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Dynamical characterization of C-sets and its application

by

Jian Li (Hefei)

Abstract. We set up a general correspondence between algebraic properties of βN
and sets defined by dynamical properties. In particular, we obtain a dynamical character-
ization of C-sets, i.e., sets satisfying the strong Central Sets Theorem. As an application,
we show that Rado systems are solvable in C-sets.

1. Introduction. Throughout this paper, Z, Z+, N and Q denote the
sets of integers, non-negative integers, positive integers and rational num-
bers, respectively. Let us recall two celebrated theorems in combinatorial
number theory.

Theorem 1.1 (van de Waerden). Let r ∈ N and N =
⋃r
i=1Ci. Then

there exists i ∈ {1, . . . , r} such that Ci contains arbitrarily long arithmetic
progressions.

For a sequence {xn}∞n=1 in N, define the set of finite sums of {xn}∞n=1 as

FS({xn}∞n=1) =
{ ∑
n∈α

xn : α is a nonempty finite subset of N
}
.

A subset F of N is called an IP set if there exists a sequence {xn}∞n=1 in N
such that FS({xn}∞n=1) ⊂ F .

Theorem 1.2 (Hindman). Let r ∈ N and N =
⋃r
i=1Ci. Then there

exists i ∈ {1, . . . , r} such that Ci is an IP set.

The original proofs of the above two theorems by combinatorial methods
are somewhat complicated. In [14, 12] Furstenberg and Weiss found a new
way to prove those theorems by topological dynamics methods.

A subset F of N is called central if there exists a dynamical system
(X,T ), a point x ∈ X, a minimal point y which is proximal to x, and an open
neighborhood U of y such that F = {n ∈ N : Tnx ∈ U}. The van de Waerden
Theorem and the Hindman Theorem follow from the following result.
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Theorem 1.3 ([14, 12]).

(1) Every central set is an IP set and contains arbitrarily long arithmetic
progressions.

(2) Let r ∈ N and N =
⋃r
i=1Ci. Then there exists i ∈ {1, . . . , r} such

that Ci is a central set.

Before going on, let us recall some notions. We call (S, ·) a compact Haus-
dorff right topological semigroup if S is endowed with a compact Hausdorff
space topology and for each t ∈ S the right translation s 7→ s·t is continuous.
An idempotent t ∈ S is an element satisfying t · t = t. The Ellis–Namakura
Theorem says that any compact Hausdorff right topological semigroup con-
tains some idempotent. A subset I of S is called a left ideal of S if SI ⊂ I,
a right ideal if IS ⊂ I, and a two-sided ideal (or simply an ideal) if it is
both a left and right ideal. A minimal left ideal is the left ideal that does not
contain any proper left ideal. Similarly, we can define a minimal right ideal
and a minimal ideal. An idempotent in S is called a minimal idempotent if
it is contained in some minimal left ideal of S.

Endowing N with the discrete topology, we take the points of the Stone–
Čech compactification βN of N to be the ultrafilters on N. Since (N,+) is a
semigroup, we extend the operation + to βN so that (βN,+) is a compact
Hausdorff right topological semigroup. See [19] for an exhaustive treatment
of the algebraic structure on βN.

Ellis showed that we can regard (βN,N) as a universal point transitive
system ([10]). One may expect that there is a natural connection between
algebraic properties of βN and sets defined by dynamical properties. For
example, in [5] Bergelson and Hindman showed that

Theorem 1.4 ([5]). A subset F of N is central if and only if there exists
a minimal idempotent p ∈ βN such that F ∈ p.

A subset F of N is called quasi-central if there exists an idempotent
p ∈ βN with each element piecewise syndetic such that F ∈ p. Of course,
every quasi-central set is central, but not conversely ([18]). The authors of [8]
gave a dynamical characterization of quasi-central sets:

Theorem 1.5 ([8]). A subset F of N is quasi-central if and only if there
exists a dynamical system (X,T ), a pair of points x, y ∈ X where for every
open neighborhood V of y the set {n ∈ N : Tnx ∈ V, Tny ∈ V } is piecewise
syndetic, and an open neighborhood U of y such that F = {n∈N : Tnx∈U}.

A subset F of N is called a D-set if there exists an idempotent p ∈ βN
with each element having positive upper Banach density such that F ∈ p.
It should be noticed that every quasi-central set is a D-set, but not con-
versely ([4]). There is also a dynamical characterization of D-sets:
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Theorem 1.6 ([4]). A subset F of N is a D-set if and only if there exists
a dynamical system (X,T ), a pair of points x, y ∈ X where for every open
neighborhood V of y the set {n ∈ N : Tny ∈ V } has positive upper Banach
density and (y, y) belongs to the orbit closure of (x, y) in the product system
(X ×X,T × T ), and an open neighborhood U of y such that F = {n ∈ N :
Tnx ∈ U}.

Central sets have substantial combinatorial content. In order to describe
their properties, we first introduce some notation. By Pf(N) we denote the
set of all nonempty finite subsets of N. For α, β ∈ Pf(N), we write α < β
if maxα < minβ. Given a sequence s1, s2, . . . in Z or Zm and α ∈ Pf(N)
we let sα =

∑
n∈α sn and call the family (sα)α∈Pf(N) an IP-system. A ho-

momorphism φ : Pf(N) → Pf(N) is a map such that (1) if α ∩ β = ∅, then
φ(α)∩φ(β) = ∅ and (2) φ(α∪β) = φ(α)∪φ(β). Evidently such a homomor-
phism is determined by φ({i}) for each i ∈ N, and then φ(α) =

⋃
i∈α φ({i}).

Given an IP-system {sα}, an IP-subsystem is defined by a homomorphism
φ : Pf(N)→ Pf(N) and forming {sφ(α)} ⊂ {sα}. If r ∈ Z, we shall denote by
r̄(m) the vector (r, . . . , r) ∈ Zm.

Proposition 1.7 (Central Sets Theorem [12]). Let F be a central set
in N, and for any m ≥ 1, let {sα} be any IP-system in Zm. Then there exists
an IP-subsystem {sφ(α)} and an IP-system {rα} in N such that the vector
r̄
(m)
α + sφ(α) is in Fm for each α ∈ Pf(N).

Recently, the authors of [9, 20] proved a stronger version of the Central
Sets Theorem, and defined C-sets to be the sets satisfying the conclusion
of that stronger version. Here we will not discuss the strong Central Sets
Theorem, so we adopt an alternative definition of C-sets.

A subset F of N is called a J-set if for every m ∈ N and every IP-system
{sα} in Zm there exist r ∈ N and α ∈ Pf(N) such that r̄(m) + sα ∈ Fm.
Denote by J the collection of all J-sets. A subset F of N is called a C-set if
there exists an idempotent p ∈ βN with each element being a J-set such that
F ∈ p. Since every positive upper Banach density set is a J-set ([13]), every
D-set is a C-set. But there exist C-sets with zero upper Banach density ([17]),
so they are not D-sets.

In this paper, we obtain a dynamical characterization of C-sets.

Theorem 1.8. A subset F of N is a C-set if and only if there exists
a dynamical system (X,T ), a pair of points x, y ∈ X where for any open
neighborhood V of y the set {n ∈ N : Tny ∈ V } is a J-set and (y, y) belongs
to the orbit closure of (x, y) in the product system (X ×X,T × T ), and an
open neighborhood U of y such that F = {n ∈ N : Tnx ∈ U}.

In [12] Furstenberg used the Central Sets Theorem to show that any
central subset of N contains solutions to all Rado systems. Let A = (aij) be
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a p× q matrix over Q. The homogeneous system of linear equations
A(x1, . . . , xq)T = 0

is called partition regular (or a Rado system) if for every r ∈ N and N =⋃r
i=1Ci, there exists i ∈ {1, . . . , r} such that the system has a solution

(x1, . . . , xq) all of whose components lie in Ci. In [26] Rado characterized
when a homogeneous system of linear equations is partition regular.

Theorem 1.9 (Rado’s Theorem). Let A = (aij) be a p×q matrix over Q.
Then the system A(x1, . . . , xq)T = 0 is partition regular if and only if the
index set {1, . . . , q} can be divided into l disjoint subsets I1, . . . , Il and ra-
tional numbers crj may be found for r ∈ {1, . . . , l} and j ∈ I1 ∪ · · · ∪ Ir such
that the following relations are satisfied:∑

j∈I1

aij = 0,

∑
j∈I2

aij =
∑
j∈I1

c1jaij ,

· · ·∑
j∈Il

aij =
∑

j∈I1∪···∪Il−1

cl−1
j aij .

Let F be a subset of N. We say that Rado systems are solvable in F
if every Rado system A(x1, . . . , xq)T = 0 has a solution (x1, . . . , xq) all of
whose components lie in F .

Furstenberg and Weiss improved Rado’s result by showing that

Theorem 1.10 ([14, 12]). Rado systems are solvable in central sets.

Recently, the authors of [3] extended Furstenberg and Weiss’ result to

Theorem 1.11 ([3]). Rado systems are solvable in D-sets.

In this paper, we use the dynamical characterization of C-sets to show

Theorem 1.12. Rado systems are solvable in C-sets.

