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Lifting of homeomorphisms to branched coverings of a disk
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Abstract. We consider a simple, possibly disconnected, d-sheeted branched covering
π of a closed 2-dimensional disk D by a surface X. The isotopy classes of homeomor-
phisms of D which are pointwise fixed on the boundary of D and permute the branch
values, form the braid group Bn, where n is the number of branch values. Some of these
homeomorphisms can be lifted to homeomorphisms of X which fix pointwise the fiber over
the base point. They form a subgroup Lπ of finite index in Bn. For each equivalence class
of simple, d-sheeted coverings π of D with n branch values we find an explicit small set
generating Lπ. The generators are powers of half-twists.

1. Introduction. Let π : X → D be a simple, possibly disconnected,
d-sheeted branched covering of a closed 2-dimensional disk D. Simple means
that over each point of D there are either d simple points of X or d− 2
simple points and one “double” point, a branch point. The image A = π(B)
of a branch point B is called a branch value. The isotopy classes of home-
omorphisms of D which fix the boundary of D pointwise and permute the
branch values form the braid group Bn, where n is the number of branch
points. Some of these homeomorphisms can be lifted to homeomorphisms
of X which fix pointwise the fiber over the base point. They form a sub-
group Lπ of finite index in Bn. The group Lπ is finitely generated. The
purpose of this paper is to find an explicit small set generating Lπ for all
equivalence classes of d-sheeted coverings π of D with n branch points. The-
orem 31 solves the problem for connected coverings and Theorem 33 shows
how to construct a set of generators for any covering from the generators for
connected coverings.

Basic information on braids, braid groups and half-twists can be found
in [B]. Branched coverings of a disk and their equivalence classes were stud-
ied by Hurwitz [H] and by Berstein and Edmonds [BE]. Equivalence classes
of branched coverings of surfaces of any genus were studied by Gabai and
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Kazez [GK]. Lifting of homeomorphisms was considered in [BW] for 3-
sheeted coverings and in [CW] and [MP] for n-sheeted coverings of a disk
by a disk. Mulazzani and Piergallini [MP] also considered arbitrary, simple,
n-sheeted coverings and proved that Lπ is always generated by powers of
half-twists. Apostolakis [A] considered 4-sheeted coverings and found gener-
ators for a certain quotient of the group Lπ. In [WW] a small finite set of
generators of Lπ was found for every simple 4-sheeted covering of a disk.

2. Preliminaries and notation. We consider a simple d-sheeted, pos-
sibly disconnected branched covering π : X → D of a disk D with n branch
values A1, . . . , An. We choose a base point A0 on the boundary of D. Let
π−1(A0) = {B1, . . . , Bd} ⊂ X. Let σ be a closed loop in D which starts at
A0 and misses the branch values. When we lift σ to X from any point Bi,
we end up at some point Bj . This defines a permutation µ(σ) in the sym-
metric group Σd, which depends only on the homotopy class of σ in the
complement of the branch values. In this way we get the monodromy homo-
morphism µ from the fundamental group of D − {A1, . . . , An} based at A0

to the group Σd. We compose loops from left to right and we compose per-
mutations from left to right, but homeomorphisms are composed from right
to left. The monodromy of the boundary ∂D, oriented clockwise, is called
the total monodromy of the covering π. We say that coverings π1 : X1 → D1

and π2 : X2 → D2 are equivalent if there exist orientation preserving home-
omorphisms h : D1 → D2 and φ : X1 → X2 such that hp1 = p2φ.

Basic terminology and notation:

• A curve is a simple path connecting A0 to some Ai and avoiding the
other branch values.
• An arc is a simple path connecting two branch values and avoiding the

other branch values.
• Curves are called disjoint if they meet only at A0.
• D(γ) is the complement of a regular neighborhood of a curve γ in D;
D(γ1, . . . , γk) is the complement of a regular neighborhood of the union
of pairwise-disjoint curves.
• π|D1 is the restriction π : π−1(D1)→ D1 of the covering π.
• π(γ) = π|D(γ).
• X(γ) = π−1(D(γ)).
• γ̂ is a simple loop surrounding the curve γ clockwise, based at A0.
• µ(γ) is the monodromy of the loop γ̂.
• Lπ is the group of homeomorphisms of D which lift to X through π

and leave the points B1, . . . , Bd fixed.
• L(γ) is the subgroup of Lπ which leaves the curve γ invariant.
• For a subgroup K of Lπ we let K(γ) = K ∩ L(γ).



Lifting of homeomorphisms 97

• A curve γ is K-admissible if K(γ) = L(γ).
• An arc z isK-admissible if the liftable powers of the half-twist z belong

to K.
• Two curves (or arcs) are K-equivalent if there exists an element of K

which takes one to the other.
• τ denotes the total monodromy of π.
• The excess of π is described at the end of Definition 15.
• Arcs of type 1, 2 and 3 are described in Remark 14.
• The index of a curve or of an arc β is described in Definition 24.

Definition 1. We say that the covering π is connected ifX is connected.
A covering π is quasi-connected if X has several components, one component
covers D non-trivially and the other components cover D trivially. By the
genus of a connected surface X we mean the genus of the surface obtained by
gluing a disk to each component of the boundary ofX. In the quasi-connected
case the genus of X means the genus of the non-trivial component of X. If
D1 is a subdisk of D then π|D1 denotes the restriction of π to π−1(D1).

The following result was proven in [BE] and again in [MP].

Proposition 2. Connected simple coverings π1 and π2 are equivalent if
and only if they have the same degree d (number of sheets), the same number
of branch points, and the total monodromy of π1 is conjugate to the total
monodromy of π2 in the symmetric group Σd.

Definition 3. A curve in D is a simple path which begins at A0 and
ends at some branch value and avoids the other branch values. Curves are
defined up to isotopy relative to the branch values. We say that curves are
disjoint if they meet only at A0. By the monodromy µ(α) of a curve α we
mean the monodromy of a closed path α̂ which goes along α to a point very
close to its end point, a branch value Ai, then goes clockwise around Ai along
a small circle and then comes back along α; µ(α) is always a transposition
in Σd.

Definition 4. Following [MP] we say that curves γ1, . . . , γk form a sys-
tem of curves if γi ∩ γj = {A0} for any i 6= j and the curves meet at A0 in
this clockwise order. If γ1, . . . , γk form a system of curves then the sequence
of transpositions (µ(α1), . . . , µ(αk)) is called the monodromy sequence of the
system. A maximal system of curves, consisting of n curves, is called a (ge-
ometric) basis.

Definition 5. We say that a homeomorphism h of D which keeps the
boundary ∂D pointwise fixed and permutes the branch values is liftable if
there exists a homeomorphism φ of X such that hp = pφ and φ fixes the
points B1, . . . , Bd.
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Lemma 6. Let π : X → D be a simple, possibly disconnected, covering of
a disk D. A homeomorphism h of D is liftable if and only if it preserves the
monodromy of some geometric basis. If h is liftable then it preserves the mon-
odromy of every curve. If we have two geometric bases with the same mon-
odromy sequences, then there exists a liftable homeomorphism which takes
one basis to the other.

Proof. Suppose h lifts to ψ which fixes the points Bk. If γ is a curve then
there exist two points, say Bi and Bj , such that the liftings of γ from them
meet over the end point of γ, and then µ(γ) = (i, j). Since ψ fixes Bi and Bj ,
the curve h(γ) has the same monodromy as γ. In particular h preserves the
monodromy of every basis. Conversely, if h preserves the monodromy of a
basis, then it preserves the monodromy of every loop and we can construct
its lifting to X which fixes the points Bi. For any two bases there exists a
homeomorphism h of D which is pointwise fixed on ∂D and takes one basis
to the other preserving the order. If the bases have the same monodromy
sequences then h is liftable.

If γ1, . . . , γk is a system of curves then D(γ1, . . . , γk) denotes the com-
plement of a regular neighborhood of their union which does not contain
branch values other than the end points of the curves γ1, . . . , γk. We de-
note by X(γ1, . . . , γk) the preimage π−1(D(γ1, . . . , γk)) and by π(γ1, . . . , γk)
the restriction of π to X(γ1, . . . , γk). We need to choose a new base point
in D(γ1, . . . , γk). There are two natural choices: a point A′0 on ∂D a little
to the right of A0 (before A0 in the clockwise order along ∂D) or a point
A′′0 on ∂D to the left of A0. This defines curves and their monodromies in
D(γ1, . . . , γk) on the right side of the system γ1, . . . , γk and on the left side of
the system, because the points above A′0 and A′′0 have a numbering induced
by the numbering of sheets above A0. If we have a curve β which meets the
system of curves γ1, . . . , γk only at A0 on the left side of γ1 (respectively on
the right side of γk), then we can slide the beginning of β to the left, to A′′0
(respectively to the right, to A′0), and get a curve in D(γ1, . . . , γk) on the left
side or on the right side, which we also denote by β. If a curve β is disjoint
from a curve γ and we consider β in D(γ), we mean D(γ) on the same side
of γ as β.

