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Abstract. We generalize to the non-separable context a theorem of Levi characteriz-
ing Baire analytic spaces. This allows us to prove a joint-continuity result for non-separable
normed groups, previously known only in the separable context.

1. Introduction. This paper is inspired by Sandro Levi’s [Levi|, sim-
ilarly titled paper, On Baire cosmic spaces, containing an Open Mapping
Theorem (a consequence of the Direct Baire Property given below) and a
useful corollary on comparison of topologies; all these results are in the
separable realm. Here we give non-separable generalizations (see Main The-
orem 1.6) and, as an illustration of their usefulness, Main Theorem 1.9
offers a non-separable version of an Ellis-type theorem (see [Ell, Cor. 2],
cf. [Boul], [Bou2], the more recent [SolSri], or the textbook [AT]) with a
‘one-sided’ continuity condition implying that a right-topological group gen-
erated by a right-invariant metric (i.e. a normed group in the terminology
of §4) is a topological group. Unlike Ellis we do not assume that the group
is abelian, nor that it is locally compact; the non-separable context requires
some preservation of o-discreteness as a side-condition (see below).

Given that the application in mind is metrizable, references to non-
separable descriptive theory remain, for transparency, almost exclusively in
the metric realm, though we do comment on the regular Hausdorff context
in §5 (see Remark 5.4).

Levi’s work draws together two notions: BP—the Baire set property (i.e.
that a set is open modulo a meagre set, so ‘almost open’), and BS—the Baire
space property (i.e. that Baire’s theorem holds in the space). Below we keep
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the distinction clear by using the terms ‘Baire property’ and ‘Baire space’.
The connection between BP and BS is not altogether surprising, and as we
explain in Remark 4.5 the two are ‘almost’ the same in a precise sense, at
least in the context of normed groups (cf. [Ost-S], where this closeness is
fully exploited).

We refer to [Eng] for general topological usage (though we prefer ‘meagre’
as a term). We say that a subspace S of a metric space X has a Souslin-F(X)
representation if there is a ‘determining’ system (F(i|n)) := (F(i|n) : i € NV)
of sets in F(X) (the closed sets) with

S = U m F(iln), where I = NN
i€l neN
and i|n denotes (i1,...,1,). We will say that a topological space is classi-
cally analytic if it is the continuous image of a Polish space (Levi terms
these ‘Souslin’) and not necessarily metrizable, in distinction to an (abso-
lutely) analytic space, i.e. one that is metrizable and is embeddable as a
Souslin-F set in its own metric completion; in particular, in a complete
metric space Gs-subsets (being F,s) are analytic. We call a Hausdorff space
almost analytic if it is analytic modulo a meagre set. Similarly, a space X' is
absolutely Gs, or an absolute-Gs, if X' is a G5 in all spaces X containing X'
as a subspace. (This is equivalent to complete metrizability in the narrowed
realm of metrizable spaces [Eng, Th. 4.3.24], and to topological /Cech com-
pleteness in the narrowed realm of completely regular spaces [Engl §3.9].)
So a metrizable absolute-G; is analytic; we use this fact in Lemma 6.2.
Levi’s results follow from the following routine observation.

THEOREM 1.1 (on the Direct Baire Property, [Levi]). Let X be a clas-
sically analytic space and Y Hausdorff. Fvery continuous map f : X — Y
has the Direct Baire Property: the image of any open set in X has the Baire
property in Y.

The nub of the theorem is that, with X as above, continuity preserves
various analyticity properties such as that open, and likewise closed, sets
are taken to analytic sets, in brief: a continuous map is open-analytic and
closed-analytic in the terminology of [Han-74], and so preserves the Baire
property. (See Remark 1.5.3 below for a reprise of this theme.) Levi deduces
the following characterization of Baire spaces in the category of classically
analytic spaces.

THEOREM 1.2 (Levi’s Open Mapping Theorem, [Levi]). Let X be a reg-
ular classically analytic space. Then X is a Baire space iff X = f(P) for
some continuous map f on some Polish space P with the property that there
exists a subspace X' C X which is a dense metrizable absolute-Gs such that
the restriction map f|P': P' — X' is open for P' = f~1(X').
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The result may be regarded as implying an ‘inner regularity’ property
(compare the capacitability property) of a classically analytic space X: if
X is a Baire space, then X contains a dense absolute-Gs subspace, so a
Baire space. The existence of a dense completely metrizable subspace—
making X almost complete in the sense of Frolik ([Frol], but the term is due
to Michael [Mich91])—is a result that implicitly goes back to Kuratowski
([Kur-1, IV.2, p. 88], because a classically analytic set has the Baire prop-
erty in the restricted sense [Kur-1, Cor. 1, p. 482]). Generalizations of the
latter result, including the existence of a restriction map that is a homeo-
morphism between a Gs-subset and a dense set, are given by Michael in
[Mich86]; but there the continuous map f requires stronger additional prop-
erties such as openness on P (unless P is separable), which Levi’s result
delivers.

Theorem 1.2 has a natural extension characterizing a Baire space (in the
same way) when it is almost analytic. Indeed, with X’ as above in Th. 1.2,
the space X is almost complete and so almost analytic. On the other hand,
if X is a Baire space and almost analytic, then by supressing a meagre
Fo and passing to an absolutely Gs-subspace, we may assume that X is a
Baire space which is analytic, so has the open mapping representation of
the theorem, and in particular is almost complete (for more background see
[Ost-S]; cf. Cor. 1.8 below).

Since an analytic space is a continuous image, Theorem 1.2 may be
viewed as an ‘almost preservation’ result for complete metrizability under
continuity in the spirit of the classical theorem of Hausdorff (resp. Vainstein)
on the preservation of complete metrizability by open (resp. closed) con-
tinuous mappings—see Remark 1.11.4 at the end of this section for the
most recent improvements and the literature of preservation. We note that
Michael [Mich91l Prop. 6.5] shows that almost completeness is preserved
by demi-open maps (i.e. continuous maps under which inverse images of
dense open sets are dense). Theorem 1.2 has an interesting corollary on
the comparison of refinement topologies. For a discussion of refinements see
[Ost-S, §7.1] (for examples of completely metrizable and of analytic refine-
ments see [Kechl, Ths. 13.6, 25.18, 25.19]).

