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Dynamical properties of the automorphism groups
of the random poset and random distributive lattice

by

Alexander S. Kechris and Miodrag Sokić (Pasadena, CA)

Abstract. A method is developed for proving non-amenability of certain automor-
phism groups of countable structures and is used to show that the automorphism groups
of the random poset and random distributive lattice are not amenable. The universal
minimal flow of the automorphism group of the random distributive lattice is computed
as a canonical space of linear orderings but it is also shown that the class of finite dis-
tributive lattices does not admit hereditary order expansions with the Amalgamation
Property.

0. Introduction. In this paper we continue the study of the dynamics
of automorphism groups of countable structures and its connection with
Ramsey theory in the spirit of [KPT]. We start with some basic definitions.

Let L be a countable first-order language. A class K of finite L-structures
is called a Fräıssé class if it contains structures of arbitrarily large (finite)
cardinality, is countable (in the sense that it contains only countably many
isomorphism types) and satisfies the following:

(i) Hereditary Property (HP): If B ∈ K and A can be embedded in B,
then A ∈ K.

(ii) Joint Embedding Property (JEP): If A,B ∈ K, there is C ∈ K such
that A,B can be embedded in C.

(iii) Amalgamation Property (AP): If A,B,C ∈ K and f : A → B
and g : A → C are embeddings, there is D ∈ K and embeddings
r : B →D and s : C →D such that r ◦ f = s ◦ g.

(Throughout this paper embeddings and substructures will be under-
stood in the usual model-theoretic sense (see, e.g., Hodges [Ho]); e.g., for
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graphs embeddings are induced embeddings, i.e., isomorphisms onto induced
subgraphs.)

If K is a Fräıssé class, there is a unique, up to isomorphism, countably in-
finite structure K which is locally finite (i.e., finite generated substructures
are finite), ultrahomogeneous (i.e., isomorphisms between finite substruc-
tures can be extended to automorphisms of the structure) and such that,
up to isomorphism, its finite substructures are exactly those in K. We call
this the Fräıssé limit of K, in symbols

K = Flim(K).

We are interested in amenability properties of the automorphism group
G = Aut(K), viewed as a topological group under the pointwise convergence
topology. We note that the groups Aut(K), for K as above, are exactly the
closed subgroups of the infinite symmetric group S∞ (see [KPT]).

There are many examples of G = Aut(K) which are extremely amenable,
i.e., every continuous action of such a group on a (non-empty) compact
Hausdorff space, i.e., a G-flow, has a fixed point (see [KPT] and refer-
ences therein). There are also many examples of such G = Aut(K) which
are not extremely amenable but they are still amenable (i.e., every G-flow
has an invariant Borel probability measure). This happens, for example,
when K has the Hrushovski Property (i.e., for any A ∈ K and for any
(partial) isomorphisms ϕi : Bi → Ci, 1 ≤ i ≤ k, where Bi,Ci are sub-
structures of A, there is B ∈ K containing A such that each ϕi can be
extended to an automorphism ψi of B, 1 ≤ i ≤ k). This is because this
is equivalent to the following property of G = Aut(K): there is an in-
creasing sequence C0 ⊆ C1 ⊆ · · · of compact subgroups of G with

⋃
nCn

dense in G (see [KR]). A typical example of a class with the Hrushovski
Property is the class G of finite graphs (see [H]). Its Fräıssé limit is the
random graph R, thus the automorphism group of the random graph is
amenable. In fact, it moreover contains a dense locally finite subgroup
(see [BM]).

There are also automorphism groups of Fräıssé structures which are not
amenable. For example, the automorphism group of the countable atomless
Boolean algebra (which is the Fräıssé limit of the class of finite Boolean
algebras). This group is isomorphic to the group of homeomorphisms of the
Cantor space 2N and the evaluation action of this homeomorphism group on
2N is a continuous action with no invariant probability Borel measure.

Let P be the Fräıssé class of all finite posets. Its Fräıssé limit Flim(P) =
P is called the random poset. Let also D be the Fräıssé class of finite distribu-
tive lattices. Its Fräıssé limit Flim(D) = D is called the random distributive
lattice (see Grätzer [G] for the theory of distributive lattices). In this paper
we prove the following result (in Sections 3 and 4):
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Theorem 0.1. The automorphism groups Aut(P ), resp. Aut(D), of the
random poset, resp. random distributive lattice, are not amenable.

In particular, this shows that there is no amenable countable dense sub-
group of Aut(P ) or Aut(D) (but it is known that there are free countable
dense subgroups; see [GMR], [GK]).

In Section 5 we also discuss the topological dynamics of Aut(D) and its
connections with Ramsey properties of the class D, in the spirit of [KPT].

Let D = 〈D,∧,∨〉 and let XD∗ be the space of linear orderings on D that
have the property that for any finite Boolean sublattice B = 〈B,∧,∨〉 of D
the order <|B is natural, i.e., is the anti-lexicographical ordering induced by
an ordering of the atoms of B. (The notation D∗ will be explained later.)

Then XD∗ viewed as a compact subspace of 2D
2

endowed with the product
topology and the obvious action of Aut(D) on it is an Aut(D)-flow. Recall
that for any topological group G, a G-flow X is minimal if every orbit is
dense. Also a minimal G-flow X is the universal minimal flow if any minimal
G-flow Y is a factor of X, i.e., there is a continuous surjection π : X → Y
which is a G-map: π(g · x) = g · π(x) for all g ∈ G and x ∈ X. Such a flow
exists and is unique up to isomorphism (see, e.g., [KPT]). In this paper we
will demonstrate the following theorem:

Theorem 0.2. The universal minimal flow of Aut(D) is XD∗.

We also consider Ramsey-theoretic properties of the class D. Fix a count-
able language L and structures A,B in L. Then A ⊆ B means that A is
a substructure of B and A ≤ B means that A can be embedded in B, i.e.,
A is isomorphic to a substructure of B. We also let, for A ≤ B,

(
B
A

)
be

the set of all substructures of B isomorphic to A. Given a class K of finite
structures in L, A ≤ B ≤ C all in K and k ≥ 2, t ≥ 1,

C → (B)Ak,t

means that for any coloring c :
(
C
A

)
→ {1, . . . , k}, there is B′ ⊆ C with

B′ ∼= B such that c on
(
B′

A

)
obtains at most t many values. We simply write

C → (B)Ak if t = 1.
Let now K be a class of finite structures in L, and A ∈ K. The Ramsey

degree of A in K, in symbols t(A,K), is the least t, if it exists, such that for
any A ≤ B in K, and any k ≥ 2, there is C ≥ B in K such that

C → (B)Ak,t.

Otherwise let t(A,K) =∞. If t(A,K) = 1 we say that A is a Ramsey object
in K. A Fräıssé class has the Ramsey property (RP) if all its elements are
Ramsey objects.

It is a well-known fact in the theory of distributive lattices (see [G]) that
for any finite distributive lattice L there is a (unique up to isomorphism
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that fixes L) finite Boolean lattice BL that has the following properties,
with 0L, resp. 1L, denoting the minimum, resp. maximum elements of a
finite lattice L:

(i) L ⊆ BL, 0L = 0BL , 1L = 1BL ,
(ii) L generates BL as a Boolean algebra.

Let then t(L) be defined by

t(L) =
|Aut(BL)|
|Aut(L)|

=
nL!

|Aut(L)|
,

where nL is the number of atoms of BL. We have

Theorem 0.3 (Fouché [F]). The Ramsey degree t(L,D) of a finite dis-
tributive lattice L is equal to t(L).

Corollary 0.4 (Hagedorn–Voigt [HV] (unpublished); see also Prömel
–Voigt [PV, 2.2]). The Ramsey objects in D are exactly the Boolean lattices.

For example, it easily follows from 0.3 that the Ramsey degree t(n,D)
of a linear ordering n with n ≥ 1 elements is equal to (n− 1)!.

It is quite common for a Fräıssé class K (in a language L) to admit an
order expansion K∗ (i.e., a class of finite structures in the language L∪{<}
so that if A∗ = 〈A, <〉 ∈ K∗, then A ∈ K, < is a linear ordering on the
universe A of A, and moreover K consists of all reducts in the language L
of the structures in K∗) such that K∗ is a Fräıssé class and has the Ramsey
Property. This has many applications in the study of the Ramsey-theoretic
properties of K and the dynamics of the automorphisms group of its Fräıssé
limit (see [KPT]). The Fräıssé classes of posets, P, Boolean lattices, BL (see
Sections 1, 3, 4), and Boolean algebras, BA (see [KPT]), admit such order
expansions. However we show in Section 5 that, rather surprisingly, D fails
to do so. In fact we have the following result:

Theorem 0.5. There is no order expansion of the class D of finite dis-
tributive lattices, which satisfies HP and AP.

