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Abstract. We prove that if there is a dominating family of size ℵ1, then there are ℵ1

many compact subsets of ωω whose union is a maximal almost disjoint family of functions
that is also maximal with respect to infinite partial functions.

1. Introduction. Recall that two infinite subsets a and b of ω are almost
disjoint or a.d. if a∩ b is finite. A family A of infinite subsets of ω is said to
be almost disjoint or a.d. in [ω]ω if its members are pairwise almost disjoint.
A Maximal Almost Disjoint family, or MAD family in [ω]ω is an infinite a.d.
family in [ω]ω that is not properly contained in a larger a.d. family.

Two functions f and g in ωω are said to be almost disjoint or a.d. if
they agree in only finitely many places. We say that a family A ⊂ ωω is
a.d. in ωω if its members are pairwise a.d., and we say that an a.d. family
A ⊂ ωω is MAD in ωω if ∀f ∈ ωω ∃h ∈ A [|f ∩ h| = ℵ0]. Identifying
functions with their graphs, every a.d. family in ωω is also an a.d. family
in [ω × ω]ω; however, it is never MAD in [ω × ω]ω because any function is
a.d. from the vertical columns of ω × ω. MAD families in ωω that become
MAD in [ω × ω]ω when the vertical columns of ω × ω are thrown in were
considered by Van Douwen.

We say that p ⊂ ω × ω is an infinite partial function if it is a function
from some infinite set A ⊂ ω to ω. An a.d. family A ⊂ ωω is said to be
Van Douwen if for any infinite partial function p there is h ∈ A such that
|h ∩ p| = ℵ0. A is Van Douwen iff A ∪ {cn : n ∈ ω} is a MAD family in
[ω × ω]ω, where cn is the nth vertical column of ω × ω. The first author
showed in [3] that Van Douwen MAD families always exist.
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Recall that b is the least size of an unbounded family in ωω, d is the
least size of a dominating family in ωω, and a is the least size of a MAD
family in [ω]ω. It is well known that b ≤ a. Whether a could consistently be
larger than d was an open question for a long time, until Shelah achieved
a breakthrough in [4] by producing a model where d = ℵ2 and a = ℵ3.
However, it is not known whether a can be larger than d when d = ℵ1; this
is one of the few major remaining open problems in the theory of cardinal
invariants posed during the earliest days of the subject (see [5] and [2]). In
this note we take a small step towards resolving this question by showing
that if d = ℵ1, then there is a MAD family in [ω]ω which is the union of ℵ1
compact subsets of [ω]ω. More precisely, we will establish the following:

Theorem 1. Assume d = ℵ1. Then there exist ℵ1 compact subsets of
ωω whose union is a Van Douwen MAD family.

The cardinal invariant aclosed was recently introduced and studied by
Brendle and Khomskii [1] in connection with the possible descriptive com-
plexities of MAD families in certain forcing extensions of L.

Definition 2. aclosed is the least κ such that there are κ closed subsets
of [ω]ω whose union is a MAD family in [ω]ω.

Obviously, aclosed ≤ a. Brendle and Khomskii showed in [1] that aclosed
behaves differently from a by producing a model where aclosed=ℵ1<ℵ2=b.
They asked whether s = ℵ1 implies that aclosed = ℵ1. As s ≤ d, our result
in this paper provides a partial positive answer to their question.

2. The construction. Assume d = ℵ1 in this section. We will build ℵ1
compact subsets of ωω whose union is a Van Douwen MAD family. To this
end, we will construct a sequence 〈Tα : α < ω1〉 of finitely branching subtrees
of ω<ω such that

⋃
α<ω1

[Tα] has the required properties. Henceforth, T ⊂
ω<ω will mean T is a subtree of ω<ω.

Definition 3. Let T ⊂ ω<ω. Let A ∈ [ω]ω and p : A → ω. For any
ordinal ξ and σ ∈ T define rkT,p(σ) ≥ ξ to mean

∀ζ < ξ ∃τ ∈ T ∃l ∈ A [τ ⊃ σ ∧ |σ| ≤ l < |τ | ∧ τ(l) = p(l) ∧ rkT,p(τ) ≥ ζ].