This paper is organized as follows. In Section 2 we introduce some notions
related to Furstenberg families. In Section 3 the basic properties of the
Stone–Čech compactification of N are discussed. In Section 4 we set up a
general correspondence between algebraic properties of βN and sets defined
by dynamical properties. The dynamical characterizations of quasi-central
sets and D-sets are special cases of our results. In Section 5, we investigate
the set’s forcing, that is, the dynamical properties of a point along a subset
of N. In Section 6, we consider both addition and multiplication in N and βN.
In particular we show that if F is a quasi-central set or a D-set, then for
every n ∈ N both nF and n−1F are also quasi-central sets or D-sets. In
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Section 7 using the correspondence which is set up in Section 4 and some
properties of J-sets, we obtain a dynamical characterization of C-sets. In
Section 8, as an application, we give a topological dynamical proof of the
fact that Rado systems are solvable in C-sets.

2. Furstenberg families. Let us recall some notions related to families
(for more details see [1]). Denote by P = P(N) the collection of all subsets
of N. A subset F of P is called a Furstenberg family (or just family) if it is
upward hereditary, i.e., F1 ⊂ F2 and F1 ∈ F imply F2 ∈ F . A family F is
called proper if it is a nonempty proper subset of P, i.e., neither empty nor
all of P. For a family F , the dual family of F , denoted by κF , is

{F ∈ P : F ∩ F ′ 6= ∅, ∀F ′ ∈ F}.

Sometimes the dual family κF is also denoted by F∗.
A family F is called a filter when it is a proper family closed under

intersection, i.e., if F1, F2 ∈ F then F1 ∩ F2 ∈ F . A family F is called a
filterdual if its dual κF is a filter. It is easy to see that a proper family F is
a filterdual if and only if it has the Ramsey property : whenever F1 ∪F2 ∈ F
then either F1 ∈ F or F2 ∈ F . Since κ(κF) = F , a family F is a filter if
and only if κF is a filterdual.

Of special interest are filters that are maximal with respect to inclusion.
Such a filter is called an ultrafilter. By Zorn’s Lemma every filter is contained
in some ultrafilter. For any n ∈ N the family {A ⊂ N : n ∈ A} is an
ultrafilter, called a principal ultrafilter. Any other ultrafilter is non-principal.
The following two lemmas give basic properties of ultrafilters (see [1, 15, 19]
for example).

Lemma 2.1. Let F be a filter. Then the following conditions are equiv-
alent:

(1) F is an ultrafilter;
(2) F = κF ;
(3) F is a filterdual;
(4) for all F ⊂ N, either F ∈ F or N \ F ∈ F .

Lemma 2.2. Let F be a filterdual and A ⊂ F . If for any finite collection
of elements A1, . . . , An in A the intersection

⋂n
i=1Ai is in F , then there

exists an ultrafilter F ′ such that A ⊂ F ′ ⊂ F .

For n ∈ Z and F ⊂ N, denote n+F = {n+m ∈ N : m ∈ F}. A family F
is called translation + invariant if n+ F ∈ F for every n ∈ Z+ and F ∈ F ,
translation − invariant if −n + F ∈ F for every n ∈ Z+ and F ∈ F , and
translation invariant if it is both + and − invariant.
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Any nonempty collection A of subsets of N naturally generates a family

F(A) = {F ⊂ N : F ⊃ A for some A ∈ A}.
A collection A of subsets of N is said to have the finite intersection property
if the intersection of any finite collection of elements in A is not empty. In
this case, the family generated by A is a filter.

Let F be a family. The block family of F , denote by bF , is the family
consisting of sets F ⊂ N for which there exists some F ′ ∈ F such that for
every finite subset W of F ′ one has m+W ⊂ F for some m ∈ Z+. It is easy
to see that F ∈ bF if and only if there exists a sequence {an}∞n=1 in Z+ and
F ′ ∈ F such that

⋃∞
n=1(an + F ′ ∩ [1, n]) ⊂ F . Clearly, b(bF) = bF and bF

is translation + invariant.

Lemma 2.3 ([7, 22]). If F is a filterdual, then so is bF .

Now let us recall some important sets and families. Let Finf be the family
of all infinite subsets of Z+. It is easy to see that its dual family κFinf is the
family of all cofinite subsets, denoted by Fcf .

A subset F of Z+ is called thick if it contains arbitrarily long runs of posi-
tive integers, i.e., there exists a sequence {an}∞n=1 in Z+ such that

⋃∞
n=1(an+

[1, n]) ⊂ F ; syndetic if there exists N ∈ N such that [n, n+N ] ∩ F 6= ∅ for
every n ∈ N; piecewise syndetic if it is the intersection of a thick set and a
syndetic set. The families of all thick sets, all syndetic sets and all piecewise
syndetic sets are denoted by Ft, Fs and Fps, respectively. It is easy to see
that κFs = Ft.

Let F be a subset of N. The upper density of F is

d̄(F ) = lim sup
n→∞

|F ∩ [1, n]|
n

,

where | · | denotes cardinality, and the upper Banach density of F is

BD∗(F ) = lim sup
|I|→∞

|F ∩ I|
|I|

where I runs over all nonempty finite intervals of N. Using density we can
define lots of interesting families. For example, Fpud and Fpubd are the fam-
ilies of sets with positive upper density and positive upper Banach density
respectively.

Denote by Fip and Fcen the family of all IP sets and all central sets
respectively. We have the following basic properties of the familiar families
(see [1, 19] for example).

Lemma 2.4.

(1) Fcen, Fip, Fps, Fpud and Fpubd are filterduals.
(2) Fps, Fpud, Fpubd and Fs are translation invariant.
(3) bFcf = Ft, bFs = Fps and bFpud = Fpubd.
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We now introduce the notion of F-limit. Let F be a family and {xn}n∈N
be a sequence in a topological space. We say that x is an F-limit of {xn} if
for every open neighborhood U of x the set {n ∈ N : xn ∈ U} is in F . The
Fcf -limit is just the ordinary limit. It is easy to check that if F is a filter
then F-limxn exists and is unique in every compact Hausdorff space.

3. βN: the Stone–Čech compactification of N. Endowing N with
the discrete topology, we take the points of the Stone–Čech compactification
βN of N to be the ultrafilters on N, the principal ultrafilters being identified
with the points of N. For A ⊂ N, let A = {p ∈ βN : A ∈ p}. Then the sets
{A : A ⊂ N} form a basis for the open sets (and a basis for the closed sets)
of βN.

Since (N,+) is a semigroup, we can extend the operation + to βN by

p+ q = {F ⊂ N : {n ∈ N : −n+ F ∈ q} ∈ p}.
Then (βN,+) is a compact Hausdorff right topological semigroup with N
contained in the topological center of βN. That is, for each p ∈ βN the map
ρp : βN → βN, q 7→ q + p, is continuous, and for each n ∈ N the map
λn : βN → βN, q 7→ n + q, is continuous. It is well known that βN has a
smallest ideal K(βN) =

⋃
{L : L is a minimal left ideal of βN} =

⋃
{R : R

is a minimal right ideal of βN} ([19, Theorem 2.8]).

Lemma 3.1. Let F be a filter. If for every F ∈ F there exists some
F ′ ∈ F such that −n + F ∈ F for every n ∈ F ′, then

⋂
F∈F F is a closed

subsemigroup of βN.

Proof. Since F has the finite intersection property,
⋂
F∈F F is nonempty.

Let p, q ∈
⋂
F∈F F . We want to show that p + q ∈

⋂
F∈F F . Let F ∈ F .

It suffices to show that F ∈ p + q. For this F , there exists some F ′ ∈ F
such that −n + F ∈ F for every n ∈ F ′. Then F ′ ⊂ {n ∈ N : −n + F ∈ q}
and {n ∈ N : −n + F ∈ q} ∈ p. By the definition of “+” in βN we have
F ∈ p+ q.

Lemma 3.2 ([19, Theorem 4.20]). Let A be a collection of subsets of N.
If A has the finite intersection property and for every F ∈ A and n ∈ F there
exists F ′ ∈ A such that n+ F ′ ⊂ F , then

⋂
F∈A F is a closed subsemigroup

of βN.

For a filterdual F , the hull of F is defined by

h(F) = {p ∈ βN : p ⊂ F}.
It is a nonempty closed subset of βN, and F ∈ F if and only if F ∩h(F) 6= ∅.
Conversely, for a nonempty closed subset Z of βN, the kernel of Z is defined
by

k(Z) = {F ⊂ N : F ∩ Z 6= ∅}.
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It is a filterdual, and h(k(Z)) = Z and k(h(F)) = F . Thus, we obtain a
one-to-one correspondence between the set of filterduals on N and the set of
nonempty closed subsets of βN ([10, 15]).

Lemma 3.3 ([15, 19]). We have the following correspondences:

(1) h(Fps) = K(βN).
(2) h(Fip) = {p ∈ βN : p is an idempotent}.
(3) h(Fcen) = {p ∈ βN : p is a minimal idempotent}.
(4) h(Fpubd) =

⋃
{supp(µ) : µ ∈M}, where M is the set of all N-

invariant probability measures on βN.

Lemma 3.4. Let F be a filterdual. Then F is translation + invariant if
and only if h(F) is a closed left ideal of βN.

Proof. Assume that F is translation + invariant. In order to show that
h(F) is a closed left ideal, it suffices to show that m+h(F) ⊂ h(F) for every
m ∈ N. Let m ∈ N, p ∈ h(F) and F ∈ m+p. Then m ∈ {n ∈ N : −n+F ∈ p}
and −m+F ∈ p ⊂ F . Since F is translation + invariant, m+(−m+F ) ⊂ F ,
so F ∈ F and m+ p ⊂ F , i.e., m+ p ∈ h(F).