The following question was raised in [KPT, p. 174]: is there a Fräıssé
class K for which t(A,K) < ∞ for all A ∈ K, but K does not admit a
Fräıssé order expansion with RP? Such examples were found in [N] (see also
[LNS]) and in [J]. The above theorem also provides such an example (in a
somewhat stronger form). We also discuss other ones in Section 6.

Finally we conclude with an open problem. Let L be the class of finite
lattices. It is again known that L is a Fräıssé class (see [G]). We do not
know if the automorphism group of its Fräıssé limit, the random lattice, is
amenable or not. Nor do we know what its universal minimal flow is and
if there is any way to determine the Ramsey degrees of lattices or even the
Ramsey objects in L.
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1. Distributive and Boolean lattices

(A) We review here some basic facts concerning distributive and Boolean
lattices. We view lattices as structures L = 〈L,∧,∨〉 in the language with
two binary function symbols ∧,∨. When a lattice L has a maximum element
we will denote it by 1L and similarly for a minimum element, which we
denote it 0L. Clearly these exist when L is finite. We emphasize though that
these are not part of our language, so embeddings have only to preserve ∧,∨
but not necessarily the maxima and minima (when they exist).

Let D be the class of finite distributive lattices. It is well-known that D
is a Fräıssé class (see [G, V.4]). We denote by D the Fräıssé limit of D and
call it the random distributive lattice.

A Boolean lattice is a distributive lattice L with maximum and minimum
elements which is relatively complemented, i.e., for each a ≤ c in L if a ≤ b
≤ c then there is a (necessarily) unique x such that b∧ x = a and b∨ x = c.
The class of finite Boolean lattices, viewed as a class of structures in the
language containing only ∧,∨, does not have the hereditary property. We
will therefore enlarge the language by introducing a symbol for the operation
of relative complementation defined as follows:

R(a, b, c) =

{
r(a, b, c) if a ≤ b ≤ c,
a otherwise,

where r(a, b, c) is the relative complement of b in the interval [a, c], when
a ≤ b ≤ c.

We denote by BL the class of all finite structures of the form B =
〈B,∧,∨, R〉, where 〈B,∧,∨〉 is a Boolean lattice and R is relative comple-
mentation as defined above.

We note that if B = 〈B,∧,∨, R〉 and C = 〈C,∧,∨, R〉 are in BL, then
π : B → C is an embedding iff π is a lattice embedding, i.e., an embedding
of 〈B,∧,∨〉 into 〈C,∧,∨〉. If π(0B) = c0 ∈ C and π(1B) = c1 ∈ C, then
c0, c1 do not have to be equal to 0C , 1C , resp.

We also consider Boolean algebras, which we view as structures of the
form 〈B,∧,∨,−, 0, 1〉 (so beyond ∧,∨ we have a symbol for complemen-
tation and constants for 0, 1). These are essentially the same as Boolean
lattices except for the choice of language. Thus the notion of embedding is
different. An embedding of finite Boolean algebras preserves 0, 1 but this
is not necessarily the case for an embedding of Boolean lattices. As is well
known, Boolean algebras can be represented as fields of sets.

We note that if C ⊆ B are in BL, B has n atoms b1, . . . , bn, and C
has m atoms, then there are disjoint sets Xi ⊆ {1, . . . , n}, 0 ≤ i ≤ m, such
that Xi 6= ∅ if i 6= 0,

∨
{bk : k ∈ X0} = 0C ,

∨
{bk : k ∈

⋃m
i=0Xi} = 1C , and

c1 =
∨
{bk : k ∈ X0 ∪ X1}, . . . , cm =

∨
{bk : k ∈ X0 ∪ Xm} are the atoms

of C.
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We use this to verify that BL is a Fräıssé class. This is well-known but
we could not find an explicit reference, so we write down the proof for the
convenience of the reader.

Clearly BL satisfies (HP). Since the smallest Boolean lattice embeds in
any Boolean lattice, (JEP) follows from (AP), thus it is enough to verify
the latter.

Let f : A → B and g : A → C be embeddings, where A,B,C ∈ BL.
Let a1, . . . , ak be the atoms of A, b1, . . . , bm the atoms of B, and c1, . . . , cn
the atoms of C. Let B0, . . . , Bk be pairwise disjoint subsets of {1, . . . ,m}
and C0, . . . , Ck pairwise disjoint subsets of {1, . . . , n} such that

f(0A) =
∨
{b` : ` ∈ B0},

f(ai) =
∨
{b` : ` ∈ B0 ∪Bi}, 1 ≤ i ≤ k,

g(0A) =
∨
{c` : ` ∈ C0},

g(ai) =
∨
{c` : ` ∈ C0 ∪ Ci}, 1 ≤ i ≤ k.

Let also B′ = {1, . . . ,m} \
⋃k

i=0Bi and C ′ = {1, . . . , n} \
⋃k

i=0Ci.
We will now define D ∈ BL and embeddings r : B → D, s : C → D so

that r ◦ f = s ◦ g. The atoms of D are the points in
⊔k

i=0(Bi×Ci)tB′ tC ′
(where these are understood as disjoint unions). The embeddings r, s are
defined as follows:

r(bi) =

{
{i} × Cj if i ∈ Bj ,

i if i ∈ B′,

s(ci) =

{
Bj × {i} if i ∈ Cj ,

i if i ∈ C ′.
Observe that r ◦ f(ai) = Bi×Ci = s ◦ g(ai) for all i, and hence r ◦ f = s ◦ g.

We denote by B∞ = 〈B∞,∧,∨, R〉 the Fräıssé limit of BL. Note that
this is not a Boolean lattice as it has no maximum or minimum. It is however
a relatively complemented distributive lattice.

(B) We will use the following standard fact concerning distributive lat-
tices (see [G, II.4]).

Theorem 1.1.

(i) Every finite distributive lattice L can be embedded (as a lattice) in
a Boolean lattice B with 0L sent to 0B and 1L to 1B.

(ii) Let, for i = 1, 2, Li be a finite distributive lattice and Bi a finite
Boolean lattice such that Li is a sublattice of Bi and 0Li = 0Bi,
1Li = 1Bi. If Li generates Bi as a Boolean algebra and ϕ : L1 → L2

is an isomorphism, then there is a unique isomorphism ϕ : B1 → B2

extending ϕ.
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(C) Using now 1.1 we verify that if B∞ = 〈B∞,∧,∨, R〉 is the Fräıssé
limit of BL, then 〈B∞,∧,∨〉 ∼= D. Thus since R is definable in 〈B∞,∧,∨〉,
we have Aut(B∞) = Aut(〈B∞,∧,∨〉) ∼= Aut(D).

Using 1.1(i), it is clear that, up to isomorphism, the finite substructures
of 〈B∞,∧,∨〉 are the finite distributive lattices. So to show that 〈B∞,∧,∨〉 is
isomorphic to the random distributive lattice, it is enough to show that it has
the following extension property: If L is a sublattice of a finite distributive
lattice M , L ⊆M , and f : L → 〈B∞,∧,∨〉 is an embedding, then we can
extend f to an embedding f : M → 〈B∞,∧,∨〉. Let L′ ⊆ 〈B∞,∧,∨〉 be the
image of L under f and let B′L be the finite sublattice of 〈B,∧,∨〉 with

L′ ⊆ B′L, 0L
′

= 0B
′
L , 1L

′
= 1B

′
L , which is moreover a Boolean lattice and

is generated as a Boolean algebra by L′. Let also BM be a Boolean lattice
containing M with the same 0, 1 and generated as a Boolean algebra by M .
Finally, let BL be the Boolean sublattice of BM with the same 0, 1 as L
and generated as a Boolean algebra by L. By 1.1(ii) there is an isomorphism
f ′ : BL → B′L extending f . Then f ′ : BL → B∞ is an embedding (in the

language ∧,∨, R), and so there is an embedding f
′
: BM → B∞ (again in

the language ∧,∨, R) extending f ′ and thus f . Then if f = f
′|M , f : M →

〈B∞,∧,∨〉 is an embedding that extends f .