Definition 7. A curve γ is non-separating if X(γ) has the same number
of connected components as X. If curves β, γ are disjoint, then we say that
γ does not separate X(β) or that γ is non-separating in the complement of
β (in D(β)) if the number of connected components of X(β, γ) is the same
as the number of connected components of X(β).

Remark 8. If curves β and γ are disjoint and γ is non-separating and β
is non-separating in the complement of γ, then β is non-separating and γ is
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non-separating in the complement of β. Indeed if we remove both curves in
the correct order then the number of connected components of X does not
change, therefore it does not change if we remove the curves in the opposite
order.

Definition 9. An arc in D is a simple path which connects two branch
values and is disjoint from the other branch values and from the bound-
ary of D. Arcs are defined up to isotopy relative to the branch values. A
closed regular neighborhood of an arc x can be identified with the closed
unit disk U in the complex plane C with the arc x corresponding to the
subarc y = [−1/2, 1/2] of the real axis. A half-twist around x is the isotopy
class of a homeomorphism of D obtained by extending by the identity the
following homeomorphism T of U : the homeomorphism T rotates the disc
{z : |z| ≤ 1/2} counterclockwise around 0 by 180 degrees and the rotation is
damped out to the identity at the boundary of U . We denote the half-twist
around x again by x.

Definition 10. Let β and γ be disjoint curves and let β be on the left
side of γ. The arc x which is isotopic to the path β−1γ by an isotopy which
fixes the end points of β and γ and does not pass through the other branch
values is called the arc corresponding to the pair β, γ. The curve β′ = x(γ)
is disjoint from γ, lies on the right side of γ and ends at the end point of β.
We call β′ the result of jumping with β to the right over γ. In a similar way
γ′ = x−1(β) is the result of jumping with γ to the left over β (see Figure 1).
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Fig. 1. Jumping with one curve over another one

Lemma 11. Let β and γ be disjoint curves. Let β′ be the result of jumping
with β over γ. Then β is non-separating in the complement of γ if and only
if β′ is non-separating in the complement of γ.

Proof. The subdisk D(β, γ) is isotopic to D(β′, γ) by an isotopy fixed on
the branch values. The isotopy can be lifted to an isotopy of X(β, γ) onto
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X(β′, γ), therefore the number of connected components of these spaces is
the same.

Definition 12. A sequence of arcs consists of arcs x1, . . . , xk−1 such that
xi meets xi+1 at one of its end points and there are no other intersections
between xi and xj for 1 ≤ i < j ≤ k − 1. We associate a sequence of arcs
x1, . . . , xk−1 with any system of curves α1, . . . , αk. The arc xi corresponds to
the pair of curves αi, αi+1 (see Definition 10). The sequence of arcs associated
with a basis is called a basic sequence of arcs.

2.1. Hurwitz action and Hurwitz moves. Consider n-tuples
(τ1, . . . , τn) of transpositions belonging to Σd. The Hurwitz action of the
braid group Bn on such n-tuples is defined as follows:

σi(τ1, . . . , τn) = (τ1, . . . , τi−1, τi+1, τi+1τiτi+1, τi+2, . . . , τn),

where σi is the standard generator of the braid group Bn. This action is
also called jumping with the transposition τi to the right, over the transpo-
sition τi+1. Two n-tuples are Hurwitz equivalent if they belong to the same
orbit of the Hurwitz action. We say that an n-tuple (τ1, . . . , τn) is connected
if the transpositions τi generate the whole group Σd. This happens if the
graph whose vertices are the numbers 1, . . . , d and edges are the transpo-
sitions τi is connected. The Hurwitz action takes a connected n-tuple to a
connected n-tuple.

Hurwitz moves act on bases. If γ1, . . . , γn is a basis and if x1, . . . , xn−1
is the associated basic sequence of arcs, then the Hurwitz move σi takes the
basis to its image under the action of the half-twist xi. We have xi(γi) = γi+1,
xi(γi+1) = γ′i+1 and the other curves of the basis are fixed; see Figure 2. This
move corresponds to jumping with γi to the right over γi+1. After the jump
the curve γi+1 appears at position i and the new curve γ′i+1 appears at
number i + 1. The inverse of this move, the image of the half-twist x−1i ,
corresponds to jumping with γi+1 to the left over γi.

r. . . r r r r r. . . r r . . .. . .
� �Ai−1 Ai+2Ai Ai+1

γi−1 γi γi+1 γi+2

Ai−1 Ai+2

γi−1 γ′i γ
′
i+1 γi+2

Fig. 2. A Hurwitz move. Jump with γi to the right over γi+1.

The path γ̂′i+1 is homotopic to γ̂−1i+1γ̂iγ̂i+1, therefore the monodromy of
the new curve γ′i+1 is equal to µ(γi+1)µ(γi)µ(γi+1) and the Hurwitz move σi
on the basis induces the Hurwitz action σi on the monodromy sequence of
the basis. The covering π is connected if and only if the monodromy sequence
of a basis is connected.
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If an n-tuple t = (τ1, . . . , τn) coincides with the monodromy sequence of
a basis then the product τ1 . . . τn is equal to the total monodromy of the
covering. Therefore for any k-tuple t = (τ1, . . . , τk) of transpositions we shall
call the product τ1 . . . τk the total monodromy of the k-tuple t. The total
monodromy of a k-tuple is preserved by the Hurwitz action.

Remark 13. If two disjoint curves have the same monodromy then each
of them is non-separating. Indeed we may choose a basis with the two curves
at the beginning. Removing any of the curves does not change the connec-
tivity of the graph corresponding to the transpositions in the monodromy
sequence.

Remark 14. There are three types of arcs. If the half-twist x is liftable,
we call it of type 1; if x is not liftable but x2 is liftable, we call x of type 2;
if x and x2 are not liftable, then x3 is liftable and we call x of type 3. To
see this we choose a curve α which meets x only in its end point. We denote
by α1 = x(α) the image of α under the half-twist x, and we complete the
curves α and α1 to a basis. The other curves of the basis are fixed by x. One
can check that if µ(α) = µ(α1) then the twist x is of type 1 (preserves the
monodromy of the basis); if µ(α) is disjoint from µ(α1) then the twist x is
of type 2; and if the transpositions µ(α) and µ(α1) have exactly one number
in common then x is of type 3.

Definition 15 (Standard sequence). Let τ be the total monodromy of
a connected covering. We may write it as a product of disjoint cycles. By an
ordering of τ we mean the choice of the order of the cycles τ = ν1 . . . νs and
the choice of the first number in each cycle. We then denote the numbers in
the following way:

τ = (am1 , am1−1, . . . , a1)(am2 , am2−1, . . . , am1+1) . . .

. . . (ams , ams−1, . . . , ams−1+1).

The standard connected sequence of n transpositions (where the number
n ≥ d+ s− 2 must have correct parity) corresponding to this ordering of τ
is

(a1, a2), (a2, a3), . . . , (am1−1, am1), (am1 , am1+1), (am1 , am1+1),

(am1+1, am1+2), . . . , (am2−1, am2), . . . , (ams−1, ams), . . . , (ams−1, ams).

Any basis with this monodromy sequence is called a standard basis corre-
sponding to the above ordering of τ .

Since we compose permutations from left to right, the product (the total
monodromy) of this sequence is equal to τ . It takes am1 to am1−1 and so
on. Because of the order of the transpositions we shall call ami−1+1 the
first number of cycle number i, and ami the last number of cycle i though
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the permutation goes the other way. a1 is called the initial number of the
standard basis and ams = ad is its final number.

In a standard sequence of transpositions there are k−1 distinct transpo-
sitions corresponding to a cycle of length k, followed by two equal connecting
transpositions containing the last number of that cycle and the first number
of the next one. The last transposition of the sequence may appear many
times in order to complete the total number to n transpositions.