Conversely, assume that h(F) is a closed left ideal of βN. Let F ∈ F
and n ∈ N. We want to show that n + F ∈ F . By Lemma 2.2, there exists
some p ∈ h(F) with F ∈ p. Clearly, n ∈ {m ∈ N : −m + (n + F ) ∈ p}, so
n+ F ∈ n+ p ∈ h(F) and n+ F ∈ F .

Lemma 3.5. Let F be a filterdual and bF = F . Then h(F) is a closed
two-sided ideal of βN.

Proof. Since bF is translation + invariant, by Lemma 3.4, h(F) is a
closed left ideal of βN. Thus it suffices to show that h(F) is also a right
ideal.

Let p ∈ h(F), q ∈ βN and A ∈ p+ q. We need to show that A ∈ F . Let
F = {n ∈ N : −n + A ∈ q}. Then F ∈ p ⊂ F . For every finite subset E
of F ,

⋂
n∈E(−n + A) ∈ q is not empty; choose nE ∈

⋂
n∈E(−n + A); then

nE + E ⊂ A. This implies A ∈ bF = F .

Let F be a filterdual. We call F ⊂ N an essential F-set if there is an
idempotent p ∈ h(F) such that F ∈ p. Denote by F̃ the collection of all
essential F-sets. Then F̃ is also a filterdual since

h(F̃) = {p ∈ βN : p is an idempotent in h(F)}.

Let F be a subset of N. Then

(1) F is an IP set if and only if it is an essential bFip-set.
(2) F is a quasi-central set if and only if it is an essential Fps-set.
(3) F is a D-set if and only if it is an essential Fpubd-set.
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(4) F is a C-set if and only if it is an essential J -set, where J is the
collection of all J-sets.

Theorem 3.6. Let F be a translation invariant filterdual and {xn}∞n=1

be a sequence in N. If FS({xn}∞n=1)∈F , then for every m∈N, FS({xn}∞n=m)
is an essential F-set.

Proof. We first prove the following claim.

Claim. For each m ∈ N, h(F) ∩ FS({xn}∞n=m) 6= ∅.
Proof of the Claim. Clearly, the claim holds for m = 1. Now assume that

m ≥ 2. Then

FS({xn}∞n=1) = FS({xn}m−1
n=1 ) ∪ FS({xn}∞n=m)

∪ {t+ FS({xn}∞n=m) : t ∈ FS({xn}m−1
n=1 )}.

Since F is translation invariant, p cannot be a principal ultrafilter, so
the finite set FS({xn}m−1

n=1 ) is not in p. If FS({xn}∞n=m) ∈ p, then the claim
holds. Now assume that we have some t ∈ FS({xn}m−1

n=1 ) such that t +
FS({xn}∞n=m) ∈ p. Choose q ∈ FS({xn}∞n=m) such that t+ q = p. For every
F ∈ q, t ∈ {n ∈ N : −n + (t + F ) ∈ q}, so t + F ∈ p ⊂ F . Since F is
translation invariant, we have F ∈ F and q ∈ h(F). This ends the proof of
the claim.

By Lemma 3.2,
⋂∞
m=1 FS({xn}∞n=m) is a closed subsemigroup of βN, and

by Lemma 3.4, h(F) is a closed left ideal of βN. Then by the above claim
h(F)∩

⋂∞
m=1 FS({xn}∞n=m) is a nonempty subsemigroup of βN. By the well

known Ellis–Namakura Theorem, there exists some idempotent in this semi-
group. Thus for every m ∈ N, FS({xn}∞n=m) is an essential F-set.

For convenience, we also consider βZ+, the Stone–Čech compactification
of Z+. There is a natural imbedding map i : βN→ βZ+ defined by i(p) = p∪
{A ∪ {0} : A ∈ p}. Thus we can regard βN as a subset of βZ+ and βZ+ =
βN ∪ {0}. The advantage of βZ+ is that it contains the identity element 0,
but we do not want to take 0 into account when considering multiplication.

4. Relationships between algebraic properties of βN and dynam-
ical properties. A topological dynamical system (or just system) is a pair
(X,T ), where X is a nonempty compact Hausdorff space and T is a contin-
uous map from X to itself. When X is metrizable or T is a homeomorphism,
we call (X,T ) a metrizable or invertible dynamical system respectively.

Let (X,T ) be a dynamical system and x ∈ X. The orbit of x is Orb(x, T )
= {Tnx : n ∈ Z+}. Let ω(x, T ) be the ω-limit set of x, i.e., the limit set of
Orb(x, T ). A point x ∈ X is recurrent if x ∈ ω(x, T ). We call the system
(X,T ) minimal if it contains no proper subsystems, and x ∈ X is a minimal
point if it belongs to some minimal subsystem of X.



268 J. Li

A factor map π : (X,T ) → (Y, S) is a continuous surjective map from
X to Y such that S ◦ π = π ◦ T . In this situation (X,T ) is said to be an
extension of (Y, S), and (Y, S) is a factor of (X,T ).

Let F be a family and (X,T ) be a dynamical system. A point x ∈ X is
called F-recurrent if for every open neighborhood U of x the entering time
set N(x, U) = {n ∈ N : Tnx ∈ U} is in F . If x is F-recurrent, then so is Tx.
Let π : (X,T ) → (Y, S) be a factor map. If x ∈ X is F-recurrent, then so
is π(x). It is well known that x is recurrent if and only if it is Fip-recurrent,
and x is a minimal point if and only if it is Fs-recurrent. If F is a filter, then
x is F-recurrent if and only if F-limTnx = x.

Now we generalize the notion of ω-limit set. Let F be a family, (X,T ) be
a dynamical system and x ∈ X. A point y ∈ X is called an F-ω-limit point
of x if for every neighborhood U of y the entering time set N(x, U) ∈ F .
Denote by ωF (x, T ) the set of all F-ω-limit points. Then x is F-recurrent if
and only if x ∈ ωF (x, T ).

An invariant measure for a dynamical system (X,T ) is a regular Borel
probability measure µ on X such that µ(T−1A) = µ(A) for all Borel subsets
A of X.

Lemma 4.1. Let (X,T ) be a dynamical system and x ∈ X. If x is a
recurrent point with Orb(x, T ) = X, then

(1) x is Fps-recurrent if and only if (X,T ) has dense minimal
points ([24]).

(2) x is Fpubd-recurrent if and only if for every open neighborhood U of
x there exists an invariant measure µ on (X,T ) such that µ(U) > 0
([23, 4]).

Lemma 4.2. Let F be a family and p ∈ βN.

(1) If p is an idempotent and p ⊂ F , then p is F-recurrent in (βZ+, λ1).
(2) If p is F-recurrent in (βZ+, λ1), then p ⊂ bF .

Proof. (1) For every neighborhood U of p, there exists some F ∈ p such
that F ⊂ U . Then N(p, F ) = {n ∈ N : (λ1)np ∈ F } = {n ∈ N : n+p ∈ F } =
{n ∈ N : −n+F ∈ p}. Since F ∈ p = p+p, we have {n ∈ N : −n+F ∈ p} ∈ p.
Thus N(p, F ) ∈ F and p is F-recurrent.

(2) For every F ∈ p, F is an open neighborhood of p and N(0, F ) = F .
Let F ′ = N(p, F ). Since p is F-recurrent, F ′ ∈ F . For every finite subset W
of F ′, by the continuity of λ1, there exists an open neighborhood U of p such
that (λ1)nU ⊂ F for every n ∈ W . Since p ∈ Orb(0, λ1), there exists some
m ∈ Z+ such that (λ1)m0 ∈ U . Then m+W ⊂ N(0, F ). Thus, F ∈ bF .

Let (X,T ) be a dynamical system. Then (XX , T ) also forms a dynami-
cal system, where XX is endowed with its compact, pointwise convergence
topology and T acts on XX as composition. The enveloping semigroup of
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(X,T ), denoted by E(X,T ), is defined as the closure of the set {Tn : n ∈ Z+}
in XX .

From the algebraic point of view, E(X,T ) is a compact Hausdorff right
topological semigroup. On the other hand, (E(X,T ), T ) is a subsystem of
(XX , T ). Those two structures are closely related. A subset L ⊂ E(X,T )
is a closed left ideal of E(X,T ) if and only if (L, T ) is a subsystem of
(E(X,T ), T ), and L is a minimal left ideal of E(X,T ) if and only if (L, T )
is a minimal subsystem of (E(X,T ), T ).

If π : (X,T ) → (Y, S) is a factor map, then there is a unique continu-
ous semigroup homomorphism π̃ : E(X,T ) → E(Y, S) such that π(px) =
π̃(p)π(x).

Let (X,T ) be a dynamical system and I be any nonempty set. Let XI be
the product space and define T (I) : XI → XI by T (I)((xi)i∈I) = (Txi)i∈I .
Then there is a natural isomorphism between E(X,T ) and E(XI , T (I)). For
convenience, we regard E(X,T ) acting on factors of (X,T ) and on product
systems of (X,T ).

For each x ∈ X, there is a canonical factor map

ϕx : E(X,T )→ (Orb(x, T ), T ), q 7→ qx.

Let (X,T ) be a dynamical system. Z+ acts on X as

Φ : Z+ ×X → X, (n, x) 7→ Tnx.

Since βZ+ is the Stone–Čech compactification of Z+, we can extend Φ to

βZ+ ×X → X, (p, x) 7→ px.