(D) Finally we use, in Section 4, the concept of an anti-lexicographical
ordering induced by an ordering of the atoms of a Boolean lattice B. Let
< be a linear ordering of the set of {b1, . . . , bn} of B. This induces the
following anti-lexicographical ordering on B. Given x, y ∈ B we can write
them uniquely as x = δ1b1 ∨ · · · ∨ δnbn, y = ε1b1 ∨ · · · ∨ εnbn, where δi, εi ∈
{0, 1} and 1b = b, 0b = 0B for b ∈ B. Then we put

x <al y ⇔ (δn < εn) or (δn = εn and δn−1 < εn−1) or . . . .

2. A criterion for non-amenability. We will use ideas from [KPT]
to formulate a simple sufficient criterion for non-amenability of an automor-
phism group as above.

Let L be a countable language. Denote by L∗ = L ∪ {<} the language
obtained by adding a new binary relation symbol < to L. A structure A∗

of L∗ has the form A∗ = 〈A, <〉, where A is a structure of L and < is a
binary relation on A (= the universe of A). A class K∗ on L∗ is called an
order class if (〈A, <〉 ∈ K∗ ⇒ < is a linear ordering on A). For A∗ = 〈A, <〉
as above, we put A∗|L = A.

If K is a class of finite structures in L, we say that an order class K∗ is
an order expansion of K if

K = K∗|L = {A∗|L : A∗ ∈ K∗}.
In this case for any A ∈ K and A∗ = 〈A, <〉 ∈ K∗, we say that < is a



76 A. S. Kechris and M. Sokić

K∗-admissible ordering for A. We say that the order expansion K∗ is rea-
sonable if for every A,B ∈ K, embedding π : A → B and K∗-admissible
ordering < on A, there is a K∗-admissible ordering <′ on B such that π is
also an embedding of 〈A, <〉 into 〈B, <′〉 (i.e., π also preserves <,<′).

Assume now that K is a Fräıssé class and K∗ an order expansion of K. Let
K = Flim(K) and denote by XK∗ the space of all linear orderings <∗ on K
(the universe of K) that have the property that for any finite substructure
A of K, A∗ = 〈A, <∗|A〉 ∈ K∗. We call these K∗-admissible orderings on K.

They clearly form a closed (thus compact) subspace of 2K
2

(with the product
topology). If K∗ is reasonable, then XK∗ is non-empty.

Let G = Aut(K) be the automorphism group of K. It acts continuously
on XK∗ in the obvious way, so XK∗ is a G-flow.

Recall from [KPT, 7.3] that K∗ has the ordering property, OP, if for
every A ∈ K there is B ∈ K such that for any K∗-admissible ordering <
on A and for any K∗-admissible ordering <′ on B, there is an embedding
π : 〈A, <〉 → 〈B, <′〉. The following was proved in [KPT, 7.4], assuming that
K∗ is a Fräıssé, reasonable order expansion of K:

The G-flow XK∗ is minimal (i.e., every orbit is dense) iff K∗ has the
ordering property.

We now use these ideas to establish a sufficient criterion for the non-
amenability of G.

Proposition 2.1. Let K be a Fräıssé class in a language L, and K∗ a
Fräıssé order expansion of K which is reasonable and has the ordering prop-
erty. Suppose that there are A,B ∈ K and for each K∗-admissible ordering
< on A, an embedding π< : A→ B with the following properties:

(i) There is a K∗-admissible ordering <′ on B such that for every K∗-
admissible ordering < on A, π< is not an embedding of 〈A, <〉 into
〈B, <′〉.

(ii) For any two distinct K∗-admissible orderings <1, <2 on A and every
K∗-admissible ordering <′ on B one of π<1 , π<2 fails to be an em-
bedding from 〈A, <1〉, 〈A, <2〉, resp., into 〈B, <′〉.

Then if K = Flim(K), the group G = Aut(K) is not amenable.

Proof. We can assume that A,B are substructures of K. Let <1, . . . , <n

enumerate all the K∗-admissible orderings on A and let the image of A under
π<i (1 ≤ i ≤ n) be denoted by Ai, which is a substructure of B. Denote also
by <′i the image of <i under π<i , which is a K∗-admissible ordering on Ai.

For any finite substructure C of K and K∗-admissible ordering < on C,
let N〈C,<〉 denote the nonempty basic clopen set in XK∗ consisting of all
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<∗ ∈ XK∗ with <∗|C = <. Condition (i) tells us that

n⋃
i=1

N〈Ai,<′i〉 6= XK∗ .

Condition (ii) also says that for 1 ≤ i 6= j ≤ n,

N〈Ai,<′i〉 ∩N〈Aj ,<′j〉 = ∅.

Suppose now, towards a contradiction, that G is amenable, so that in
particular the G-flow XK∗ admits an invariant probability Borel measure,
say µ. Since K∗ has the ordering property, this action is minimal and so µ
has full support, i.e., µ(V ) > 0 for every open non-empty set V ⊆ XK∗ .

Since for 1 ≤ i ≤ n, πi : A→ Ai is an isomorphism, there is ϕi ∈ G ex-
tending πi. Clearly then ϕi(N〈A,<i〉)=N〈Ai,<′i〉, so µ(N〈A,<i〉)=µ(N〈Ai,<′i〉).
But obviously

n⋃
i=1

N〈A,<i〉 = XK∗ ,

so µ(
⋃n

i=1N〈Ai,<′i〉) =
∑n

i=1 µ(N〈Ai,<′i〉) = 1. On the other hand the set

V = XK∗ \
⋃n

i=1N〈Ai,<′i〉 is open non-empty, so µ(V ) > 0, a contradiction.

There is also another variation of this criterion which requires weaker
conditions on the class K∗ but imposes a stronger condition on B.

Proposition 2.2. Let K be a Fräıssé class in a language L, and K∗ an
order expansion of K which is reasonable and has HP. Suppose that there
are A,B ∈ K and for each K∗-admissible ordering < on A, an embedding
π< : A→ B with the following properties:

(i) There is a K∗-admissible ordering <′ on B such that for every K∗-
admissible ordering < on A, π< is not an embedding of 〈A, <〉 into
〈B, <′〉.

(ii) For any two distinct K∗-admissible orderings <1, <2 on A and ev-
ery K∗-admissible ordering <′ on B one of π<1 , π<2 fails to be an
embedding from 〈A, <1〉, 〈A, <2〉, resp., into 〈B, <′〉.

Moreover assume that the automorphism group of B acts transitively on the
set of K∗-admissible orderings of B.

Then if K = Flim(K), the group G = Aut(K) is not amenable.

Proof. Repeat the proof of 2.1 and notice that µ(N〈B,<′〉) = 0. But
then by the transitivity of the action of the automorphism group of B on
the set of K∗-admissible orderings of B, it follows that µ(N〈B,<〉) = 0 for
any K∗-admissible ordering < on B, and thus µ(XK∗) = 0, a contradic-
tion.
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3. The non-amenability of Aut(P ). We now apply 2.1 to the class
P of all finite posets. Here the class P∗ consists of all 〈A, <〉 with A =
〈A,≺〉 a finite poset and < a linear extension of ≺. This is a reasonable,
Fräıssé order expansion of P. It also has the ordering property by [PTW,
Theorem 16]. It only remains to verify the existence of finite posets A,B
satisfying (i), (ii) of 2.1.

Indeed, take A = 〈{a0, a1},≺〉 to be the poset consisting of two elements
a0, a1 which are not related (i.e., the partial order ≺ on A is empty). Let
B = 〈{b0, b1, b2},≺′〉, where (b0, b2), (b1, b2) are unrelated in ≺′ but b0 ≺′ b1.

There are two P∗-admissible orderings <1, <2 on A, given by

a1 <1 a0, a0 <2 a1.

We now define the embeddings π<i : A→ B by π<1(a0) = b0, π<1(a1) = b2
and π<2(a0) = b1, π<2(a1) = b2. Then (in the notation of the proof of 2.1),
if <′ is a P∗-admissible ordering on B that extends <′1, we must have b2 <

′

b0 <
′ b1, while if it extends <′2 we must have b0 <

′ b1 <
′ b2, so condition (ii)

is clear. To verify (i), note that the ordering <′ on B given by b0 <
′ b2 <

′ b1
is P∗-admissible and it extends none of <′1, <

′
2.

Thus the proof that the automorphism of the random poset is not amen-
able is complete.

