤ a < l, if

l + F
(0)
k (l) + · · ·+ F

(a)
k (l) ≤ i < l + F

(0)
k (l) + · · ·+ F

(a+1)
k (l),

where b = i− (l + F
(0)
k (l) + · · ·+ F

(a)
k (l)), then

βi = ω2k+3 + ω2k+2 · l + γab .

This ≺-descending sequence has length l+F
(0)
k (l)+ · · ·+F

(l)
k (l) > F

(l)
k (l). It

remains to check the complexities (using the bounds on i in the three cases):

(1) |βi| = l + 2− i ≤ l + 2 + i,
(2) |βi| = 1 + l + 1 + 2l − i = 3l + 2− i = l + 2 + (2l − i) ≤ l + 2 + l

≤ l + 2 + i,
(3) |βi| = 1 + l + |γab | = 1 + l + F

(a)
k (l) + 2 + b

= 1 + l + F
(a)
k (l) + 2 + i− (2l + F

(1)
k (l) + · · ·+ F

(a)
k (l))

= l + 2 + 1 + i− (l + F
(0)
k (l) + · · ·+ F

(a−1)
k (l))

≤ l + 2 + 1 + F
(a)
k (l) ≤ l + 2 + i.

Corollary 3.6. M0 is Ackermannian.

4. More variables. We generalise this technique to prove the second
part of Theorem 2.2. For α < ωω

d+1
in CNF α = ωα0 ·m0 + · · ·+ ωαk ·mk,

where αi = ωd · ndi + · · ·+ ω0 · n0
i , we take

Ψ(α) = 〈Xnd0
d · · ·X

n0
0

0 Y m0 , . . . , X
ndk
d · · ·X

n0
k

0 Y m0+···+mk〉,
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where the generators have the form X
ndi
d · · ·X

n0
i

0 Y m0+···+mi . First we explain
why we do not use <-descending sequences.

Lemma 4.1. There exist ᾱ < α < ωω
2

such that Ψ(ᾱ) ⊆ Ψ(α).

Proof. Take, for example,

α = ωω·2+1 · 4 + ωω·1+1 · 5, ᾱ = ωω·2+1 · 4
or

α = ωω·3+1 · 7 + ωω·1+1 · 5, ᾱ = ωω·2+1 · 15 + ωω·1+1 · 100.

In the first case the generators of Ψ(ᾱ) are also generators of Ψ(α). In the
latter case we see X1X0Y

115 = Y 103 · X1X0Y
12 and X2

1X0Y
15 = X1Y

3 ·
X1X0Y

12, so the generators of Ψ(ᾱ) are in Ψ(α).

Therefore we cannot use this ordering on the ordinals. If we examine the
examples shown in the lemma we see two problems:

(1) Ψ(ωα0 · m0 + · · · + ωαi · mi) ⊆ Ψ(ωα0 · m0 + · · · + ωαk · mk), but
ωα0 ·m0 + · · ·+ ωαi ·mi < ωα0 ·m0 + · · ·+ ωαk ·mk (if i < k).

(2) If α = ωα0 ·m0 + · · ·+ ωαk ·mk) and ᾱ = ωᾱ0 · m̄0 + · · ·+ ωᾱk̄ · m̄k̄

then ᾱi = αi, m̄i = mi (for i < j), ᾱj < αj does not guarantee
Ψ(ᾱ) 6⊆ Ψ(α), even though ᾱ < α is true.

The ordering ≺ does not pose these problems.

Definition 4.2. For ᾱ = ωᾱ0 · m̄0 + · · ·+ ωᾱk · m̄k and α = ωα0 ·m0 +
· · · + ωαl · ml in CNF, with m̄1, . . . m̄k,m0, . . .ml > 0, we write ᾱ ≺ α if
there is j such that ᾱi = αi, m̄i = mi for i < j, ᾱj = αj and m̄j < mj .

This is precisely Definition 3.1, with some notational differences to pre-
vent confusion. Notice that here also ᾱ ≺ α implies ᾱ < α but that
ᾱi, αi < ωω need not be natural numbers. The following lemma tells us
that this is indeed an ordering we can use:

Lemma 4.3. If ᾱ ≺ α < ωω
ω

then Ψ(ᾱ) 6⊆ Ψ(α).

Proof. Take ᾱ≺α (as in Definition 4.2). Then p :=X
n̄dj
d · · ·X

n̄0
j

0 Y m̄0+···+m̄j

6∈ Ψ(α) for the j from Definition 4.2. To see this, note that, for i < j,

because αi > ᾱj , the generator Xndi
d · · ·X

n0
i

0 Y m0+···+mi has Xr-degree (for
some r) too high to be a factor of p. If i ≥ j, because mj > m̄j , then

X
ndi
d · · ·X

n0
i

0 Y m0+···+mi has Y -degree too high to be a factor of p.

Take a new complexity for ordinals α < ωω
ω

in CNF:

|α| = max
0≤i≤k

(ndi + · · ·+ n0
i ) +m0 + · · ·+mk.

Definition 4.4. Lfα(l) is the maximum length of a sequence γ0 � . . .
� γL, <-below α, with |γi| ≤ l + f(i) for all i ≤ L. We say that such
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a sequence shows that Lfα(l) ≥ L − 1 (here the length need not be the
maximum possible).

Corollary 4.5. Md(l) ≥ Lid
ωωd+1 (l).

So we can concentrate again on obtaining long ≺-descending sequences.
Recall Lemma 3.5, which has an important consequence for Lid

ωω (taking the
new definition for complexity into account):

Lemma 4.6. Lid
ω2k+2(l + 2k + 3) ≥ Fk(l), hence Lid

ωω is Ackermannian.