If the covering is quasi-connected then we remove the numbers corre-
sponding to the trivial sheets from the total monodromy of the covering and
we proceed as above.

If γi is a standard basis as above and if the last transposition in the
monodromy sequence appears exactly k ≥ 1 times then k − 2 is called the
excess of π.

Definition 16. A curve γ which lies in a subdisk D1 of D splits off
number p in D1 if µ(γ) contains p and sheet number p is trivial over D1(γ)
on the right side of γ. In this case, if β is a curve in D1 which is disjoint
from γ and lies on the right side of γ then µ(β) does not contain p.

Remark 17. If π|D1 is quasi-connected and γ splits off p then π|D1(γ)
is also quasi-connected. If µ(γ) = (p, q) and γ splits off p (on its right side)
then γ splits off q on its left side.

Lemma 18. All connected sequences of transpositions with a given length
and a given product are Hurwitz equivalent.

This is Lemma 1.2 in [MP] used in the proof of Proposition 2 above.
As a consequence we get the following proposition.

Proposition 19. Suppose π is quasi-connected and we choose a par-
ticular ordering of the total monodromy τ = ν1 . . . νs. Then there exists a
standard basis corresponding to the chosen ordering of τ .

Proof. We can start with any basis and its monodromy sequence of trans-
positions. The product of the sequence of transpositions is equal to the total
monodromy τ of the covering. By Lemma 18 a suitable sequence of Hurwitz
actions takes this sequence of transpositions to the chosen standard sequence
of transpositions. By the properties of the Hurwitz moves the corresponding
sequence of Hurwitz moves on the basis takes the basis to a standard basis
(with the chosen monodromy sequence).

Corollary 20. Suppose π is connected.

(1) For any pair i, j with 1 ≤ i < j ≤ d there exists a curve with mon-
odromy (i, j).

(2) For any number k there exists a standard basis with initial number k
and there exists a standard basis with final number k.
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(3) If a curve α splits off a number then there exists a standard basis
which starts with α.

Proof. Let τ be the total monodromy of π. If the pair (i, j) connects
different cycles of τ we can choose the ordering of τ such that i, j are
consecutive numbers of the corresponding standard sequence, and then the
corresponding standard basis contains a curve with monodromy (i, j). If
i < j belong to the same cycle of τ we may assume that the cycle is
(k, k − 1, . . . , 1) and the part of the corresponding basis has monodromy
sequence (1, 2), (2, 3), . . . , (k − 1, k). Jumping with (j − 1, j) to the left sev-
eral times we get the pair (i, j) and a curve with monodromy (i, j). The
second statement of the corollary follows from Proposition 19. Now suppose
that α is a curve, µ(α) = (a, b) and α splits off a on the right side. Then
over D(α) on the right side of α there is a trivial sheet number a and a
non-trivial component connecting all other sheets. By the second statement
there is a standard basis in D(α) with initial number b, and when we add α
as the first curve we get a standard basis in D.

Lemma 21.

(1) Suppose π : X → D is a quasi-connected covering, γ is a curve with
µ(γ) = (a, b), and the total monodromy of π is equal to τ . If (a, b)
connects two cycles of τ then γ is non-separating and the genus of
X is equal to the genus of X(γ). If a, b belong to the same cycle of τ
then either γ is separating (the only possibility if X has genus zero),
or γ is non-separating and the genus of X(γ) is one less than the
genus of X.

(2) If π : X → D is a connected covering, then the excess is non-positive
if and only if X is a planar surface (genus 0).

Proof. Let X1 denote the component of X which covers D non-trivially.
The Euler characteristic of X1 is χ(X1) = 2 − 2g(X1) − c where g(X1) is
the genus of X1 and c is the number of boundary components of X1. The
total monodromy τ of π corresponds to the lifting of the boundary ∂D. The
lifting from the point Bi ends at the next point Bj along the same boundary
component of ∂X in the clockwise order. In particular, numbers i and j are
in the same cycle of τ if and only if Bi and Bj lie on the same boundary
component of X and the number of cycles in τ , not counting the numbers
of trivial sheets, is equal to c. Consider the preimage of the curve γ. One
component of the preimage, call it λ, connects points Ba and Bb of the
boundary. If (a, b) connects different cycles of τ then λ connects different
boundary components. In this case λ does not separate X1, we can connect
the two sides of λ along the boundary, and when we cut X1 along λ the
genus does not change. If the pair (a, b) belongs to one cycle of τ then λ
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connects points in the same boundary component. If λ does not separate X1

and we cut along λ then the Euler characteristic goes up by 1, λ has one
edge and two vertices and it splits into two edges and four vertices. Also c
goes up by 1, therefore the genus goes down by 1. If g(X1) = 0 then λ and
γ must separate.

Consider statement (2). By the Riemann–Hurwitz formula the genus g of
X satisfies 2−2g−c = d−n. If the excess is non-positive then the number of
cycles of τ is one more than the number of monodromy pairs which appear
twice in the standard monodromy sequence, so it is equal to c = n− d+ 2.
Then, by the above formula, c = n − d + 2 − 2g = n − d + 2 and g = 0. If
the excess is 1 then the number of cycles drops by 1 and n increases by 1
and the genus becomes positive. A bigger excess increases n and increases c
at most by one so the genus remains positive. This proves (2).

2.2. Standard setup and notation. We consider a simple connected
branched covering π of the unit disk D in the complex plane. The covering
has degree d and has n branch values A1, . . . , An. We choose the base point
A0 on the boundary of D in the lower half-plane. By Proposition 19 for a
suitable numbering of points over A0 there exists a basis αi with the standard
monodromy sequence µ(αi) = (ki, ki+1), ki ≤ ki+1 ≤ ki+1 and at most two
consecutive ki’s are equal unless ki = d− 1. More explicitly the monodromy
sequence consists of the pairs (1, 2), (2, 3), . . . , (d− 1, d), in this order, where
each pair appears either once or twice except for (d−1, d) which may appear
many times.

After an isotopy we may assume that Ai’s lie on the real axis, Ai < Ai+1

for i = 1, . . . , n− 1 and αi is a line segment connecting A0 to Ai.

Definition 22. We define curves α′i for i = 1, . . . , n, where α′1 = α1 and
for i > 1, α′i starts at A0, crosses the real line at one point on the left side
of A1 and ends at Ai (see Figure 5).

Remark 23. The curve α′i is non-separating if and only if the curve
αi is non-separating, which means that the pair µ(αi) appears twice (in a
row) in the standard monodromy sequence. If α′i is the first non-separating
curve among α′j (and if i < d − 1) then the total monodromy τ of π has
a cycle (i, i − 1, . . . , 1) and µ(α′i) = (1, i + 1). For s < i the curve α′s is
separating and µ(α′s) = (1, s + 1). For any s if α′s is separating then its
monodromy µ(α′s) = (a, b) is contained in a cycle of τ and a is equal to the
smallest number in the cycle. If α′s is non-separating then its monodromy
µ(α′s) consists of smallest numbers of two consecutive cycles of τ , except for
the case when µ(αs) = (d−1, d) and the excess is odd. In the last case µ(α′s)
consists of the smallest and the greatest number in the last cycle of τ . In
particular if α′i and α

′
j are non-separating curves with different monodromies
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and i < j then µ(α′i) connects two different cycles of τ and µ(α′j) lies in the
last cycle of τ or connects a different pair of cycles of τ than µ(α′i). If α

′
i and

α′j are consecutive non-separating curves among α′s then µ(α′i) and µ(α′j)
have a number in common.

Definition 24. By the index of a curve β (respectively an arc z) we
mean the minimum number of intersection points of β (respectively z) with
the union of the curves α′1 ∪ · · · ∪ α′n (we may assume that there are only a
finite number of intersection points and that the intersection is transverse)
not counting the end points of β (respectively the end points of z).

If a curve β (respectively an arc z) meets α′i (at a point different from
A0), let Pi be the first point of α′i ∩ β (respectively the first point of α′i ∩ z)
along α′i, starting from the end point Ai of α′i. Then the segment of α′i from
Ai to Pi is called the segment of α′i corresponding to β (respectively the
segment of α′i corresponding to z).

Remark 25. If a curve β meets only one curve α′i and ends at Ai then
it is isotopic to α′i, which has index 0, because the complement of the other
curves α′j is isotopic to a disk with one distinguished point and all curves are
isotopic to each other in such a disk. Also if an arc z meets only two curves
α′i and α

′
j and connects the points Ai and Aj then it is isotopic to an arc of

index 0, because the complement of the remaining curves α′k is isotopic to a
disk with two distinguished points and all arcs are isotopic to each other in
such a disk.