Remark 3.1. Although one can easily see, as we mentioned in the intro-
duction, that the automorphism group of the countable atomless Boolean
algebra is not amenable, one can also give a proof using 2.1. Indeed, let BA
denote the class of finite Boolean algebras and BA∗ the class of all finite
Boolean algebras with an ordering that is induced anti-lexicographically
from an ordering of the atoms (see Section 1, (D)). These satisfy all the
other conditions required in 2.1, so we only need to find A,B satisfying
(i), (ii). Below we use the notation in the proof of 2.1. Indeed, let A be the
Boolean algebra with two atoms a, b and B be the Boolean algebra with
three atoms x, y, z. For the ordering <1 on A induced by a <1 b, we let π<1

be the embedding sending a to y ∨ z and b to x. For the ordering <2 on A
induced by b <2 a, we let π<2 be the embedding sending a to y and b to
x∨z. This easily works since any K∗-admissible ordering on B that extends
<′1 must have x as maximum atom, while any such ordering that extends
<′2 must have y as maximum. Also any K∗-admissible ordering < on B in
which z is the maximum atom does not extend either of <′1, <

′
2.

Similarly one can see that one can apply 2.2 (with the same A,B,BA∗).

Remark 3.2. Another example where the above method can be applied
is the following: Let OP be the class of all finite structures of the form
A = 〈A,≺, <〉, where 〈A,≺〉 ∈ P and < is an arbitrary linear ordering
on A. Let OP∗ be the class of all structures of the form 〈A,≺, <,<′〉, where
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〈A,≺, <〉 ∈ OP and <′ is a linear extension of ≺. Then one can check that
OP, OP∗ are Fräıssé classes and OP∗ is a reasonable order expansion of OP.
Moreover OP∗ has the ordering property (see [S2]). Let OP = Flim(OP).
Then we claim that Aut(OP ) is not amenable by verifying the criterion
in Proposition 2.1. For that we take A = ({a0, a1},≺A, <A), where a0, a1
are ≺A-unrelated and a0 <A a1, and B = 〈{b0, b1, b2},≺B, <B〉, where
b0 ≺B b1 but (b0, b2), (b1, b2) are unrelated in ≺B and b0 <B b1 <B b2.
Then the same embedding that has been used in the argument above for P
works for OP as well.

4. The non-amenability of Aut(D). We will first give a proof of this
fact that is based on 2.1; this will require more of the background results
in Section 1, which will also be used in the next section. At the end of this
section we will give a simpler proof that uses instead criterion 2.2 and avoids
most of this background.

We will verify that Aut(B∞) ∼= Aut(D) is not amenable by using 2.1.
We first need to define a Fräıssé class BL∗ which is an order expansion of
BL and is reasonable and has the ordering property. We take as BL∗ the
class of all structures of the form 〈B, <〉, where B ∈ BL and < is a linear
ordering on B induced anti-lexicographically by an ordering of the atoms
of B (see Section 1, (D)).

We first verify that BL∗ is a Fräıssé class.
To prove that BL∗ satisfies HP, let 〈A, <′〉 ⊆ 〈B, <〉, where 〈B, <〉 ∈

BL∗. We need to check that the linear ordering <|A = <′ is induced anti-
lexicographically by an ordering of the atoms of A. Let {b1, . . . , bn} be the
atoms of B and let Ai, 0 ≤ i ≤ m, be pairwise disjoint subsets of {1, . . . , n}
so that if

∨
{bj : j ∈ A0 ∪ Ai} = ai, then {a1, . . . , am} are the atoms of A

and a1 < · · · < am. Let xi be the <-largest element of {bj : j ∈ Ai}. Then
x1 < · · · < xm. From this it easily follows that the anti-lexicographical
ordering on A induced by the ordering a1 < · · · < am of its atoms is exactly
the same as <′, which completes the proof.

We next prove that BL∗ satisfies JEP. Let 〈A, <〉, 〈B, <′〉 ∈ BL∗ and
let a1 < · · · < am, b1 <

′ · · · <′ bn be the atoms of A,B, resp. Then let
〈C, <′′〉 ∈ BL∗ have atoms {a1, . . . , am} t {b1, . . . , bn} ordered by a1 <′′

· · · <′′ am <′′ b1 <
′′ · · · <′′ bn. Clearly 〈A, <〉, 〈B, <′〉 embed into 〈C, <′′〉.

Finally we verify AP. In Graham–Rothschild [GR] (Theorem, Section 7,
p. 270, for A = B = {0, 1}, H the trivial group; see also Prömel [P1, 4.4]
for γ = 1) it is shown that BL satisfies RP. From this it immediately follows
that BL∗ also satisfies RP. This is because BL is order forgetful (in the sense
of [KPT, 5.5]), i.e., for 〈A, <〉, 〈B, <′〉 ∈ BL∗, A ∼= B ⇔ 〈A, <〉 ∼= 〈B, <′〉.
As noted in [KPT, 5.6], 5.6], in this situation RP for BL∗ is equivalent to
RP for BL.
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Since every structure in BL∗ is rigid and BL∗ has the JEP and RP, this
implies that BL∗ has the AP (see, e.g., [KPT, end of Section 3]).

Remark 4.1. We note that one can also give a direct proof of AP for
BL∗ (see Appendix 1).

To see that BL∗ is reasonable, let A ⊆ B be in BL and let < be a
BL∗-admissible ordering of A. Let a1 < · · · < am be the atoms of A and let
{b1, . . . , bn} be the atoms of B. Then there are pairwise disjoint subsets Ai,
0 ≤ i ≤ m, of {1, . . . , n} such that ai =

∨
{bj : j ∈ A0 ∪ Ai}. Let also

A′ = {1, . . . , n}\
⋃

i≤mAi. Then let <′ be any ordering of {b1, . . . , bn} so that
if xj is the <′-maximum element of {bj : j ∈ Ai}, then x0 <

′ x1 < · · · <′ xm.
Denote also by <′ the anti-lexicographical ordering on B induced by this
ordering of the atoms. Then clearly 〈B, <′〉 ∈ BL∗ and 〈A, <〉 ⊆ 〈B, <′〉.

Finally the ordering property is trivially verified for BL∗. Given A ∈ BL
take B = A. Then it is clear that for any BL∗-admissible orderings <,<′

on A there is an isomorphism between 〈A, <〉 and 〈A, <′〉.
To complete the proof of non-amenability using 2.1, we just use the same

example as in 3.1.

(B) A proof based on criterion 2.2 goes as follows: Let D∗ the class of
all 〈L, <〉, where L ∈ D and < is a linear ordering on L with the following
property: there is a Boolean lattice B with L ⊆ B and an ordering <′

induced anti-lexicographically by an ordering of the atoms of B such that
< = <′|L (i.e., 〈L, <〉 ⊆ 〈B, <′〉). Thus if B is a Boolean lattice, then
〈B, <〉 ∈ D∗ ⇔ 〈B, <〉 ∈ BL∗. Clearly D∗ is an order expansion of D and
satisfies HP. The fact that it is reasonable follows from 1.1 and the fact that
BL∗ is reasonable. Then use 2.2 and the same example as in 3.1.

Remark 4.2. Using the method of Section 2, the authors have also
proved that the automorphism group of the ultrahomogeneous tournament
S(2) is not amenable, and Andrew Zucker has proved the non-amenability
of the automorphism group of the homogeneous directed graph S(3). For
the definition and properties of these graphs see [N].

5. Ramsey properties of D and the universal minimal flow
of Aut(D)

(A) Recall the definition of the class D∗ from Section 4, (B). Denote by
XD∗ the space of linear orderings < on D with the property that for any
finite sublattice L ⊆D, 〈L, <|L〉 ∈ D∗. Equivalently, XD∗ is the space of all
linear orderings < on D such that for any finite Boolean lattice B ⊆D the
ordering <|B is induced anti-lexicographically by an ordering of the atoms
of B. Then XD∗ is a closed non-empty subspace of the compact space of all
orderings on D (viewed as a subspace of 2D

2
with the product topology),
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and Aut(D) acts continuously on XD∗ in the obvious way, so XD∗ is a
Aut(D)-flow. We now have

Theorem 5.1. The Aut(D)-flow XD∗ is the universal minimal flow of
Aut(D).

Proof. We can identify D with the reduct 〈B∞,∧,∨〉, where the struc-
ture B∞ = 〈B∞,∧,∨, R〉 is the Fräıssé limit of BL, and so Aut(D) =
Aut(B∞). Moreover with this identification XD∗ = XBL∗ (see Section 2) and
thus we need to verify that XBL∗ is the universal minimal flow of Aut(B∞).
By [KPT, 7.5] this will be the case provided BL∗ is a Fräıssé class which is
a reasonable order expansion of BL and satisfies OP and RP. We have seen
in Section 4 that all of these properties are true, so the proof is complete.

(B) The Ramsey degree of any distributive lattice has been computed
by Fouché. Below we use the notation introduced in Section 0.