THEOREM 1.3 (Levi’s Comparison Theorem, [Levi]). For T, T’ two topo-
logies on a set X with (X,T') classically analytic (e.g. Polish) and T' re-
fining T (i.e. T CT"), if (X, T) is a reqular Baire space, then there is a
T-dense G(T)z-set on which T and T' agree.

We offer a generalization in Main Theorem 1.6 below to the broader cat-
egory of (absolutely) analytic spaces—be they separable or non-separable
metric spaces. We will need the following definitions (see below for com-
ments). Recall that a Hausdorff space X is paracompact |[Eng, Ch. 5] if
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every open cover of X has a locally-finite open refinement, and further that
for an (indexed) family B := {B; : t € T'}:

(i) B is index-discrete in the space X (or just discrete when the in-
dex set T' is understood) if every point in X has a neighbourhood
meeting the sets B; for at most one t € T

(ii) B is o-discrete (abbreviated to o-d) if B = |J,, B, where each set
B, is discrete as in (i), and

(iii) B is a base for £ if every member of £ may be expressed as the
union of a subfamily of B. For T a topology (the family of all open
sets) with B C T a base for T, this reduces to B being simply a
(topological) base.

DEFINITIONS 1.4 ([Han-74, §3]; cf. [Han-71), §3.1] and [Mich82| Def. 3.3]).

1. Call f: X — Y base-o-discrete (or co-o-discrete) if the image under
f of any discrete family in X has a o-discrete base in Y. We need two
refinements that are more useful and arise in practice: call f : X — Y an
analytic (resp. Baire) base-o-discrete map (henceforth A-o-d, resp. B-o-d
map) if in addition, for any discrete family £ of analytic sets in X, the
family f(€) has a o-d base consisting of analytic sets (resp. sets with the
Baire property) in Y. We explain in §2 (Th. 2.6 and thereafter) why A-o-d
maps, though not previously isolated, are really the only base-o-discrete
maps needed in practice in analytic space theory.

2 ([Han-74, §2]). An indexed family A := {A; : t € T} is o-discretely
decomposable (0-d decomposable) if there are discrete families A,, := { Ay, :
t € T} such that A; = |J, A for each t. (The open family {(—7,r) :
r € R} on the real line has a o-d base, but is not o-d decomposable—see
[Han-73b., §3].)

3 ([Mich82, Def. 3.3]). Call f : X — Y index-o-discrete if the image
under f of any discrete family £ in X is 0-d decomposable in Y. (Note f(€) is
regarded as indexed by &, so could be discrete without being index-discrete;
this explains the prefix ‘index-’ in the terminology.) An index-o-discrete
function is A-o-d (analytic base-o-discrete): see Theorem 2.6 below.

REMARKS 1.5. Recall Bing’s Theorem ([Eng, Th. 4.4.8]) that a regular
space is metrizable iff it has a o-discrete base. In a separable space discrete
sets are at most countable. So all the notions above generalize various aspects
of countability; in particular, in a separable metric setting all maps are
(Baire) base-o-discrete. We comment briefly on their standing. (The paper
[Han-74] is the primary source for these.)

1. In Definition 1.4.3, above f has a stronger property than base-o-
discreteness. For a proof see [Han-74), Prop. 3.7(i)]; cf. also [Mich82] Prop. 4.3]
which shows that f with closed fibres has the property in 1.4.3 iff it is
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base-o-discrete and has fibres that are Wj-compact, i.e. separable (in the
metric setting). The stronger property is often easier to work with than
Baire base-o-discreteness; in any case the concepts are close, since for metric
spaces and k an infinite cardinal, X is a base-o-discrete continuous image
of kN iff X is an index-o-discrete continuous image of a closed subset of &Y,
both equivalent to analyticity [Han-74, Th. 4.1]; cf. Proposition 2.9 below.
(See also [Han-92, Th. 4.2]. In fact the natural continuous index-o-discrete
representation of an analytic set has separable fibres, for which see §2 below;
for a study of fibre conditions see [Han-9§].)

2. Base-o-discrete continuous maps (in particular, Baire base-o-dis-
crete and index-o-discrete continuous maps) preserve analyticity [Han-74|
Cor. 4.2].

3. If X is metric and (absolutely) analytic and f : X — Y is injective
and closed-analytic (or open-analytic), then f is base-o-discrete [Han-74,
Prop. 3.14]. Base-o-discreteness is key to this paper just as open-analyticity
is key to the separable context of the Levi results above.

4.1f B = U, en Bn, with each By, discrete, is a 0-d base for the metrizable
space X and each f(B,) is o-d decomposable, then f is index-o-discrete,
and so base-o-discrete [Han-74, Prop. 3.9].

5. A discrete collection A = {A; : t € T'} of analytic sets has the property
that any subfamily has analytic union, i.e. is ‘completely additive analytic’.
It turns out that in an analytic space a disjoint (or a point-finite) collection
A is completely additive analytic iff it is o-d decomposable (see [KP| gen-
eralizing the disjoint case in [Han-71, Th. 2|; see also [F'H]). By the proof of
Theorem 2.6 the decompositions can be into analytic sets.

MAIN THEOREM 1.6 (Generalized Levi Open Mapping Theorem—non-
separable case). Let X be an analytic space (more generally, paracompact
and K-analytic—as defined in §2). Then X is a Baire space iff X = f(P) for
some continuous, index-o-discrete map f on a completely metrizable space
P with the property that there exists a dense completely metrizable Gs-subset
X' of X such that the restriction f|P': P' — X' is an open mapping, with
P' = f~Y(X"), again a topologically complete subspace.

This is proved in §3. For related results on restriction maps of other
special maps, see [Mich91l §7]. (Compare also [Han-92, Ths. 6.4 and 6.25].)
As immediate corollaries one has:

COROLLARY 1.7 (Generalized Levi Comparison Theorem). If 7,7’ are
two topologies on a set X with (X, T) a regular Baire space, and T’ an
absolutely analytic (e.g. completely metrizable) refinement of T such that
every T'-index-discrete collection is o-discretely decomposable under T, then
there is a T -dense G(T )s-set on which T and T’ agree.
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Proof. For f take the identity map from (X,7’) to (X,7), which is
continuous and index-o-discrete. m

COROLLARY 1.8 (Almost Completeness Theorem). X is almost analytic
and a Baire space iff X is almost complete.

