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The point of continuity property, neighbourhood
assignments and filter convergences

by

Ahmed Bouziad (Rouen)

Abstract. We show that for some large classes of topological spaces X and any
metric space (Z, d), the point of continuity property of any function f : X → (Z, d) is
equivalent to the following condition:

(∗) For every ε > 0, there is a neighbourhood assignment (Vx)x∈X of X such that
d(f(x), f(y)) < ε whenever (x, y) ∈ Vy × Vx.

We also give various descriptions of the filters F on the integers N for which (∗) is satisfied
by the F-limit of any sequence of continuous functions from a topological space into a
metric space.

1. Introduction. All the functions considered in this paper are assumed
to take their values in metric spaces. Following [22], a topological space X is
said to be weakly separated if there is a neighbourhood assignment (Vx)x∈X
of X such that x = y whenever (x, y) ∈ Vy × Vx. Here, a neighbourhood
assignment means that each Vx is an open neighbourhood of x in X. Ex-
tending Tkachenko’s concept to functions, let us say that a function f from
a (topological) space X into a metric space (Z, d) is weakly separated if for
every ε > 0, there is a neighbourhood assignment (Vx)x∈X of X such that
d(f(x), f(y)) ≤ ε whenever (x, y) ∈ Vy × Vx. This class of functions was
considered by Lee, Tang and Zhao in [20] for metric spaces X. They proved
that a real-valued function on a Polish space is of the first Baire class if and
only it is weakly separated. We shall extend this result to a much broader
setting.

Let X be a space and (Z, d) be a metric space. Recall that a function f :
X → Z is said to be cliquish if for every ε > 0 and every nonempty open set
U ⊂ X, there is a nonempty open set O ⊂ U such that d(f(x), f(y)) < ε for
every x, y ∈ O. Following [17], f is said to be fragmentable if f is hereditarily
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cliquish, that is, the restriction f|A of f to any nonempty (closed) subset A
of X is cliquish. It is well known [17] that every function f defined on a
hereditarily Baire space X is fragmentable if and only if the restriction of f
to each nonempty closed subset of X has a point of continuity, i.e., f has
the point of continuity property (PCP). Moreover, if X is metrizable and Z
is the reals R, then f has the PCP if and only if f is the pointwise limit of a
sequence of continuous real-valued functions on X, i.e., f is of the first Baire
class.

Part of the result of [20] is that every weakly separated function defined
on a hereditarily Baire metrizable space X has the PCP, or equivalently, is
fragmentable. The assumption of hereditary Baireness of X is essential here;
see Propositions 2.1, 2.4 and Examples 2.3 in Section 2 where some auxiliary
facts are stated. We shall show in Section 4 (Theorems 4.1 and 4.2) that this
part of [20] extends to any hereditarily Baire space X satisfying one of the
following conditions:

(i) X is monotonically semistratifiable as defined in [5],
(ii) X is a suborderable monotonic β-space, again as defined in [5],
(iii) X is a monotonic β-space and has a point-countable T0-separating

open collection.

It follows from (i) that every weakly separated function defined on a hered-
itarily Baire semistratifiable space is σ-discrete in Hansell’s sense [12] and
Fσ-measurable (Theorem 4.5). Our results also imply that every separately
continuous function f : X × Y → Z defined on a hereditarily Baire product
X × Y of two semistratifiable spaces X and Y into a metric space (Z, d)
is Fσ-measurable and σ-discrete (Corollary 4.6). T. Banakh’s question [2]
related to this result is answered in the affirmative.

The main results of Section 4 depend on some properties of neighbour-
hood assignments established in Section 3.

In [20] it is also proved that if X is a Polish space, then every function
f : X → R of the first Baire class is weakly separated. This leads to the
following natural question: for which filters F on the integers N, is the F-limit
of any F-convergent sequence of continuous functions weakly separated? At
first glance, one would expect that these filters form a class strictly larger
than the class of filters obtained the same way by replacing weakly separated
functions by functions of the first Baire class. It turns out that these two
classes of filters are identical. More precisely, we shall prove that for every
filter F on N the following are equivalent:

(i) F is ω-diagonalizable by F-universal sets (as defined in [19]),
(ii) F is Fσ-separated from its dual ideal (Lemma 5.4),
(iii) the F-limit of any sequence of continuous functions is Fσ-measurable

(Proposition 5.7),
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(iv) the F-limit of any sequence of continuous functions is weakly sepa-
rated (Proposition 5.5).

Similar results on analytic filters in the context of descriptive set theory were
recently obtained by M. Laczkovich and I. Recław [18] and by G. Debs and
J. Saint Raymond [8].

2. Preliminaries. In what follows, (Z, d) is an arbitrary metric space.
Recall that a neighbourhood assignment (neighbornet in [14]) of the space
X is a collection V = (Vx)x∈X , where each Vx is an open neighbourhood of x
in X; V is said to be unsymmetric [14] if Vx = Vy whenever (x, y) ∈ Vy ×Vx.

Proposition 2.1. Let f : X → Z be a fragmentable function. For every
ε > 0, there is an unsymmetric neighbourhood assignment (Vx)x∈X of X such
that d(f(x), f(y)) ≤ ε for each (x, y) ∈ Vy × Vx. In particular, f is weakly
separated.