For each x ∈ X, the map Φx : (βZ+, λ1) → (Orb(x, T ), T ), p 7→ px, is a
factor map and Φx(βN∗) = ω(x, T ), where βN∗ = βN \ N.

Lemma 4.3. Let (X,T ) be a dynamical system, x ∈ X and p ∈ βN.
Then px = p- limTnx.

Proof. Clearly, the result holds for principal ultrafilters. Now we assume
that p is a non-principal ultrafilter. Consider the factor map

Φx : (βZ+, λ1)→ (Orb(x, T ), T ), p 7→ px.

For every neighborhood U of px, let V = Φ−1
x (U). Then V is a neigh-

borhood p. There exists a subset F of N such that p ∈ F ⊂ V . Hence
F ⊂ N(0, V ) ⊂ N(x, U). Thus, N(x, U) ∈ p.

We can also extend Ψ : Z+ → XX , n 7→ Tn, to βZ+ → E(X,T ). It is easy
to see that Ψ is a semigroup homomorphism and Ψ : (βZ+, λ1) → E(X,T )
is also a factor map. For every x ∈ X, Φx and ϕx ◦ Ψ agree on Z+ which is
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dense in βZ+, so Φx = ϕx ◦ Ψ , i.e., the following diagram commutes:

(βZ+, λ1) Ψ //

Φx
��

(E(X,T ), T )

ϕxvvmmmmmmmmmmmm

(Orb(x, T ), T )

Before continuing, we need some preparation about symbolic dynamics.
Let Σ2 = {0, 1}Z+ and σ : Σ2 → Σ2 be the shift map

(x(0), x(1), x(2), . . .) 7→ (x(1), x(2), x(3), . . .).

Let [i0i1 . . . in] = {x ∈ Σ2 : x(0) = i0, x(1) = i1, . . . , x(n) = in} for ij = 0, 1
and j = 0, 1, . . . , n. For any F ⊂ Z+, we denote by 1F the indicator function
from Z+ to {0, 1}, i.e., 1F (n) = 1 if n ∈ F and 1F (n) = 0 if n 6∈ F .
In a natural way, each indicator function can be regarded as an element
of Σ2. It should be noticed that the enveloping semigroup of ({0, 1}Z+ , σ) is
topologically and algebraically isomorphic to βZ+ ([10, 15]). Similarly, we
can define the two-sided symbolic dynamics ({0, 1}Z, σ).

Theorem 4.4. Let F be a filterdual. Suppose that h(F) is a subsemi-
group of βN. Let (X,T ) be a dynamical system and x ∈ X. Then the fol-
lowing conditions are equivalent:

(1) x is F-recurrent;
(2) there exists an idempotent u ∈ h(F) such that ux = x;
(3) there exists an F-recurrent idempotent v ∈ E(X,T ) with vx = x;
(4) x is F̃-recurrent, where F̃ is the collection of all essential F-sets.

Proof. (1)⇒(2). Let

A = {N(x, U) : U is an open neighborhood of x}.
Then A ⊂ F and the intersection of any finite collection of elements of A is
also in A. By Lemma 2.2 there exists some p ∈ h(F) such that A ⊂ p, thus
px = x.

Let L = {q ∈ βN : qx = x}. Then L is a closed subsemigroup of βN and
so is L ∩ h(F) since p ∈ L ∩ h(F). By the Ellis–Namakura Theorem there
exists an idempotent u ∈ L ∩ h(F).

(2)⇒(3). Let v = Ψ(u). Since u is F-recurrent, so is v. Since Ψ is a
semigroup homomorphism, vv = Ψ(u)Ψ(u) = Ψ(uu) = Ψ(u) = v. As Φx =
ϕx ◦ Ψ , we have x = ux = Φx(u) = ϕx(Ψ(u)) = ϕx(v) = vx.

(2)⇒(4), (3)⇒(1) and (4)⇒(1) are obvious.

Proposition 4.5. Let F be a filterdual. Suppose that h(F) is a sub-
semigroup of βN. Let π : (X,T ) → (Y, S) be a factor map. If y ∈ Y is
F-recurrent, then there is an F-recurrent point x in π−1(y).
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Proof. By Theorem 4.4 there exists an idempotent u ∈ h(F) such that
uy = y. Choose z ∈ π−1(y) and let x = uz. Then π(x) = π(uz) = uπ(z) =
uy = y and ux = uuz = uz = x, so x is F-recurrent and x ∈ π−1(y).

Remark 4.6. Recall that a point x ∈ X is minimal if and only if it is
Fs-recurrent. Unfortunately, Fs is not a filterdual. Can we use some filterdual
instead of Fs to characterize minimal points? Intuitively, Fcen may be a good
choice. But this is not true: it is shown in [25] that there exist Fcen-recurrent
points which are not minimal.

Let (X,T ) be a dynamical system and x, y ∈ X. We call x, y are proximal
if there exists z ∈ X such that (z, z) ∈ ω((x, y), T × T ).

Proposition 4.7 ([10, 12, 5]). Let (X,T ) be a dynamical system and
x, y ∈ X. Then the following conditions are equivalent:

(1) x, y are proximal and y is a minimal point;
(2) there exists a minimal idempotent u ∈ βN such that ux = uy = y;
(3) there exists a minimal idempotent v ∈ E(X,T ) with vx = vy = y;
(4) (y, y) ∈ ωFcen((x, y), T × T ).

Let (X,T ) be a dynamical system and x, y ∈ X. We call x strongly
proximal to y if (y, y) ∈ ω((x, y), T × T ). It is easy to see that if y is a
minimal point then x, y are proximal if and only if x is strongly proximal
to y.

Lemma 4.8. Let (X,T ) be a dynamical system and x, y ∈ X. Then the
following conditions are equivalent:

(1) x is strongly proximal to y;
(2) (y, y) ∈ ωFip((x, y), T × T );
(3) for every n ∈ N, x is strongly proximal to y in (X,Tn).

Proof. (2)⇒(1) and (3)⇒(1) are obvious.
(2)⇒(3) follows from the fact that if F is an IP set then for every n ∈ N

the set {m ∈ N : mn ∈ F} is also an IP set.
(1)⇒(2). Consider the factor map

Φ(x,y) : (βZ+, λ1)→ (Orb((x, y), T × T ), T × T ), q 7→ q(x, y).

Let L = {p ∈ βN : p(x, y) = (y, y)} = Φ−1
(x,y)(y, y) ∩ βN. Then L is a

nonempty closed subset of βN, since (y, y) ∈ ω((x, y), T ×T ). We show that
L is a subsemigroup of βN. Let p, q ∈ L. Then p(x, y) = (px, py) = (y, y)
and q(x, y) = (qx, qy) = (y, y), so pq(x, y) = (pqx, pqy) = (py, py) = (y, y).
By the Ellis–Namakura Theorem there exists an idempotent p in L. Then
by Lemma 4.3 and p ⊂ Fip one has (y, y) ∈ ωFip((x, y), T × T ).

Let F be a family, (X,T ) be a dynamical system and x, y ∈ X. We say
that x is F-strongly proximal to y if (y, y) ∈ ωF ((x, y), T × T ) ([1]).
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Theorem 4.9. Let F be a filterdual. Suppose that h(F) is a subsemi-
group of βN. Let (X,T ) be a dynamical system and x, y ∈ X. Then the
following conditions are equivalent:

(1) x is F-strongly proximal to y;
(2) there exists an idempotent u ∈ h(F) such that ux = uy = y;
(3) there exists an F-recurrent idempotent v ∈ E(X,T ) such that vx =

vy = y;
(4) x is F̃-strongly proximal to y.

Proof. (1)⇒(2). Let

A = {N((x, y), U × U) : U is an open neighborhood of y}.
By the definition of F-strong-proximity, we have A ⊂ F and the intersection
of finitely many elements of A is also in A. Hence by Lemma 2.2 there exists
some p ∈ h(F) such that A ⊂ p, so p(x, y) = (y, y). Let L = {q ∈ βN : qx =
qy = y}. Then L ∩ h(F) is a nonempty closed subsemigroup of βN. By the
Ellis–Namakura Theorem there exists an idempotent u ∈ L ∩ h(F).

(2)⇒(3). Let v = Ψ(u). Since u is F-recurrent, so is v. Then from
Φ(x,y) = ϕ(x,y) ◦ Ψ we have vx = vy = y.

(3)⇒(2). By Theorem 4.4 there exists an idempotent u ∈ h(F) such
that v = uv = Ψ(u). Then Φ(x,y) = ϕ(x,y) ◦ Ψ yields ux = uy = y.

(2)⇒(4). Since u(x, y) = (y, y) and u is an idempotent in h(F), by
Lemma 4.3, (y, y) ∈ ω eF ((x, y), T × T ).

(4)⇒(1) is obvious.

Proposition 4.10. Let F be a filterdual. Suppose that bF = F . Let
(X,T ) be a dynamical system and x, y ∈ X. Then x is F-strongly proximal
to y if and only if y is an F-recurrent point and x is strongly proximal to y.

Proof. By definition, if x is F-strongly proximal to y, then y is F-
recurrent and x is strongly proximal to y.

Conversely, assume that y is F-recurrent and x is strongly proximal to y.
Consider the factor map

Φ(x,y) : (βZ+, λ1)→ (Orb((x, y), T × T ), T × T ), p 7→ p(x, y).

Since (y, y) ∈ Orb((x, y), T × T ) and (y, y) is F-recurrent, by Proposi-
tion 4.5 there exists an F-recurrent point q in βN with q(x, y) = (y, y).
By Lemma 4.2 we have q ⊂ bF = F , so (y, y) ∈ ωF ((x, y), T × T ).