Note that if η ≤ ξ and rkT,p(σ) ≥ ξ, then rkT,p(σ) ≥ η, and that for
a limit ordinal ξ, if ∀ζ < ξ [rkT,p(σ) ≥ ζ], then rkT,p(σ) ≥ ξ. Also, for
any σ, τ ∈ T , if σ ⊂ τ and rkT,p(τ) ≥ ξ, then rkT,p(σ) ≥ ξ. Moreover, if
rkT,p(σ) 6≥ ξ and if τ ∈ T and l ∈ A are such that τ ⊃ σ, |σ| ≤ l < |τ |, and
p(l) = τ(l), then there is ζ < ξ such that rkT,p(τ) 6≥ ζ. Therefore, if there
is f ∈ [T ] with |f ∩ p| = ℵ0, and if σ ⊂ f and there is some ordinal ξ such
that rkT,p(σ) 6≥ ξ, then there is some σ ⊂ τ ⊂ f and some ordinal ζ < ξ
such that rkT,p(τ) 6≥ ζ, thus allowing us to construct an infinite, strictly
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descending sequence of ordinals. So if f ∈ [T ] with |f ∩ p| = ℵ0, then for
any σ ⊂ f and any ordinal ξ, rkT,p(σ) ≥ ξ. On the other hand, suppose that
σ ∈ T with rkT,p(σ) ≥ ω1. Then there is τ ∈ T with τ ⊃ σ and l ∈ A such
that |σ| ≤ l < |τ |, p(l) = τ(l), and rkT,p(τ) ≥ ω1, allowing us to construct
f ∈ [T ] with σ ⊂ f such that |f ∩ p| = ℵ0.

Definition 4. Suppose T ⊂ ω<ω, A ∈ [ω]ω, and p : A → ω. Assume
that p is a.d. from each f ∈ [T ]. Then define HT,p : T → ω1 by

HT,p(σ) = min{ξ : rkT,p(σ) 6≥ ξ + 1}.

Note the following features of this definition:

(∗1) ∀σ, τ ∈ T [σ ⊂ τ ⇒ HT,p(σ) ≥ HT,p(τ)].
(∗2) For all σ, τ ∈ T with σ ⊂ τ , if there exists l ∈ A such that |σ| ≤

l < |τ | and p(l) = τ(l), then HT,p(τ) < HT,p(σ).

On the other hand, notice that if there is a function H : T → ω1 such that
(∗1) and (∗2) hold with HT,p replaced with H, then p must be a.d. from [T ].

Definition 5. I is said to be an interval partition if I = 〈in : n ∈ ω〉,
where i0 = 0, and ∀n ∈ ω [in < in+1]. For n ∈ ω, In denotes the interval
[in, in+1).

Given two interval partitions I and J , we say that I dominates J and
write J ≤∗ I if ∀∞n ∈ ω ∃k ∈ ω [Jk ⊂ In].

It is well known that d is also the size of the smallest family of interval
partitions dominating any interval partition. So fix a sequence 〈Iα : α < ω1〉
of interval partitions such that:

(1) ∀α ≤ β < ω1 [Iα ≤∗ Iβ].
(2) For any interval partition J , there exists α < ω1 such that J ≤∗ Iα.

Fix an ω1-scale 〈fα : α < ω1〉 such that ∀α < ω1 ∀n ∈ ω [fα(n) < fα(n+1)].
For each α ≥ 1, define eα and gα by induction on α as follows. If α is a
successor, then eα : ω → α is any onto function, and gα = fα. If α is a limit,
then let {en : n ∈ ω} enumerate {eξ : ξ < α}. Now, define eα : ω → α and
gα ∈ ωω such that

(3) ∀n ∈ ω [gα(n) ≤ gα(n+ 1)].
(4) ∀n ∈ ω ∀i ≤ n ∀j ≤ fα(n) ∃k < gα(n) [eα(k) = ei(j)].

Observe that such an eα must be a surjection. For each n ∈ ω, put

wα(n) = {eα(i) : i ≤ gα(n)}.