Proof. If X contains a co-meagre analytic subspace A, then by Theo-
rem 1.6, A, being a Baire space, contains a dense completely metrizable
subspace X’ which is co-meagre in X. So X is almost complete. =

For a sharper characterization in the case of normed groups see [Ost-LLB3|
Th. 2]; cf. also Theorem 4.4. Corollary 1.7 will enable us to prove (in §6) the
automatic continuity result of Main Theorem 1.9 below for right-topological
groups with a right-invariant metric dg (the normed groups of §4). We write
dr(z,y) = dgr(z~',y~1), which is left-invariant, and dg := max{dg, d;} for
the symmetrized (‘ambidextrous’) metric. The basic open sets under dg take
the form BE(2)NBZE(z), i.e. an intersection of balls of e-radius under dp and
dy, centered at x, giving the join (coarsest common refinement) of the dp
and dy, topologies. Following [Ost-J|, for P a topological property it is conve-
nient to say that the metric space (X, dRr) is topologically symmetrized-P, or
just semi-P, if (X, dg) has property P. In particular (X, dg) is semi-complete
if (X,dg) is topologically complete. As dr and dj, are isometric under in-
version, (X, dg) is semi-complete iff (X, dy) is.

MAIN THEOREM 1.9 (Semi-Completeness Theorem, cf. [Ost-J]). For a
normed group X, if (X,dg) is semi-complete and a Baire space, and the
continuous embedding map j : (X,ds) — (X,dgr) is Baire base-o-discrete
(e.g. index-o-discrete), in particular this is so if X is separable, then the right
and left uniformities of dr and dy, coincide and so (X, dRr) is a topologically
complete topological group.

The following result will be needed later in conjunction with Theo-
rem 5.2.

LeEMMA 1.10. For a normed group X, if the continuous embedding map
Jj: (X,ds) = (X,dR) is index-o-discrete (resp. base-o-discrete), then so
also is the inversion mapping from (X,dg) to (X,dg), i.e. i :x +— x7L.

Proof. Suppose V is a family of sets that is discrete in (X,dg). Then
VL= {V~1:V €V} is a family of sets that is discrete in (X, dy). As the
ds topology refines the dy topology, V™! is discrete in (X, dg). Assuming
that j is index-o-discrete (resp. base-o-discrete), the family j(V=1) = V!
is 0-d decomposable (has a o-d base) in (X, dg). So inversion maps V to a
family V=1 that is 0-d decomposable (has a o-d base) in (X, dg). =

REMARKS 1.11. 1. Theorem 1.9 generalizes a classical result for abelian
locally compact groups due to Ellis [EII].
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2. Remarks 1.5 noted that the ‘index-o-discreteness condition’ imposed
in the theorem is a natural one from the perspective of the non-separable
theory of analytic sets, and Lemma 1.10 interprets this in terms of inversion;
compare point 4 below.

3. For separable spaces, where discrete families are countable and so
the embedding j above automatically preserves o-discreteness, the result
here was proved in [Ost-J| (to which we refer for the literature) in the form
that a semi-Polish, normed group X, Baire in the right norm-topology, is
a topologically-complete topological group. Rephrased in the language of
uniformities generated by the norm ([Kel, Ch. 6, Pb. O]), this says that a
normed group, Polish in the ambidextrous uniformity and Baire in either of
the right or left uniformities, has coincident right and left uniformities, and
so is a topological group. Key to the proof is that a continuous image of a
complete separable metric space is a classically analytic space. So the ‘index
o-discreteness condition’ is exactly the condition that secures preservation of
analyticity. In the non-separable context continuity is not enough to preserve
analyticity, and an additional property is needed, involving o-d as above: see
[Han-98, Example 4.2] for a non-analytic metric space that is a one-to-one
continuous image of £ for some uncountable cardinal s (so a continuous
image of a countable product of discrete, hence absolutely analytic, spaces
of cardinal k).

4. Recent work by Holicky and Pol [HP], in response to Ostrovsky’s
insights and based on |[Mich86, esp. §6] (which itself goes back to [GM]),
connects preservation of (topological) completeness under continuous maps
between metric spaces to the classical notion of resolvable sets. (The latter
notion provides the natural generalization to Ostrovsky’s setting; see also
Holicky [H] for non-metrizable spaces.) They find that a map f preserves
completeness if it ‘resolves countable discrete sets’, i.e. for every countable
metrically-discrete set C' and open neighbourhood V' of C there is L with
C C L CV such that f(L) is a resolvable set.

Consider the implications for a group X with right-invariant metric dgr
(see above), when for f one takes j the identity embedding j : (X,ds) —
(X,dg), and C = {c, : n € N} is a dg-discrete set (so that C' and C~!
are dp-discrete). To obtain the desired resolvability for j, it is necessary
and sufficient, for each C' as above and each assignment r : N — R, with
rn — 0, that there exist dp-resolvable sets L, C B (c,) N BE (cy). Since
BE(e) = {z 1 dr(ch27Y) <7} = {2 : dr(cy) <randy = 27!} =
{y=! : dr(c™t,y) < r}, this is yet another condition relating inversion to
the dp-topology, via the sets BE(c1)~L.

2. Analyticity: upper-semicontinuity and the Baire property.
This section prepares three tools for later use. The first two lift to the non-
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separable context results standard in the separable case, namely Hansell’s
Characterization Theorem (Th. 2.1), yielding representation of analytic sets
in the form J e H (j) with H upper-semicontinuous and compact-valued,
and Nikodym’s Theorem (Th. 2.2), implying their Baire property. The third
is the conclusion that analytic base-o-discrete maps (A-o-d maps, for short)
are the only ones that matter (compare Prop. 2.9).

We content ourselves mostly with a metric context, though a wider one
is feasible (consult [Han-92]). Recall that a metric space S is said to be
absolutely analytic, or just analytic, if it is Souslin-F(S*), i.e. is Souslin in its
(metric) completion S*. A Hausdorff space S is K-analytic if S = J;c; K (i)
for some upper-semicontinuous map K from I to K(S), the compact subsets
of S. In a separable metric space, an absolutely analytic subset is K-analytic
[Rog-Jay, Cor. 2.4.3 plus Th. 2.5.3]. In a non-separable complete metric
space X, it is not possible to represent a Souslin-F(X) subset S of X as
a K-analytic set relative to I = NY. Various generalizations of countability
enter the picture here, as we now recall, referring to two survey papers: [St]
and the more recent [Han-92].