Definition 26. Let K be any subgroup of Lπ. If γ is a curve then L(γ)
denotes the subgroup of the elements of Lπ which leave γ invariant (up to
isotopy), while K(γ) denotes the subgroup of the elements of K which leave
γ invariant.

An arc z is called K-admissible if the liftable powers of the half-twist z
belong to K. A curve γ is called K-admissible if L(γ) = K(γ). Two arcs (or
two curves) are K-equivalent if one of them is equal to the image of the other
under an element of K.

Lemma 27. If two arcs (or two curves) are K-equivalent and one of
them is K-admissible then the other is also K-admissible. If one curve is
non-separating then the other is also non-separating. If one curve splits off
a number then the other splits off the same number.

Proof. Let h be a homeomorphism, let z be an arc and let z1 = h(z).
Then the half-twist with respect to z1 is equal to hzh−1. Indeed h−1 takes a
regular neighborhood of z1 to a regular neighborhood of z, the twist z makes
a half-twist of the neighborhood and h takes the twisted neighborhood of z
back to the neighborhood of z1. If h ∈ K and a power of the half-twist z is
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in K then the same power of the half-twist z1 is in K. This proves the case
of an arc.

Let γ be a curve and let γ1 = h(γ). Suppose h ∈ K and γ isK-admissible,
so that every liftable homeomorphism which leaves γ invariant belongs to K.
Let f be a liftable homeomorphism which leaves γ1 invariant. Then h−1fh
leaves γ invariant and belongs to K, hence f also belongs to K and γ1 is
K-admissible.

If γ is a curve then one component of π−1(γ), call it λ, connects two
points Bi and Bj in π−1(A0). The points belong to a component X1 of X.
The curve γ is non-separating if λ does not separate X1 and γ splits off
a number if λ splits off a disk from X1 which covers D trivially. If h̃ is the
lifting of h to X which fixes π−1(A0) pointwise then h̃ takes X1 to X1 and
takes X1 − λ to X1 − h̃(λ). Consider in particular the case when γ splits off
number i (on the right side). When we remove γ we shift the base point a
little to the right, counterclockwise along ∂D. Then all points in π−1(A0)
move counterclockwise along ∂X (with respect to the orientation of X) and
the point Bi moves to a point B′i in the trivial component of X1 split off
by λ. The homeomorphism h̃ preserves ∂X so it preserves B′i and takes the
trivial component of X1 − λ to the trivial component of X1 − h̃(λ) and this
component has the same number i.

Definition 28 (Distinguished arcs). We distinguish some arcs in the
standard setup. The arc yi, j , i < j, lies in the lower half-plane except for its
end points Ai and Aj . The arc yi, i+1 is also called xi. The arc xi is of type 1
if µ(αi) = µ(αi+1). Otherwise xi is of type 3. The arc zi, j , i < j, lies in the
upper half-plane except for its end points Ai and Aj .

If i < j − 1 and the arcs xi and xj are of type 1 then let wi, j denote
the following arc: It starts at Aj and moves monotonically to the left. It lies
below every Ak for which xk is of type 1 and above any other Ak between
Ai+1 and Aj . It also lies below Ai+1 and below Ai. Just after coming to the
left of Ai it goes up and back, to the right. It passes above Ai and Ai+1

and again below every Ak for which xk is of type 1 and above any other Ak
between Ai+1 and Aj and above Aj , and ends at Aj+1 (see Figure 3).
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Ai AjAk Al

Fig. 3. The arc wi,j . The arcs xi, xk, xl, xj are of type 1.

We also distinguish some special arcs. Suppose the excess of π is positive.
Let m be the smallest number for which µ(αm) = (d − 1, d). We denote by
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Fig. 4. Special arcs

s1, s2, s3, s4 the arcs in Figure 4. The arc s1 exists if the excess is at least 2.
It has type 1 and is special. The arcs s2, s3, s4 are special if they are of type 2.
This happens if the excess of π is odd and, for the arc s2, the arcs xm−2 and
xm−1 are of type 3, and for s3 and s4 the arcs xm−3 and xm−1 are of type
3 and xm−2 is of type 1. Observe that if d ≥ 4 then s1 is disjoint from α1,
and if d ≥ 5 then all special arcs are disjoint from α1.

Definition 29 (The generating arcs and the group H). All arcs yi,j ,
arcs zi,j of type 2, all arcs wi,j and arcs si which are special for π are called
the generating arcs. We denote by H the subgroup of Lπ generated by the
minimal positive liftable powers of half-twists with respect to all generating
arcs.

Lemma 30. Suppose i+1 < j ≤ m. The arc yi,j is of type 2 if and only if
there are at least two arcs xk, xl of type 3 between Ai and Aj (the end points
may include Ai or Aj). The arc zi,j is of type 2 if and only if there is an arc
xk of type 1 strictly between Ai and Aj. Every arc zi,j is H-admissible.

Proof. All statements follow immediately from the definitions except for
the last one. Suppose zi,j is of type 3. We shall prove by induction on j − i
that zi,j is H-admissible. We may assume that xi and xj−1 are of type 3,
otherwise we can shorten the arc zi,j . Then all arcs xk between Ai and Aj
are of type 3. Therefore all arcs yi,k with i + 1 < k ≤ j are of type 2.
Then y2i,i+2y

2
i,i+3 . . . y

2
i,jy
−2
i,j−1y

−2
i,j−2 . . . y

−2
i,i+2z

3
i+1,j(zi,j) = xi, hence zi,j is H-

admissible.

Theorem 31 (Main Theorem). If π is a connected simple covering of a
disk D with a standard basis α1, . . . , αn, then H is equal to the group of all
liftable homeomorphisms.

Theorem 31 is obvious for d = 2, since in this case all arcs are of type 1
and Lπ is generated by the xi’s. The theorem was proven in [BW] for some
coverings of degree d = 3 and in [WW] for the remaining case of coverings
of degree d = 3 and all coverings of degree d = 4, and was proven for any d
and n = d− 1 in [CW] and in [MP].

2.3. Non-connected coverings

Remark 32. A quasi-connected covering can be treated in exactly the
same way as a connected covering. To make the argument more similar to
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the connected case we may denote the number of sheets by d + k, where
d is the number of sheets belonging to the non-trivial component and we
may renumber the sheets (the points over A0) in such a way that the sheets
belonging to the non-trivial component are numbered from 1 to d and the
trivial sheets are numbered from d + 1 to d + k. Then the numbers d + 1
to d+ k never enter the discussion. Theorem 31 is valid for quasi-connected
coverings too.

We shall prove a theorem about generators of Lπ for non-quasi-connected
coverings. We describe first the corresponding standard setup.

Let π : X → D be a simple, non-quasi-connected covering of degree d
with n > 1 branch values. Let V be a simple path separating D such that the
branch values do not lie on V , there is at least one branch value on each side
of V , and the branch values on different sides of V correspond to different
connected components of X. Let x1, . . . , xn−1 be a sequence of arcs in D
such that xj connects the branch values Aj and Aj+1, and that for some
1 ≤ k ≤ n− 1 the arcs x1, . . . , xk−1 lie on one side of V , call it left side, the
arcs xk+1, . . . , xn−1 lie on the right side of V and xk meets V in one point,
not the end point of xk. Up to an isotopy we may assume that D is the unit
disk in the complex plane, that the points Aj and the arcs xj lie on the real
line and that V is a vertical line. We denote the part of D on the left side of
V by D1 and the part of D on the right side of V by D2. We define curves
αi and α′i and arcs yp,q and zp,q as in the standard setup for the connected
case (see Figure 5).

rr r rrr r� �' $' $' $

α′n α′n−1 α′i+1 α′i α′1 V

. . .. . .

Fig. 5. The curves α′i

We denote by K the subgroup of Lπ generated by all liftable homeomor-
phisms which leave V invariant and by all liftable powers of half-twists with
respect to arcs yp,q.

Theorem 33. Let π : X → D be a simple, non-quasi-connected covering
of degree d with n > 1 branch values. Assume the standard setup as above.
Then K = Lπ.