Theorem 5.2 (Fouché [F, p. 47]). The Ramsey degree t(L,D) of a finite
distributive lattice L is equal to t(L).

Since a proof of 5.2 has apparently not appeared in print, we include it
for the convenience of the reader in Appendix 2.

Theorem 5.2 has the following corollary.

Corollary 5.3 (Hagedorn–Voigt [HV] (unpublished); see also Prömel
–Voigt [PV, 2.2]). The Ramsey objects in D are exactly the Boolean lattices.

We again include the proof in Appendix 2.

As an example of a calculation of Ramsey degrees, let n be the linear
ordering with n ≥ 1 elements viewed as a distributive lattice. Then the
Boolean algebra Bn has exactly n− 1 atoms, so t(n,D) = (n− 1)!.

(C) Given a Fräıssé class K and its Fräıssé limit K = Flim(K) a common
way to compute the universal minimal flow of Aut(K) is to find a Fräıssé
order expansion K∗ of K which is reasonable and has the OP and RP. Then
the space XK∗ of K∗-admissible orderings (as defined in Section 2) is the
universal minimal flow of Aut(K) (see [KPT]). This works for the classes
P, BL, and BA with P∗, resp. BL∗ as defined in Section 3, resp. Section 4,
and BA∗ again consisting of Boolean algebras and orderings induced anti-
lexicographically by an ordering of the atoms (the classes BL,BA have es-
sentially the same structures but different notions of embedding). It would
be natural to assume that something similar can be done for the class D
of distributive lattices, and in fact D∗, as considered at the beginning of
this section, would be the natural candidate since the corresponding space
XD∗ is indeed the universal minimal flow. However it turns out that this
is not the case and in fact, rather surprisingly, nothing of that sort works
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with D as opposed to P, BL, and BA. More precisely, we have the following
stronger result.

Theorem 5.4. Let K ⊆ D be any class which contains all the Boolean
lattices and the linear ordering with three elements (viewed as a distributive
lattice). Then there is no order expansion K∗ of K that satisfies HP and AP.

Proof. Assume that such a K∗ exists, towards a contradiction. The argu-
ment below is inspired by the proof in [G] that D does not have the strong
AP but additionally uses the canonization theorem below.

Denote by D∗∗ the order expansion of D, where

〈L, <〉 ∈ D∗∗ ⇔ 〈L, <∗〉 ∈ D∗,
with <∗ the reverse ordering of <.

We will use the following canonization theorem.

Theorem 5.5 (J. Nešetřil, H. J. Prömel, V. Rödl and B. Voigt [NPRV];
see also Prömel [P2, 4.1]). For any finite Boolean lattice B, there is a finite
Boolean lattice C such that for any linear ordering <C on C, there is B′ ⊆
C such that B′ ∼= B with 〈B′, <C |B′〉 ∈ D∗ or 〈B′, <C |B′〉 ∈ D∗∗.

Apply this to the Boolean lattice B with two atoms a, b. It follows
that there is an ordering < on B such that 〈B, <〉 ∈ K∗ and one of the
following holds: 0B < a < b < 1B, 0B < b < a < 1B, 1B < a < b
< 0B, 1B < b < a < 0B. Indeed, let C be as in 5.5 and let <C on C be
such that 〈C, <C〉 ∈ K∗. Then there is B′ ⊆ C, B′ ∼= B with 〈B′, <C |B′〉
∈ D∗ or 〈B′, <C |B′〉 ∈ D∗∗. Since K∗ satisfies HP, 〈B′, <C |B′〉 ∈ K. Let
〈B, <〉 ∼= 〈B′, <C |B′〉, so that 〈B, <〉 ∈ D∗ or 〈B, <〉 ∈ D∗∗. Then clearly
one of the above four possibilities occurs.

Let now L = 〈{0L, x, 1L},∧,∨〉 be the 3-element linear ordering (viewed
as a distributive lattice). Then again since K∗ has the HP, there is an or-
dering <′ on L with 〈L, <′〉 ∈ K∗ and the maps f : 〈L, <′〉 → 〈B, <〉 and
g : 〈L, <′〉 → 〈B, <〉, given by f(0L) = 0B, f(1L) = 1B, f(x) = a and
g(0L) = 0B, g(1L) = 1B, g(x) = b are embeddings.

Suppose these could be amalgamated to r : 〈B, <〉 → 〈D, <D〉 and
s : 〈B, <〉 → 〈D, <D〉 with 〈D, <D〉 ∈ K∗ and r ◦ f = s ◦ g. Let

r ◦ f(0L) = c0, r ◦ f(1L) = c1,

r ◦ f(x) = r(a) = d = s ◦ g(x) = s(b),

r(b) = e, s(a) = e′.

Since a ∨ b = 1B and a ∧ b = 0B, we have d ∨ e = c1 and d ∧ e = c0,
so e is the relative complement of d in [c0, c1]. Similarly e′ is the relative
complement of d in [c0, c1]. Since in a distributive lattice relative comple-
ments are unique, we have e = e′, i.e., r(b) = s(a) = e. If, without loss of
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generality, a < b, then r(a) = d <C e = r(b), while s(a) = e <C d = s(b),
a contradiction.

6. Some additional examples

(A) We take this opportunity to mention a few more examples of Fräıssé
classes K for which one can calculate the universal minimal flow of the au-
tomorphism group Aut(K), where K = Flim(K). It turns out to be metriz-
able, and we also calculate the Ramsey degree, which is finite, although the
class K does not admit any Fräıssé order expansions.

For each n ≥ 1, let Cn be the class of all finite posets 〈P,≺〉 which consist
of disjoint antichains A1, . . . , Ak with |Ai| ≤ n for all i, such that

i < j, x ∈ Ai, y ∈ Aj ⇒ x ≺ y.
Finally, let En (n ≥ 1) be the class of finite equivalence relations such that
each equivalence class has at most n elements. (The class Cn has been studied
in Sokić [S1].)

It is not hard to see that these are Fräıssé classes. Denote by Cn,En

their Fräıssé limits. Then

Cn
∼= 〈Q× {1, . . . , n},≺〉, where (q, i) ≺ (r, j) ⇔ q < r,

and

En
∼= {N× {1, . . . , n}, E〉, where (k, i)E(l, j) ⇔ k = l.

From this description it is straightforward to calculate the automorphism
groups of these Fräıssé limits. We have

Aut(Cn) ∼= Aut(〈Q, <〉) n SQ
n ,

where Aut(Q) acts on SQ
n by shift, and similarly

Aut(En) ∼= S∞ n SN
n ,

where S∞ acts on SN
n by shift.

We can use this to calculate the universal minimal flow of each of these
groups.

In both cases, we have groups of the form GnK, where G is Polish and
K is compact. Generalizing a result in Sokić [S1], who dealt with the case of
an extremely amenable G, we compute the universal minimal flow of GnK
as follows.

Proposition 6.1. Let G be a Polish group with universal minimal flow
XG and suppose that G acts continuously by automorphisms on a compact
metrizable group K. Consider the semidirect product GnK. Then the uni-
versal minimal flow of G n K is the product XG × K with the following
action of GnK:

(g, k) · (x, `) = (g · x, k(g · `)).
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Proof. First notice that GnK acts continuously on K by

(g, k) · ` = k(g · `).
Thus the (G n K)-flow XG × K, defined as above, is the product of the
action of G nK on XG given by (g, k) · x = g · x and the action of G nK
on K given above. It is easy to check that this is a minimal (GnK)-flow.

Consider now an arbitrary (G nK)-flow Y . Then there is a continuous
map ρ : XG → Y which is G-equivariant, in the sense that

ρ(g · x) = (g, 1) · ρ(x).

Define then π : XG ×K → Y by

π(x, k) = (1, k) · ρ(x).

It is easy to check that this is (G n K)-equivariant and the proof is com-
plete.

It follows that the universal minimal flow of Aut(Cn) ∼= Aut(〈Q, <〉)nSQ
n

is its action on SQ
n given by (g, k) · ` = k(g · `), since G = Aut(〈Q, <〉) is

extremely amenable, so that XG is a singleton.
Finally the universal minimal flow of Aut(En) ∼= S∞nSN

n is XS∞ ×SN
n ,

with the action defined as above, where XS∞ is the universal minimal flow
on S∞, which was shown in Glasner–Weiss [GW] to be the space LO of all
linear orderings on N (with the obvious action of S∞ on LO).