Proof. Let ε > 0. Then, following [17], there exist a cardinal number κ
and a partition D = {Uα : α < κ} of X such that for each α < κ, the set⋃
β≤α Uβ is open in X and for every x, y ∈ Uα, d(f(x), f(y)) ≤ ε. For every

x ∈ X, let αx < κ be the unique α < κ such that x ∈ Uα. Then the collection
(Vx)x∈X , where Vx =

⋃
α≤αx

Uα, is a neighbourhood assignment of X. Let
x, y ∈ X be such that x ∈ Vy and y ∈ Vx. Then, clearly, αx = αy, hence
Vx = Vy and d(f(x), f(y)) ≤ ε.

Recall that a space X is said to be a Baire space if every countable
intersection of dense open subsets ofX is a dense set. If every closed subspace
of X is Baire, then X is said to be hereditarily Baire.

Proposition 2.2. Let X be a space such that every “unsymmetrically”
weakly separated function f : X → Z is cliquish (respectively, fragmentable).
Then X is Baire (respectively, hereditarily Baire).

Proof. Let U ⊂
⋃
n≥1 Fn be a nonempty open set, where each Fn is

closed. Put F0 = X and for x ∈ X, let φ(x) = 0 if x 6∈ U and φ(x) = nx
if x ∈ U , where nx is the first n ≥ 1 such that x ∈ Fn. The function
f : X 3 x 7→ nx ∈ N is weakly separated, N being equipped with the
discrete metric. Indeed, let Vx = X if nx = 0 and Vx = X \

⋃
n<nx

Fn if
nx > 0. If x ∈ Vy and y ∈ Vx, then nx = ny (and Vx = Vy). Hence, there is
a nonempty open set O ⊂ U and n ≥ 1 such that nx = n for every x ∈ O,
that is, O ⊂ Fn. This shows that X is Baire.

To establish the “parenthetical” implication of the proposition, suppose
that X has a closed non-Baire subspace F . Let f : F → N be a weakly
separated function which is not cliquish. Then the function g : X → N given
by g(x) = 0 for x 6∈ F and g(x) = f(x) for x ∈ F is weakly separated and
not fragmentable.
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The converse of Proposition 2.2 is false, that is, it is not true that for
every Baire (respectively, hereditarily Baire) space X, any weakly separated
function defined on X is cliquish (respectively, fragmentable). The first coun-
terexample that comes to mind is the Sorgenfrey line S [9]. Indeed, since the
space S is hereditarily Baire and weakly separated (in Tkachenko’s sense),
any function f : S → Z that is not cliquish will do the job. Here are two
more counterexamples (see Question 4.8):

Examples 2.3. (1) Let ω1 denote the first uncountable ordinal. Let X
be the set of all φ ∈ {0, 1}ω1 such that φ is constant on some cofinal segment
[α, ω1[, α < ω1. The set X endowed with the product topology is sequentially
compact, {0, 1} being discrete. For every φ ∈ X, let αφ be the first α < ω1

such that φ is constant on [α, ω1[. Define a function f : X → {0, 1} by
f(φ) = φ(αφ). Let us show that f is weakly separated. For every φ ∈ X,
let Vφ be the set of ψ ∈ X such that φ(αφ) = ψ(αφ). Then (Vφ)φ∈X is a
neighbourhood assignment of X. Let φ ∈ Vψ and ψ ∈ Vφ; if e.g. αφ ≤ αψ,
then f(φ) = f(ψ). However, as is easily seen, f is not cliquish.

(2) Let S and T be two disjoint dense subsets of the reals. Following [3],
the space Bush(S, T ) is the set of all functions f : [0, ω1[→ S ∪ T for which
there are αf < ω1 and tf ∈ T such that f([0, αf [) ⊂ S and f([αf , ω1[) =
{tf}. The space Bush(S, T ) is equipped with the topology induced by the
lexicographic order. It is established in [3] that Bush(S, T ) is a Baire space
and that for every f ∈ Bush(S, T ), a basis of neighbourhoods for f is given
by sets of the form

B(f, ε) = {g ∈ Bush(S, T ) : g|[0,αf [ = f|[0,αf [ and |g(αf )− f(αf )| < ε},
where ε > 0. It is easy to see that the function φ : Bush(S, T ) 3 f 7→ f(αf ) ∈
R is weakly separated and not cliquish. This fact will be used in Remark 3.5
to answer a question in [3].

We end this section with a notational convention and a simple statement
that indicates how to track the spaces of interest here, i.e., spaces for which
the above mentioned converse of 2.2 holds. Let X be a space. Recall that a
collection C of nonempty open subsets of X is said to be a π-base at x ∈ X
if every neighbourhood of x contains some member of C. If C is a π-base at
each x ∈ X, then C is called a π-base of X. For every neighbourhood assign-
ment V = (Vx)x∈X of X, put Λ(V) = {(x, y) ∈ X ×X : (x, y) ∈ Vy × Vx}.
We shall write Λ in place of Λ(V) if there is no confusion. Let Λ ◦ Λ de-
notes the set of all (x, y) ∈ X × X for which there is z ∈ X such that
{(x, z), (z, y)} ⊂ Λ. For every k ≥ 1, Λk stands for the k-fold composition
Λ ◦ · · · ◦ Λ.

Proposition 2.4. Let X be a space for which there is k ≥ 1 such that
for every neighbourhood assignment V of X, the collection of all open sets
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U ⊂ X such that U × U ⊂ Λk forms a π-base of X. Then every weakly
separated function f : X → Z is cliquish.

Proof. Let f : X → Z be a weakly separated function, O ⊂ X a
nonempty open set and ε > 0. Let V = (Vx)x∈X be a neighbourhood as-
signment of X such that d(f(x), f(y)) < ε/k for every (x, y) ∈ Λ. Choose a
nonempty open set U ⊂ O such that U × U ⊂ Λk. Then d(f(x), f(y)) < ε
for every x, y ∈ U .