Proof. We prove first, by induction on the index, that an arc z which
connects branch values on different sides of V is K-admissible. If z has index
zero then it is equal to some yp,q and is K-admissible. Suppose the index of
z is positive. By Remark 25 there is a curve α′i which meets z and does not
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Fig. 6. Reducing the index of an arc

end at the end point of z. Let li be the segment of α′i corresponding to z
(see Definition 24 and Figure 6, left). Let t be the arc which moves along li
and then along z to the end point of z which lies on the different side of V
than the point Ai (see Figure 6, left). The arc t has index smaller than the
index of z so it is K-admissible by the induction hypothesis. The arc t is of
type 2, because the monodromies of curves which end on different sides of
V are disjoint, and the arc z′ = t2(z) or z′′ = t−2(z) has index smaller than
the index of z. This proves the claim.

Consider a liftable homeomorphism f and consider the curves α′1, . . . , α′k
inD1. The map f permutes the branch values inD1 and permutes the branch
values in D2 and moves the curve α′i into D. Let γi = f(α′i) for i = 1, . . . , n.
If we disregard the branch values in D2 we can isotope simultaneously the
curves γ1, . . . , γk into D1. Consider such an isotopy and consider the position
of γi just before it passes to the other side of a point Aj in D2. Consider
an arc t which starts at the end point of γi on a suitable side of γi, moves
parallel to γi and ends at the point Aj . This arc is K-admissible, by the
previous claim, and passing with γi to the other side of Aj is the same as
applying t2 or t−2 to the curve γi. Thus there exists h ∈ K such that hf
takes each curve α′i for i ≤ k to a curve in D1. The complement of the union
of these new curves is isotopic to the disk D2, relative to the branch values,
so we may assume that hf also takes the curves α′j for j ≥ k + 1 to curves
in D2. Now we may also assume that V is left invariant and thus hf ∈ K
and f ∈ K.

3. Proof of Theorem 31. The proof is by induction on d.

The Induction Hypothesis. We assume that Theorem 31 is true for
coverings of degree less than d and for coverings of degree d with less than
n branch values. In particular if a connected covering has degree less than
d or has degree d and less than n branch values then the group of liftable
homeomorphisms is generated by liftable powers of half-twists.

We assume that π : X → D is a connected covering of degree d with n
branch values and we assume the standard setup. We denote by τ the total
monodromy of π.
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For a connected covering we have n ≥ d−1 and for n = d−1 Theorem 31
was proven in [CW] and in [MP]. Theorem 31 was also proven for d ≤ 4 in
[BW] and [WW] so we may assume d ≥ 5 and n ≥ d.

The idea of the proof is very simple. We choose a small number of special
curves. We prove that the special curves are H-admissible. Then we prove
(see Proposition 42) that if α is a special curve and f ∈ Lπ then f(α) is H-
equivalent to α. This means that there exists h ∈ H such that hf(α) = α.
Since α is H-admissible we have hf ∈ H and f ∈ H. This proves the
theorem.

Remark 34. We often need to prove that a particular curve β is H-
admissible. If β is non-separating or splits off a number then we can choose
a standard basis in D(β) and there are the distinguished arcs corresponding
to this basis. It follows from the Induction Hypothesis that if all these dis-
tinguished arcs are H-admissible then all liftable homeomorphisms in D(β)
belong to H and β is H-admissible.

Lemma 35. Let ρ be a simple covering. If β is a separating curve and
γ is disjoint from β, then γ separates ρ if and only if γ separates ρ(β). If
ρ has r connected components then there are at least d − r branch values,
that is, n ≥ d−r, and at most d−r pairwise disjoint separating curves. Also
n = d − r if and only if there exist d − r disjoint separating curves, if and
only if every curve separates.

Proof. Splitting ρ along one curve may increase the number of connected
components of ρ at most by one. If β separates then ρ(β) has one connected
component more than ρ. If γ separates ρ(β) then ρ(β, γ) has two compo-
nents more than π. If we split first along γ and then along β we get again
a covering which has two more components than ρ so γ must separate ρ.
Suppose now that γ does not separate ρ(β), or in greater generality that γ is
non-separating in some subdisk D1 of D containing γ. Let λ be the compo-
nent of ρ−1(γ) which connects two points on the boundary of X. Then the
two sides of λ can be connected in ρ−1(D1(γ)), hence also in X(γ), and γ is
non-separating in D. Cutting D along any basis produces a trivial covering
and d distinct components, therefore n ≥ d− r. Any d− r pairwise disjoint
separating curves would split the covering into a trivial covering, which is
impossible if n > d − r since some branch points remain. If n = d − r then
cutting D along d−r curves of any basis produces a trivial covering, so every
curve of the basis separates, and every curve belongs to some basis.

Lemma 36. Consider a quasi-connected covering ρ over a disk D1. Let
β and γ be two curves in D1 with the same monodromy. If β and γ are both
non-separating or both split off the same number on the right side, or if every
curve in D1 is separating, then β and γ are Lρ-equivalent.
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Proof. Let the degree of the non-trivial component of the covering be
equal to d1 and let the number of branch values be equal to n1. If every
curve is separating then, by Lemma 35, there are only n1 = d1 − 1 disjoint
separating curves and X is a disk and the total monodromy τ1 of ρ is a cycle
of length d1. The products µ(β)τ1 = µ(γ)τ1 split τ1 in the same way into
two cycles. We can choose bases which start with β and with γ respectively.
The monodromy of any other curve of such a basis belongs to one cycle
or to the other and monodromies from different cycles commute. We may
change the bases by jumping so that all curves corresponding to the first
cycle precede all curves corresponding to the second cycle. The total number
of curves is d1−2. The length of the cycles determines the number of curves
corresponding to each cycle. This determines the monodromy sequence of the
bases up to Hurwitz equivalence, by Lemma 18, where the Hurwitz moves
do not involve the curves β and γ. The claim follows by Lemma 6.

If the curves are non-separating or split off one number then ρ(β) and
ρ(γ) are quasi-connected and have the same total monodromy on the right
side of β and γ respectively. By Lemma 18 they have bases with the same
monodromy sequences. Together with β and γ we get bases in D1 with the
same monodromy, so, by Lemma 6, there exists h ∈ Lρ with h(β) = γ.

Lemma 37. All curves α′k are H-admissible.

Proof. Consider k = 1. Then π(α1) is quasi-connected. The curves
α2, . . . , αn form a standard basis in D(α1) and all generating arcs corre-
sponding to this basis are the generating arcs corresponding to the original
basis, so they are H-admissible and α′1 is H-admissible by Remark 34.

Now consider k = n. Then π(α′n) is quasi-connected. The curves
α1, . . . , αn−1 form a standard basis in the complement of α′n. All the generat-
ing arcs corresponding to this basis are also the generating arcs correspond-
ing to the original basis so they are H-admissible, except possibly for special
arcs. If α′n is separating there are no special arcs, and if it is non-separating
then π(α′n) has degree at least 5 and the special arcs are disjoint from α1

and are H-admissible (see Definition 28).
Let 1 < k < n. Suppose that α′k is separating. We construct a standard

setup in D(α′k) for non-quasi-connected coverings. The curve αk plays the
role of V , the arcs xi, i 6= k, i 6= k − 1, and the arc yi−1,i+1 form a suitable
sequence of arcs and the new arcs yp,q are equal to the old arcs yp,q, possi-
bly with different indices, and are H-admissible. Consider the corresponding
group K. All arcs on each side of V are H-admissible, because they are
disjoint from α′1 or from α′n, and they generate the groups of liftable homeo-
morphisms on each side of V , by the Induction Hypothesis. When we extend
any such homeomorphism to the other side of V by the identity we get an
element of H, and any liftable homeomorphism of D which leaves V invari-
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ant is a product of two such homeomorphisms (it preserves the monodromy
on each side) and belongs to H. Therefore K ⊂ H and L(α′k) = K ⊂ H.

Suppose now that α′k is non-separating. Then xk or xk−1 is of type 1. We
may replace α′k by an H-equivalent curve so we may assume xk is of type 1.
The curves αi, i 6= k, form a standard basis in D(α′k). Distinguished arcs
of type yp,q and wi,j corresponding to the new basis are also distinguished
for the original standard basis, hence are H-admissible. Let z̄i,j denote the
distinguished arc of type zi,j corresponding to the new basis. Some arcs z̄i,j
have a “dent”, they go under the point Ak. If such an arc is of type 2 then
there must be an arc xl of type 1 between Ai and Ak or between Ak and Aj .
But then the arc zi,k (respectively zk,j) is of type 2 and z2i,k(zi,j) = zi,j

(respectively z−2k,j (zi,j) = zi,j) is H-admissible. Finally we may have new
special arcs but since α′i is non-separating the covering π(α′i) is connected
with more than four sheets and the special arcs are disjoint from α1 (see
Definition 28), so they are H-admissible. Therefore α′k is H-admissible by
Remark 34.