Denoting by wt(X) the weight of the space X (i.e. the smallest cardi-
nality of a base for the topology), and replacing I = NN by J = &N for
k = wt(X), with basic open sets J(j|n) := {5’ € J : j'In = j|n}, consider
sets S represented by the following extended k-Souslin operation (briefly:
the extended Souslin operation):

S:UH(]'), where H(j ﬂH]|n
J€J neN
applied to a determining system (H(j|n)) := (H(j|n) : j € &) of sets from
a family H subject to the requirement that:

(i) {H(j|n) : jln € ™} is o-discrete for each n.

For ‘H = F the corresponding extended Souslin-F sets reduce to the
k-Souslin sets of [Han-92]. (This slightly refines Hansell’s terminology, and
abandons Stone’s term ‘k-restricted Souslin’ of [St].) Say that the determin-
ing system is shrinking if

(ii) diamx H (j|n) < 27", so that H(j) is empty or single-valued, and so
compact.

With X above complete (e.g. X = S*) and for H = F(X), the mapping H :
J — K(X) evidently yields a natural upper-semicontinuous representation
of S. We refer to it below, in relation to the Analytic Cantor Theorem, and
also in Proposition 2.9; there the fact that C := {j : H(j) # (0} is closed
in kY yields a natural representation of S as the image of C under a map h
defined by H(j) = {h(j)}. The map h is continuous and index-o-discrete
with countable fibres (by (i) above), as noted in Remark 1.5.1.
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THEOREM 2.1 (Characterization of analytic sets, [Han-73a]). In a metric
space X, the Souslin-F (X)) subsets of X are precisely the sets S represented
by a shrinking determining system of closed sets through the extended k-
Souslin representation above with k = wt(X).

For other equivalent representations, including a weakening of o-discrete-
ness in X above to o-d relative to its union, as well as to o-d decompositions,
see [Han-73b] and [Han-73al. Thus, working relative to J, the correspond-
ing extended Souslin sets exhibit properties similar to the K-analytic sets
relative to I. In particular, of interest here is:

THEOREM 2.2 (Nikodym Theorem for analytic sets). In a metric space S,
analytic sets have the Baire property.

Proof. Since S N F(S*) = F(S), the theorem follows immediately from
the definition of analytic sets as Souslin-F(5*) and from Nikodym’s classical
theorem ([Rog-Jay, §2.9], or [Kechl Th. 29.14, cf. Th. 21.6]) asserting that
the Baire property is preserved by the usual Souslin operation, with the
consequence that Souslin-F sets have the Baire property (since a closed set
differs from its interior by a nowhere dense set). m

Using Hansell’s characterization theorem and again Nikodym'’s classical
theorem, one also has the equally thematic result:

THEOREM 2.3 (Nikodym Theorem for extended Souslin sets). In a met-
ric space, sets with a shrinking extended Souslin-F representation have the
Bazire property.

Actually, this is a direct consequence of the following result, apparently
unrecorded in the literature, so for completeness and in view of its brevity
we include a proof (despite not needing it).

THEOREM 2.4 (Nikodym Stability Theorem for the extended Souslin
operation). In a topological space, the extended Souslin operation applied to
a determining system of sets with the Baire property yields a set with the
Baire property.

Proof. One need only check that the classical ‘separable’ proof given for
the usual Souslin operation in [Rog-Jay, Th. 2.9.2, pp. 43—44] continues to
hold mutatis mutandis for the choice M of the family of sets with the Baire
property and N of the meagre subsets of the metric space. In particular,
we must interpret NV there as N throughout, with x™ denoting finite
sequences with terms in . So, consider the extended Souslin operation above
applied to a determining system of sets (B(o|n)) in M. Then {B(c|n) :
oln € K™} is a 0-d family for each n. By Banach’s localization principle, or
Category Theorem ([Oxt, Ch. 16], [Kel, Th. 6.35], [Rog-Jayl pp. 44-45], or
[Kur-1, §10.11I, Union Theorem)]), N is closed under o-d unions, and hence
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so is M (open sets being closed under arbitrary unions). As the system
(D(o|n)) is a refinement of the (B(o|n)) system, {D(c|n) : oln € "} is
also o-d for each n, and so the union |J{D(o|n,t) : t € k} is in M. (Note
that the sets D(o|n) are defined as finite intersections of sets in M.) Each
set N(o|n) := D(oln) \ U{D(c|n,t) : t € k} is in N, as N is closed under
subset formation, and again the family {N(o|n) : ojn € "} is o-d for each
n, as before by refinement: N(o|n) C D(o|n). Hence

L:= U{N(J) co ek} = U U{N(a!n) coln ek}
neN
is in NV, again by Banach’s Category Theorem. The remainder of the proof
in [Rog-Jay], Th. 2.9.2, pp. 43-44] now applies verbatim. m

A similar, but simpler, argument with M the Radon measurable sets
shows these to be stable under the extended Souslin operation (using measure
completeness and local determination, for which see [Fred, 412J, cf. 431A],
and measurable envelopes [Fre2, 213L]).

Evidently, the standard separable category arguments may also be ap-
plied to o-d decompositions of a set, in view of Banach’s Category Theorem
just cited.

Finally, since H : J — K(X) above is upper-semicontinuous (for X com-
plete and H = F), the following theorem, used in the separable context of
[Ost-AH! §2] and [Ost-LB3l, Th. AC], continues to hold in the non-separable
context (by the same proof), which permits us to quote freely some of its
consequences in §4 in such a context.

THEOREM 2.5 (Analytic Cantor Theorem). Let X be a Hausdorff space
and A = K(J), with K : J — K(X) compact-valued and upper-semicontin-
uwous. If F,, is a decreasing sequence of (non-empty) closed sets in X such
that Fr, N K(J(j1,-..,Jn)) # 0 for some j = (j1,...) € J and each n, then

K@) N, Fu # 0.

Here, beyond upper-semicontinuity, we do not need properties related to
the notion of o-d possessed by the mapping H (for which see [HJR]).