Now fix α < ω1 and assume that Tε ⊂ ω<ω has been defined for each
ε < α such that each Tε is finitely branching and

⋃
ε<α[Tε] is an a.d. family

in ωω. Let 〈εn : n ∈ ω〉 enumerate α, possibly with repetitions. For a tree
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T ⊂ ω<ω and l ∈ ω, write

T �l = {σ ∈ T : |σ| ≤ l} and T (l) = {σ ∈ T : |σ| = l}.
We will define a sequence of natural numbers 0 = l0 < l1 < · · · and deter-
mine Tα�ln by induction on n. First, Tα�l0 = {0}. Assume that ln and Tα�ln
are given. Suppose also that we are given a sequence of natural numbers
〈ki : i < n〉 such that

(5) ∀i < i+ 1 < n [ki < ki+1].
(6) Iαki ⊂ [0, ln).

Let σ∗ denote the member of Tα(ln) that is rightmost with respect to the
lexicographical ordering on ωln . Suppose we are also given Ln : Tα(ln) \
{σ∗} →Wn, an injection. Here Wn is the set of all pairs 〈p0, h̄〉 such that:

(7) There are s ∈ [ω]<ω and numbers i0 < j0 ≤ n such that

(a) s ⊂
⋃
i∈[i0,j0)I

α
ki

,

(b) for each i ∈ [i0, j0), |s ∩ Iαki | = 1,
(c) p0 : s→ ω such that ∀m ∈ s [p0(m) ≤ fα(m)].

(8) There is j1 < n such that h̄ = 〈hεi : i ≤ j1〉 (if α = 0, this means
that h̄ = 0). For each i ≤ j1, hεi : Tεi�max (s)+1→ wα(max (s)+1)
such that (∗1) and (∗2) hold with T replaced with Tεi�max (s) + 1,
HT,p replaced with hεi , A with s, and p with p0.

Assume that for each i < n, we are also given σi ∈ Tα(li), which we will call
the active node at stage i. Note that Tα(l0) = {0}, and so σ0 = 0. For each
σ ∈ Tα(ln), let ∆(σ) = max({0} ∪ {i < n : σi = σ�li}). For, σ, τ ∈ Tα(ln),
say σ C τ if either ∆(σ) < ∆(τ), or ∆(σ) = ∆(τ) and σ is to the left of τ
in the lexicographic ordering on ωln . Let σn be the C-minimal member of
Tα(ln). Then σn will be active at stage n. The meaning of this is that none
of the other nodes in Tα(ln) will be allowed to branch at stage n. Choose kn
greater than all ki for i < n such that Iαkn ⊂ [ln,∞). Let Vn be the set of all

pairs 〈p1, h̄〉 such that:

(9) There exist s and a natural number i1 ≤ n such that

(a) s ⊂
⋃
i∈[i1,n+1)I

α
ki

,

(b) for each i ∈ [i1, n+ 1), |s ∩ Iαki | = 1,
(c) p1 : s→ ω such that ∀m ∈ s [p1(m) ≤ fα(m)].

(10) There is j2 ≤ n such that h̄ = 〈hεi : i ≤ j2〉. For each i ≤ j2,
hεi : Tεi�max (s)+1→ wα(max (s)+1) such that (∗1) and (∗2) are
satisfied with T replaced with Tεi�max (s) + 1, HT,p replaced with
hεi , A with s, and p with p1.

Note that Vn is always finite. Now, the construction splits into two cases.
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Case I: σn 6= σ∗. Put 〈p0, h̄〉 = Ln(σn). Let i0 < n be as in (7) above,
and let j1 < n be as in (8). Let

Un = {〈p1, h̄〉 ∈ Vn : p0 ⊂ p1 ∧ i0 = i1 ∧ j1 < j2

∧ ∀i ≤ j1 [hεi�dom(hεi) = hεi ]}.
Here i1 is as in (9), and j2 is as in (10) with respect to 〈p1, h̄〉. Now choose
ln+1 > ln large enough so that Iαkn ⊂ [ln, ln+1) and so that it is possible to

pick {τx : x ∈ Un} ⊂ ωln+1 and {τσ : σ ∈ Tα(ln)} ⊂ ωln+1 such that the
following conditions are satisfied:

(11) For each x ∈ Un, τx ⊃ σn, and for each σ ∈ Tα(ln), τσ ⊃ σ.
(12) For each x, y ∈ Un, if x 6= y, then there exists m ∈ [ln, ln+1)

such that τx(m) 6= τy(m). For each x ∈ Un, there exists m ∈
[ln, ln+1) such that τx(m) 6= τσn(m). For x = 〈p1, h̄〉 ∈ Un, if
{i∗} = dom(p1) ∩ Iαkn , then p1(i

∗) = τx(i∗).
(13) For each x ∈ Un and σ ∈ Tα(ln), ∀m ∈ [ln, ln+1) [τx(m) 6= τσ(m)].

