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Characterization of σ-porosity via an infinite game

by

Martin Doležal (Praha)

Abstract. Let X be an arbitrary metric space and P be a porosity-like relation on X.
We describe an infinite game which gives a characterization of σ-P -porous sets in X. This
characterization can be applied to ordinary porosity above all but also to many other
variants of porosity.

1. Introduction. The theory of porous and σ-porous sets forms an
important part of real analysis and Banach space theory for more than
forty years. It originated in 1967 when E. P. Dolženko used for the first
time the term ‘porous set’ and proved that some sets of his interest are
σ-porous (see [2]). Since then the porosity has been widely used, especially
in differentiation theory (see [4] for an example). A useful fact is that every
σ-porous set in Rn is of the first category and has Lebesgue measure zero. In
many cases, it is more convenient to prove that a given set is σ-porous than
to prove that it is small in the sense of both category and measure. On the
other hand, not every set of the first category and measure zero is σ-porous.
This was first proved by L. Zaj́ıček in [6] (although E. P. Dolženko stated it
without proof earlier).

The connection between σ-porosity and infinite games was first shown by
M. Zelený in [8]. He defined an infinite game which is very similar to the well
known Banach–Mazur game, and using that game, he characterized both
sets which can be covered by countably many closed uniformly porous sets
and σ-very porous sets. He also found a sufficient condition for σ-porosity
in terms of games.

For this work, very inspirational was the infinite game H(A) of Farah
and Zapletal (see [3, Example 4.20]). Let us endow the Cantor space {0, 1}N
with the metric d(x, y) = 1/k where k is the least such that x(k) 6= y(k).
For n ∈ N and t ∈ {0, 1}n, let Ut = {y ∈ {0, 1}N : y is an extension of t}.
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The Farah–Zapletal game associated with a set A ⊆ {0, 1}N is defined as
follows:

Lasker (S1
1) (S1

2 , S
2
2) (S1

3 , S
2
3 , S

3
3)

· · ·
Steinitz x1 x2 x3

On the first move, Lasker plays a system S1
1 (possibly empty) consisting of

some sets of the form Ut where t ∈ {0, 1}. Then, Steinitz plays x1 ∈ {0, 1}.
On the second move, Lasker plays two systems S1

2 and S2
2 , each consisting of

some sets of the form Ut where t ∈ {0, 1}4. Again, Steinitz plays x2 ∈ {0, 1}.
On the nth move, Lasker plays systems S1

n, S
2
n, . . . , S

n
n consisting of some

sets of the form Ut where t ∈ {0, 1}n2
, and Steinitz plays xn ∈ {0, 1}. After

a run of this game, we get a point x = (xn)∞n=1 ∈ {0, 1}N constructed by
Steinitz and a σ-porous set

C =
∞⋃

k=1

({
y ∈ {0, 1}N : {0, 1}N \

∞⋃
n=k

⋃
Sk

n is porous at y
}
\
∞⋃

n=k

⋃
Sk

n

)
constructed by Lasker. Steinitz wins if x ∈ A\C, Lasker wins in the opposite
case. By [3, Claim 4.21], Lasker has a winning strategy in the game H(A)
if and only if the set A is σ-porous.

Later, D. Rojas-Rebolledo generalized the ideas from [3] and managed to
find a similar game which characterizes σ-porosity and also σ-strong porosity
in any zero-dimensional compact metric space (see [5]).

Let (X, d) be a nonempty metric space and let P be a porosity-like
relation on X (the definition can be found in Section 2). In this paper, we
associate an infinite game G(A) (inspired by the game from [3]) with any
subset A of X. This is a game between Boulder and Sisyfos (we follow the
terminology of J. Zapletal) where Boulder has a similar role to Steinitz in
the game above, and Sisyfos corresponds to Lasker. The game is defined as
follows:

Boulder B1 B2 B3

· · ·
Sisyfos (S1

1) (S1
2 , S

2
2) (S1

3 , S
2
3 , S

3
3)

On the first move, Boulder plays a nonempty open set B1 ⊆ X such that
diamB1 <∞, and Sisyfos plays an open set S1

1 ⊆ B1. On the second move,
Boulder plays a nonempty open set B2 such that B2 ⊆ B1 and diamB2 ≤
1
2 diamB1, and Sisyfos plays open sets S1

2 ⊆ B2 and S2
2 ⊆ B2. On the nth

move, n > 1, Boulder plays a nonempty open set Bn such that Bn ⊆ Bn−1

and diamBn ≤ 1
2 diamBn−1, and Sisyfos plays open sets S1

n ⊆ Bn, . . . , S
n
n
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⊆ Bn. Sisyfos wins the run if at least one of the following two conditions is
satisfied:

(i)
⋂∞

n=1Bn ∩A = ∅,
(ii)

⋂∞
n=1Bn = {x} and there exists m ∈ N such that x ∈ X \

⋃∞
n=m Sm

n

and P (x,X \
⋃∞

n=m Sm
n ).