We return to a discussion of analytic base-o-discrete maps, promised
in §1. Recall that their definition requires in addition to base-o-discreteness
that, for any discrete family € of analytic sets in X, the family f(€) has a
o-d base consisting of sets with the Baire property. The remaining results in
this section are gleaned from a close reading of the main results in [Han-74]
in respect of base-o-discrete maps, i.e. Hansell’s sequence of results 3.6-3.10
and Th. 4.1, all of which derive the required base-o-discrete property by
arguments that combine o-d decompositions with discrete collections of sin-
gletons. We shall see below that all these results may be refined to the A-o-d
context.
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THEOREM 2.6. An indez-o-discrete function is A-o-d (analytic base-o-
discrete).

Proof. Suppose that an indexed family A := {A; : t € T} has a o-d de-
composition using discrete families A, := {Ay, 1 t € T'}, with A, = {J,, A,
for each t, and all the sets A; have the Baire property (so, in particular, if
the sets A are analytic—by Nikodym’s Theorem above (Th. 2.2)). Putting
Ay = Ay N Ay, and .An = {Am : t € T}, which is discrete, we obtain a
B-o-d decomposition for A (or an A-o-d one in the case of an analytic o-d
decomposition), and so a fortiori a B-o-d base for A (or an A-o-d one).

Thus, if £ is a discrete family of analytic sets, and f is index-o-discrete,
then A := f(£), which consists of analytic sets (see Remark 1.5.2 above),
has for its o-d base the family (J,, A, of analytic sets, so with the Baire

property, where A, are as just given above. n

PROPOSITION 2.7 (Portmanteau Proposition, [Han-74: (i) Prop. 3.4; (ii)
& (iii) Prop. 3.7; (iv) Cor. 3.8]). The map f: X — Y is A-o-d in each of

the following circumstances:

(i) it is a composition of A-o-d maps;

(ii) f(€) is o-d decomposable for discrete £ C F;

(iii) f(&) is o-d decomposable for discrete € C G, for metric X;

(iv) f is injective open/closed;

(v) each f(By) is o-d decomposable, for some o-d base | J,, By, for met-
ric X.

The proofs are as in [Han-74] using the construction of A, in Theorem
2.6. In similar vein are the next two refinements of results due to Hansell—
together verifying the adequacy of A-o-d maps for analytic-sets theory.

ProprosITION 2.8 ([Han-74, Prop. 3.10]). A closed surjective map onto
a metrizable space is A-o-d.

Proof. Since singletons are analytic, a base that is a discrete family of
singletons is an A-o-d base. This combined with the construction in Theo-
rem 2.6 above refines the argument for Hansell’s Prop. 3.10 proving that a
closed surjective map onto a metrizable space is an A-o-d map. =

ProrosiTION 2.9 ([Han-74, Th. 4.1]). Analytic metric spaces are the
A-o-d continuous images of K.

Proof. By Remark 1.5.2 again, there is only one direction to consider.
So let S be analytic; we refine Hansell’s argument. Observe first that the
argument for Hansell’s Prop. 3.5(ii) proves more: if Y is o-discrete, then
any map into Y is A-o-d (as in Th. 2.6 above). Next, using the notation
H for analytic sets established above (in a complete context, with H = F),
work in the closed subspace C' C sN comprising those j with H(j) # 0,
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and define, as above, the (continuous) map h on C via H(j) = {h(j)}.
Observe that h takes, for each n, the discrete family of basic open sets
J(j|n), relativized to C, to the o-d family of analytic sets h(J(jln) N C),
and so h is an A-o-d map (by [Han-74, Cor. 3.9], reported in Remark 1.5.4
above). Stone’s canonical retraction r of N onto any closed subspace as
applied to the closed subspace C has o-discrete range on £ \ C' and is the
identity homeomorphism on C—for details see [Eng-ret] (where r is also
shown to be a closed map). So, in view of the preceding two observations,
r is an A-o-d map. Hence h o r is A-o-d, since composition of A-o-d maps
is A-o-d, and provides the required characterization. m

3. Generalized Levi Theorem. The generalized Levi characterization
of Baire spaces in Main Theorem 1.6 is a consequence of the following result,
which we also apply in §6.

LEMMA 3.1 (Generalized Levi Lemma). If f : X — Y is surjective,
continuous and Baire base-o-discrete (in particular, index-o-discrete) from
X metric and analytic to Y a paracompact space, then there is a dense
metrizable Gs-subspace Y' C Y such that for X' := f~1(Y") the restriction
map f|X': X' =Y’ is open.

Proof. Let A=, An = {A¢ : t € T} be an open base for X with A,
= {A, : t € T,,} discrete. Then E; := f(A;) is analytic (see Remark 1.5.2),
so has the Baire property (Th. 2.2, Nikodym’s Theorem for analytic sets).
Let &, = {f(A) : A € A,} and let B, be a 0-d base for &, consisting of sets
with the Baire property. Put B, = |J,, Bnm with each By, discrete. Thus
for each t € T and E; € &,, one has

By =|J|{B: BC Ei and B € Bum}.

Put B = J,,,,, Bnm- For each B € B pick an open set Up and meagre sets
Np and Mpg such that

B = (UB\NB)UMB
with Mp disjoint from Up and with Ng C Up. As {B : B € B,,;,, } is discrete,

the set
M = U U{MB : B € Bum}
n,m

is meagre. By paracompactness of Y (cf. [Eng, Th. 5.1.18]), since {Up\ Np :
B € Bun} is discrete, for B € By, we may select open sets Wp with
Up\ Np C Wp with {Wg : B € By} discrete. Without loss of generality
Wp C Up (otherwise replace W by W NUg). So Ug \ Ng C W C Up
and hence Ug \ Ng = W \ Np. Then

N = UU{WBQNB5B€Bnm}

n,m
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is also meagre. Now put V' := Y\(MUN) and W=, ,, U{Wg : B € Bun},
which is open. Then for B € B, one has
BNnY' =WgnY’,

so that B is open relative to Y’ and also {Y'NWp : B € B,,,,} is open and
discrete in Y’. Now for t € T, since E; € &, for some n and B, is a base
for &,,

EtﬁY/:UU{BHY’:BgEt&BeBnm}

n,m

= lJUWsnY': BCE & B € Bup}
n,m
is open in Y.
For G C X open, since A is a (topological) base, we may write

G=JAS with AT :={A:ACG& AcA,}.

Then
F(G) = JFAS) with f(AS)={E:E=f(A)& ACG& Ac A}

So for X' := f~1(Y"),
fGnX)=y'nlJws, with

WE = {Wp:BCf(A)& BeEBum &ACG & Ac A},

which is open in Y.