Thus in all these cases the universal minimal flows are metrizable. On
the other hand it is easy to see that none of these classes K = Cn, En for
n ≥ 2, admits an order expansion K∗ with HP and AP. Take, for example,
K = En and assume such a K∗ existed. Let 〈B, <B〉 = 〈C, <C〉 ∈ K∗,
where B has a single equivalence class of cardinality n. Let x1 be the <B-
least element of B and xn the <B-largest element. Let A = 〈A,E〉 ∈ K,
where A = {a} and let <A be the empty ordering on A. Then the maps
f : 〈A, <A〉 → 〈B, <B〉 and g : 〈A, <A〉 → 〈C, <C〉, where f(a) = x1 and
g(a) = xn, are clearly embeddings, so that since K∗ satisfies HP, 〈A, <〉
∈ K∗. If r : 〈B, <B〉 → 〈D, <D〉 and s : 〈C, <C〉 → 〈D, <D〉 amalgamate
f, g then r ◦ f(a) = s ◦ g(a) = d, so r(x1) = s(xn) = d. Let B = {x1 <B

· · · <B xn} = {x1 <C · · · <C xn}. Then d = r(x1) <D · · · <D r(xn) and
s(x1) <D · · · <D s(xn) = d, while all r(x1), . . . , r(xn), s(x1), . . . , s(xn) are
equivalent in D, thus the equivalence class of d has 2n − 1 > n elements,
i.e., D 6∈ En, a contradiction.

Another example, discussed in Sokić [S1], is the class Bn of finite posets
which consist of a disjoint union of at most n chains C1, . . . , Ck (k ≤ n),
so that if x ∈ Ci and y ∈ Cj with i 6= j, then x, y are incomparable. The
Fräıssé limit Bn of this class is

Bn
∼= 〈Q× {1, . . . , n},≺〉, where (q, i) ≺ (r, j) ⇔ i = j ∧ q < r.
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Then
Aut(Bn) ∼= Sn n Aut(〈Q, <〉)n,

where Sn acts on Aut(〈Q, <〉)n by shift. In this case Aut(Bn) is of the
form K n G, where K is compact and G is Polish extremely amenable. In
Appendix 3, we will compute in general the universal minimal flow of KnG
from the universal minimal flow of G and show that it is metrizable if the
universal minimal flow of G is metrizable. In the particular case when G is
extremely amenable, as in the present example, the universal minimal flow
of K nG, will be the action of this group on K given by (k, g) · ` = k`.

In [S1] it is shown that the class K∗e consisting of all 〈A, <〉 with A ∈ Bn
and < a linear ordering on A that extends the partial ordering of A is a
Fräıssé class, which is a reasonable order expansion of K. However one can
see that there is no order expansion of Bn that satisfies RP, where n ≥ 2.
Indeed suppose such a K∗ existed and let 〈A, <A〉 ∈ K∗ be such that A is a
singleton. Let 〈B, <B〉 ∈ K∗ be such that B is an antichain of cardinality n.
Suppose, towards a contradiction, that 〈C, <C〉 ∈ K∗, 〈C, <C〉 ≥ 〈B, <B〉
and

〈C, <C〉 → 〈B, <B〉〈A,<A〉
n .

Then C contains n incomparable chains C1, . . . , Cn, so we can define

c :

(
〈C, <C〉
〈A, <A〉

)
→ {1, . . . , n}

by
c(〈A′, <A′〉) = i

iff the point on A′ is in Ci. Clearly there is no homogeneous copy of B, since
n ≥ 2.

We will now calculate the Ramsey degrees of the classes Bn, Cn, En.

(B) We start with Cn, n ≥ 2. Let A = 〈A,≺A〉 ∈ Cn. Then we have a
decomposition

A = A1 t · · · tAk

into maximal non-empty antichains, where

A1 ≺A · · · ≺A Ak

(i.e., i < j, x ∈ Ai, y ∈ Aj ⇒ x ≺A y). The number of antichains is called
the length of A, in symbols length(A). The structure A also gives a sequence
called the code of A, defined by

code(A) = (|A1|, . . . , |Ak|).
We finally define the character of A by

char(A) =

(
n

|A1|

)
. . .

(
n

|Ak|

)
.
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Proposition 6.2. For n ≥ 2 and A ∈ Cn,

t(A, Cn) = char(A).

Proof. We will first show that

t(A, Cn) ≤ char(A).

Fix a natural number r giving the number of colors. Let B = 〈B,<B〉 ∈ Cn
with A ≤ B. Since every E ∈ Cn can be embedded into some F ∈ Cn
with length(E) = length(F ) and code(F ) = (n, . . . , n) we can assume that
code(B) = (n, . . . , n). Note also that length(A) ≤ length(B).

We will define C = 〈C,≺C〉 ∈ Cn such that length(C) = m (for some m)

and code(C) = (n, . . . , n). To define m let (mi)
char(A)
i=0 be given by

m0 = length(B), mi+1 → (mi)
length(A)
r , 0 ≤ i < char(A),

using the classical Ramsey theorem. Finally take

length(C) = m = mchar(A).

Now consider G ∼= A,G = 〈G,≺G〉 ⊆ C. Then G is described by a
length(A) subset

{g1 < · · · < glength(A)}
of {1, . . . ,m} and a sequence of sets (G1, . . . , Glength(A)) where Gi ⊆ Cgi . On
fixing an ordering of each maximal antichain of C, this determines uniquely
a sequence (G1, . . . , Glength(A)), where Gi ⊆ {1, . . . , n}.

Note that two substructures of C isomorphic to A which are described by
the same length(A) subsets of {1, . . . ,m} are different iff they have different
sequences of subsets of {1, . . . , n}.

Let T be the set of all sequences (s1, . . . , slength(A)) of subsets of {1, . . . , n}
which are given by some substructure of C isomorphic to A. Then we have
a bijection

ϕ : {1, . . . , char(A)} → T.

Now let

p :

(
C

A

)
→ {1, . . . , r}

be any coloring. There is an induced sequence (pi)
char(A)
i=0 of colorings given

by

pi :

(
m

length(A)

)
→ {1, . . . , r}, pi(K) = p(G),

where G is the substructure of C isomorphic to A given by K and ϕ(i).

By the definition of m, there is a decreasing sequence

Schar(A) ⊇ · · · ⊇ S0
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of subsets of {1, . . . ,m} with

|Si−1| = mi−1, 0 < i ≤ char(A),

pi|
(

Si−1
length(A)

)
= constant.

In particular the colorings p1, . . . , pchar(A) are constant on
(

S0

length(A)

)
. Let

D ∈ Cn be the substructure of C given by S0 and with all the maximal
antichains of size n. Then the p-color of a substructure of D isomorphic
to A depends only on the sequence of subsets of {1, . . . , n} by which it is
given. Since length(B) = m0 = |S0|, we have B ≤ D, which shows that
t(A, Cn) ≤ char(A).

In order to show the opposite inequality we take the number of colors to
be r = char(A). We consider B ∈ Cn such that length(B) = length(A) and
code(B) = (n, . . . , n). Let C ∈ Cn be such that B ≤ C. Define the coloring

p :

(
C

A

)
→ {1, . . . , r}, p(H) = ϕ−1((H1, . . . ,Hlength(A))),

where H ⊆ C is given by a length(A) subset K and the sequence of subsets
(H1, . . . ,Hlength(A)) ∈ T . Clearly any copy of B inside C will realize all
different colors, so t(A, Cn) ≥ char(A).

Corollary 6.3. The Ramsey objects in Cn, n ≥ 2, are exactly the
A ∈ Cn that decompose into maximal antichains of size n.

(C) Next we discuss Bn, n ≥ 2. Let A = (A,≺A) ∈ Bn. Then we have a
decomposition

A = A1 t · · · tAk, for some 1 ≤ k ≤ n,
into maximal chains with respect to ≺A. The number k of chains is called
the length of A, in symbols length(A). To the structure A we assign the set

{|A1|, . . . , |Ak|}
which we write as an increasing sequence, called its dimension, and denoted
by

dim(A) = (a1, . . . , as).

In addition we have the multiplicity sequence,

mult(A) = (m1, . . . ,ms), mi = |{j : |Aj | = ai}|, 1 ≤ i ≤ s.
The character of the structure A is the number

char(A) =

(
n

k

)
· k!

m1! . . .ms!
.

By using similar arguments to the proof of 5.2 (employing this time the
product Ramsey theorem) we obtain the following:
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Proposition 6.4. For n ≥ 2 and A ∈ Bn, we have t(A,Bn) = char(A).

Corollary 6.5. The Ramsey objects in Bn, n ≥ 2, are exactly the
A ∈ Bn that decompose into n maximal chains of the same size.