Lemma 38. Every arc of type 2 and every arc of type 3 is H-admissible.

Proof. We prove the lemma by induction on the index of the arcs. If an
arc z is disjoint from some α′i then it is H-admissible by the previous lemma.
In particular z is H-admissible if it has index smaller than n − 2. Let z be
an arc of type 2 or of type 3. We may assume that z meets every curve
α′i. Consider segments li of the curves α′i corresponding to the arc z (see
Definition 24). They may lie on both sides of z. Consider the part γ of the
curve α1 from A0 to the first intersection point with z. We consider disjoint
curves which move along γ, turn left or right just before meeting z, move
to the consecutive segments li (or to an end point of z), then move along li,
possibly crossing z, and end at the end points of li’s (see Figure 6, left). We
call these curves β1, . . . , βn. They form a basis.

We first prove the claim for arcs of type 2. We may assume that z is
of type 2 and of index k and that every arc of type 2 and of index smaller
than k is H-admissible. The curves βj and βk, which end at end points of z,
have monodromies (a, b) and (c, d), all letters distinct. We have at least five
sheets. There must be a letter e different from a, b, c, d which appears in
the monodromy (e, f) of some curve βs. Then (e, f) is disjoint from (a, b)
or from (c, d). The arc t connecting the end points of βj (respectively βk)
and βs along a suitable li (the index i depends on the end point Ai of the
curve βs) and a suitable part of z is of type 2 and has index smaller than k
(see Figure 6, left). The arc z′ = t2(z) or z′′ = t−2(z) has index smaller
than k (it misses the intersection of li with z) and therefore is H-admissible
and z is H-admissible. It follows by induction that every arc of type 2 is
H-admissible.
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We now prove the claim for arcs of type 3. We assume that z is of type 3
and of index k and that every arc of type 2 and every arc of type 3 and
index smaller than k is H-admissible. The curves βj and βk, which end at
end points of z, have monodromies (a, b) and (a, c), where b 6= c. If there is
a curve βi with monodromy disjoint from (a, b) or from (a, c) we can reduce
the index of z as in the previous case (arcs of type 2 are H-admissible).
If not, then there must be a curve βs with monodromy (a, d), where d is
different from b and c. We now consider an arc v which starts at the end
of βs, goes around an end point of z (say, the right end point with respect
to the arc li of the curve βs as in Figure 6, right) and then all the way
along z to the other end point of z. This arc has type 2 and is H-admissible.
Consider the arcs t1 and t2 which connect the end point of βs to the left
end point of z (respectively the right end point of z). They are of type 3
and have indices smaller than k. Now t−32 v−2(z) = t1 has index smaller
than z and thus z is H-equivalent to an arc of smaller index and is H-
admissible.

Corollary 39. Suppose that the curve β is disjoint from α1 and that
β is non-separating or β splits off a number. If α1 is separating then β is
H-admissible.

Proof. If α1 is separating then it splits off number 1 on the right side.
By Corollary 20 there is a standard basis in D(β) with the first curve α1.
Consider the set of distinguished arcs corresponding to this basis. The cov-
ering π(β) is quasi-connected with the non-trivial component of degree at
least 4. The special arc s1 corresponding to the new basis is disjoint from
α1 (see Definition 28) and therefore is H-admissible. Other special arcs are
of type 2, and since α1 is separating all distinguished arcs which meet α1

are of type 2 or 3. They are all H-admissible by Lemma 38. The remaining
distinguished arcs are disjoint from α1 and are H-admissible by Lemma 37.
Therefore β is H-admissible by Remark 34.

In order to prove Theorem 31 we need to consider several cases which
are listed in the next definition.

Definition 40. We define some special curves. We denote by m the
smallest number for which µ(αm) = (d− 1, d).

Case 1. The total monodromy τ has at least three disjoint cycles (in-
cluding cycles of length 1). Then there are two special curves, the non-
separating α′i with the smallest index i and the next non-separating α′j with
j > i+ 1.

Case 2. The total monodromy τ has at most two disjoint cycles and the
excess is odd and positive. Then there is one special curve α′m.
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Case 3. The total monodromy τ has two disjoint cycles and the excess
is non-positive. Then there is one special curve, the non-separating α′i with
the smallest index i. (If the excess is 0 then the curve α′m is special.)

Case 4. The total monodromy τ has two disjoint cycles and the excess
is even and positive. Then m = d− 1. We define curves βi,j for 1 ≤ i ≤ d− 2
and d − 1 ≤ j ≤ n. The curve βi,j starts between αi−1 and αi (on the left
side of α1 if i = 1), crosses the real axis, then turns right, stays in the upper
half-plane and ends at Aj . In particular β1,j = α′j for j ≥ d − 1. The curve
βi,j is H-equivalent to βi,m. The curves βi,m are special.

The above cases exhaust all possibilities which we need to consider. If the
excess is even then τ has at least two cycles. If the excess is −1 and there is
only one cycle then n = d−1 and this case of Theorem 31 is already known.

Case 4 described in Definition 40 is most difficult and it requires addi-
tional preparation. If j − d is odd we define a curve β′i,j symmetric to βi,j .
The curve β′i,j starts on the right side of αj , crosses the real axis, then turns
left, stays in the upper half-plane and ends at Ai. It also has monodromy
(i, d). The next lemma shows that β′i,j is H-equivalent to βi,j .

Lemma 41. Assume Case 4 of Definition 40. Then the curve βi,j is H-
admissible. Also, the curves βi,d−1, β′i,d−1 and β′i,d+1 are H-equivalent. For
all 1 ≤ s, i ≤ d−2 and all d−1 ≤ j ≤ n there exist curves δ and δ′ which are
disjoint from βi,j, lie on different sides of βi,j, are non-separating in D(βi,j)
and are H-equivalent to βs,j.

Proof. If i = 1 then βi,j = β1,j = α′j , which is H-admissible by Lem-
ma 37.

If i > 1 then βi,j is disjoint from α1 and is non-separating, and α1 is
separating, so βi,j is H-admissible by Corollary 39.

Consider the curves βs,d−1, β′s,d−1 and β′s,d+1. They have the same mon-
odromy and are non-separating. If s > 1 then the curves are non-separating
in D(α1), by Lemma 35, and therefore H-equivalent by Lemmas 36 and 37.
If s = 1 then the curves β′1,d−1 and β′1,d+1 lie in D(α2). The curve α2 splits
off number 2 on the right side and is disjoint from α1 so it is H-admissible
by Corollary 39 and π(α2) is quasi-connected. Our curves are non-separating
in D and therefore are non-separating in D(α2), by Lemma 35, and therefore
are H-equivalent, by Lemma 36. The curves βs,d−1 and β′s,d−1 lie in D(α′n)
and are non-separating there, by Remarks 13 and 8 and Lemma 37, because
α′n and α′n−1 are disjoint, have the same monodromy and lie in the comple-
ment of each of the curves βs,d−1 and β′s,d−1. Therefore the curves βs,d−1 and
β′s,d−1 are H-equivalent, by Lemmas 36 and 37.

We now prove the last claim of the lemma. We may replace βi,j by any
curve h(βi,j), where h ∈ H, and when we find curves δ and δ′ for h(βi,j), we
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can move them back by h−1. Suppose that s ≤ i. Up to H-equivalence we
may assume j = d− 1. Then the curves βs,j+1 and βs,j+2 lie on the left side
of βi,j , are H-equivalent to βs,j and have the same monodromy, so they are
non-separating in D(βi,j), by Remark 13. We turn to the right side of βi,j .
For s = i we may choose j = d + 1 and then there are two curves βs,d−1
and βs,d which are on the right side of βi,j and are H-equivalent to βs,j
and are non-separating in D(βi,j), by Remark 13. If s < i then we choose
j = d − 1 and the curve β′s,d+1 lies to the right of βi,d−1. Now βi,d−1 and
βi,d lie to the left of β′s,d+1 and have the same monodromy, so the curve
βi,j is non-separating in D(βs,d+1)

′, by Remark 13, and conversely β′s,d+1 is
non-separating in D(βi,j), by Remark 8. Suppose now that s > i. We may
choose j = d+ 1 and then βs,d−1 and βs,d are disjoint, H-equivalent and lie
on the right side of βi,j and are non-separating in D(βi,j), by Remark 13.
For the left side we choose β′i,d+1, which is H-equivalent to βi,j . Then βs,d−1
and βs,d lie in D(β′i,d+1) to the left of β′i,d+1 and are non-separating there,
by Remark 13.