Since f is continuous and Wy, = {Wp : B € By} is discrete for
each n,m, this also shows that the family U,, ,{Y' N Wg : B € Bun} is a
o-d base for Y’. Being paracompact, Y is regular [Eng, Th. 5.1.5], so the
subspace Y’ is regular [Eng, Th. 2.1.6], and so Y’ is metrizable by Bing’s
Characterization Theorem (see [Eng, Th. 4.4.8], cf. Remarks 1.5). Finally,
by replacing the meagre sets M, N by larger sets that are unions of closed
nowhere dense sets, we obtain in place of Y’ a smaller, metrizable, dense
Gs-subspace. n

REMARKS 3.2. 1. For Lemma 3.1 we replaced each system {Up
B € Bun} to obtain discrete systems {Wp : B € By} to reduce the
sets Np to the sets Ng N Wpg and only then did we take unions. This
circumvents the suggested approach (in a parenthetical remark) to the proof
of Theorem 6.4(c) in [Han-92] (by way of representing a Baire set as £ =
(Gg \ Pe)U Qg with Pp C E (sic) for Gg open and Pg, Qg meagre).

2. Given an arbitrary base B one may replace each B € B with a Baire
envelope Bt such that B C BT C B. Then Bt = U, B;f is o-d and E; C
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Ef :=U,U{B": B CE;and B € B,}, with E;" \ E; meagre. However, it
is not clear that the union of these meagre sets is meagre.

Proof of Main Theorem 1.6 (Non-separable Levi Open Mapping Theo-
rem). Let X be analytic of weight x. Then for some closed subset P of £
there is a continuous index-o-discrete map f : P — X. Form P’ and X’
analogously to X’ and Y’ in the preceding lemma. As X is a Baire space
and X’ is co-meagre, without loss of generality X’ is a dense G5 and is
metrizable. Also P’ is a Gs-subspace of the complete space s, hence is also
topologically complete. So P’ has the desired properties. As X’ is metriz-
able, the result now follows from Hausdorff’s Theorem that the image under
an open continuous mapping of the completely metrizable space P’ onto a
metrizable space X' is also completely metrizable (for a proof see e.g. [And],
or for a recent account e.g. [HP]).

For the converse, as X’ is metrizable, the result again follows from Haus-
dorff’s Theorem. Thus X’ is completely metrizable. But its complement in X
is meagre. So X is a Baire space—in fact an almost complete space. n

4. Normed-group preliminaries. We recall the definition of a normed
group from [BOst-N] and cite from [Ost-LB3] four results that we need in
the next two sections. The first (Th. 4.3) is quite general, but we need to
observe here that in view of §2 the other three (Ths. 4.4, 4.6, 4.8) continue
to hold in the new non-separable context here.

DEFINITION 4.1. For T an algebraic group (i.e. with no topology) with
neutral element e, say that || - || : ' — R is a group-norm ([BOst-NJ) if the
following properties hold:

(i) Subadditivity (Triangle inequality): ||st]] < ||s|| + ||Z]|-
(ii) Positivity: ||t]] > 0 for ¢ # e and ||e|| = 0.
(iii) Inwversion (Symmetry): ||t~ = [|¢]|.

REMARKS 4.2. 1. The group-norm generates a right and a left norm
topology (equivalently, right and left uniformity—cf. [Kel, Ch. 6, Pr. O])
via the right-invariant and left-invariant metrics dh(s,t) := |st™!| and
d¥(s,t) == ||s71t|| = dL(s71,t71). We omit the superscript if context allows
and identify the two topologies by reference to the metric. Since dp (t,e) =
dr(e,t™') = dg(e,t), convergence at e is identical under either topology.
Evidently (T, dgr) is homeomorphic to (T, dy) under inversion. As a result,
topological properties (e.g. density character) of the two norm topologies
dp,dy, are in fact norm properties, although properties of a specific sub-
set of T' (e.g. Baire property) may depend on the choice of norm topology.
Preference of dg over d, is motivated by the right-invariance of the supre-
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mum metric on the space of bounded homeomorphisms—see [Ost-S]; in the
absence of a qualifier, the ‘right’ norm topology is to be understood.

2. Under either norm topology, there is continuity of operations at e.
At further distances the topology may force the group operations to be
increasingly ‘less’ continuous.

3. Note that in the right norm-topology the right shift p;(s) := st is a
uniformly continuous homeomorphism, since dg(sy,ty) = dr(s,t); thus dg
makes T a right-topological group.

4. Under the dg topology, By(x) = {t : dr(t,x) < r} = B(er)x.

5. If dT is a one-sidedly invariant metric on T, then ||t|| := d” (t,er) is a
norm.

NOTATION. We use the subscripts R, L, S as in x,, — g x etc. to indicate
convergence in the corresponding metrics dg, dr,dg derived from the norm
(so that e.g. dr(z,y) := ||zy~!||—see §1). Note that a metrizable topological
group is a normed group, by the Birkhoff-Kakutani Theorem ([Bix], [Kak];
in fact this is a normability theorem for certain right-topological groups—see
[Ost-LB3], or [Ost-9]).

THEOREM 4.3 (Equivalence Theorem, [BOst-Ni, Th. 3.4]). A normed
group X is a topological group under the right (resp. left) norm-topology iff

each conjugacy

Vg(z) := gzg™?

is right-to-right (resp. left-to-left) continuous at x = ex (and so everywhere),
i.e. for z, = r ex and any g,

929 " —Rex.
FEquivalently, it is a topological group iff left/right-shifts are continuous for
the right/left norm topology, or iff the two norm topologies are themselves
equivalent, i.e. the left and right uniformities generated by the norm coincide.

The following results were proved in [Ost-LLB3|] for classically analytic
spaces. Their proofs continue to hold for the more general non-separable
definition of analytic space given and reviewed in §2, since those proofs in
fact rely only on the Analytic Cantor Theorem as stated in 2.5 above, and
o-d decomposition.

THEOREM 4.4 ([Ost-LB3| Th. 1]). In a normed group X under dg, if X
contains a non-meagre analytic set, then X is a Baire space.

REMARK 4.5. In the present normed-group context, in an almost-com-
plete space (cf. §1), ‘Baire set’, ‘set with the Baire property’ and ‘Baire
space’ are almost-synonyms in the sense that: for B non-meagre, B has the
Baire property iff B is a Baire space iff B is almost-complete (cf. [Ost-S|
Th. 7.4]).
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Below ‘quasi all’ means ‘all but for a meagre set of exceptions’.