Now we can set up a general correspondence between essential F-sets
and sets defined by F-strong proximity.

Theorem 4.11. Let F be a filterdual. Suppose that h(F) is a subsemi-
group of βN. Then a subset F of N is an essential F-set if and only if
there exists a dynamical system (X,T ), a pair of points x, y ∈ X where x
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is F-strongly proximal to y, and an open neighborhood U of y such that
F = N(x, U).

Proof. The sufficiency follows from Theorem 4.9 and N((x, y), U ×U) ⊂
N(x, U).

Now we show the necessity. If F is an essential F-set, there exists an
idempotent u ∈ h(F) such that F ∈ u. Let x = 1F ∈ {0, 1}Z+ and y = ux.
Then ux = y = y, so x is F-strongly proximal to y. Clearly, N(x, [1]) = F .
Then it suffices to show that y ∈ [1]. If not, then y ∈ [0]. Thus, N(x, [0]) ∈ p
and N(x, [0]) ∩N(x, [1]) 6= ∅, This is a contradiction.

Remark 4.12. (1) In the proof of Theorem 4.11, if we use {0, 1}Z instead
of {0, 1}Z+ , then the proof shows that every essential F-set can be realized
by an invertible metrizable system.

(2) Since Fps and Fpubd are filterduals, and bFps = Fps, bFpubd = Fpubd,
Theorems 1.5 and 1.6 are special cases of Theorem 4.11.

We now give a combinatorial characterization of essential F-sets.

Proposition 4.13. Let F be a filterdual. Suppose that h(F) is a sub-
semigroup of βN. Then a subset F of N is an essential F-set if and only if
there is a decreasing sequence {Cn}∞n=1 of subsets of F such that Cn ∈ F for
every n ∈ N, and for every r ∈ Cn there exists m ∈ N such that r+Cm ⊂ Cn.

Proof. If F is an essential F-set, there exists an idempotent u ∈ h(F)
such that F ∈ u. Let x = 1F ∈ {0, 1}Z+ and y = ux. Then u(x, y) = (y, y),
y ∈ [1] and N(x, [1]) = F . For each n ∈ N, let Un = [y(0)y(1) . . . y(n)] and
Cn = N((x, y), Un×Un). Then by Theorem 4.9 each Cn is an essential F-set.
For every r ∈ Cn, we have (σ× σ)r(y, y) ∈ Un×Un. By the continuity of σ,
there exists m ∈ N such that (σ×σ)r(Um×Um) ⊂ Un×Un, so r+Cm ⊂ Cn.

Conversely, assume that there is a sequence {Cn}∞n=1 as in the statement.
By Lemma 2.2 there exists p ∈ h(F) such that {Cn : n ∈ N} ⊂ p. Let
L =

⋂∞
n=1Cn. By Lemma 3.2, L is a closed subsemigroup of βN. Then

p ∈ L ∩ h(F) and L ∩ h(F) is a nonempty closed subsemigroup of βN. By
the Ellis–Namakura Theorem there exists an idempotent in L∩h(F). Thus,
each Cn is an essential F-set. In particular, F is an essential F-set.

Corollary 4.14. Let p be an idempotent in βN and F ⊂ N. Then F ∈ p
if and only if there is a decreasing sequence {Cn}∞n=1 of subsets of F such
that Cn ∈ p for every n ∈ N, and for every r ∈ Cn there exists m ∈ N such
that r + Cm ⊂ Cn.

5. The set’s forcing. In this section, we discuss the set’s forcing. This
terminology was first introduced in [7]; the idea goes back at least to [11]
and [15]. We say that a subset F of N forces F-recurrence if for every
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dynamical system (X,T ) and x ∈ X there exists some F-recurrent point in
TFx, where TFx = {Tnx : n ∈ F}.

In [11] and [15], the authors call a subset F of N big if there exists a
minimal point in Orb(x, σ) ∩ [1], where x = 1F ∈ Σ.

Proposition 5.1 ([15, 7]). Let F ⊂ N. Then the following conditions
are equivalent:

(1) F is big;
(2) F is piecewise syndetic;
(3) F forces Fs-recurrence;
(4) there exists a minimal left ideal L of βN such that F ∩ L 6= ∅.
Let F be a family. Denote by Force(F) the collection of all sets that force

F-recurrence. Clearly, Force(F) is a family. It is easy to see that Force(F)
is not empty if and only if there exists an F-recurrent point in (βZ+, λ1).

Theorem 5.2. Let F be a family and F ⊂ N. Then F ∈ Force(F) if
and only if there exists an F-recurrent point p ∈ βN such that F ∈ p.

Proof. Let F ∈ Force(F). Consider the system (βZ+, λ1) and 0 ∈ βZ+.
Since F forces F-recurrence, there exists an F-recurrent point p ∈ (λ1)F 0 =
{(λ1)n0 : n ∈ F} = F . Thus, F ∈ p.

Conversely, assume that there exists an F-recurrent point p ∈ βN such
that F ∈ p. For every dynamical system (X,T ) and x ∈ X, consider the fac-
tor map Φx : (βZ+, λ1)→ (Orb(x, T ), T ). Let y = px. Then y is F-recurrent.
Thus it suffices to show that y ∈ TFx. For every open neighborhood U of y,
we have N(x, U) ∈ p. Since F ∈ p, we have N(x, U)∩F 6= ∅, thus y ∈ TFx.

Corollary 5.3. Let F be a family. Then

h(Force(F)) =
⋃
{βZ+ + p : p is an F-recurrent point}.

Proposition 5.4. Let F be a family. If Force(F) is not empty, then
Force(F) is a filterdual and Force(F) = b(Force(F)) ⊂ bF .

Proof. Let F ∈ Force(F) and F = F1 ∪ F2. If neither F1 nor F2 is in
Force(F), then there exist dynamical systems (X,T ) , (Y, S) and points
x ∈ X, y ∈ Y such that neither TF1x nor SF2x contains F-recurrent points.
Consider the system (X × Y, T × S) and (x, y) ∈ X × Y . Since F forces
F-recurrence, there exists an F-recurrent point

(z1, z2) ∈ (T × S)F (x, y) = (T × S)F1(x, y) ∪ (T × S)F2(x, y).

Without loss of generality, assume that (z1, z2) ∈ (T × S)F1(x, y). Then z1 ∈
TF1x and z1 is F-recurrent, a contradiction. Thus, Force(F) is a filterdual.

Let F ∈ b(Force(F)). Then there exists a sequence {an} in Z+ and
F ′ ∈ Force(F) such that

⋃∞
n=1(an + F ′ ∩ [1, n]) ⊂ F . Let (X,T ) be a
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dynamical system and x ∈ X. Since X is compact, there is a subnet {ani}
of {an} such that limT anix = y. Since F forces F-recurrence, there exists
an F-recurrent point z ∈ TF ′y. It suffices to show that z ∈ TFx. For every
open neighborhood U of z, there exists k ∈ F ′ such that T ky ∈ U . By the
continuity of T , choose an open neighborhood V of y such that T kV ⊂ U .
Since limT anix = y and {ani} is a subnet of {an}, there exists n ≥ k such
that T anx ∈ V . Then an + k ∈ F and T an+kx ∈ U , so z ∈ TFx.

Let F ∈ Force(F). We will show that F ∈ bF . Let x = 1F ∈ {0, 1}Z+ .
Since F forces F-recurrence, there exists an F-recurrent point y ∈ TFx.
Clearly, y ∈ [1] and N(x, [1]) = F . Let N(y, [1]) = F ′. Then F ′ ∈ F .
For every finite subset W of F ′, by the continuity of σ, there exists an
open neighborhood U of y such that σn(U) ⊂ [1] for every n ∈ W . Since
y ∈ Orb(x, σ), choose m ∈ Z+ such that σmx ∈ U ; then m+W ⊂ N(x, [1]).
So F ∈ bF .

Theorem 5.5. Let F be a filterdual and F ⊂ N. Suppose that h(F) is a
subsemigroup of βN. Then the following conditions are equivalent:

(1) F forces F-recurrence;
(2) for x = 1F ∈ {0, 1}Z+, there exists an F-recurrent point in

Orb(x, σ) ∩ [1];
(3) F is a block essential F-set, i.e., F ∈ bF̃ .

Proof. (1)⇒(2). Let x = 1F ∈ {0, 1}Z+ . Since F forces F-recurrence,
there exists an F-recurrent point y in σFx ⊂ [1].

(2)⇒(3). Choose an F-recurrent point y in Orb(x, σ) ∩ [1]. By Theo-
rem 4.4, y is also F̃-recurrent. Since N(x, [1]) = F and N(y, [1]) ∈ F̃ , by
the continuity of σ we have F ∈ bF̃ .

(3)⇒(1). By Proposition 5.4, it suffices to show that every essential F-
set forces F-recurrence. Let F ∈ F̃ . Then there exists an idempotent u ∈
h(F) such that F ∈ u. Let (X,T ) be a dynamical system and x ∈ X. Let
y = ux. Then uy = y, so y is F-recurrent. For every open neighborhood U
of y, N(x, U) ∈ u. Since F ∈ u, we have F ∩N(x, U) 6= ∅, thus y ∈ TFx.

Corollary 5.6. Let F be a filterdual and F ⊂ N. Suppose that h(F) is
a subsemigroup of βN. Let (X,T ) be a dynamical system and x ∈ X. Then
x is a unique F-recurrent point in (X,T ) if and only if for every y ∈ X,
κ(bF̃)-limTny = x.