Theorem 31 follows from the next proposition.

Proposition 42. Let β be a curve which is Lπ-equivalent to a special
curve σ. Then β is H-equivalent to σ.

Remark 43. In the next lemmas we shall prove Proposition 42 under
additional assumptions. We shall assume one or more of the following state-
ments: the curve β is disjoint from some curve γ = α′i (or, in Case 4, disjoint
from some curve γ = βj,m); β is non-separating in D(γ); there exists a curve
α which is H-equivalent to σ and is disjoint from γ and lies on the same
side of γ as β. In the proof we may replace γ by a curve H-equivalent to it,
γ′ = h(γ) for some h ∈ H, and consider the curve h(β) instead of β.

Indeed if β is disjoint from γ then h(β) is disjoint from γ′; if β lies on
a particular side of γ, say left, then h(β) lies on the left side of γ′ if β is
non-separating in D(γ) then h(β) is non-separating in D(γ′) because h is
liftable and its lift preserves connected components of π−1(D(γ)). Moreover,
if we prove that h(β) is H-equivalent to σ then β is also H-equivalent to σ.

Lemma 44. Let β be a curve which is Lπ-equivalent to a special curve σ
and is disjoint from some curve γ = α′i (or, in Case 4, disjoint from some
curve γ = βj,m). Suppose that there exists a curve α which is H-equivalent
to σ and is disjoint from γ and lies on the same side of γ as β. If α and β
are non-separating in D(γ) then β is H-equivalent to σ.

Proof. This follows from Lemmas 36, 37 and 41.

Lemma 45. Consider Case 4. Let β be a curve which is Lπ-equivalent to
a special curve βj,m. Suppose β is disjoint from a curve γ and non-separating
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in D(γ), where γ is either some α′i or some βi,m. Then β is H-equivalent
to βj,m.

Proof. It suffices to prove that there exists a curve α such that α and β
satisfy the assumptions of Lemma 44. Suppose first that γ = α′i is separating
(i < d − 1, and µ(α′i) = (1, i + 1)). On the right side of α′i, sheets number
1, . . . , i are separated from sheets i+ 1, . . . , d. We have µ(βj,m) = (j, d) so if
β lies on the right side of α′i then j ≥ i+ 1 and βj,m lies on the right side of
α′i. We may choose α = βj,m. The curves β and βj,m are non-separating and
therefore they are also non-separating in D(α′i), by Lemma 35.

On the left side of α′i, sheets 2, 3, . . . , i + 1 are separated from sheets
1, i+ 2, i+ 3, . . . , d. We see this when we jump with all the curves αk, k 6= i,
to the left of α′i. If β lies on the left side of α′i then j = 1 or j ≥ i+ 2. The
curve β1,m = α′m lies on the left side of α′i and for j = 1 we may choose
α = β1,m. For j ≥ i+ 2 we choose the curve α in Figure 8. It has the same
monodromy as βj,m. The curves α′n and α′n−1 lie on the left side of βj,m and
of α (n ≥ m+ 3). Therefore, by Remark 13, the curve α′n is non-separating
in D(α) and in D(βj,m) and thus α is H-equivalent to βj,m, by Remark 8
and Lemmas 36 and 37. The curves β and α are non-separating in D(α′i) as
in the previous case.

Suppose now that α′i is non-separating. Then i ≥ m. By Remark 43 we
may replace α′i by an H-equivalent curve. If β lies on the right side of α′i we
choose i = m+2 and α = βj,m. It is non-separating in D(α′i) because βj,m+1

also lies on the right side of α′i. Suppose β lies on the left side of α′i. If j > 1
we replace α′i by β

′
1,d+1, which is H-equivalent to α′i, by Lemma 41. We may

choose α = βj,m. It is non-separating in D(β′1,d+1) because βj,m+1 also lies
on the left side of β′1,d+1. Finally if j = 1 we choose i = m and α = βj,m+1.
It is non-separating in D(α′i) because βj,m+2 also lies on the left side of α′i.

Suppose now that γ = βk,m. By Lemma 41 there exists a curve δ which
is disjoint from βk,m, lies on the same side of βk,m as β, is non-separating in
D(βk,m) and is H-equivalent to βj,m. We may choose α = δ.

Lemma 46. Consider Cases 1 to 3. Let β be a curve which is Lπ-equiv-
alent to a special curve α′j and is disjoint from some curve α′i. In Case 1 we
also assume that µ(α′i) 6= µ(α′j). Then β is H-equivalent to α′j.

Proof. It suffices to prove that there exists a curve α such that α and β
satisfy the assumptions of Lemma 44.

The curves β and α′j are non-separating by the definition of special curves.
If z = zi,j is of type 2, then it is H-admissible by Lemma 38 and there exists
an arc xk of type 1 strictly between Ai and Aj . Then the curve z2(α′j) or
z−2(α′j) is disjoint from α′i and lies on the other side of α′i than α

′
j so there

exists a curve α which is H-equivalent to α′j and lies on the correct side
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of α′i. Moreover µ(α′j) connects different cycles of τ and µ(α′i) lies on one
side of µ(α′j) (see Remark 23), so µ(α′j) connects different cycles of the total
monodromy in D(α′i) and the curves α and β are non-separating in D(α′i),
by Lemma 21.

Suppose that the arc zi,j is not of type 2 and α′i is separating. Then
α′j is the nearest non-separating curve among the curves α′k to the left or
to the right of α′i. The total monodromy τ has a cycle (q, q − 1, . . . , p + 1)
and µ(α′i) = (p + 1, t) for some p + 1 < t ≤ q. On the right side of α′i
there is a basis consisting of all curves αs, s 6= i, and the corresponding
monodromy sequence in D(α′i) consists of pairs of consecutive numbers with
the pair (t− 1, t) missing, so sheets 1, . . . , t− 1 are disconnected from sheets
t, t+ 1, . . . , d.

When we jump with the curves αs, s 6= i, to the left of α′i the monodromy
gets conjugated by (p+1, t). In fact only pairs (p, p+1), (p+1, p+2), (t, t+1)
change into (p, t), (p+2, t), (p+1, t+1). Therefore on the left side of α′i sheets
number 1, 2, . . . , p, p+2, p+3, . . . , t are separated from p+1, t+1, t+2, . . . , d.

If j > i then, by Remark 23, µ(β) = µ(α′j) = (p + 1, q + 1) and there is
no curve with such a monodromy on the right side of α′i. Therefore β must
be on the left side of α′i and α

′
j is also on the left side of α′i so we can choose

α = α′j .
If j < i then, by Remark 23, µ(β) = µ(α′j) = (s, p+1) with s < p+1 and

there is no curve with such a monodromy on the left side of α′i. Therefore in
this case β must be on the right side of α′i and α

′
j is also on the right side of

α′i so we can choose α = α′j .
Since the curves β and α′j are non-separating and α′i is separating, we see

by Lemma 35 that α and β are non-separating in D(α′i) and we are done.
Suppose now that zi,j is not of type 2 and that α′i is non-separating.

Suppose i < j and µ(α′i) 6= µ(α′j). The curve α′j lies on the left side of αi.
Each of the curves α′i and α

′
j has a neighbor which is H-equivalent to it. By

Remark 43 we may replace α′i by the neighbor and since we are looking for a
curve α which is H-equivalent to α′j we may replace α′j by the neighbor. So
we may assume that the arcs xi and xj−1 are of type 1 (see Figure 7). Since
zi,j is not of type 2 there are no other non-separating curves α′k between
α′i+1 and α′j−1 and the arc wi,j−1 looks as in Figure 7, and is of type 1 and is
H-admissible (see Definition 28). The curve δ = wi,j−1(α

′
j) lies on the right

side of α′i and we can choose α = δ or α = α′j on the same side as β. Moreover
we may assume, by Remark 23, that τ has a cycle (q, q − 1, . . . , p + 1) and
µ(α′i) = (p+1, q+1) and both numbers of µ(α′j) are greater than q. Therefore
µ(α′i) connects different cycles in the total monodromy in D(α′j), in D(α),
and in D(β), and α′i is non-separating in these domains. By Remark 8 both
α and β are non-separating in D(α′i).
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Fig. 7. Finding the curve δ on the other side of α′i
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Fig. 8. Choosing the curve α in Case 4

The case when zi,j is not of type 2 and α′i is non-separating and i > j
and µ(α′i) 6= µ(α′j) follows by symmetry.