THEOREM 4.6 (Analytic Shift Theorem, [Ost-LB3, Th. 3]). In a normed
group under the topology dr, with z, — ex and A analytic and non-meagre:
for a non-meagre set of a € A with co-meagre Baire envelope, there is an
infinite set M, and points a, € A converging to a such that

{aa, zpmam - m € M,} C A.

In particular, if the normed group is topological, for quasi all a € A, there
s an infinite set M, such that

{azm :m e My} C A.

REMARK 4.7. When z,, — ex one says that z, is a null sequence. Note
that aa,,!zmam above also converges under dg to a as

dR(aa:nlzmam,a) = ||aa;nlzmama71|] < Haa;an + [lzm |l + ”amailn'

The theorem uses transconjugacies to embed a subsequence of the null
sequence into A; it is natural, borrowing from [Par], to term this ‘shift-
compactness'—see [Ost-LLB3| for background and connections with allied
notions of generic automorphisms.

THEOREM 4.8 (Analytic Squared Pettis Theorem, [BOst-N, Th. 5.8]).
For X a normed group, if A is analytic and non-meagre under dg, then ex
is an interior point of (AA™1)2,

5. Non-separable automatic continuity of homomorphisms. In
the proof of the Semi-Completeness Theorem (Main Theorem 1.9) we will
need to know that the inverse of a certain continuous bijective homomor-
phism is continuous. In the separable case this follows by noting that the
graph of the homomorphism is closed and, as a consequence of the Souslin
Graph Theorem, the inverse is a Baire homomorphism (meaning that preim-
ages of open sets have the Baire property), and hence continuous. However,
in the non-separable case the paradigm falls foul of the technical require-
ment for o-discreteness. We will employ a modified approach based on the
following.

THEOREM 5.1 (Open Homomorphism Theorem). For normed groups
X, Y with X analytic and Y a Baire space, let f : X — Y be a surjec-
tive, continuous homomorphism which is base-o-discrete. Then f is open.
So if also X =Y and f is bijective, then f~1 is continuous.

Proof. Suppose that G and H are arbitrary open balls around ex with
G* C H. Let D be a dense set in X (e.g. X itself). Now U = {Gd : d € D}
is an open cover of X. (Indeed, if z € X and d € D N Gz, then z € Gd,
by symmetry.) Let V be a o-d open refinement of U, and say V = {J,, Va,
with each V), discrete. Then, as X = |J,(U{V : V € V,}), we have Y =



Analytic Baire spaces 205

U, (U{f(V): V €Vy}). As f is base-o-discrete each W, :== f(V,,) = {f(V) :
V € V,} has a 0-d base By; write By, := J,,, Bum with each By, discrete.
So for each V € V,, one has f(V) :=,,{B € Bum : B C f(V)} and so

Y:U {B € Bpm : BC f(V) for some V € V,}.

As Y is non-meagre, there are n,m € N,V € V,, and B € B,,, such that
B C f(V) and B is non-meagre; for otherwise, since B, is discrete, by
Banach’s Category Theorem {B € By, : B C f(V) for some V € V,} is
meagre implying the contradiction that also Y is meagre. Pick such m,n
and B and V with B C f(V). Now V C Gd for some d € D, as V, refines
U, and so B C f(V) C f(Gd) = f(G)f(d) is non-meagre. So f(G) is non-
meagre and analytic (as G is analytic). By the Squared Pettis Theorem
(Th. 4.8), (F(G)f(G))1)? = F(G)F(G) (G F(G) ! = F(GGTIGGT) is

a neighbourhood of ey contained in f(H). m
The following corollary will be used together with Lemma 1.10.

THEOREM 5.2 (Continuous Inverse Theorem). If under dr the normed
group X is an analytic Baire space and the inversion map i : x — x ! is
o-discrete preserving (takes discrete families to o-discrete families), then the

inverse of any continuous conjugacy v, (+) is also continuous.

Proof. If {V; : t € T} is 0-d, then for any z so is {V;z~! : t € T}, as right
shifts are homeomorphisms. Applying our assumption about the inversion
map, for any x the family {zV,™' : t € T} is 0-d, hence {zV, 'z~ : t € T}
is o-discrete, and so again {xV;x~! :t € T} is 0-d. This means 7, is index-
o-discrete. By the preceding theorem (Th. 5.1), if 7, is continuous, then its
inverse is also continuous. =

With some minor amendments and from somewhat different hypothe-
ses, the same proof as in the Open Homomorphism Theorem (Th. 5.1)
demonstrates the following generalization of a separable result (given in
[BOst-N|, Th. 11.11]), but unfortunately without any prospect for achieving
the Baire property (see Remark 5.4 below). Here again the assumed dis-
creteness preservation is fulfilled in the realm of separable spaces. We give
the proof for the sake of comparison and because of its affinity with a result
due to Noll [N, Th. 1] concerning topological groups (not necessarily metriz-
able), in which the map f has the property that f~!(U) is analytic for each
open F,-set U. In our metric setting, when preimages under the homomor-
phism f of open sets are analytic, f is Baire by Nikodym’s Theorem and,
since f~1(A) is disjoint and completely additive analytic for A discrete, the
o-d decomposability condition given below is satisfied by Hansell’s result
[Han-71, Th. 2] cited in Remark 1.5.5. Noll shows that the o-d decompos-
ability condition below is satisfied when X is a topological group that is
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topologically complete (using the [F'H] generalization of Hansell’s result and
of [KP]—cf. again Remark 1.5.5).

THEOREM 5.3 (Baire Homomorphism Theorem). For normed groups
X, Y with X analytic, a surjective Baire homomorphism f : X — Y s
continuous provided f~'(A) is o-discretely decomposable for each o-discrete
family A in'Y.

Proof. We proceed as above but now in Y. For ¢ > 0, with B = B, 4(ey)
open and D any dense set in Y choose aq with f(aq) = d. Put T := f~1(B),
which has the Baire property (as f is Baire). As Y is metrizable, the open
cover {Bd : d € D} has a o-d refinement A =J,, A, with A, :={Ay, : t € Tp,}
discrete. For each n, by assumption, we may write {f~1(Ay,) : t € T,}
= Un,m{Btnm :t € T,} with {Byym : t € T,,} discrete in X for each m
and n. Now

X=f1 U{f (Ap) : teT}_U{Bmm teT,}.