Proof. Since F is a filterdual, κ(bF̃) is a filter. If x is a unique F-
recurrent point, then by Theorem 5.5 for every y ∈ X and every F ∈ bF̃ we
have x ∈ TF y, so κ(bF̃)-limTny = x.

Conversely, assume that there exists another F-recurrent point y ∈ X.
Choose open subsets U , V of X such that x ∈ U , y ∈ V and U∩V = ∅. Then
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N(y, U) ∈ κ(bF̃) and N(y, V ) ∈ F̃ ⊂ bF̃ . Thus, N(y, U)∩N(y, V ) 6= ∅. This
is a contradiction.

Remark 5.7. (1) Since Fip = F̃ip, we have bFip = bF̃ip. Hence a subset
F of N forces recurrence if and only if F ∈ bFip ([7]).

(2) It is shown in [27] that a subset F of N forces Fpubd-recurrence if
and only if F ∈ Fpubd, i.e., bF̃pubd = Fpubd. For completeness, we include
a proof. Let F ∈ Fpubd and x = 1F ∈ {0, 1}Z+ . By [12, Lemma 3.17],
there exists a σ-invariant measure µ such that µ(Orb(x, σ) ∩ [1]) > 0. By
the ergodic decomposition theorem, choose an ergodic σ-invariant measure
ν such that ν(Orb(x, σ)∩ [1]) > 0. Then a generic point y in Orb(x, σ)∩ [1]
for ν is Fpubd-recurrent ([12, pp. 62–64]). Thus, F forces Fpubd-recurrence.

It is interesting that central sets also have some kind of forcing.

Proposition 5.8. Let F ⊂ N. Then the following conditions are equiv-
alent:

(1) F is central;
(2) for x= 1F ∈ {0, 1}Z+, there exists a minimal point y ∈Orb(x, σ) ∩ [1]

such that x, y are proximal;
(3) for every dynamical system (X,T ) and x ∈ X there exists a minimal

point y ∈ TFx such that x, y are proximal.

Proof. (2)⇒(1) follows from the definition of central sets and N(x, [1])
= F .

(3)⇒(2) follows from TFx ⊂ [1].
(1)⇒(3). If F is central, then there exists a minimal idempotent u ∈ βN

such that F ∈ u. Let (X,T ) be a dynamical system and x ∈ X. Let y = ux.
Then ux = uy = y, so y is a minimal point and x, y are proximal. Thus
it suffices to show that y ∈ TFx. For every open neighborhood U of y,
N(x, U) ∈ u. Since F ∈ u, we have F ∩N(x, U) 6= ∅, so y ∈ TFx.

We say a subset F of N forces F-strong proximity if for every dynamical
system (X,T ) and x ∈ X there exists y in TFx such that x is F-strongly
proximal to y.

Proposition 5.9. Let F be a filterdual. Suppose that h(F) is a subsemi-
group of βN. Let F ⊂ N. Then the following conditions are equivalent:

(1) F is an essential F-set;
(2) for x= 1F ∈ {0, 1}Z+, there exists y ∈Orb(x, σ) ∩ [1] such that x is
F-strongly proximal to y;

(3) F forces F-strong proximity.

Proof. (2)⇒(1) follows from Theorem 4.11 and N(x, [1]) = F .
(3)⇒(2) follows from TFx ⊂ [1].
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(1)⇒(3). If F is an essential F-set, then there exists an idempotent
u ∈ h(F) such that F ∈ u. Let (X,T ) be a dynamical system and x ∈ X.
Let y = ux. Then ux = uy = y and by Theorem 4.9, x is F-strongly proximal
to y. Thus it suffices to show that y ∈ TFx. For every open neighborhood
U of y, N(x, U) ∈ u. Since F ∈ u, we have F ∩N(x, U) 6= ∅, so y ∈ TFx.

6. Multiplication in N and βN. In this section, we consider both
addition and multiplication in N and βN. For n ∈ N and F ⊂ N, let nF =
{nm : m ∈ F} and n−1F = {m ∈ N : nm ∈ F}. For p, q ∈ βN, the product
p · q in βN is

{A ⊂ N : {n ∈ N : n−1A ∈ q} ∈ p}.

A family F is called multiplication invariant if for each n ∈ N and F ∈ F
one has nF ∈ F . It is easy to see that Fip, Fs and Fpubd are multiplication
invariant. Similarly to Lemma 3.4, we have

Lemma 6.1. Let F be a filterdual. Then F is multiplication invariant if
and only if h(F) is a left ideal of (βN, ·).

Proposition 6.2 ([12, 6]). Let F ⊂ N. If F is a central set, then for
each n ∈ N both nF and n−1F are also central.

The main purpose of this section is to extend Proposition 6.2 to more
general settings. In particular, similar results hold for quasi-center sets and
D-sets.

Theorem 6.3. Let F be a filterdual and F ⊂ N. Suppose that F is
multiplication invariant and h(F) is a subsemigroup of (βN,+). If F is an
essential F-set, then for each n ∈ N, nF is also an essential F-set.

Proof. Let x = 1F ∈ {0, 1}Z+ . Then by Proposition 5.9 there exists
y ∈ σFx ⊂ [1] such that F-lim(σ × σ)m(x, y) = (y, y). Fix n ∈ N and let
Y = {1, . . . , n} be endowed with the discrete topology and X = {0, 1}Z+×Y .
Define T : X → X by T (z, i) = (z, i+ 1) for i ≤ n− 1 and T (z, n) = (σz, 1).

For every neighborhood U of y, we have

N((x, 1, y, 1), U × {1} × U × {1}) = nN((x, y), U × U).

Since F is multiplication invariant, F-lim(T × T )m(x, 1, y, 1) = (y, 1, y, 1).
Thus, nF = N((x, 1), [1]× {1}) is also an essential F-set.

We say that F-recurrence is iteratively invariant if for every dynami-
cal system (X,T ) and every F-recurrent point x in (X,T ), x is also an
F-recurrent point in (X,Tn) for each n ∈ N. It is well known that Fip-
recurrence and Fs-recurrence are iteratively invariant. We show



278 J. Li

Theorem 6.4. Let F be a filterdual and F ⊂ N. Suppose that bF = F
and F-recurrence is iteratively invariant. If F is an essential F-set, then
for each n ∈ N, n−1F is also an essential F-set.

Proof. Let x = 1F ∈ {0, 1}Z+ . Then by Proposition 5.9 there exists an
F-recurrent point y ∈ σFx ⊂ [1] such that x is strongly proximal to y.
For each n ∈ N, since F-recurrence is iteratively invariant, y is also an F-
recurrent point in ({0, 1}Z+ , σn). By Lemma 4.8, x is also strongly proximal
to y in ({0, 1}Z+ , σn). Then by Proposition 4.10 and Theorem 4.9, n−1F =
{m ∈ N : (σn)mx ∈ [1]} is an essential F-set.

A dynamical system (X,T ) is called topologically transitive if for any
two nonempty open subsets U , V of X there exists some n ∈ N such that
TnU∩V 6= ∅. A point x ∈ X is called transitive if the orbit of x is dense in X.
The system (X,T ) is called point transitive if there exists a transitive point
in X. In general, there is no implication between topological transitivity and
point transitivity. For example, (βZ+, λ1) is point transitive but not topo-
logically transitive. The system (X,T ) is called recurrent transitive if there
exists a recurrent transitive point, i.e., x ∈ X whose ω-limit set is X. It is
easy to see that every recurrent transitive system is topologically transitive.

The following is a “folklore” result; for similar results, see [2] for example.

Lemma 6.5. Let (X,T ) be a recurrent transitive system. Then for every
n ∈ N there is k ∈ N with k |n and a decomposition X = X0∪X1∪· · ·∪Xk−1

satisfying
(1) Xi 6= Xj, 0 ≤ i < j ≤ k − 1,
(2) TXi = Xi+1 (mod k),
(3) (Xi, T

n) is recurrent transitive, i = 0, . . . , k − 1,
(4) the interior of Xi is dense in Xi, i = 0, . . . , k − 1.

Proof. Let x ∈ X with ω(x, T ) = X. Let Yi = Orb(T ix, Tn) for i =
0, 1, . . . , n− 1. Then X = Y0 ∪ Y1 ∪ · · · ∪ Yn−1 and TYi = Yi+1 (modn). Since
x is recurrent in (X,T ), T ix is also recurrent in (X,Tn). Then (Yi, Tn) is
recurrent transitive for i = 0, 1, . . . , n − 1. Let k be the smallest positive
integer such that T kY0 = Y0. Let Xi = Yi for i = 0, 1, . . . , k − 1. Now we
show that those Xi satisfy the requirements.

Clearly, k ≤ n. Let n = lk + r with l > 0 and 0 ≤ r < k. Then
X0 = Tn(X0) = T r(T lkX0) = T r(X0); by the minimality of k, we have
r = 0, so k |n.

If there existed 0 ≤ i < j ≤ k − 1 such that Xi = Xj , then T j−iX0 =
T j−i(TnX0) = Tn−i(T jX0) = Tn−i(T iX0) = TnX0 = X0. This contradicts
the minimality of k. So Xi 6= Xj for 0 ≤ i < j ≤ k − 1.