Boulder wins in the opposite case.
In Section 3, we characterize σ-P -porous sets in X via this game by

proving the following theorem.

Theorem 1.1. Sisyfos has a winning strategy in the game G(A) if and
only if A is a σ-P -porous set.

Since virtually all types of porosities can be considered as porosity-like
relations (namely ordinary porosity, symmetric porosity in R, strong poros-
ity, right and left porosity), this is a more general result than in [3] and [5] as
regards the assumptions both on the metric space X and on the porosity-like
relation P .

An application of this characterization can be found in [1]. The game
G(A) (now for a subset A of a compact metric space) is modified there to
a more complicated form. This modified game still characterizes σ-porosity
and can be used to prove that in any given locally compact metric space
with a porosity-like relation P satisfying some additional conditions, every
analytic subset which is not σ-P -porous has a compact subset which is
not σ-P -porous. Here, for P , we can substitute e.g. ordinary porosity and
symmetric porosity (see also [9] and [10]) but also strong porosity.

2. Preliminaries. Let M be a nonempty set and n ∈ N. We denote by
Mn the set of all sequences s = (s1, . . . , sn) of length n from M . We also
set M0 = {∅} where ∅ is the empty sequence and

M<N =
⋃

n∈N∪{0}

Mn.

If s ∈ Mn and t ∈ Mm then the concatenation of s and t is the sequence
s∧t = (s1, . . . , sn, t1, . . . , tm) ∈ Mn+m. In the obvious way, we also un-
derstand the infinite concatenation s1

∧s2
∧s3
∧ · · · of a sequence (sn)∞n=1 of

elements of M<N.
For a nonempty subset B of a metric space (X, d), we set diamB =

sup{d(a, b) : a ∈ B, b ∈ B}.
Definition 2.1. Let X be a metric space and let P ⊆ X × 2X be a

relation between points of X and subsets of X. Then P is called a point-set
relation on X. The symbol P (x,A) where x ∈ X and A ⊆ X means that
(x,A) ∈ P .
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The point-set relation P on X is called a porosity-like relation if the
following conditions hold for every A ⊆ X and x ∈ X:

(P1) if B ⊆ A and P (x,A) then P (x,B),
(P2) P (x,A) if and only if there exists r > 0 such that P (x,A∩B(x, r)),
(P3) P (x,A) if and only if P (x,A).

If P is a porosity-like relation on X, A ⊆ X and x ∈ X, we say that

• A is P -porous at x if P (x,A),
• A is P -porous if it is P -porous at every point x ∈ A,
• A is σ-P -porous if it is a countable union of P -porous sets.

An example of a porosity-like relation is the ordinary porosity (or just
porosity).

Definition 2.2. Let X be a metric space, A ⊆ X, x ∈ X and R > 0.
Let us define

γ(x,R,A) = sup{r > 0: there exists z ∈ B(x,R) with B(z, r) ∩A = ∅},

p(x,A) = lim sup
R→0+

γ(x,R,A)
R

.

We say that

• A is porous at x if p(x,A) > 0,
• A is porous if it is porous at every x ∈ A,
• A is σ-porous if it is a countable union of porous sets.

Remark 2.3. To be more exact, if we speak about ordinary porosity
as a particular case of a porosity-like relation, we mean the following: if we
define (x,A) ∈ P to mean that A is porous at x, then P is a porosity-like
relation on X, as can be easily verified.

We will need the following theorem.

Theorem 2.4 ([7, Lemma 3]). Let X be a metric space, P be a porosity-
like relation on X and A ⊆ X. Then A is σ-P -porous if and only if for every
x ∈ A there exists r > 0 such that B(x, r) ∩A is σ-P -porous.

Definition 2.5. Let X be a topological space. A system V of subsets
of X is said to be

• discrete if for every x ∈ X there exists a neighborhood of x which
intersects at most one set from the system V,
• σ-discrete if it is a countable union of discrete systems.

We will use the existence of a σ-discrete basis of open sets in a metric
space. This is guaranteed by the following well known theorem.

Theorem 2.6. Let X be a metrizable topological space. Then X has an
open basis which is σ-discrete.
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3. Proof of the main theorem. In this section, we prove Theorem
1.1. Let us fix a nonempty metric space (X, d), a porosity-like relation P
on X and A ⊆ X throughout this section.

