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Compositions of equi-dimensional fold maps

by

Yoshihiro Hirato (Nagano) and Masamichi Takase (Tokyo)

Abstract. According to Ando’s theorem, the oriented bordism group of fold maps
of n-manifolds into n-space is isomorphic to the stable n-stem. Among such fold maps
we define two geometric operations corresponding to the composition and to the Toda
bracket in the stable stem through Ando’s isomorphism. By using these operations we
explicitly construct several fold maps with convenient properties, including a fold map
which represents the generator of the stable 6-stem.

1. Introduction. A fold map, which is a smooth map between smooth
manifolds with only fold singularities, can be considered as a simple exten-
sion of an immersion and also as a high-dimensional analogue of a Morse
function. Many studies on fold maps have indicated that they are closely
related to the geometry of manifolds (e.g. see [3, 4, 9, 16]). In this note we
study equi-dimensional fold maps, rather in the light of their relation to
algebraic topology.

A smooth map f : Nn → Rn from an n-dimensional closed oriented
manifold Nn into the n-dimensional Euclidean space is said to be a fold
map if about each of its singular points it has the local form f(x1, . . . , xn) =
(x1, . . . , xn−1,±x2

n) in suitable local coordinate systems in Nn and Rn. We
say that two such fold maps fi : Ni → Rn (i = 0, 1) are oriented bordant if
there exists a fold map F to Rn × [0, 1] from an oriented cobordism (as a
manifold) Wn+1 between N0 and N1 such that F |N0×[0, ε) = f0×Id[0,ε) and
F |N1× (1− ε, 1] = f1× Id(−ε,0] (with ε being a small positive real number).
This gives an equivalence relation on the set of all fold maps from closed
oriented n-manifolds into Rn, and the quotient space forms an abelian group
called the oriented fold bordism group, which we denote by SFold(n, 0). Note
that for more general singular maps the notion of the bordism group has
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been introduced [11, 18] and intensively studied in recent years (see e.g.
[13, 17, 19]).

The fold bordism groups have been studied by many authors (see e.g.
[3–8, 14]). In particular, Ando [3, 5, 6] has proven that SFold(n, 0) is iso-
morphic to the stable homotopy group πSn of spheres. Under Ando’s iso-
morphism, we introduce two geometric operations for (bordism classes of)
fold maps corresponding to the composition and to the Toda bracket in
the stable homotopy groups of spheres (in §3). In fact, Koschorke [10] has
formulated similar operations for the immersion bordism group SI(n, 1) of
immersions of oriented n-manifolds into Rn+1, which is also isomorphic to
πSn [22]. Therefore in practice, we first establish in a geometric manner an
isomorphism between SFold(n, 0) and SI(n, 1) in §2, and then just interpret
Koschorke’s composition and the Toda bracket through this isomorphism.
This attempt is natural and useful since, for codimension one immersions,
a kind of the Pontryagin–Thom construction gives a good understanding of
geometric counterparts to many algebraic operations in the stable stems (see
e. g. [1, 2] for recent studies). We detail many low-dimensional examples. As
an application, in §4 we describe a construction of a fold map S3×S3 → R6

which represents the generator of the stable 6-stem πS6 ≈ Z/2Z = Z2.

2. An isomorphism between fold and immersion bordism groups.
Wells [22] studied the bordism groups of immersions and reduced the prob-
lem to the study of embeddings with appropriate vector fields, by lifting
immersions into a higher dimensional space. In particular, since a codimen-
sion one immersion f : Nn # Rn+1 of an oriented n-manifold Nn naturally
has a homotopically unique normal framing, by suspending and slightly per-
turbing it in a Euclidian space of sufficiently high dimension, we can obtain
a normally framed embedding. The isomorphism SI(n+ 1) ≈ πSn is given by
applying the usual Pontryagin–Thom construction to the resulting normally
framed embedding.

2.1. The isomorphism m. In this section, we construct a natural iso-
morphism between the oriented fold bordism group SFold(n, 0) and the ori-
ented immersion bordism group SI(n, 1), each of which we already know is
isomorphic to the stable homotopy group πSn of spheres.

Let f : Nn → Rn be a fold map from an oriented n-manifold Nn to Rn

(n ≥ 1). Then the fold set S (f) of f is an (n − 1)-dimensional orientable
submanifold of Nn and the restriction f |S (f) is an immersion in Rn with
trivial normal line bundle (see e.g. [15, Lemma 2.2]). For each component
Si of the fold set S (f), we can take a tubular neighbourhood Si × R ⊂ Nn

such that f immerses Si × [0,∞) orientation-preservingly into Rn and that
f immerses Si × (−∞, 0] orientation-reversingly into Rn. This determines
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an orientation of the normal bundle of Si ⊂ Nn, which further induces an
orientation of Si from the given orientation of Nn. Thus, S (f) becomes an
oriented (n− 1)-manifold.