(D) Finally, we consider En, n ≥ 2. Let A = 〈A,EA〉 ∈ En, n ≥ 2.
Then we have a decomposition of the set A into EA-equivalence classes,
A = A1 t · · · tAk, for some k with |Ai| ≤ n. The number of classes is called
the length of A, in symbols length(A). In addition we have the set

{|Ai| : i ≤ k}

which we present as an increasing sequence (d1, . . . , ds) = dim(A), called
the dimension of A. Also we have the sequence (m1, . . . ,ms) ∈ mult(A),
the multiplicity of A, given by

mi = |{Aj : |Aj | = di}|.

The character of the structure A is

char(A) =
k!

m1! . . .ms!

(
n

d1

)m1

. . .

(
n

ds

)ms

.

Again by similar arguments to the proof of 5.2 we deduce:

Proposition 6.6. For n ≥ 2 and A ∈ En, we have t(A, En) = char(A).

Corollary 6.7. The Ramsey objects in En, n ≥ 2, are exactly the equiv-
alence relations which have all equivalence classes of size n.

Remark 6.8. Consider also the class E∗n consisting of all finite equiv-
alence relations with at most n equivalence classes. Then, by similar ar-
guments, one can obtain for E∗n completely analogous results to those we
obtained for Bn.

Appendix 1. A direct proof of AP for BL∗. Let 〈A, <A〉, 〈B, <B〉,
〈C, <B〉 ∈ BL∗ and let f : 〈A, <A〉 → 〈B, <B〉 and g : 〈A, <A〉 → 〈C, <C〉
be embeddings. We will find 〈D, <D〉 ∈ BL∗ and embeddings r : 〈B, <B〉
→ 〈D, <D〉 and s : 〈C, <C〉 → 〈D, <D〉 with r ◦ f = s ◦ g.

Let a1 <A · · · <A ak be the atoms of A and b1 <B · · · <B bm, c1 <C

· · · <C cn the atoms of B, C, resp. Let also B0, B1, . . . , Bk be pairwise
disjoint subsets of {1, . . . ,m} and C0, C1, . . . , Ck be pairwise disjoint subsets
of {1, . . . , n} such that f(0A) =

∨
{bj : j ∈ B0}, f(ai) =

∨
{bj : j ∈ B0∪Bi},

g(0A) =
∨
{cj : j ∈ C0}, g(ai) =

∨
{cj : j ∈ C0 ∪ Ci}. Also let bi be the

<B-maximum element of {bj : j ∈ Bi}, 1 ≤ i ≤ k, and similarly for ci. Then
bi <B · · · <B bk and ci <C · · · <C ck. Finally, let B′ = {1, . . . ,m}\

⋃
i≤k Bi

and similarly define C ′.



Dynamical properties of automorphism groups 89

The set AD of atoms of D is the disjoint union

AD = {bj : j ∈ B0} t {cj : j ∈ C0} t
⊔

1≤i≤k
({bj : j ∈ Bi} × {cj : j ∈ Ci})

t {bj : j ∈ B′} t {cj : j ∈ C ′}.
We now define r, s as follows:

r(bj) =
∨
{ci : i ∈ C0} ∨ bj if j ∈ B0 ∪B′,

s(cj) =
∨
{bi : i ∈ B0} ∨ cj if j ∈ C0 ∪ C ′,

r(bj) =
∨
{ci : i ∈ C0} ∨

∨
{(bj , ck) : k ∈ Ci} if j ∈ Bi,

s(cj) =
∨
{bi : i ∈ B0} ∨

∨
{(bk, cj) : k ∈ Bi} if j ∈ Ci.

In particular, r(0B) =
∨
{bj : j ∈ C0} and s(0C) =

∨
{cj : j ∈ B0}. Thus

r ◦ f(0A) =
∨
{bj : j ∈ B0} ∨

∨
{cj : j ∈ C0} = s ◦ g(0A) and

r ◦ f(ai) =
∨
{bj : j ∈ B0} ∨

∨
{cj : j ∈ C0} ∨

∨
{(bj , ck) : j ∈ Bi, k ∈ Ci}

= s ◦ g(ai),

so r ◦ f = s ◦ g.
It remains to define <D and show that r, s preserve the orderings.
The map F : {b1, . . . , bm} → AD given by F (bj) = bj if j ∈ B0 ∪B′, and

F (bj) = (bj , ci) if j ∈ Bi, 1 ≤ i ≤ k, is an injection with image A′B ⊆ AD

and F carries the ordering <B on {b1, . . . , bm} to an ordering <′B on A′B.
Similarly define G : {c1, . . . , cn} → AD, A′C ⊆ AD and <′C on A′C . Clearly
A′B∩A′C = {(bi, ci) : 1 ≤ i ≤ k} and the orderings<′B, <

′
C agree on A′B∩A′C ,

so there is an ordering <′ on A′B ∪ A′C extending <′B ∪ <′C . We further
extend <′ to an ordering <′i on A′B ∪ A′C ∪ ({bj : j ∈ Bi} × {cj : j ∈ Ci},
so that y <i z if y 6∈ A′B ∪ A′C and z ∈ A′B ∪ A′C . Again <′1, . . . , <

′
k

agree on their common domain A′B ∪ A′C , so there is an ordering <D of
the atoms of D which extends all <′1, . . . , <

′
k. We also denote by <D the

anti-lexicographical ordering it induces on D. It is easy to check now that
r, s preserve the corresponding orderings.

Appendix 2. Calculation of the Ramsey degree of distributive
lattices. We give here the proof of Fouché’s Theorem 5.2. Let t be the
number of isomorphic copies L′ of L which are contained in BL and are such
that L′,BL have the same 0, 1 and L′ generates BL as a Boolean algebra.
We claim that t = t(L). To see this recall from 1.1 that any ϕ ∈ Aut(L) has
a unique extension ϕ ∈ Aut(BL) and the map ϕ 7→ ϕ is a group embedding
of Aut(L) into Aut(BL). Denote by Aut(L) its image. Let X = {L′1, . . . ,L′t}
be the set of copies of L in BL satisfying the above condition, where we
put L′1 = L. Clearly Aut(BL) acts transitively on X (by 1.1 again) and the
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stablizer of L is exactly Aut(L), thus

t = |X| = |Aut(BL)|
|Aut(L)|

=
|Aut(BL)|
|Aut(L)|

= t(L).

Let K ∈ D with L ≤ K. Let also k ≥ 2. Using the RP for BL define a
sequence (Ci)

t
i=1 of Boolean lattices as follows:

C0 = BK , Ci+1 → (Ci)
BL
k , 0 ≤ i < t.

Fix a linear ordering < on Ct such that 〈Ct, <〉 ∈ BL∗, i.e., < is induced
anti-lexicographically by an ordering of the atoms of Ct.

We will prove that
Ct → (K)Lk,t,

which shows that t(L,D) ≤ t.
Indeed, let

c :

(
Ct

L

)
→ {1, . . . , k}

be a coloring. Fix an ordering <L on BL given lexicographically by an
ordering of the atoms of BL. Also let L′1, . . . ,L

′
t be the copies of L in BL

with the same 0, 1 as BL that generate BL as a Boolean algebra. For each
1 ≤ i ≤ t, define the coloring

ci :

(
Ct

BL

)
→ {1, . . . , k}

as follows: Let B′ ∈ Ct with B′ ∼= BL. Then there is a unique isomor-
phism π : 〈B′, <|B′〉 → 〈BL, <L〉 (notice here that <|B′ is also given anti-
lexicographically by an ordering of the atoms of B′). Let L′ be the preimage
of L′i under π. Then put

ci(B
′) = c(L′).

There is now Ct−1 ∼= Ct−1 with Ct−1 ⊆ Ct such that ct is constant on(Ct−1

BL

)
. Similarly there is Ct−2 ∼= Ct−2 with Ct−2 ⊆ Ct−1 such that ct−1

is constant on
(Ct−2

BL

)
, etc. So we obtain inductively C0 ⊆ C1 ⊆ · · · ⊆ Ct

with Ct−1 ∼= Ct−1, . . . ,C0
∼= C0 = BK such that ci is constant on

(
C0

BL

)
,

say with value ci, for every 1 ≤ i ≤ t. Let K ⊆ C0 ⊆ C be a copy of K
with the same 0, 1 as C0 and which generates C0 as a Boolean algebra. We

claim that c on
(
K
L

)
takes at most the t values c1, . . . , ct. Let L′ ∼= L with

L′ ⊆ K. Let BL′ ⊆ C0 be the Boolean lattice with the same 0, 1 as L′

and which is generated as a Boolean algebra by L′. Thus B′L′ ⊆ C0 and
BL′

∼= BL. Consider the unique isomorphism π : 〈B′L′ , <|B
′
L′
〉 → 〈BL, <L〉.