We say that a finite (possibly empty) sequence (B1, . . . , Bi) of nonempty
open sets in X is good if Bn+1 ⊆ Bn, diamB1 < ∞ and diamBn+1 ≤
1
2 diamBn, n = 1, . . . , i−1. So a finite sequence of nonempty open sets inX is
good if and only if Boulder can play the set Bn on his nth move, n = 1, . . . , i
(this is clearly independent of Sisyfos’ moves). If T = (B1, . . . , Bi) is a good
sequence, we say that a run of the game G(A) is T -compatible if Boulder
played B1, . . . , Bi in sequence on his first i moves.

If Boulder played the sets Bn, n ∈ N, in a run of G(A) and
⋂∞

n=1Bn

= {x} then x is called an outcome of the game. If Sisyfos wins the game
by satisfying (ii) for some m ∈ N, then every such m is called a witness of
Sisyfos’ victory.

Let ρ be a strategy for Sisyfos in the game G(A). For m ∈ N ∪ {0} and
a good sequence T = (B1, . . . , Bi), we denote by MT

m the set of all

x ∈
{
A if i = 0,
A ∩Bi if i > 0,

such that in every run V of G(A) such that

• the outcome of V is x,
• V is T -compatible,
• Sisyfos followed the strategy ρ,

all the witnesses of Sisyfos’ victory (if any) are greater than m. The set MT
m

also depends on the strategy ρ. This will not cause any difficulties since if
we speak about this set later, the strategy ρ will be fixed.

Let Boulder and Sisyfos play a run of the game G(A). Let

V = (B1,S1, B2,S2, . . .), Sn = (S1
n, S

2
n, . . . , S

n
n), n ∈ N,

where Boulder played Bn and Sisyfos played S1
n, S

2
n, . . . , S

n
n on the nth move

of the run. Then we will refer to the run itself by V and if we speak about
Bn or Sm

n , m ∈ {1, . . . , n}, n ∈ N, we use the symbols Bn(V ) and Sm
n (V ),

respectively.
First of all, we prove the following two lemmata. Lemma 3.1 is well

known at least for ordinary porosity.

Lemma 3.1. Let V be a σ-discrete system of σ-P -porous sets in X. Then⋃
V is also σ-P -porous.

Proof. Let V =
⋃∞

n=1 Vn where Vn is a discrete system for every n ∈ N.
Let us fix n ∈ N and x ∈ X. There exists r > 0 such that B(x, r) intersects at
most one set from Vn. Therefore B(x, r)∩

⋃
Vn is σ-P -porous. By Theorem
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2.4, the set
⋃
Vn is σ-P -porous. Finally, so is⋃

V =
∞⋃

n=1

⋃
Vn.

Lemma 3.2. Let ρ be a strategy for Sisyfos in the game G(A). Let

T0 = (B1, . . . , Bi)

be a good sequence of nonempty open sets and let m ∈ N ∪ {0}. Then there
exist a P -porous set NT0

m and a σ-discrete system E of subsets of X such
that

(a) MT0
m = NT0

m ∪
⋃
E,

(b) for every E ∈ E, there exists a finite sequence T of nonempty open
sets in X such that T0

∧T is good and E ⊆MT0
∧T

m+1 .

Proof. Whenever we speak about a run of the game G(A) in this proof,
we suppose that Sisyfos followed the strategy ρ. Let us denote

Z =
⋃
{Sm+1

n (V ) : n ≥ m+ 1, V is a T0-compatible run of G(A)}.

For every x ∈ Z, let us fix n(x) ≥ m + 1 and a T0-compatible run V (x) of
G(A) such that x lies in the open set Sm+1

n(x) (V (x)). For x ∈ Z, let us denote

T (x) =
(
Bi+1(V (x)), Bi+2(V (x)), . . . , Bn(x)(V (x))

)
.

Now, whenever y ∈ Sm+1
n(x) (V (x)) for some x ∈ Z and V ′ is a T0

∧T (x)-compa-
tible run with outcome y then V ′ coincides with V (x) in its first n(x) moves,
in particular Sm+1

n(x) (V ′) = Sm+1
n(x) (V (x)), and so y /∈ X \

⋃∞
n=m+1 S

m+1
n (V ′)

and m+1 is not a witness of Sisyfos’ victory in V ′. Thus, if y ∈ Sm+1
n(x) (V (x))

∩MT0
m then also y ∈MT0

∧T (x)
m+1 , so we have

(1) Sm+1
n(x) (V (x)) ∩MT0

m ⊆M
T0
∧T (x)

m+1 .