3. Facts on neighbourhood assignments. This section is devoted
entirely to the proofs of some properties of neighbourhood assignments sug-
gested by 2.4. In Section 4, we will give some applications of these studies
to the class of generalized ordered spaces and to two classes of spaces intro-
duced by J. Chaber in [5], namely monotonic β-spaces and monotonically
semistratifiable spaces. To this end, we shall present the results of this sec-
tion by using three variants of a game inspired by the monotonic properties
introduced in [5]. To each space X we assign three two-person infinite games
J , J ∗ and J ∗∗. For the game J , Player II is assigned an open set U0 ⊂ X
and a point x0 ∈ U0, then Player I chooses a nonempty open set V0 ⊂ U0.
At the nth stage, n ∈ N, n ≥ 1, Player II is assigned an open set Un ⊂ Vn−1
and a point xn ∈ Un, then I chooses a nonempty open set Vn ⊂ Un. Player
I wins if either

⋂
n∈N Un = ∅ or the sequence (xn)n∈N converges to some

point x ∈
⋂
n∈N Un. Otherwise, Player II wins. The games J ∗ and J ∗∗ differ

from J only in the winning rule: For J ∗∗ (respectively, J ∗), I wins iff either⋂
n∈N Un = ∅ or (xn)n∈N (respectively, every subsequence of (xn)n∈N) has at

least a cluster point in
⋂
n∈N Un.

If Player I has a winning strategy in the game J ∗ and if X is regular,
then Player I has a winning strategy in J provided that X satisfies one of
the following conditions:

(i) X has an open collection U which is point-countable and T0-
separating, that is, for each x ∈ X, {U ∈ U : x ∈ U} is countable and
for any distinct x, y ∈ X there is U ∈ U such that |U ∩ {x, y}| = 1.

(ii) X has a θ-diagonal [24], that is, there is a function g : X×N→ T (X)
(the topology of X) such that x ∈ g(n, x) and

⋂
n∈N g

∗(x, n) ⊂ {x},
where g∗(x, n) =

⋃
{g(y, n) : x ∈ g(y, n) and y ∈ g(x, n)}.

(iii) X has an almost-Gδ-diagonal, that is, there is a sequence (Gn)n∈N of
open collections such thatX=∪Gn for each n∈N, and

⋂
n∈N st(x,Gn)

⊂ {x} for each x ∈ X.

In view of the application in Section 4 we will be mostly interested in spaces
satisfying (i). We shall give a proof in this case assuming a condition weaker
than (i). Similar proofs also work for spaces satisfying (ii) or (iii).
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Proposition 3.1. Let X be a regular space. Suppose that there is a
collection {W (n, x) : (n, x) ∈ N × X} of open subsets of X such that for
every countable set D ⊂ X and any distinct x, y ∈ D, there are n ∈ N and
z ∈ D such that {x, y} ∩W (n, z) 6= ∅ and |{x, y} ∩W (n, z)| ≤ 1.

If Player I has a winning strategy in J ∗, then Player I has a winning
strategy in J .

Proof. Choose a bijection N 3 n 7→ (ψ(n), φ(n)) ∈ N × N such that
φ(n) ≤ n for each n ∈ N. Let τ be a winning strategy for Player I in J ∗.
We define a strategy σ for Player I in J as follows. Let n ≥ 0 and denote by
(xn, Un) the nth move of Player II. Put

On = τ((x0, U0), . . . , (xn, Un)) ∩W (ψ(n), xφ(n)).

If On = ∅, then using the regularity of X, define σ((x0, U0), . . . , (xn, Un))
to be any nonempty open set whose closure is contained in τ((x0, U0), . . . ,
(xn, Un)). If On 6=∅, then again using the regularity ofX, take σ((x0, U0), . . . ,
(xn, Un)) to be any nonempty open set whose closure is contained in On.

To show that σ is a winning strategy, let (xn, Un)n∈N be a game for Player
II against σ such that

⋂
n∈N Un 6= ∅ and let us show that (xn)n∈N converges

to a point of
⋂
n∈N Un. Since τ is a winning strategy and the play (xn, Un)n∈N

is also compatible with τ , every subsequence of (xn)n∈N has a cluster point
in
⋂
n∈N Un. Consequently, to show that (xn)n∈N converges in

⋂
n∈N Un, it

suffices to prove that (xn)n∈N has at most one cluster point.
Let x, y ∈ X be two cluster points of (xn)n∈N. Let n,m ∈ N be such that

x ∈ W (n, xm) and let us show that {x, y} ⊂ W (n, xm); this will imply that
x = y. Choose k ∈ N such that (n,m) = (ψ(k), φ(k)). Since U l+1 ⊂ Ul and
xl ∈ Ul for every l ∈ N, x belongs to

⋂
l∈N Ul; in particular, Ok 6= ∅. It follows

from the definition of σ((x0, U0), . . . , (xk, Uk)) that Uk+1 ⊂ W (ψ(k), xφ(k)),
therefore {x, y} ⊂W (n, xm) as claimed.

We keep the notation of Proposition 2.4 throughout this section.

Proposition 3.2. Let X be a Baire space for which Player I has a win-
ning strategy in J . Let V = (Vx)x∈X be a neighbourhood assignment of X.
Then, for every nonempty open set O ⊂ X, there exist x ∈ O and a nonempty
open set U ⊂ O such that (x, y) ∈ Λ2 for every y ∈ U . In particular,
U × U ⊂ Λ4.