Fig. 1. Desingularisation of folds

Let j : Rn ↪→ Rn+1 be the inclusion and consider the composition j ◦ f :
Nn → Rn+1. Then j ◦ f is an immersion on Nn r S (f) and hence we can
take a normal vector field ν on N r S (f) with respect to the orientations
of Nn and of Rn+1. The situation inside each fibre D2

p (at p ∈ S (f)) of
the 2-dimensional normal disk bundle of (j ◦ f)(S (f)) in Rn+1, which is
the trivial bundle, is as on the left of Figure 1 (the two curves in the left
figure, depicted slightly away from each other, are in fact in Rn, and the
arrows attached to them indicate the normal vector field ν). Therefore, we
can “desingularise” j ◦ f by modifying it inside each D2

p as in Figure 1.
Since the normal bundle of (j ◦ f)(S (f)) in Rn+1 is trivial, this process can
be done globally on each component of (j ◦ f)(S (f)). Thus we obtain an
immersion of Nn in Rn+1, which we denote by f̄ . Furthermore, this gives
rise to a homomorphism between the bordism groups,

m : SFold(n, 0)→ SI(n, 1), [f ] 7→ [f̄ ],

since we can perform the same operation for a fold bordism between two
bordant fold maps, so that we can obtain an immersion bordism between
the corresponding immersions.

Example 2.1. The fold map S1 → R1 shown in Figure 2 (which we call
the 1-fold map) generates SFold(1, 0) ≈ πS1 ≈ Z2. This is easily seen from
[6, Theorem 1.3] and Figure 3, which depicts a stable map from D2 to the
half-plane R2

+ with one cusp point extending the fold map.

Fig. 2. The 1-fold map generating SFold(1, 0)
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Fig. 3. An extension with a cusp of the 1-fold map

Then, Figure 4 describes the image of the 1-fold map shown in Figure 2
under the homomorphism m : SFold(1, 0) → SI(1, 1). In fact, the immer-
sion with one crossing represents the generator of SI(1, 1), since for a self-
transverse immersion S1 # R2 the number modulo 2 of its double points
gives the isomorphism SI(1, 1) → Z2. Thus, we see that m : SFold(1, 0) →
SI(1, 1) is an isomorphism.

Fig. 4. The “figure 8” immersion generating SI(1, 1)

Theorem 2.2. The above homomorphism m : SFold(n, 0) → SI(n, 1) is
an isomorphism for n ≥ 1.

Proof. It suffices to show that m is surjective, since the groups on both
sides are known to be isomorphic to πSn .

Let F : Nn # Rn+1 be an immersion of an oriented n-manifold Nn

in Rn+1. Then the regular homotopy class of F corresponds to the homo-
topy class of the induced stable framing of Nn. Therefore, due to Ando’s
h-principle [3, Corollary 2], we can deform F by regular homotopy into
an immersion that becomes a fold map when followed by the projection
p : Rn+1 → Rn, (y1, . . . , yn+1) 7→ (y1, . . . , yn). Denote this resulting immer-
sion by F ′.

At each point x of the fold set S (p ◦ F ′), we can choose a normal vector
n(x) of S (p ◦ F ′) ⊂ Nn so that dFx(n(x)) coincides with (∂/∂yn+1)F ′(x).
This defines a normal vector field n on each component of S (p ◦ F ′) ⊂ Nn

since the normal bundle of S (p ◦ F ′) ⊂ Nn is orientable [15]. Thus we can
choose an induced orientation σi of each component Si of S (p◦F ′) such that
(n, σi) agrees with the orientation of Nn.
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Let ν be the normal vector field of F (Nn) ⊂ Rn+1. Then (dp(ν),
d(p ◦ F ′)(σi)) agrees with the orientation of Rn or with the opposite one,
for each component Si of S (p ◦ F ′). Denote by S− the set of components
of S (p ◦ F ′) on which (dp(ν), d(p ◦ F ′)(σi) accords with the orientation of
Rn, and put S+ := S (p ◦ F ′) r S−. The left and right pictures of Figure 5
describe the situation of the normal (2-dimensional) disk at fold points of
F ′(S+) ⊂ Rn+1 and of F ′(S−) ⊂ Rn+1, respectively.