Then π(L′) = L′i for some 1 ≤ i ≤ t, and so ci(B
′
L′) = c(L′) = ci.

We will next show that t(L,D) ≥ t. For that we will prove that for
any K ∈ D with K ≥ BL, there is a coloring c :

(
K
L

)
→ {1, . . . , t} so
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that for any copy B of BL in K the coloring c on
(
B
L

)
takes all t colors.

Let < be an ordering on BK given anti-lexicographically by an ordering of
its atoms. Then define c :

(
BK
L

)
→ {1, . . . , t} as follows: Let L′ ∼= L with

L′ ⊆ BK . Then let B′L′ ⊆ BK be defined as before and let π : 〈BL′ , <|B′L′〉
→ 〈BL, <L〉 be the unique isomorphism. If π(L′) = L′i, then we put

c(L′) = i.

Finally, let c be the restriction of c to
(
K
L

)
. If B ∼= BL and B ⊆K, then it

is clear that c on
(
B
L

)
takes all t colors.

This finishes the proof of 5.2. Next we derive from this Corollary 5.3.
If L is a Boolean lattice, then clearly t(L,D) = t(L) = 1. Conversely,

assume that L is not a Boolean lattice and let BL be as before. Then
L 6= BL. To show that t(L) > 1 we will show that there is ϕ ∈ Aut(BL)
such that ϕ(L) 6= L. Assume this fails, towards a contradiction, i.e., for
all ϕ ∈ Aut(BL), ϕ(L) = L (i.e., every automorphism of BL fixes L set-
wise). We will view BL as the Boolean lattice of all subsets of a finite set
X = {1, . . . , n} and thus L ⊆ {Y : Y ⊆ X}. Since L is not a Boolean
lattice there is Y 6∈ L (thus Y 6= ∅) such that Y c = X \ Y ∈ L. Let
A ∈ L \ {∅} have the smallest cardinality among all non-empty elements
of L. Let a0 ∈ A, y0 ∈ Y and let ϕ ∈ Aut(BL) exchange a0, y0. If A = ϕ(A),
then |A| = |A|, A ∈ L and A∩Y 6= ∅, so by replacing A with A if necessary,
we can assume that A∩Y 6= ∅. We now claim that actually A ⊆ Y . Otherwise
A \ Y = A ∩ Y c ∈ L and A \ Y 6= ∅ but |A \ Y | < |A|, a contradiction.

Decompose Y = AtA0t· · ·tAk−1tB, where |Ai| = |A| and |B| < |A|.
Then one of A0, . . . , Ak−1, B is not in L. If Ai 6∈ L, then there is ϕ ∈
Aut(BL) with ϕ(A) = Ai. However, A ∈ L but Ai 6∈ L, which is a con-
tradiction. So B 6∈ L (thus B 6= ∅). Then fix B0 ⊆ A with |B0| = |B|. Let
C = A\B0 6= ∅, so that |C| < |A|, therefore C 6∈ L. Also C∪B0 = A ∈ L, so
if C∪B ∈ L, then C = (C∪B0)∩(C∪B) ∈ L. Therefore C∪B 6∈ L. However
|C∪B| = |C∪B0|, so as before there is ϕ ∈ Aut(BL) with ϕ(C∪B0) = C∪B,
which contradicts the fact that C ∪B0 ∈ L but C ∪B 6∈ L.

Appendix 3. The universal minimal flow of K nG, K compact.
Let K be a compact metrizable group and G a Polish group on which K
acts continuously by automorphisms. If XG is the universal minimal flow of
G, we will calculate the universal minimal flow of K nG. In fact we will do
this in a more general situation.

Consider a Polish group H and a normal closed subgroup G�H. Assume
moreover that there is a compact transversal K ⊆ H for the left cosets of
G in H. By translating we can always assume that 1 ∈ K. We consider the
selector map s : H → K, where s(h) is the unique element of K ∩ hG. We
next verify that s is continuous. Indeed, every h ∈ H is uniquely written as
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h = kg, where g ∈ G and s(h) = k ∈ K. To prove the continuity of s, assume
that hn → h and let hn = kngn, h = kg. If kn 9 k, towards a contradiction,
then by the compactness of k we can assume, by going to a subsequence,
that kn → ` ∈ K for some ` 6= k. Then gn = k−1n hn → `−1h = g′ ∈ G, since
G is closed. Thus h = `g′ = kg, so ` = k, a contradiction.

In the special case H = KnG, we can identify G with the closed normal
subgroup {(1, g) : g ∈ G} and K with the transversal (which is actually a
closed subgroup) {(k, 1) : k ∈ K}. Then s(h) = s(k, g) = (k, 1).

Returning to the general case, observe that s(h1s(h2k)) = s(h1h2k).
Therefore

h · k = s(hk)

defines an action of H on K. Let also ρ : H ×K → G be defined by

ρ(h, k) = (h · k)−1hk.

Then ρ is a cocycle for this action, i.e.,

ρ(h1h2, k) = ρ(h1, h2 · k)ρ(h2, k).

Clearly h · k = s(hk) and ρ(h, k) = s(hk)−1(hk) are continuous.

Suppose now XG is a G-flow. Then we can define an H-flow XH , called
the induced flow as follows:

XH = XG ×K

and the action of H on XH is defined by

h · (x, k) = (ρ(h, k) · x, h · k).

Claim 1. If XG is minimal, so is XH .

Proof. Fix (x0, k0) ∈ XG × K. Let (x, k) ∈ XG × K and let V1 ⊆ XG

and V2 ⊆ K be open with (x, k) ∈ V1 × V2. We will find h ∈ H with
h · (x0, k0) ∈ V1 × V2.

Since the action of H on K is transitive, let h0 ∈ H be such that h0 · k0
= k. Let g ∈ G. By the normality of G in H, h0k0G = Gh0k0 = kG and
gh0k0 ∈ kG. Thus (gh0) · k0 = k = h0 · k0.

We also have
(h0 · k0)ρ(h0, k0) = h0k0,

so

g(h0 · k0)ρ(h0, k0) = (gh0)k0 = (gh0 · k0)ρ(gh0, k0) = (h0 · k0)ρ(gh0, k0).

Now find g′ ∈ G such that g′ · x0 ∈ V1. Then let g′′ ∈ G be defined by

(h0 · k0)−1g′′(h0 · k0)ρ(h0, k0) = g′,

so that ρ(g′′h0, k0) = g′. (This follows from the above formulas by putting
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g = g′′.) Then if h = g′′h0, we have

h · (x0, k0) = g′′h0 · (x0, k0) = (ρ(g′′h0, k0) · x0, g′′h0 · k0)
= (g′ · x0, k) ∈ V1 × V2.

Claim 2. If XG is the universal minimal flow of G, then XH is the
universal minimal flow of H.

Proof. We have seen that XH is minimal, so it is enough to show that if
X is an arbitrary H-flow, then there is a continuous H-map ϕ : XH → X.

The restriction of the H-action on X to G gives a G-flow on X and
therefore there is a continuous G-map π : XG → X. Then define ϕ : XH → X
by

ϕ(x, k) = k · π(x).

Clearly ϕ is continuous, so we only need to verify that ϕ(h · (x, k)) = h ·
ϕ(x, k).

Now

ϕ(h · (x, k)) = ϕ(ρ(h, k) · x, h · k) = (h · k) · π(ρ(h, k) · x)

= (h · k) · ρ(h, k) · π(x) = (h · k)ρ(h, k) · π(x)

= hk · π(x) = h · k · π(x) = h · ϕ(x, k).

Putting these together we have thus shown the following:

Theorem. Let H be a Polish group, G �H a closed normal subgroup,
and assume that there is a compact transversal for the left cosets of G in H.
If XG is the universal minimal flow of G, then the induced action of H on
XH = XG ×K is the universal minimal flow of H.

Corollary. Let K be a compact metrizable group acting continuously
by automorphisms on a Polish group G. If G is extremely amenable, then
the universal minimal flow of K nG is the action of this group on K given
by (k, g) · l = kl.
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[S2] M. Sokić, Ramsey property, ultrametric spaces, finite posets and universal min-

imal flows, Israel J. Math., to appear.

Alexander S. Kechris, Miodrag Sokić
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