Proof. Suppose that the result is false for some nonempty open setO⊂X.
We shall define a strategy σ for Player II in the Banach–Mazur game BM(X)
played on X (see [21]). Let τ be a winning strategy for Player I in J . Choose
x0 ∈ O, put U0 = O ∩ Vx0 and define σ(∅) = τ(x0, U0). At stage n ≥ 0, if
Wn is the nth move of Player I in the game BM(X), choose xn+1 ∈Wn such
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that (xn, xn+1) 6∈ Λ2, put Un+1 =Wn ∩ Vxn+1 and define

σ(W0, . . . ,Wn) = τ((x0, U0), . . . , (xn+1, Un+1)).

Since X is Baire, there is a winning game (Wn)n∈N for Player I against σ,
that is,

⋂
n∈NWn 6= ∅ ([21]). The sequence (xn, Un)n∈N is a play for Player

II in the game J against the strategy τ . It follows that (xn)n∈N converges
to some x ∈

⋂
n∈N Un. In particular, there is p ∈ N such that xn ∈ Vx for

every n ≥ p. Since x ∈
⋂
n∈N Vxn , it follows that (xp, xp+1) ∈ Λ2, which is a

contradiction.

The following lemma will be used in the proof of Proposition 3.4.

Lemma 3.3. Let X be a Baire space for which Player I has a winning
strategy in the game J ∗∗, and let (Vx)x∈X be a neighbourhood assignment
of X. Then, for every nonempty open set O ⊂ X, there exists a nonempty
open set U ⊂ O such that for each x ∈ U , the collection of all open sets W
satisfying W ⊂ {y ∈ X : x ∈ Vy} is a π-base at x.

Proof. Suppose that the claim is false for some nonempty open set U0 ⊂
X and let τ denote a winning strategy for Player I in the game J ∗∗. Consider
the following strategy for Player II in the Banach–Mazur game on X. Choose
x0 ∈ U0 and define σ(∅) = τ(x0, U0). At the nth stage, n ≥ 0, if Wn is the
nth move of Player I, choose a point xn+1 ∈ Wn for which there is an open
neighbourhood Un+1 ⊂ Wn in X such that for every nonempty open set
W ⊂ Un+1, W 6⊂ {y ∈ X : xn+1 ∈ Vy}. Then

τ((x0, U0), . . . , (xn+1, Un+1)) \ {y ∈ X : xn+1 ∈ Vy} 6= ∅.

Define

σ(W0, . . . ,Wn) = τ((x0, U0), . . . , (xn+1, Un+1)) \ {y ∈ X : xn+1 ∈ Vy}.

Let (Wn)n∈N be a winning game for Player I against σ. Then, since τ is a
winning strategy for Player I in J ∗∗, the sequence (xn)n∈N has a cluster point
x ∈

⋂
n∈N Un. Therefore, there exists n ∈ N such that xn+1 ∈ Vx. But this

is impossible since x ∈ Un+2 ⊂Wn+1 and Wn+1 ∩ {y ∈ X : xn+1 ∈ Vy} = ∅.
This contradiction completes the proof.

Recall that a generalized ordered space (GO space) is a topological space
X with a linear order < such that the order-convex open subsets of X form
a base of X and for every x ∈ X the intervals ]←, x[ and ]x,→[ are open.

Proposition 3.4. Let (Vx)x∈X be a neighbourhood assignment of a Baire
GO space (X,<) for which Player I has a winning strategy in the game J ∗∗.
Then for every nonempty open set O ⊂ X there are a nonempty open set
W ⊂ O and x ∈ O such that (x, y) ∈ Λ3 for every y ∈ W . In particular,
W ×W ⊂ Λ6.
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Proof. Without loss of generality we may assume that for each x ∈ X,
Vx is order-convex. Let U ⊂ O be a nonempty open set satisfying the
conclusion of Lemma 3.3. We may also assume that U has no isolated
points. Let x ∈ U and choose a nonempty open set W ⊂ U ∩ Vx such
that W ⊂ {y ∈ X : x ∈ Vy}. Let y ∈ W ; we will show that (x, y) ∈ Λ3. We
only examine the case x < y, the case y < x is similar.

IfW ∩Vy∩ ]y,→[ 6= ∅, choose z ∈W ∩Vy∩ ]y,→[ such that x ∈ Vz. Since
W ⊂ Vx, we have z ∈ Vx. Also, y ∈ Vz, because Vz is convex and x ≤ y ≤ z.
Thus (x, z) ∈ Λ and (y, z) ∈ Λ, and therefore (x, y) ∈ Λ2.

Now, suppose that W ∩ Vy ⊂ ]←, y]. Since y ∈ U , there is a nonempty
open setWy ⊂ ]x,→[∩W ∩Vy such thatWy ⊂ {z ∈ Y : y ∈ Vz}. Since there
is no isolated points in U , there are t1, t2, t3 ∈Wy such that t1 < t2 < t3 < y.
Hence, in particular ]t2, y[∩W 6= ∅. This allows us to choose z1 ∈ ]t2, y]∩Vx
such that x ∈ Vz1 , i.e., (x, z1) ∈ Λ. Again, since Vz1 is convex and x ≤ t1 ≤ z1,
it follows that t1 ∈ Vz1 . So, in particular ]←, z1[∩Vz1 ∩Wy 6= ∅. This in turn
gives us a point z2 ∈ ]←, z1] ∩ Vz1 ∩ Vy such that y ∈ Vz2 , i.e., (y, z2) ∈ Λ.
Since Vz2 is convex and z2 ≤ z1 ≤ y, we have z1 ∈ Vz2 , and so (z1, z2) ∈ Λ.
Consequently, (x, y) ∈ Λ3.