For 0 ≤ i 6= j ≤ k−1 let Zij = Xi∩Xj . Then Zij is a Tn-invariant closed
subset of Xi. Since (Xi, T

n) is topologically transitive, Zij either equals Xi
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or is nowhere dense in Xi. If Zij = Xi, then Xi ⊂ Xj . Without loss of
generality, assume i < j; then X0 = T k−iXi ⊂ T k−iXj = Xj−i. Thus,

X0 ⊂ Xj−i ⊂ X2(j−i) (mod k) ⊂ · · · ⊂ Xk(j−i) (mod k) = X0.

This contradicts the minimality of k. So Zij is nowhere dense in Xi.
Now fix i ∈ {0, 1, . . . , k − 1} and let Zi =

⋃
j 6=i Zij . Then Zi is also

nowhere dense in Xi. The boundary of Xi in X is

∂Xi = Xi ∩ (X \Xi) ⊂ Xi ∩
⋃
j 6=i

Xj =
⋃
j 6=i

(Xi ∩Xj) = Zi.

As Xi = int(Xi) ∪ Zi, the interior of Xi is dense in Xi.

Lemma 6.6. Fps-recurrence and Fpubd-recurrence are iteratively invari-
ant.

Proof. Let (X,T ) be a dynamical system and x ∈ X be an Fps-recurrent
point. Without loss of generality, assume that Orb(x, T ) = X. By Lem-
ma 4.1, (X,T ) has dense minimal points. For every n ∈ N, (X,Tn) also has
dense minimal points. By Lemma 6.5, the interior of Orb(x, Tn) is dense in
Orb(x, Tn), so (Orb(x, Tn), Tn) also has dense minimal points. Thus x is
Fps-recurrent in (X,Tn).

Let (X,T ) be a dynamical system and x ∈ X be an Fpubd-recurrent
point. Without loss of generality, assume that Orb(x, T ) = X. By Lemma 4.1
and since (X,T ) is transitive, for every nonempty open subset U of X there
exists a T -invariant measure µ on X such that µ(U) > 0. For every n ∈ N,
by Lemma 6.5, the interior of Orb(x, Tn) is dense in Orb(x, Tn). Then for
every nonempty open subset V of Orb(x, Tn) there exists an open subset
U of X such that U ⊂ V . So there exists a T -invariant measure µ on X
such that µ(U) > 0. Clearly, µ is also Tn-invariant. Define a measure ν

on Orb(x, Tn) by ν(A) = µ(A)/µ(Orb(x, Tn)) for every Borel subset A of
Orb(x, Tn). Then ν is Tn-invariant with ν(V ) > 0. Thus x is Fpubd-recurrent
in (X,Tn).

Proposition 6.7. Let F ⊂ N and n ∈ N.

(1) If F is a quasi-central set, then both nF and n−1F are also quasi-
central.

(2) If F is a D-set, then both nF and n−1F are also D-sets.

Proof. This follows from Theorems 6.4 and 6.3, Lemma 6.6 and the fact
that Fps and Fpubd are multiplication invariant.

7. Dynamical characterization of C-sets. In this section, we show
the following dynamical characterization of C-sets.
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Theorem 7.1. Let F ⊂ N. Then F is a C-set if and only if there exists
a dynamical system (X,T ), a pair of points x, y ∈ X where y is J -recurrent
and x is strongly proximal to y, and an open neighborhood U of y such that
N(x, U) = F .

By Proposition 4.10 and Theorem 4.11, it suffices to show the following
two lemmas.

Lemma 7.2. J is a filterdual.

Lemma 7.3. J = bJ and it is multiplication invariant. Then h(J ) is a
closed two-sided ideal in (βN,+) and a left ideal in (βN, ·).

Proof of Lemma 7.2. Let F be a J-set and F = F1 ∪ F2. Using an
argument from [21, Theorem 2.14], we first show the following claim.

Claim. For every IP-system {sα = (s(1)
α , . . . , s

(m)
α )} in Zm, there exist

i ∈ {1, 2}, r ∈ Z and α ∈ Pf(N) such that r̄(m) + sα ∈ Fmi .

Proof of the Claim. For j = 1, . . . ,m, define fj : N→ Z by fj(n) = s
(j)
{n}.

Then s
(j)
α =

∑
n∈α fj(n) for α ∈ Pf(N).

By the Hales–Jewett Theorem [16] pick n ∈ N such that whenever the
length n words over the alphabet {1, . . . ,m} are 2-colored, there exists a
variable word w(v) such that {w(j) : j = 1, . . . ,m} is monochromatic.

Let W be the set of length n words over {1, . . . ,m}. For w = b1 · · · bn ∈W
define gw : N → Z by gw(ln + i) = fbi(ln + i) for l ∈ Z+ and i = 1, . . . , n.
For l ∈ Z+, let Hl = {ln+ 1, . . . , ln+ n}. For every w ∈W and α ∈ Pf(N),
let h(w)

α =
∑

l∈α
∑

t∈Hl gw(t). Then (hα) = (h(w)
α : w ∈ W ) is an IP-system

in Z|W |. Hence there exist r ∈ Z and α ∈ Pf(N) such that r + h
(w)
α ∈ F for

every w ∈ W . Define φ : W → {0, 1} by φ(w) = 1 if r + h
(w)
α ∈ F1. Pick

a variable word w(v) such that {w(j) : j = 1, . . . ,m} is monochromatic
with respect to φ. Without loss of generality assume that φ(w(j)) = 1 for
j = 1, . . . , k. Let w(v) = c1 · · · cn where each ci ∈ {1, . . . ,m} ∪ {v}. Let
A = {i ∈ {1, . . . , n} : ci = v} 6= ∅ and B = {1, . . . , n} \ A. For l ∈ Z+, let
HA
l = Hl ∩ (ln + A) and HB

l = Hl ∩ (ln + B). For j = 1, . . . ,m, rewrite
h

(w(j))
α as

h(w(j))
α =

∑
l∈α

∑
t∈Hl

gw(j)(t) =
∑
l∈α

∑
t∈HA

l

gw(j)(t) +
∑
l∈α

∑
t∈HB

l

gw(j)(t).

Then
∑

t∈HA
l
gw(j)(t) =

∑
t∈HA

l
fj(t) and

∑
t∈HB

l
gw(j)(t) does not depend

on j. Let α′ =
⋃
l∈αH

A
l and r′ = r+

∑
l∈α

∑
t∈HB

l
gw(j)(t). Then r+h(w(j))

α =

r′ + s
(j)
α′ . So r̄′(m) + sα′ ∈ Fm1 . This ends the proof of the Claim.
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We now show that in the Claim we can pick r ∈ N instead of r ∈ Z.
For every IP-system {sα = (s(1)

α , . . . , s
(m)
α )} in Zm, let s(0)

α = −|α| for each
α ∈ Pf(N) and {s′α = (s(0)

α , s
(1)
α , . . . , s

(m)
α )}. Applying the Claim to {s′α}

yields i ∈ {1, 2}, r ∈ Z and α ∈ Pf(N) such that r̄(m+1) + s′α ∈ Fm+1
i . Since

r + s
(0)
α ∈ Fi and s

(0)
α is negative, r must be positive.

If neither F1 nor F2 is a J-set, let {sα = (s(1)
α , . . . , s

(m)
α )} and {s′α =

(s′(1)
α , . . . , s

′(m′)
α )} be witnesses to this fact. Let s′′α = (s(1)

α , . . . , s
(m)
α ,

s
′(1)
α , . . . , s

′(m′)
α ). Applying the Claim to {s′′α}, we get a contradiction.

Proof of Lemma 7.3. If F is a block J-set, then there exists a sequence
{an} in Z+ and F ′ ∈ J such that

⋃∞
n=1(an + F ′ ∩ [1, n]) ⊂ F . For every

IP-system {sα} in Zm, there exist r ∈ N and α ∈ Pf(N) such that r̄(m)+sα ∈
F ′(m). Choose n large enough such that r̄(m) + sα ∈ (F ′ ∩ [1, n])(m) and let
r′ = r + an. Then r̄′(m) + sα ∈ Fm. Hence, F is also a J-set.

Let F be a J-set and n ∈ N; we want to show that nF is also a J-set.
Let {sα} be an IP-system in Zm. Without loss of generality, assume that
{sα} ⊂ nZm. Let s′α = n−1sα. Then {s′α} is also an IP-system in Zm. Since
F is a J-set, there exist r ∈ N and α ∈ Pf(N) such that r̄(m) + s′α ∈ F (m).
Then n̄r(m) + sα ∈ nF (m). Hence, nF is also a J-set.

Remark 7.4. It is shown in [17] that there exists a C-set with upper
Banach density 0. Thus there exists a dynamical system (X,T ) and x ∈ X
such that x is J -recurrent but not Fpubd-recurrent.

8. Solvability of Rado systems in C-sets. In order to show that
Rado systems are solvable in C-sets, by the method developed in [12, pp.
169–174], it suffices to show the following two results.

Lemma 8.1. If F is a C-set, then for each n ∈ N, nF and n−1F are also
C-sets.

Theorem 8.2. Let F be a C-set. Then for every m ∈ N and every IP-
system {sα} in Zm there exists an IP-system {rα} in N and an IP-subsystem
{sφ(α)} such that for every α ∈ Pf(N), r̄(m)

α + sφ(α) ∈ Fm.

To discuss J -recurrence, we first introduce a new kind of dynamical
system. Let (X,T ) be an invertible dynamical system. We say that (X,T )
has the multiple IP-recurrence property if for every IP-system {sα =
(s(1)
α , . . . , s

(m)
α )} in Zm and every open subset U of X, there exists α ∈ Pf(N)

such that m⋂
i=1

T−s
(i)
α U 6= ∅.