Fig. 5. S+ and S−

Now, we modify F ′ near S− by bordism. Inside the 2-dimensional normal
disk of S− ⊂ Rn+1 at a point x ∈ S−, the modification is described as in
Figure 6. This process changes F ′ by bordism and consequently we have an

Fig. 6. A bordism around S− ⊂ Rn+1, in the 2-dimensional normal disk

immersion of (S− × S1) ] Nn into Rn+1, bordant to F ′, which we denote
by F ′′. Clearly, the composition p ◦ F ′′ is a fold map into Rn and m(p ◦ F ′′)
agrees with F ′′ bordant to F .

Remark 2.3. In the above proof, in order to obtain the inverse operation
of m, we first deform F by regular homotopy into F ′ and then deform F ′

by bordism into F ′′ that has no S− part. The regular homotopy alone is not
enough here. This can also be seen from the following. If we regard the S1

of the top of Figure 2 as an immersed (embedded) circle in R2, then the
immersion belongs to the trivial regular homotopy class, but its projection
represents the generator of SFold(1, 0) as a fold map. To obtain the correct
inverse of the generator of SFold(1, 0), we need to eliminate the S− part by
bordism as shown in Figure 6.
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3. Compositions of fold maps. In the case of codimension one immer-
sions of closed oriented manifolds the isomorphism SI(n, 1) → πSn is given
through the Pontryagin–Thom construction (see §2), which enables us to
understand various algebraic operations geometrically. In Koschorke [10],
for such codimension one immersions, the operations corresponding to the
composition and to the Toda bracket in πSn are introduced. In this section,
we interpret Koschorke’s operations in terms of equi-dimensional fold maps
via the isomorphism m : SFold(n, 0) → SI(n, 1), explained in the previous
section.

3.1. The composition. Let f : Nn # Rn+1 be an immersion of a
closed oriented manifold Nn. We can extend f to an immersion from the
total space of its normal line bundle, diffeomorphic to Nn ×R. Denote this
extension by f ′ : Nn×R # Rn+1. For the symbol “¯” used below, see §2.1.

Let α ∈ πSa and β ∈ πSb . Let i : Aa → Ra and j : Bb → Rb be the
respective fold maps. Suppose that b ≥ 1. Then, in view of Koschorke [10,
§1], we see that the fold map corresponding to the composition α ◦β ∈ πSa+b
is defined to be

i∗j : Aa×Bb (Id,j)−−−→ Aa×Rb = (Aa×R)×Rb−1 ((i)′,Id)−−−−−→ Ra+1×Rb−1 = Ra+b.

If b = 0, then β ∈ πS0 = Z so j is represented by some integer s. Then we
consider the fold map i ∗ j to be the union of s copies of i (each shifted in
the last coordinate of Ra for convenience).

Remark 3.1. We easily see from the above construction that the fold set
S (i∗j) equals Aa×S (j) ⊂ Aa×Bb. Furthermore, the immersion (i∗j)|S (i∗j)
equals i ∗̄ (j|S (j)) : Aa × S (j) # Ra+b, where ∗̄ stands for Koschorke’s
∗-product [10] of codimension one immersions that represents the compo-
sition of the corresponding stable homotopy classes under the isomorphism
SI(n, 1) → πSn . Thus, we can see that i ∗ j equals i ∗̄ j, from which we can
easily deduce the associativity of the operation ∗ for fold maps.

Example 3.2. (1) The fold map T 2 → R2 in Figure 7, obtained by
putting the 1-fold map S1 → R1 (Figure 2) in each fibre of the normal
line bundle of the “figure 8” immersion S1 # R2, represents the generator
πS2 ≈ Z2 (cf. [12]), since η ◦ η generates πS2 ≈ Z2 (cf. [21, p. 189]).

Fig. 7. A fold map T 2 → R2 generating πS
2 ≈ Z2
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(2) The fold map T 3 → R3 obtained by putting the 1-fold map in each
fibre of the normal line bundle of the “8 by 8” immersion T 2 # R3 in
Figure 8, represents η◦η◦η, which is known to be equal to 4ν for a generator
ν of order 8 in πS3 ≈ Z8 ⊕ Z3 [21, (5.5)].

Fig. 8. The “8 by 8” immersion T 2 # R3, that generates SI(2, 1)

(3) We can repeat a similar construction in higher dimensions. However,
the fold map T 4 → R4 obtained by putting the 1-fold map in each fibre
of the normal line bundle of the “8 by 8 by 8” immersion T 3 # R4 is null
bordant, since η ◦ η ◦ η ◦ η ∈ πS4 = 0.

3.2. The Toda bracket. Let α∈πSa , β∈πSb and γ∈πSc . Let i : Aa→Ra,
j : Bb → Rb and k : Cc → Rc be the respective fold maps. Suppose α◦β = 0
and β ◦ γ = 0. Then, again in view of [10, §1], the Toda bracket 〈α, β, γ〉 is
understood in terms of the fold maps i, j and k, as follows.