Remark 3.5. A space X is said to be ω-Čech-complete [3] if there is a
sequence (Gn)n∈N of open covers ofX such that for every decreasing sequence
(Fn)n∈N of nonempty closed sets such that each Fn is contained in some
Gn ∈ Gn, we have

⋂
n∈N Fn 6= ∅. Every regular ω-Čech-complete space is

hereditarily Baire. It is asked in [3, Question 6.5] for which dense subsets
S and T of the reals, the space Bush(S, T ) (defined in Example 2.3(2)) is
ω-Čech-complete. The answer is that for any such sets S and T , Bush(S, T )
is not ω-Čech-complete. We propose two different arguments showing that.
An easy way to show that Bush(S, t) is not ω-Čech-complete is to check
that the closed subspace {f ∈ Bush(S, T ) : αf < ω} of Bush(S, T ) is not
Baire. One can also proceed as follows: First notice that for any regular
ω-Čech-complete space X, Player I has a winning strategy in the game J ∗∗.
Therefore, since the function φ in Example 2.3(2) is not cliquish, it follows
from Propositions 2.4 and 3.4 that Player I does not have a winning strategy
in this game played on Bush(S, T ). The second argument additionally shows
that Bush(S, T ) is not a monotonic β-space (see below), which improves a
result of [3] that Bush(S, T ) is not a β-space in Hodel’s sense [13].

4. Weak separability versus fragmentability. In this section, the
results of Section 3 are summarized in Theorems 4.1 and 4.2. We shall also
give some applications, focusing on monotonically semistratifiable spaces
[5]. Recall that a regular space X is said to be monotonically semistrat-
ifiable (respectively, a monotonic β-space) if for every x ∈ X, there is a
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decreasing sequence (Bn(x))n∈N of base of X at the point x such that when-
ever y ∈ Bn+1 ⊂ Bn ∈ Bn(xn), n ∈ N, the sequence (xn)n∈N converges
to y in X (respectively, clusters in X). The concept of monotonic semis-
tratifiable spaces is a common generalization of semistratifiable spaces and
spaces having a base of countable order (the so-called BCO spaces). Clearly,
for every subspace X of a monotonically semistratifiable space, Player I
has a winning strategy in the game J played on X. Similarly, for every
closed subspace X of a monotonic β-space, Player I has a winning strategy
in the game J ∗ played on X. Consequently, Propositions 2.1, 2.4 and 3.2
yield:

Theorem 4.1. Let f : X → Z be a function. If X is a hereditarily Baire
monotonically semistratifiable space, then f is weakly separated if and only
if f is fragmentable.

Similarly, Propositions 2.1, 2.4, and 3.1 or 3.4 yield:

Theorem 4.2. Let f : X → Z be a function, where X is a hereditarily
Baire monotonic β-space. If X is either a GO space or has a point-countable
T0-separating open collection, then f is weakly separated if and only if f is
fragmentable.

Before we proceed to derive some further results from Theorem 4.1, let us
mention the following question raised in [2] (we have learned from T. Banakh
that this is in fact an old problem due to V. K. Maslyuchenko): Does every
separately continuous function f : X × Y → Z defined on the product of
metrizable compacta and acting into a linear metric space belong to Baire
class one? It is easy to see that such a function has a separable range. Thus,
to give a positive answer to this question, it is enough to show that f is
Fσ-measurable, and next to apply Fosgerau’s theorem [10]. Recall that a
function f : X → Z is Fσ-measurable if for every open set G ⊂ Z, f−1(G) is
an Fσ-set in X. One way to prove that the function f in Banakh’s question is
Fσ-measurable is to show that f has the PCP by use of separate-versus-joint
continuity techniques. We propose a different method, within the present
framework, which also relies on Fosgerau’s theorem but is applicable to a
larger class of spaces. Let us first make the following observation:

Proposition 4.3. Let X and Y be spaces and let Z be metric. Then
every separately continuous function f : X × Y → Z is weakly separated.

Proof. Let f : X × Y → (Z, d) be a separately continuous function and
ε > 0. For each (x, y) ∈ X × Y , let V (x, y) be an open neighbourhood of
(x, y) in X × Y such that

d(f(x, b), f(x, y)) ≤ ε/2 and d(f(x, y), f(a, y)) ≤ ε/2
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for every (a, b) ∈ V (x, y). Then, for any (a, b) ∈ V (x, y) and (x, y) ∈ V (a, b),
we have

d(f(a, b), f(x, y)) ≤ d(f(a, b), f(a, y)) + d(f(a, y), f(x, y)) ≤ ε.

Proposition 4.3 becomes false under the assumption that fx is continuous
for each x ∈ X and fy is fragmentable (hence weakly separated) for every
y ∈ Y , even if X = Y = [0, 1] and Z is the reals R (for an example, see [7]).
Theorem 4.1 and Proposition 4.3 yield

Corollary 4.4. Let f : X×Y → Z be a separately continuous function,
where X and Y are monotonically semistratifiable. If X × Y is Baire (re-
spectively, hereditarily Baire), then f is cliquish (respectively, fragmentable).