For σ, η ∈ Tα(ln), if σ 6= η, then ∀m ∈ [ln, ln+1) [τσ(m) 6= τη(m)].
(14) For each i ≤ n, τ ∈ Tεi(ln+1), σ ∈ Tα(ln) and m ∈ [ln, ln+1), τ(m) 6=

τσ(m). For each x ∈ Un, i ≤ j2, τ ∈ Tεi(ln+1) and m ∈ [ln, ln+1), if
τx(m) = τ(m), then m ∈ dom(p1) and p1(m) = τx(m).

Define Ln+1 as follows. For any x ∈ Un, Ln+1(τx) = x. For any σ ∈ Tα(ln) \
{σ∗}, Ln+1(τσ) = Ln(σ). This finishes Case I.

Case II: σn = σ∗. For each σ ∈ Tα(ln)\{σn}, let 〈p0(σ), h̄(σ)〉 = Ln(σ).
Let i0(σ) < n witness (7) for Ln(σ) and let j1(σ) < n witness (8) for Ln(σ).
Let Un be the set of all 〈p1, h̄〉 ∈ Vn such that there is no σ ∈ Tα(ln) \ {σn}
so that

p0(σ) ⊂ p1 ∧ i0(σ) = i1 ∧ j1(σ) < j2 ∧ ∀i ≤ j1(σ) [hεi�dom(hεi) = hεi ].

Here i1 ≤ n and j2 ≤ n witness (9) and (10) respectively with respect to
〈p1, h̄〉. Choose ln+1 > ln large enough so that Iαkn ⊂ [ln, ln+1) and so that
it is possible to choose {τ∗}, {τx : x ∈ Un}, and {τσ : σ ∈ Tα(ln) \ {σn}},
subsets of ωln+1 , satisfying the following conditions:

(15) τ∗⊃σn. For each x∈Un, τx⊃σn. For each σ∈Tα(ln)\{σn}, τσ⊃σ.
(16) τ∗ is the rightmost branch of Tα(ln+1). For each x ∈ Un, there

exists m ∈ [ln, ln+1) such that τ∗(m) 6= τx(m). For each x, y ∈ Un,
if x 6= y, then there is m ∈ [ln, ln+1) so that τx(m) 6= τy(m). For
each x = 〈p1, h̄〉 ∈ Un, if {i∗} = Iαkn ∩dom(p1), then p1(i

∗) = τx(i∗).
(17) For each x ∈ Un and m ∈ [ln, ln+1), τx(m) 6= τ∗(m). For each

σ ∈ Tα(ln) \ {σn} and for each m ∈ [ln, ln+1), τ
∗(m) 6= τσ(m), and

for each x ∈ Un, τσ(m) 6= τx(m). For each σ, η ∈ Tα(ln) \ {σn}, if
σ 6= η, then for all m ∈ [ln, ln+1), τσ(m) 6= τη(m).
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(18) For each i ≤ n, τ ∈ Tεi(ln+1), m ∈ [ln, ln+1), and σ ∈ Tα(ln) \ {σn},
τ∗(m) 6= τ(m) and τσ(m) 6= τ(m). For each x = 〈p1, h̄〉 ∈ Un,
i ≤ j2, τ ∈ τεi(ln+1) and m ∈ [ln, ln+1), if τx(m) = τ(m), then
m ∈ dom(p1) and p1(m) = τx(m).

For each σ ∈ Tα(ln) \ {σn}, define Ln+1(τσ) = Ln(σ). For each x ∈ Un, set
Ln+1(τx) = x. This completes the construction. We now check that it is as
required.

Lemma 6. For each f ∈ [Tα], there are infinitely many n ∈ ω such that
σn = f�ln.