If an invertible dynamical system is a minimal system, or if there exists
an invariant measure with full support, then the system has the multiple
IP-recurrence property ([12, 13]).
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Lemma 8.3. Let (X,T ) be an invertible dynamical system and n ∈ N.
Then the following conditions are equivalent:

(1) (X,T ) has the multiple IP-recurrence property;
(2) for every IP-system {sα = (s(1)

α , . . . , s
(m)
α )} in Zm, every open subset

U of X and k ∈ N, there exists α ∈ Pf(N) with minα > k such that

U ∩
m⋂
i=1

T−s
(i)
α U 6= ∅;

(3) (X,Tn) has the multiple IP-recurrence property.

Proof. (1)⇒(3) and (2)⇒(1) are obvious.

(1)⇒(2). Let {sα = (s(1)
α , . . . , s

(m)
α )} be an IP-system Zm and k ∈ N.

Define a homomorphism φ : Pf(N) → Pf(N) by φ({i}) = {i + k} for any
i ∈ N. Let s(0)

α = 0 for any α ∈ Pf(N). Then {s′α = (s(0)
α , s

(1)
φ(α), . . . , s

(m)
φ(α))} is

an IP-system in Zm+1. Now (2) follows by applying (1) to {s′α}.
(3)⇒(1). Let {sα} be an IP-system in Zm. Without loss of generality,

assume that {sα} ⊂ nZm. Let s′α = n−1sα. Then {s′α} is also an IP-system
in Zm. Then (1) follows by applying (3) to {s′α} in (X,Tn).

Let {xα}α∈Pf(N) be a sequence in a topological space X and x ∈ X. We
say that xα → x as a Pf(N)-sequence if for every neighborhood U of x there
exists αU ∈ Pf(N) such that xα ∈ U for all α > αU . If {xα} is a Pf(N)-
sequence in a compact metric space, then there exists a Pf(N)-subsequence
{xφ(α)} which converges as a Pf(N)-sequence ([12, Theorem 8.14]).

Proposition 8.4. Let (X,T ) be an invertible metrizable dynamical sys-
tem. Then (X,T ) has the multiple IP-recurrent property if and only if for
every IP-system {sα} in Zm and every open subset U of X there exists x ∈ U
and an IP-subsystem {sφ(α)} such that T s

(i)
φ(α)x→ x for i = 1, . . . ,m.

Proof. The sufficiency is obvious.
We now show the necessity. Let {sα = (s(1)

α , s
(2)
α , . . . , s

(m)
α )} be an IP-

system in Zm and U be an open subset of X. Let U0 = U . By Lemma 8.3,
there exists α1 ∈ Pf(N) such that

U0 ∩
m⋂
i=1

T−s
(i)
α1U0 6= ∅.

Then choose an open subset U1 with U1 ⊂ U0 and diam(U1) < 1 such that
m⋃
i=1

T s
(i)
α1U1 ⊂ U0.
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Proceeding inductively, we define a sequence of open subsets U1, U2, . . . in
X and a sequence α1 < α2 < · · · in Pf(N) such that

Un+1 ⊂ Un, diam(Un) <
1
n
,

m⋃
i=1

T s
(i)
αnUn ⊂ Un−1.

Then there is a unique point x in
⋂∞
n=1 Un. Now set φ({n}) = αn for each

n ∈ N. For every β = {r1 < · · · < rk}, if minβ > n+ 1 then
m⋃
i=1

T
s
(i)
φ(β)Urk =

m⋃
i=1

T s
(i)
αr1 · · ·T s

(i)
αrkUrk ⊂ Ur1−1 ⊂ Un.

Hence, for i = 1, . . . ,m, T s
(i)
φ(β)x ∈ Un if minβ > n + 1. It follows that

T
s
(i)
φ(α)x→ x for i = 1, . . . ,m.

Theorem 8.5. Let (X,T ) be an invertible dynamical system and x ∈ X.
Then x is J -recurrent if and only if (Orb(x, T ), T ) has the multiple IP-
recurrence property.

Proof. Without loss of generality, assume that Orb(x, T ) = X. If x is
J -recurrent, then for every open subset U of X there exists k ∈ N and
an open neighborhood V of x such that T kV ⊂ U . Since x is J -recurrent,
N(x, V ) is a J-set. Then for every IP-system {sα = (s(1)

α , . . . , s
(m)
α )} in Zm

there exist r ∈ N and α ∈ Pf(N) such that T r+s
(i)
α x ∈ V for i = 1, . . . ,m.

Let y = T r+kx. Then T s
(i)
α y = T k(T r+s

(i)
α x) ∈ T kV ⊂ U for i = 1, . . . ,m. So

y ∈
⋂m
i=1 T

−s(i)α U .
Conversely, assume that (X,T ) has the multiple IP-recurrence property.

It is easy to see that x is recurrent. For every open neighborhood U of x
and every IP-system {sα = (s(1)

α , . . . , s
(m)
α )} in Zm, there exists α ∈ Pf(N)

such that
⋂m
i=1 T

−s(i)α U 6= ∅. Choose y ∈
⋂m
i=1 T

−s(i)α U ; then T s
(i)
α y ∈ U for

i = 1, . . . ,m. By the continuity of T , choose an open neighborhood V of
y such that T s

(i)
α V ∈ U for i = 1, . . . ,m. Since y ∈ ω(x, T ), there exists

r ∈ N such that T rx ∈ U and r̄(m) + sα ∈ Nm. Then r̄(m) + sα ∈ N(x, U)m.
Therefore, N(x, U) is a J-set.

Proposition 8.6. Let (X,T ) be an invertible dynamical system, x ∈ X
and n ∈ N. Then x is J -recurrent in (X,T ) if and only if it is J -recurrent
in (X,Tn).

Proof. Without loss of generality, assume that Orb(x, T ) = X. Since
J is multiplication invariant, if x is J -recurrent in (X,Tn), then it is so
in (X,T ).

Conversely, if x is J -recurrent in (X,T ), then (X,T ) has the multiple
IP-recurrence property, and so does (X,Tn). Since the interior of Orb(x, Tn)
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is dense in Orb(x, Tn), it is easy to see that (Orb(x, Tn), Tn) also has the
multiple IP-recurrence property. Thus x is J -recurrent in (X,Tn).

Proof of Lemma 8.1. This follows from Theorems 6.4 and 6.3, Lemma 7.3
and Proposition 8.6.

Proof of Theorem 8.2. Since F is a C-set, there exists an idempotent
p ∈ h(J ) such that F ∈ p. Let x = 1F ∈ {0, 1}Z and y = px ∈ [1]. Then y
is J -recurrent, x is strongly proximal to y and N(x, [1]) = F .

Let {sφ(α) = (s(1)
α , . . . , s

(m)
α )} be an IP-system in Zm. Let U1 = [1]. Since

N((x, y), U1 × U1) is a J-set, there exist r1 ∈ N and α1 ∈ Pf(N) such that

σ × σr1+s
(i)
α1 (x, y) ∈ U1 × U1 for i = 1, . . . ,m. By continuity of σ, choose a

neighborhood U2 of y such that U2 ⊂ U1 and
m⋃
i=1

σr1+s
(i)
α1U2 ⊂ U1.

Now suppose that we have chosen neighborhoods U1, . . . Un, Un+1 of y,
r1, . . . , rn in N and α1 < · · · < αn in Pf(N) satisfying the following condi-
tions: for every β ⊂ {1, . . . , n}, letting rβ =

∑
j∈β rj , φ(β) =

⋃
j∈β αj and

Uβ = Uminβ, we have

(1) σ
rβ+s

(i)
φ(β)x ∈ Uβ for i = 1, . . . ,m,

(2) σ
rβ+s

(i)
φ(β)Un+1 ⊂ Uβ for i = 1, . . . ,m.

Since N((x, y), Un+1×Un+1) is a J-set, there exist rn+1 ∈ N and αn+1 > αn

such that σ × σrn+1+s
(i)
αn+1 (x, y) ∈ Un+1 × Un+1 for i = 1, . . . ,m. Choose a

neighborhood Un+2 of y such that Un+2 ⊂ Un+1 and
m⋃
i=1

σrn+1+s
(i)
αn+1Un+2 ⊂ Un+1.

Now we show that (1) and (2) are satisfied with β replaced by β′ =
β ∪ {n+ 1} and n+ 1 replaced by n+ 2. This in fact follows from

σ
rβ′+s

(i)

φ(β′)x ∈ σrβ+s
(i)
φ(β)(σrn+1+s

(i)
αn+1x) ∈ σrβ+s

(i)
φ(β)Un+1 ⊂ Uβ

and

σ
rβ′+s

(i)

φ(β′)Un+2 ⊂ σ
rβ+s

(i)
φ(β)(σrn+1+s

(i)
αn+1Un+2) ⊂ σrβ+s

(i)
φ(β)Un+1 ⊂ Uβ.

Then by induction, σrβ+s
(i)
φ(β)x ∈ [1] for every β ∈ Pf(N) and i = 1, . . . ,m.

Thus, r̄(m)
α + sφ(α) ∈ Fm for every α ∈ Pf(N).

Remark 8.7. One can use the algebraic properties of βN to prove The-
orem 8.2 ([3, 20]). It is of interest whether one can deduce Lemma 8.1 from
algebraic properties of βN.
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