A collection (Oi)i∈I of subsets of the space X is said to be discrete [9]
if each point of the space X has a neighbourhood that meets at most one
of the sets of (Oi)i∈I . A base for a function f : X → Z is a collection M
of subsets of X such that for every open set G ⊂ Z, f−1(G) is a union of
sets from M. The function f is said to be σ-discrete [12] if f has a base⋃
n∈N Un such that for each n ∈ N the collection Un is discrete. It is shown

in [12] that if f has the PCP and X is hereditary subparacompact, then f is
Fσ-measurable and σ-discrete. Since semistratifiable spaces are (hereditarily)
subparacompact [6] (see also [11]), taking into account Hansell’s theorem and
the above results (4.1 and 4.3), one can state:

Theorem 4.5. Every weakly separated function from a semistratifiable
hereditarily Baire space into a metric space is Fσ-measurable and σ-discrete.

Corollary 4.6. Every separately continuous function f : X × Y → Z,
where X and Y are semistratifiable and X × Y is hereditarily Baire, is Fσ-
measurable and σ-discrete.

Fosgerau’s result (Theorem 1 in [10]) (see also [23]) and Corollary 4.6
allow us to answer Banakh–Maslyuchenko’s question as follows:

Corollary 4.7. Every separately continuous function f : X × Y → Z,
where X × Y is metrizable and hereditarily Baire and Z is an arcwise con-
nected and locally arcwise connected metric space, is of the first Baire class.

The above corollary remains true for X ×Y paracompact and semistrat-
ifiable (in place of metrizable) by a result of L. Veselý [23].

We conclude this section with the following question:

Question 4.8. Let f : X → Z be a weakly separated function defined
on a compact space X into a metric space. Is it true that f has a point of
continuity?
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By Propositions 2.4, 3.1 and 3.2, the answer is positive if X is Corson
compact, i.e., if there is a set I such that X is homeomorphic to a compact
subspace of {x ∈ RI : {i ∈ I : x(i) 6= 0} is countable}, RI being equipped
with the product topology.

5. Filter convergences. Let X be a space and Z be metric. It is proved
in [20] that if f : X → Z is the pointwise limit of a sequence of continuous
functions fn : X → Z, n ∈ N, then f is weakly separated. A natural question
arises: For what kind of filters F on the integers N does this result remain true
if convergence with respect to the Fréchet filter is replaced by convergence
with respect to F? We shall give a complete answer to this question. In
fact it turns out that this class of filters is one of the classes introduced
and studied by C. Laflamme in [19]. In addition, we show that these filters
are the ones that can be separated by an Fσ-set from their dual ideals. The
precise definitions will be given later.

The closely related question for functions of the first Baire class (in place
of weakly separated functions) was initially considered by Katětov [15]. This
question has been studied from the descriptive set theoretical point of view
in [8] and [18] for analytic filters. We shall prove that the filters F for which
the F-limit for any F-convergent sequence of continuous functions is Fσ-
measurable are the same as above.

As usual, 2N = P(N) is the Cantor space and [N]<ω denotes the set of
finite subsets of N. LetM⊂ 2N. Following [4],M is said to be monotone if
A ∈ M and A ⊂ B ⊂ N imply B ∈ M. An open set G ⊂ 2N is said to be
positive if for each A ∈ G, there is a finite set F ⊂ A such that F ⊂ B ⊂ N
implies B ∈ G. In what follows,M↑ stands for the smallest monotone subset
of 2N containingM; that is, A ∈M↑ means B ⊂ A ⊂ N for some B ∈M.

The main results in this section (Propositions 5.5 and 5.7) are based on
Lemmas 5.3 and 5.4. To establish Lemma 5.4, we need the following result
due to D. Cenzer [4, Theorem 3].

Lemma 5.1. If U is a monotone Gδ-set, then U is a countable intersec-
tion of positive open subsets of 2N.

Definition 5.2. Following [19], a filter F on N is called ω-diagonalizable
by F-universal sets if there is a sequence Zn ⊂ [N]<ω \{∅}, n ∈ N, such that:

(i) for every A ∈ F and n ∈ N, there is F ∈ Zn such that F ⊂ A;
(ii) for each A ∈ F , there is n ∈ N such that F ∩A 6= ∅ for all but finitely

many F ∈ Zn.

Lemma 5.3. Let F be a filter on N. Then the following are equivalent:

(a) F is ω-diagonalizable by F-universal sets.
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(b) There is a function φ : F → [N]<ω such that [φ(A)∪φ(B)]∩A∩B 6= ∅
for every A,B ∈ F .

(c) There is a sequence Zn ⊂ [N]<ω \ {∅}, n ∈ N, satisfying condition (i)
of 5.2 and such that for each A ∈ F , there is n ∈ N so that F ∩A 6= ∅
for every F ∈ Zn.

Proof. To show that (a) implies (b), suppose that F is ω-diagonalizable
by Zn = {Fmn : m ∈ N}, n ∈ N. We assume that F includes all cofinite
subsets of N. Otherwise, there is F ∈ [N]<ω such that the constant function
F 3 A 7→ F ∈ N<ω can be taken as φ. Let A ∈ F . Using condition (ii)
of 5.2, choose two integers nA,mA, with mA ≥ nA, such that FmnA

∩ A 6= ∅
for every m ≥ mA. Using condition (i) of 5.2 and the fact that F includes
all cofinite subsets of N, for every k ≤ mA, let m(k,A) ≥ mA be such that
F
m(k,A)
k ⊂ A. Define

φ(A) =
⋃

k≤mA

F
m(k,A)
k .