Proof. For each n ∈ ω put Θ(n) = min {∆(σ) : σ ∈ Tα(ln)}. It is clear
from the construction that Θ(n+ 1) ≥ Θ(n). If the lemma fails, then there
arem and τ ∈ Tα(lm+1) with the property that for infinitely many n > m+1,
there is a σ ∈ Tα(ln) such that Θ(n) = ∆(σ) = m and σ�lm+1 = τ . Let τ be
the leftmost node in Tα(lm+1) with this property. Choose n1 > n0 > m+ 1
and σ ∈ Tα(ln1) such that Θ(n1) = Θ(n0) = ∆(σ) = m, σ�lm+1 = τ , and
there is no η ∈ Tα(ln0) such that ∆(η) = m and η�lm+1 is to the left of τ .
Note that ∆(σ�ln0) = m. So σn0 is to the left of σ�ln0 , and σn0�lm+1 is not
to the left of τ , whence σn0�lm+1 = τ . But then there is some n ∈ [m+1, n0)
where σ�ln was active, a contradiction.

Note that Lemma 6 implies that for any σ ∈ Tα, there is a unique
minimal extension of σ which is active. Lemma 6 also implies that there are
infinitely many n where Case II occurs.

Lemma 7. Tα is finitely branching and
⋃
ε≤α [Tε] is a.d. in ωω.

Proof. It is clear from the construction that Tα is finitely branching. Fix
f, g ∈ [Tα] with f 6= g. Let n = max{i ∈ ω : f�li = g�li}. It is clear from the
construction that ∀m ≥ ln+1 [f(m) 6= g(m)].

Next, fix ε < α. Suppose ε = εi. Let h ∈ [Tεi ] and f ∈ [Tα], and suppose
for a contradiction that |h ∩ f | = ℵ0. So there are infinitely many n ∈ ω
such that f�[ln, ln+1)∩h�[ln, ln+1) 6= 0. For any n ≥ i, this can only happen
if f�ln = σn and f�ln+1 = τxn for some xn ∈ Un. This is because if n ≥ i
and f�[ln, ln+1) ∩ h�[ln, ln+1) 6= 0, then when Case I occurs, (14) says that
f�ln+1 6= τσ for any σ ∈ Tα(ln), while when Case II occurs, by (18), f�ln+1 6=
τ∗ and also f�ln+1 6= τσ for any σ ∈ Tα(ln) \ {σn}. So f�ln+1 = τxn for some
xn ∈ Un, and f�ln = σn. Now, put xn = 〈p1,n, h̄n〉. Note that in this case
Ln+1(f�ln+1) = xn. For such n, let j2(n) be as in (10) with respect to xn. So
for infinitely many such n, j2(n) ≥ i. But then for infinitely many such n,
hεi,n(h�max(dom(p1,n)) + 1) < hεi,n(h�ln), producing an infinite strictly
descending sequence of ordinals.
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Lemma 8. For each A ∈ [ω]ω and p : A → ω, there are α < ω1 and
f ∈ [Tα] such that |p ∩ f | = ℵ0.

Proof. Suppose for a contradiction that there are A ∈ [ω]ω and p : A→ ω
such that p is a.d. from [Tα], for each α < ω1. Let M ≺ H(θ) be a countable
elementary submodel containing everything relevant. Put α = M ∩ ω1. For
each ε < α, let Hε denote HTε,p, and note that Hε and ran(Hε) are members
of M . Let ξε = sup(ran(Hε)) + 1 < α. Find g ∈M ∩ωω such that for n ∈ ω,
H ′′ε Tε�n ⊂ {eξε(j) : j ≤ g(n)}. Since ∀∞n ∈ ω [g(n) ≤ fα(n)], it follows from
(4) that for all but finitely many n ∈ ω, and all σ ∈ Tε�n, Hε(σ) ∈ wα(n).
Now, find an infinite q ⊂ p such that ∀m ∈ dom(q) [q(m) ≤ fα(m)] and
∀∞n ∈ ω [|dom(q) ∩ Iαn | = 1]. Note that for any ε < α, (∗1) and (∗2) are
satisfied with T replaced with Tε, HT,p replaced with Hε, A with dom(q),
and p with q. But now, it follows from the construction that there is f ∈ [Tα]
such that for infinitely many n ∈ ω, there is m ∈ [ln, ln+1) ∩ dom(q) such
that q(m) = f(m).