We now loosen the complexity bounds on the sequences to get nice lower
bounds on the lengths which range over the multiply recursive functions.
This is helpful because it allows construction of long sequences with little
worry about these complexities. Later we use the above lemma to get back
the stricter bounds on complexities whilst retaining similar lower bounds on
the lengths.

Definition 4.7. For α = ωd · kd + · · ·+ ω0 · k0 < ωω,

fα(i) := (i+ 3)d+1 · kd + · · ·+ (i+ 3) · k0.

Lemma 4.8. fα(i) ≥ fα[l](i) for all i ≥ l and limit α.

Proof. Use the fact that (i+ 3)j+1 ≥ (i+ 3)j · l:
fα(i) = (i+ 3)d+1 · kd + · · ·+ (i+ 3)j+1 · (kj + 1)

≥ (i+ 3)d+1 · kd + · · ·+ (i+ 3)j+1 · kj + (i+ 3)j · l = fα[l](i).

The function fα is specifically chosen to permit constructing long se-
quences with little effort and to have reasonably low growth rate (in the
sense that the number of elements in {i : f−1

α (i) = l} is primitive recursive
in l).

Theorem 4.9. Lfαωα(fα(l)) ≥ Fα(l) for all l > 2 and α ≥ ω.

Proof. By recursion on α we construct sequences Seq(α, l) which show
this.

For α = ω: We take a sequence that has been constructed for Lemma
4.6 which shows that Lid

ω2l+2(l + 2l + 3) ≥ Fl(l).
For α+ 1: We define Seq(α+ 1, l) to be

ωα · (l + 1) + β1
0 , . . . , ω

α · (l + 1) + β1
R1
,

ωα · (l) + β2
0 , . . . , ω

α · (l) + β2
R2
,

...

ωα · (1) + βl0, . . . , ω
α · (1) + βlRl

where βi0, . . . , β
i
Ri

= Seq(α, F (i−1)
α (l)).

For α limit: Seq(α, l) = Seq(α[l], l).
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Note that for Seq(ω, l) we used the sequence constructed for Lemma 4.6;
leafing back to the proof of Lemma 3.5 (as l > 2) we see that this sequence
starts with l elements of decreasing complexity. Using induction on α we
conclude that all Seq(α, l) start with l elements of decreasing complexity.

Furthermore the largest ωγ in the CNF of the lead element in Seq(α, l)
has complexity greater than or equal to |ωα| − 1 (this can also be shown by
induction on α).

We now demonstrate that these are appropriate sequences by showing,
by induction on α, that Seq(α, l) has the right length and complexity bounds.

For α = ω: Because fω(i) = (i + 3)2 > id(i) and fω(l) > (l + 3) · l >
l+ 2l+ 3 this sequence shows Lfωωω(fω(l)) ≥ Lfωωω((l+ 3) · l) ≥ Fl(l) = Fω(l).

For α + 1: Seq(α + 1, l) has length ≥ F
(l)
α (l) (by IH). Furthermore if

ωα · (l + 2− j) + βji has position c in the sequence, then

c ≥ F (0)
α (l) + · · ·+ F (j−1)

α (l) + i.

We examine the complexity of this element:

|ωα · (l + 2− j) + βji | ≤ l + 2 + fα(F (j−1)
α (l)) + fα(i)

≤ l + 2 + fα(l) + fα(c) ≤ fα+1(l) + fα+1(c).

Here the first inequality uses the second part of the note above.
For α is limit: Seq(α, l) has length ≥ Fα[l](l) = Fα(l). The complexity

bounds are guaranteed by Lemma 4.8 and the first part of the note above.

The following lemmas ensure that we can use this result:

Lemma 4.10. Lfα(l + k) ≥ Lf+k
α (l).

Lemma 4.11. Lf
ωωd+1 (l + k + 2) ≥ Lk·f

ωωd+1 (l).

Proof. Take a sequence β0 � · · · � βR of length Lk·f
ωωd+1 (l). Then the

sequence defined by

αi = ωω
d · βbi/kc + k + 1− i%k

shows the lemma.

Lemma 4.12. If f : i 7→ g(i)k (g ≥ id), then L2·g
ωωd+1 (2 · l+1) ≥ Lf

ωωd+1 (l)
for sufficiently large l.

Proof. Lemma 4.6 shows that Lid
ωω is Ackermannian, hence, for large

enough l we know Lid
ωω(l) ≥ ]{i : l = b k

√
ic}. Take sequences γi0 � · · · � γiT

of length Lid
ωω(l + i) and β0 � · · · � βR of length Lf

ωωd+1 (l) and define

αi = ωω
d · βb k√ic + γ

b k
√
ic

i−b k
√
ick
.

Then the αi’s show the lemma.
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These combine with Theorem 4.9 to prove part (2) of Theorem 2.2.

Corollary 4.13. For each d there exists a primitive recursive hd such
that

Md(hd(l)) ≥ Fωd+1(l)

for sufficiently large l, hence (d, l) 7→Md(l) is not multiply recursive.

Acknowledgments. We would like to thank the referee for suggestions
on improving the proof of Lemma 3.2 and the introduction.

References

[1] M. Aschenbrenner and W. Y. Pong, Orderings of monomial ideals, Fund. Math. 181
(2004), 27–74.

[2] W. Buchholz’ web-page, http://www.mathematik.uni-muenchen.de/∼buchholz/.
[3] H. M. Friedman, Long finite sequences, J. Combin. Theory Ser. A 95 (2001), 102–144.
[4] D. Maclagan, Antichains of monomial ideals are finite, Proc. Amer. Math. Soc. 129

(2001), 1609–1615.
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