As X is a Baire space, there are n, m such that U{Bmm :t € T,,} is non-
meagre. Again by Banach’s Category Theorem, and since { By : t € T}
is discrete, there is ¢t with By, non-meagre. But By, C f~'(Awm) C
f~YBd) = Tay for some d € D, as A refines {Bd : d € D}. Thus Tay
and so T' is non-meagre, as the right shift p,, is a homeomorphism. But T’
has the Baire property and X is analytic, so T' contains a non-meagre ana-
lytic subset. By the Squared Pettis Theorem (Th. 4.8), (I'T~!)? contains a
ball Bs(ex). Then

Bs(ex) C [ (Boya)'] = /7 [Be(ey)),

proving continuity at ex. =

REMARK 5.4. In the separable case, by demanding that the graph I" of a
homomorphism be Souslin-F (X xY'), one achieves the Baire property of sets
f~Y(U), for U open in Y, by projection parallel to the Y-axis of I'N(X x U),
provided that Y is a K-analytic space. For Y absolutely analytic, one has
an extended Souslin representation, and hence a representation of Y as an
upper-semicontinuous image of some product space . But the proof of the
projection theorem in [Rog-Jay, Ths. 2.6.5 and 2.6.6] now implies that the
projection of a Souslin-F (X xY’) set has only a Souslin-F (X ) representation
relative to kY, without guaranteeing the o-discreteness condition. In the
non-separable context the Baire property can be generated by a projection
theorem, provided one knows both that the graph is absolutely analytic and
that the relevant projection, namely (z, f(x)) — x, is base-o-discrete (cf.
[Han-92, Th. 4.6], [Han-74, §6], [Han-71, §3.5]).
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6. From normed to topological groups. In this section the gen-
eralized Levi result in Corollary 1.7 is the key ingredient; we will use it
and other results of Sections 1-5 to prove the Semi-Completeness Theorem
(Main Theorem 1.9). The proof layout (preparatory lemmas followed by
proof) and strategy are the same as in [Ost-J|, but, as some of the details
differ, it is convenient to repeat the short common part (most of the proof
of Lemma 6.2).

LEMMA 6.1.  For a normed group X, if (X,dg) is topologically complete
and the continuous embedding map j : (X,ds) — (X,dg) is Baire base-
o-discrete (e.g. A-o-d, in particular indez-o-discrete), then there is a dense
absolute-Gs-subset Y' in (X, dR) such that the restriction map j : (Y',dg) —
(Y',dR) is open, and so all the three topological spaces (Y',dg), (Y',dgr) and
(Y',dy) are homeomorphic (and topologically complete).

Proof. Take X = (X, dg) which is metric and analytic and ) = (X, dR)
which is paracompact. Then j : X — 2) is continuous, surjective and Baire
base-o-discrete. By Lemma 3.1, there is a dense Gs-subspace Y’ of (X, dg)
such that j|Y” is an open mapping from (Y’,dg) to (Y, dg). Now j~1(Y’) is
a Gs-subspace of (X, dg), so it follows that (Y, dg) is topologically complete,
so an absolute-Gs. So j|Y’ embeds Y’ as a subset of (X, dg) homeomorphi-
cally into Y as an absolute-G subset of (X, dg). Since x,, =g z iff z,, =g
and z, —, x, all three topologies on Y’/ agree. m

LEMMA 6.2. If in the setting of Lemma 6.1 the three topologies dgr, dr,, dg
agree on a dense absolute-Gs-set Y of (X,dg), then for any 7 € Y the
conjugacy v-(z) := T2t is continuous.

Proof. We work in (X, dg), which is thus analytic (as a base-o-discrete
continuous image—Remark 1.5.2). Let 7 € Y. We will first show that the
conjugacy x — 7 lz7 is continuous in X at e, and then deduce that its in-
verse z — 77! is continuous. So let z, — e be any null sequence in X. Fix
e > 0; then T := Y N BX(7) is analytic and non-meagre, since X is a Baire
space (and Y N BE(7) is dg-open in Y with Y an absolute Gs). By the Ana-
lytic Shift Theorem (Th. 4.6), there are t € T and t,, in T with ¢,, converging
to t (in dg) and an infinite M; such that {tt,!z,t,, : m € My} C T. Since
the three topologies agree on Y and the subsequence tt,! 2,,t,, of points of Y
converges to ¢t in Y under dp (see Remark 4.7), the same is true under dy.
Using the identity dr(tt; zmtm,t) = dp(t; 2mtm, €) = dr(Zmtm,tm), we
note that

It zmt|| = dr(t, zmt) < dp(t, tm) + dr(tms Zmtm) + AL (Zmtm, Zmt)
<dp(t,tm) +dp(tt,  zmtm, t) 4+ dp(tm, t) — 0



208 A. J. Ostaszewski

as m — oo through M;. So d(t, z,t) < € for large enough m € M;. Then
for such m, as dr(7,t) < ¢,

|7 27|l = di (27, 7) < dp(2mT, 2mt) + dr(zmt, t) + dr(t,7)
<dp(1,t) +dp(t, zmt) + dr(t, 7) < 3e.
Thus there are arbitrarily large m with |71z, 7|| < 3¢. Inductively, taking
successively € = 1/n and k(n) > k(n—1) to be such that |77 24, 7]| < 3/n,
one has ||77 "z, 7|l = 0. By the weak continuity criterion (Lemma 3.5

on p. 37 of [BOst-N]), v(z) := 7~ 127 is continuous. Hence, by Lemma 1.10
and Theorem 5.2, v~1(z) is also continuous. =

Proof of Main Theorem 1.9 (Semi-Completeness Theorem). Under dp,
the set Zp := {x : vy, is continuous} is a closed subsemigroup of X ([BOst-N|
Prop. 3.43] but using the Open Homomorphism Theorem (Th. 5.1) in place
of the Souslin Graph Theorem). So as Y is dense, X = clgY C Zp, ie.
vz is continuous for all z, and so (X, dg) is a topological group, by Theo-
rem 4.3. Therefore z,, —p x iff 2, —r 27! iff 2, = x iff 2, =g 2. So
(X, dg) is homeomorphic to (X, dg). Hence the topological group (X, dg) is
topologically complete, being homeomorphic to (X, dg). =
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