We describe how to find such an f ∈ [Tα]. We have ∀∞n∈ω [|dom(q)∩Iαkn |
= 1]. For each n ∈ ω such that |dom(q) ∩ Iαkn | = 1, let mn be the unique
member of dom(q) ∩ Iαkn . We observed above that for any ε < α, for all but
finitely many n ∈ ω, and each σ ∈ Tε�n, Hε(σ) ∈ wα(n). It follows that for
any i ∈ ω, there is ui ≥ i such that for each j ≤ i and each n ≥ ui, mn is
defined and ∀σ ∈ Tεj�mn+1 [Hεj (σ) ∈ wα(mn+1)]. Choose n∗ ≥ u0 so that
Case II occurs at stage n∗. Put η0 = σn∗ . Define s0 = {mn∗} and q0 = q�s0.
Put h̄0 = 〈h0〉, where h0 = Hε0�(Tε0�max (s0) + 1). Note that h0 is a map
from Tε0�max(s0) + 1 to wα(max(s0) + 1), and so x0 = 〈q0, h̄0〉 ∈ Vn∗ . Since
mn∗ /∈ Iαki for any i < n∗, it follows that x0 ∈ Un∗ . Put η1 = τx0 ) η0. Notice
that η1(mn∗) = q(mn∗). Notice also that η1 is not the rightmost branch of
Tα(l(n∗+1)), and so if σ is any extension of η1 that happens to be active at
a certain stage, then Case I necessarily occurs at that stage. Finally, note
that Ln∗+1(η1) = x0.

Now, for each n > n∗, let sn = {mj : n∗ ≤ j ≤ n}, and put qn = q�sn.
For any i > 0 and n > n∗, if n ≥ ui, then for each j ≤ i, define hnj =

Hεj�(Tεj�max(sn) + 1). Put h̄ni = 〈hnj : j ≤ i〉 and xni = 〈qn, h̄ni 〉. Note that
for any i > 0 and n > n∗, if n ≥ ui, then xni ∈ Vn. Moreover, if at stage n,
Case I occurs and Ln(σn) = xvi−1 for some v ∈ ω, then xni ∈ Un; here xv0 = x0
for all v ∈ ω. Now, it is easy to see that there is a branch g ∈ [Tα] such that
η1 ⊂ g and ∀n ≥ n∗+ 1 [Ln(g�ln) = x0]. This is because for any n ≥ n∗+ 1,
given g�ln such that η1 ⊂ g�ln and Ln(g�ln) = x0, if σ is the unique minimal
extension of g�ln that is active, then τσ ) g�ln and Lu+1(τσ) = x0, where
u is the stage at which σ is active. Applying Lemma 6 to g, find n∗∗ such
that n∗∗ > n∗, n∗∗ ≥ u1, and σn∗∗ = g�ln∗∗ . It follows that xn

∗∗
1 ∈ Un∗∗ . Let

η2 = τxn∗∗1
) η1. Note that η2(mn∗∗) = q(mn∗∗) and that Ln∗∗+1(η2) = xn

∗∗
1 .
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Continuing in this fashion, we get

f =
⋃
n∈ω

ηn ∈ [Tα] with |f ∩ q| = ω.

3. Remarks and questions. The construction in this paper is very
specific to ω1; indeed, it is possible to show that d is not always an upper
bound for aclosed. A modification of the methods of Section 4 of [4] shows
that if κ is a measurable cardinal and if

λ = cf(λ) = λκ > µ = cf(µ) > κ,

then there is a c.c.c. poset P such that |P| = λ, and P forces that b = d = µ
and a = aclosed = c = λ.

As mentioned in Section 1, we see the result in this paper as providing
a weak positive answer to the following basic question, which has remained
open for long.

Question 9. If d = ℵ1, then is a = ℵ1?
There are also several open questions about upper and lower bounds

for aclosed.

Question 10 (Brendle and Khomskii [1]). If s = ℵ1, then is aclosed=ℵ1?
Question 11. Is h ≤ aclosed?

Regarding Question 10, it is proved in Brendle and Khomskii [1] that if
V is any ground model satisfying CH, then any finite support iteration of
Suslin c.c.c. posets in V forces that aclosed = ℵ1. It is well known that V
remains a splitting family after such a finite support iteration of Suslin c.c.c.
posets. Showing a positive answer to Question 10 would be an improvement
of the result in this paper.
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