To show that φ works, let A,B ∈ F . We may suppose that mB ≤ mA,
hence nB ≤ mA. Since F

m(nB ,A)
nB ⊂ A and F

m(nB ,A)
nB ∩ B 6= ∅, and since

m(nB, A) ≥ mA ≥ mB, it follows that φ(A) ∩ A ∩ B 6= ∅. Consequently,
[φ(A) ∪ φ(B)] ∩A ∩B 6= ∅.

To show that (b) implies (c), suppose that φ : F → [N]<ω is a function
satisfying [φ(A)∪φ(B)]∩A∩B 6= ∅ for every A,B ∈ F . Write φ(F) = {Fn :
n ∈ N} and, for each n ∈ N, define

Zn = {[φ(A) ∪ Fn] ∩A : A ∈ F}.

Clearly, (i) of 5.2 is satisfied by the sequence Zn, n ∈ N. Let A ∈ F , and let
k ∈ N be such that φ(A) = Fk. We have [φ(B) ∪ Fk] ∩ B ∩ A 6= ∅ for every
B ∈ F , that is, A ∩ F 6= ∅ for every F ∈ Zk. The proof is complete because
(c) obviously implies (a).

For a set U ⊂ {0, 1}N, let U∗ denote the set {N \A : A ∈ U}. Let F be a
filter on N. Then F is said to be separated from its dual F∗ by a set U ⊂ 2N

if F ⊂ U and F∗ ∩ U = ∅. This is the same as saying that F is separated
from F∗ by the set G = 2N \ U∗. Thus, since the mapping A 7→ N \ A is a
homeomorphism of the Cantor space, F is separated from F∗ by an Fσ-set
if and only if F is separated from F∗ by a Gδ-set.

The following statement is established in [18] for Borel filters. The proof
given in [18] uses Borel determinacy.

Lemma 5.4. Let F be a filter on N. Then F is ω-diagonalizable by F-
universal sets if and only if F is separated from its dual F∗ by a Gδ-set
(equivalently, an Fσ-set) G ⊂ 2N.
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Proof. Suppose that F is ω-diagonalizable by Zn, n ∈ N. We may assume
that the sequence Zn, n ∈ N, satisfies condition (c) of Lemma 5.3. For each
n ∈ N, let Un be the open (positive) set given by all A ⊂ N for which there
is F ∈ Zn such that F ⊂ A. Then F is separated from F∗ by the Gδ-set⋂
n∈N Un of 2N.
Conversely, suppose that F is separated from F∗ by an Fσ-set U ⊂

{0, 1}N. Notice that U↑ is an Fσ-set too and it separates F from F∗. So,
taking U↑ in place of U , we can assume that U is monotone. Let G = 2N \U∗.
Then G is a monotone Gδ-set of 2N that separates F from F∗. By Lemma 5.1,
we can write G =

⋂
n∈N Un, where each Un is an open positive set. For each

A ∈ F and n ∈ N, let FAn ⊂ A be a finite set so that B ∈ Un whenever
FAn ⊂ B ⊂ N. Clearly, condition (i) of 5.2 is satisfied by the sequence Zn =
{FAn : A ∈ F}, n ∈ N. To conclude, suppose to the contrary that (ii) of 5.2
is not satisfied by (Zn)n∈N. Let A ∈ F be such that for every n ∈ N there
exists Fn ∈ Zn so that Fn ∩ A = ∅. Since the set B =

⋃
n∈N Fn belongs to

F∗, there is n ∈ N such that B 6∈ Un. It follows that Fn 6⊂ B, which is a
contradiction.

Let F be a filter on N, X be a set and let (Z, d) be a metric space.
Recall that a sequence fn : X → Z, n ∈ N, is said to be F-convergent
if there is a function f : X → Z such that for every x ∈ X and ε > 0,
{n ∈ N : d(fn(x), f(x)) < ε} ∈ F . Note that f is uniquely determined. We
shall call f the F-limit of (fn)n∈N and denote it by limF fn.

Proposition 5.5. Let F be a filter on N. Then the following are equiv-
alent:

(a) F is ω-diagonalizable by F-universal sets.
(b) For any set X and a metric space (Z, d), every F-convergent sequence

fn : X → Z, n ∈ N, satisfies the following condition: for every ε > 0
and (Ax)x∈X ⊂ F one can assign a finite set ψ(x) ⊂ Ax to each
x ∈ X so that

d
(
lim
F
fn(x), lim

F
fn(y)

)
< ε

whenever (x, y) ∈ Vy × Vx, where

Vx =
⋂

n∈ψ(x)

{y ∈ X : d(fn(x), fn(y)) < ε/3} (x ∈ X).

(c) The characteristic function 1F : F∪F∗ → {0, 1} is weakly separated,
where F∪F∗ is viewed as a subspace of the Cantor space 2N and {0, 1}
is discrete.

Proof. To show that (a) implies (b), let fn : X → Z, n ∈ N, be an
F-convergent sequence and write f = limF fn. By Lemma 5.3, choose a
function φ : F → [N]<ω so that [φ(A) ∪ φ(B)] ∩ A ∩ B 6= ∅ for every
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A,B ∈ F . Without loss of generality we assume that φ(A) ⊂ A for every
A ∈ F . Let (Ax)x∈X ⊂ F and ε > 0. For x ∈ X, put ψ(x) = φ(Ax ∩ Ix),
where Ix = {n ∈ N : d(fn(x), f(x)) < ε/3}, and as in condition (b), set

Vx =
⋂

k∈ψ(x)

{y ∈ X : d(fk(x), fk(y)) < ε/3}.