It follows from α◦β = 0 that i∗j : Aa×Bb → Ra+b is null-bordant. Thus,
we can take a null bordism, that is, a fold map from an (a+b+1)-dimensional
manifold Xa+b+1 with ∂Xa+b+1 = Aa ×Bb,

`+ : Xa+b+1 → Ra+b × [0,∞),

such that `+ coincides with (i∗j)×Id on a collar ∂Xa+b+1×[0, ε) ⊂ Xa+b+1.
Similarly, as β ◦ γ = 0 we can take a null bordism

`− : Y b+c+1 → Rb+c × (−∞, 0]

of j ∗ k. Thus, we have two null bordisms of i ∗ j ∗ k:

`+ ∗ k : Xa+b+1 × Cc → Ra+b+c × [0,∞)

and
i ∗ `− : Aa × Y b+c+1 → Ra+b+c × (−∞, 0].

By pasting them along the common boundaries, we have a fold map from
the closed manifold (Xa+b+1 × Cc) ∪∂ (Aa × Y b+c+1) to Ra+b+c+1. All fold
maps constructed in this way form the Toda bracket 〈α, β, γ〉 ⊂ πSa+b+c+1.

Example 3.3. Choose a a generator ι ∈ πS0 ≈ Z. Then the correspond-
ing fold map is {one point} → R0. We can check that the above construction
for 〈2ι, η, 2ι〉 provides the immersion of Figure 9, which is the same as the
fold map (representing η ◦ η) in Figure 7. Thus, we can show the relation
〈2ι, η, 2ι〉 = η ◦ η ∈ πS2 [21, Corollary 3.7] by this example.
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Fig. 9. 〈2ι, η, 2ι〉 : T 2 → R2

4. A fold map which generates the stable 6-stem. Here, by us-
ing the composition in §3, we construct a fold map S3 × S3 → R6 which
represents the generator of the stable 6-stem isomorphic to Z2.

First we need the following observation.

Proposition 4.1. Let F : S3 # R6 be a self-transverse immersion with
an odd number of double points. Note that F has trivial normal bundle. Then
an immersion f : S3 # R4 obtained by compressing F into R4 represents a
generator of order 8 in SI(3, 1) ≈ πS3 ≈ Z8 ⊕ Z3.

Proof. Assume that f represents an even element in SI(3, 1) ≈ Z24.
Then, by [20, Proposition 4.5], f is bordant to the compression of an em-
bedding S3 ↪→ R6, which implies that F is bordant (as an immersion) to
an embedding. This, however, is impossible since the parity of the number
of double points of a self-transverse immersion S3 # R6 is invariant up to
bordism.

Let X be two copies of the 3-disk D3 in 6-space intersecting each other in
exactly one point, whose “boundary” consists of two copies of the 2-sphere.
Consider two barycentric 3-spheres each of which is standardly embedded in
R6 = R3

1×R3
2. Then, by removing from each 3-sphere a small 3-disk (centred

at the point intersecting “the R3
1 axis”, see Figure 10) and gluing X instead,

X
R31

R32

Fig. 10. The fold map F : S3 # R6 with one double point
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(after suitably smoothing it) we obtain an immersion F : S3 # R6 with one
double point as in Figure 10.

By Proposition 4.1, the composition of F and the projection R6 → R3

in an appropriate direction (e. g. the projection R6 = R3
1 × R3

2 → R3
1 in

Figure 10) becomes a fold map f : S3 → R3 which represents a generator
ν of order 8 in SFold(3, 0) ≈ Z8 ⊕ Z3 (this is very similar to Example 2.1,
see §2).

Thus, by mapping a copy of S3 via f into each normal disk of the (trivial)
normal bundle of the immersion F : S3 # R6, we obtain a fold map G : S3×
S3 → R6 which represents ν◦ν ∈ πS6 (see §3.1). Since ν◦ν generates πS6 ≈ Z2

by [21, p. 189], we see that G represents a generator of πS6 .

Remark 4.2. Ando [6, §6] gives another explicit construction of a fold
map S3 × S3 → R6 which represents the generator of πS6 .

Remark 4.3. Let F ′ : S3 # R4 be an immersion obtained by com-
pressing the above F into R4 (see Proposition 4.1) and j : R6 → R7 be
the inclusion. If we immerse a copy of S3 via F ′ into each normal 4-disk
of the (trivial) normal bundle of the immersion j ◦ F : S3 # R7, then we
obtain an immersion S3 × S3 # R7 which represents the generator under
SI(6, 1) ≈ πS6 ≈ Z2.
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