Now, if B is a σ-discrete basis of open sets in X (whose existence is guaran-
teed by Theorem 2.6) then the system

E ′ = {G ∈ B : G ⊆ Sm+1
n(x) (V (x)) for some x ∈ Z}

is a σ-discrete covering of Z. We define

E = {MT0
m+1} ∪ {G ∩M

T0
m : G ∈ E ′}, NT0

m = MT0
m \ (Z ∪MT0

m+1).

The system E is obviously σ-discrete and MT0
m = NT0

m ∪
⋃
E . Moreover, if

E ∈ E then either E = MT0
m+1 = MT0

∧∅
m+1 or E = G ∩MT0

m for some G ∈ E ′.
In the latter case, there exists x ∈ Z such that

G ⊆ Sm+1
n(x) (V (x))
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and so
E ⊆ Sm+1

n(x) (V (x)) ∩MT0
m ⊆M

T0
∧T (x)

m+1 ,

where the last inclusion is due to (1).
It only remains to show that NT0

m is P -porous. Let us choose x ∈ NT0
m

arbitrarily. Then x ∈ MT0
m \M

T0
m+1 and so there exists a T0-compatible run

V of G(A) with outcome x such that m + 1 is a witness of Sisyfos’ victory
in V , in particular

P
(
x,X \

∞⋃
n=m+1

Sm+1
n (V )

)
.

But

NT0
m ⊆ X \ Z ⊆ X \

∞⋃
n=m+1

Sm+1
n (V ),

and so it follows from (P1) (see Definition 2.1) that P (x,NT0
m ).

Proof of Theorem 1.1. First, let us assume that A =
⋃∞

n=1An where An

is a P -porous set for every n ∈ N. On his nth move, let Sisyfos play Sj
n = ∅

for j < n and Sn
n = Bn\An. Let Boulder and Sisyfos play a run of G(A) with

Sisyfos following the above strategy. We may assume that
⋂∞

n=1Bn = {x}
and x ∈ A because otherwise Sisyfos wins by (i). Then there exists m ∈ N
such that x ∈ Am. We have

X \
∞⋃

n=m

Sm
n = Am ∪ (X \Bm)(2)

and therefore

x ∈ Am ⊆ X \
∞⋃

n=m

Sm
n .

Furthermore, P -porosity of Am implies P (x,Am). But this is equivalent
to P (x,Am) by (P3) (see Definition 2.1), and by (P2), this is equivalent
to P (x,Am ∪ (X \ Bm)) since x ∈ Bm. So we have P (x,X \

⋃∞
n=m Sm

n )
by (2). Therefore, Sisyfos wins by (ii) with m as a witness, and the strategy
described is winning.

Now, let us assume that Sisyfos has a winning strategy ρ in G(A). Let
us denote E0 = A. By Lemma 3.2, we have

(3) A = E0 = M∅0 = N∅0 ∪
⋃
E

where N∅0 is P -porous and E is a σ-discrete system of subsets of X such that
for every E1 ∈ E , there exists a good sequence T (E1) such that E1 ⊆MT (E1)

1 .
Now, for every E1 ∈ E we have

(4) E1 ⊆MT (E1)
1 = N

T (E1)
1 ∪

⋃
EE1
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where NT (E1)
1 is P -porous and EE1 is a σ-discrete system of subsets of X such

that for every E2 ∈ EE1 , there exists a finite sequence T (E1, E2) of nonempty
open sets such that T (E1)∧T (E1, E2) is good and E2 ⊆ M

T (E1)∧T (E1,E2)
2 .

Suppose that for some k ∈ N, we already have E1 ∈ E , E2 ∈ EE1 , . . . , Ek ∈
EE1,E2,...,Ek−1 and finite sequences T (E1), T (E1, E2), . . . , T (E1, . . . , Ek) such
that

H := T (E1)∧T (E1, E2)∧ · · · ∧T (E1, . . . , Ek)

is good and Ek ⊆MH
k . Then

Ek ⊆MH
k = NH

k ∪
⋃
EE1,...,Ek

where NH
k is P -porous and EE1,...,Ek is a σ-discrete system of subsets of

X such that for every Ek+1 ∈ EE1,...,Ek , there exists a finite sequence
T (E1, . . . , Ek+1) of nonempty open sets such that the sequence

H∧T (E1, . . . , Ek+1) = T (E1)∧T (E1, E2)∧ · · · ∧T (E1, . . . , Ek+1)

is good and
Ek+1 ⊆M

T (E1)∧T (E1,E2)∧···∧T (E1,...,Ek+1)
k+1 .