We now consider the case of µ(α′j) = µ(α′i) (and we assume Case 2 or 3
or 4). In Case 2 we have three pairwise disjoint curves α′m, α′m+1, α

′
m+2 which

are H-equivalent to α′i and to α′j . If β is on the left side of α′i we choose i = m
and α = αm+1. Then α is non-separating in D(α′i) because there also exists
αm+2 disjoint from α also on the left side of α′i. If β is on the right side of α′i
we choose i = m+ 2 and α = αm+1 and a similar argument works.

In Case 3 there are only two curves α′j and α′j+1 disjoint from and H-
equivalent to α′i. We choose the left one for α′i if β is on the right side, and we
choose the other one for α. This time every curve in the complement of α′i is
separating and α and β have the same monodromy, so they are H-equivalent
by Lemmas 36 and 37. The case of β on the left side follows by symmetry.

Proof of Proposition 42 (by induction on the index of β). We fix a curve
β which is Lπ-equivalent to a special curve σ. Suppose β has index 0. We
want to prove that β is H-equivalent to σ. There are n−1 curves α′i disjoint
from β. Some of them have monodromy different from µ(β), therefore in
Cases 1 to 3 we are done by Lemma 46. In Case 4 we have n ≥ d+ 2, hence,
by Lemma 35, some of the curves α′i are non-separating in D(β). We are
done by Lemma 45.

Now, assume that β has index k > 0 and that every curve γ which is
Lπ-equivalent to a special curve and has index less than k is H-equivalent to
that special curve. By Lemma 36 if a curve γ has the same monodromy as
a special curve and is non-separating then γ is Lπ-equivalent to that special
curve. Let µ(β) = (a, b).

We consider segments lj of α′j corresponding to the curve β (see Def-
inition 24). They may lie on both sides of β. We consider disjoint curves
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which run along β on a suitable side, move to the consecutive segments li,
then move along li, and end at the end points of li’s (see Figure 9). We call
these curves γ1, . . . , γr. The curves have indices smaller than the index of β,
since they miss at least the intersection point of β with the li most distant
from A0 along β. There may also exist some curves α′i disjoint from β (and
disjoint from the curves γs). If we jump with all these curves to one side of
β then we get a basis in D(β). Since β is non-separating the monodromy of
this basis forms a connected sequence of pairs and every number from 1 to d
appears. It follows that also in the monodromy of the curves before jumping
the sequence of pairs is connected and every number from 1 to d appears
with the possible exception of a or b (but not both).

rr r
r
β

A0

� �� �� �
Fig. 9. The curves γs

If one of the curves γs has monodromy disjoint from (a, b) then the arc
z connecting the end points of γs and β along β and along the suitable li is
of type 2 and thus H-admissible. The curve β′ = t2(β) or β′ = t−2(β) has
index smaller than k and is H-equivalent to β (see Figure 10, left). Then β
is H-equivalent to a special curve by the induction hypothesis. So we may
assume that the monodromy of each curve γj contains a letter a or a letter b.
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Fig. 10. Reducing the index of a curve, different cases

Lemma 47. Suppose that some curve γs has monodromy (a, c) where
c 6= b. Then there exists a curve δ′ which is disjoint from β, has monodromy
(b, c) and is H-equivalent to a curve of index smaller than k. If γs is non-
separating in D(β) then so is δ′.

Proof. Consider Figure 10, left. Suppose γs ends at Ai. The arc z con-
necting the end of γs with the end of β along the arc li and a suitable part
of β is of type 3, so it is H-admissible. The curve δ′ is obtained by jumping
with γs over β so it has monodromy (b, c) and z−3(δ′) = β′ has index smaller
than k, therefore it misses the intersection of β with li. The last claim of the
lemma follows from Lemma 11.
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We now pass to the induction step and we consider the different cases of
Definition 40.

Case 1. We have two special curves. They are consecutive non-separating
curves with different monodromies among the curves α′k. One of the special
curves has monodromy (a, b) = µ(β). By Remark 23 the monodromy of the
other curve has one number in common with (a, b), say its monodromy is
equal to (b, c). Also the pairs (a, c) and (b, c) each connect different cycles
of τ . Since β is non-separating, the number c must appear in the monodromy
of some γs or some α′i disjoint from β. In the second case µ(α′i) 6= µ(β) and
we are done by Lemma 46. In the first case either µ(γs) = (b, c) or, by
Lemma 47, there exists a curve δ disjoint from β with monodromy (b, c).
The curve is non-separating and therefore Lπ-equivalent to a special curve
and by the induction hypothesis it is H-equivalent to the special curve α′k.
Now β is H-equivalent to σ by Lemma 46.

In Cases 2 to 4 we may assume that every curve α′i meets β, for otherwise
we are done by Lemmas 45 and 46. Therefore the curves γs form a basis in
D(β) after we jump with all of them to one side of β. Since (after jumping)
the monodromy sequence is connected and contains a and b and every pair
contains either a or b, there must be a pair (a, b) or two pairs (a, s) and
(b, s). Going back to the initial position we have a pair (a, b) or two pairs
(a, s) and (b, s) on one side of β or two pairs (a, s) (equivalently (b, s)) on
different sides of β (see Figure 10, right).

From this we shall produce a curve δ with monodromy (a, b) disjoint
from β and H-equivalent to a curve of index less than k.

Suppose we have two curves on the same side of β (right side of β in
Figure 10, right) with monodromy (b, s) and (a, s) respectively. Let li and
lj be the corresponding final segments of those curves and suppose that li is
closer to A0 than lj . We choose a curve which moves along β on the side of
li and lj , goes around li, continues along β up to lj , then moves along lj up
to its end (the inside curve in the lower part of Figure 10, right). The curve
has monodromy (a, b) and has index smaller than k.

Suppose now that we have two curves with the same monodromy (a, s)
on the opposite sides of β. Let li and lj be the corresponding final segments
of these curves and suppose that li is closer to A0 than lj . We choose a curve
δ which moves along β on the side of li, goes around li, continues along β
to its end, goes around β and goes back on the other side of β up to lj ,
then moves along lj up to its end (the curve δ on Figure 10, right, when we
disregard the curve with monodromy (b, s)). Then µ(δ) = (a, b). The arc z,
which connects the end of β to the end of lj along lj and along a part of β,
is of type 3 and is H-admissible, by Lemma 38. The curve z−3(δ) (or z3(δ))
is H-equivalent to δ and has index smaller than k. It moves along β on the
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side of li, goes around li avoiding its intersection point with β, then crosses
β to the other side, continues along β on the other side of β, goes around lj
avoiding its intersection point with β and continues to the end of β.

Case 3. The monodromy (a, b) connects different cycles of τ , therefore
the curve δ is non-separating and is H-equivalent to a special curve, by
the induction hypothesis. Now β is H-equivalent to the special curve σ by
Lemma 46.

Case 2. The monodromy µ(β) contains the number d so we may assume
b = d and the pair (a, d) splits off number d or number a from τ , so the total
monodromy in D(β) has the cycle (d) if we consider the right side of β and
has the cycle (a) if we consider the left side of β. In both cases µ(δ) connects
different cycles so δ is non-separating in D(β) and thus non-separating in D.
We proceed as in the previous case.

Case 4. The curve δ constructed above may be separating so we proceed
differently. The monodromy µ(β) contains the number d so we may assume
b = d. There are n− 1 > d curves γs so one of them must be non-separating
in D(β) (after jumping to one side), by Lemma 35, and therefore it must
be non-separating in D(β) before jumping, by Lemma 11. If µ(γs) = (s, d)
then γs has the monodromy of a special curve and is H-equivalent to that
special curve, by the induction hypothesis. Then β is H-equivalent to σ, by
Lemma 45. Since µ(γs) contains a or d we may assume that µ(γs) = (s, a). By
Lemma 47 there exists a curve δ which is disjoint from β, has monodromy
(s, d) and is H-equivalent to a curve of index less than k. Moreover δ is
non-separating in D(β). We proceed as in the previous case.

This completes the proofs of Proposition 42 and of Theorem 31.
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