By iterating this process, we get a system of P -porous sets

U =
{
N

T (E1)∧T (E1,E2)∧···∧T (E1,...,Ek)
k ∩

k⋂
i=0

Ei :

k ∈ N ∪ {0}, E1 ∈ E , E2 ∈ EE1 , . . . , Ek ∈ EE1,...,Ek−1

}
.

We show that A ⊆
⋃
U . Suppose that this is not true and so there exists

x ∈ A \
⋃
U . By (3), there exists E1 ∈ E such that x ∈ E1 ⊆ M

T (E1)
1 .

By (4), there exists E2 ∈ EE1 such that x ∈ E2 ⊆ M
T (E1)∧T (E1,E2)
2 . Next,

there exists E3 ∈ EE1,E2 such that x ∈ E3 ⊆ M
T (E1)∧T (E1,E2)∧T (E1,E2,E3)
3 .

Continuing, we find a sequence (Ek)∞k=1 where E1 ∈ E and Ek ∈ EE1,...,Ek−1

for k > 1 such that

x ∈ Ek ⊆M
T (E1)∧T (E1,E2)∧···∧T (E1,...,Ek)
k

for every k ∈ N. Therefore Boulder can play a run of G(A) in the following
way. He plays all the sets from T (E1) in sequence on his first moves, then
all the sets from T (E1, E2) and so on. (If there exists k0 ∈ N∪{0} such that
all the sequences T (E1, . . . , Ek), k > k0, are empty then the sequence

T (E1)∧T (E1, E2)∧ · · · = T (E1)∧T (E1, E2)∧ · · · ∧T (E1, . . . , Ek0)

is finite. Then Boulder can finish the run arbitrarily so that the outcome
is x.) After such a run, the outcome is x and no m ∈ N can be a witness
of Sisyfos’ victory since x ∈MT (E1)∧T (E1,E2)∧···∧T (E1,...,Em)

m for every m ∈ N.
This contradicts the assumption that the strategy ρ is winning for Sisyfos.
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By (P1), it suffices to show that
⋃
U is a σ-P -porous set. For k ∈ N∪{0}

and E1 ∈ E , E2 ∈ EE1 , . . . , Ek ∈ EE1,...,Ek−1 , let us denote

Q(E1, . . . , Ek) = N
T (E1)∧T (E1,E2)∧···∧T (E1,...,Ek)
k ∩

k⋂
i=0

Ei.

Then
⋃
U =

⋃∞
k=0

⋃
Uk where

Uk = {Q(E1, . . . , Ek) : E1 ∈ E , E2 ∈ EE1 , . . . , Ek ∈ EE1,...,Ek−1}.
It is obviously sufficient to prove that

⋃
Uk is σ-P -porous for every k ∈

N ∪ {0}. For k = 0 we know that
⋃
U0 = N∅0 , which is a P -porous set. Now

suppose that k > 0. To finish the proof, it suffices to prove the following
claim and use it for j = 1.

Claim 3.3. For every j ∈ {1, . . . , k} and for every E1 ∈ E , E2 ∈ EE1 , . . . ,
Ej−1 ∈ EE1,...,Ej−2, the set⋃

Ej∈EE1,...,Ej−1

⋃
Ej+1∈EE1,...,Ej

. . .
⋃

Ek∈EE1,...,Ek−1

Q(E1, . . . , Ek)

is σ-P -porous.

Proof. For j = k and every E1 ∈ E , E2 ∈ EE1 , . . . , Ek−1 ∈ EE1,...,Ek−2 ,
the set ⋃

Ek∈EE1,...,Ek−1

Q(E1, . . . , Ek)

is the union of a σ-discrete system (since EE1,...,Ek−1 is σ-discrete) of P -
porous sets (since N

T (E1)∧T (E1,E2)∧···∧T (E1,...,Ek)
k is P -porous). By Lemma

3.1, this set is σ-P -porous.
Let us assume that the assertion holds for j+ 1 where j ∈ {1, . . . , k− 1}

and let E1 ∈ E , E2 ∈ EE1 , . . . , Ej−1 ∈ EE1,...,Ej−2 be given. Then⋃
Ej∈EE1,...,Ej−1

( ⋃
Ej+1∈EE1,...,Ej

. . .
⋃

Ek∈EE1,...,Ek−1

Q(E1, . . . , Ek)
)

is the union of a σ-discrete system (since EE1,...,Ej−1 is σ-discrete) of σ-P -
porous sets (the assumption for j+1). By Lemma 3.1, it is also σ-P -porous.
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