Let y ∈ Vx and x ∈ Vy. Choose k ∈ ψ(x) ∪ ψ(y) such that k ∈ Ax ∩ Ix ∩
Ay ∩ Iy. Assume that k ∈ ψ(x). Then d(f(x), fk(x)) < ε/3. Since y ∈ Vx and
k ∈ Iy, we have d(fk(x), fk(y)) < ε/3 and d(fk(y), f(y)) < ε/3. Therefore
d(f(x), f(y)) < ε.

To show that (b) implies (c), consider the F-convergent sequence fn :
F ∪ F∗ → {0, 1} defined by fn(A) = 1A(n), n ∈ N, and notice that
limF fn = 1F . Since the fn’s are continuous, the collection (Vx)x∈X in (b) is
a neighbourhood assignment of X. Hence, 1F is weakly separated.

Before we turn to (c)⇒(a), we present a simple argument showing that
(b) implies (a). Let X = F ∪ F∗, considered as a subspace of 2N. As above,
for each n ∈ N define fn : X → {0, 1} by fn(x) = 1 if and only if n ∈ x. For
x ∈ X, put Ax = x if x ∈ F and Ax = N \ x if x ∈ F∗. Since limF fn = 1F ,
it follows from (b) that for each x ∈ X there is a finite set ψ(x) ⊂ Ax so
that 1F (x) = 1F (y) whenever x ∈ Vy and y ∈ Vx, where for each z ∈ X,

Vz =
⋂

n∈ψ(z)

{t ∈ X : fn(t) = fn(z)}.

For each x ∈ X, let φ(x) = ψ(x) ∪ ψ(N \ x). Now, by Lemma 5.3, it suffices
to verify that (φ(x) ∪ φ(y)) ∩ x ∩ y 6= ∅. Let x, y ∈ F . Since x 6∈ VN\y or
N \ y 6∈ Vx, there is k ∈ φ(x) ∪ φ(y) such that fk(x) 6= fk(N \ y). Since
φ(x) ∪ φ(y) ⊂ x ∪ y, it follows that k ∈ x ∩ y.

Let us prove that (c) implies (a). Write X = F ∪ F∗. Since 1F : X →
{0, 1} is weakly separated, for each x ∈ X there is nx ∈ N such that

(∗) ∀x, y ∈ F , ∃k ≤ nx ∨ nN\y such that 1x(k) 6= 1N\y(k).

To simplify the proof we may assume that nx = nN\x for every x ∈ F . Write
{nx : x ∈ F} = {nl : l ∈ N} and put

I(l,j) =
{
x ∩ {0, . . . , nl ∨ nj} : x ∈ F and nx = nj

}
.

Let

U =
⋃
l∈N

⋂
j∈N

⋂
A∈I(l,j)

{
x ∈ {0, 1}N : ∃k ≤ nl ∨ nj such that 1x(k) = 1A(k)

}
.

Clearly, U is an Fσ-set of 2N. Let us verify that F ⊂ U and U ∩ F∗ = ∅.
Let x ∈ F . Choose l such that nl = nx and let A ∈ I(l,j) for some j ∈ N.
Then there is y ∈ F such that ny = nj and A = y ∩ [0, nl ∨ nj ]. By (∗),
there is k ≤ nl ∨nj such that 1x(k) 6= 1N\y(k), equivalently, 1x(k) = 1A(k).
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This shows that x ∈ U . Now, let y ∈ F∗ and l ∈ N. Choose x ∈ F such
that nx = nl and consider the integer j for which nN\y = nj . Then the set
A = (N\y)∩{0, . . . , nl∨nj} belongs to I(l,j) and for every k ≤ nl∨nj , 1y(k) 6=
1A(k). Thus y 6∈ U . It follows from Lemma 5.4 that F is ω-diagonalizable
by F-universal sets.

The abstract form of 5.5(b) allows us to apply Proposition 5.5 to se-
quences of functions which are not necessarily continuous.

Remark 5.6. For a function f : X → Z, where X is a space and Z
is a metric space, let osc(f, x) stand for the oscillation of f at x ∈ X.
Let F be a filter on N which is ω-diagonalizable by F-universal sets. Let
fn : X → Z, n ∈ N, be an F-convergent sequence of functions such that for
each x ∈ X and ε > 0, the set {n ∈ N : osc(fn, x) < ε} belongs to F . Then,
by Proposition 5.5, limF fn is weakly separated. Hence, if for example X is
hereditarily Baire and monotonically semistratifiable, then limF fn has the
PCP (see Theorem 4.1).

Following [23], a collection (Ui)i∈I of subsets of the space X is said to
be strongly discrete if there is a discrete collection (Oi)i∈I of open subsets of
X such that U i ⊂ Oi for every i ∈ I. A function f : X → Z is said to be
strongly σ-discrete [23] if f has a base

⋃
n∈N Un such that for each n ∈ N the

collection Un is strongly discrete.

Proposition 5.7. For any filter F on N, the following are equivalent:

(1) F is ω-diagonalizable by F-universal sets.
(2) For every F-convergent sequence fn : X → Z, n ∈ N, of continuous

functions, where X is a space and Z is a metric space, the function
limF fn is Fσ-measurable and strongly σ-discrete.

Proof. To show that (1) implies (2), let Zk = {Fnk : n ∈ N}, k ∈ N, be
a sequence satisfying (c) of Lemma 5.3. Write f = limF fn. For every open
set G ⊂ Z, let

ψ(G) =
⋃
k∈N

⋂
i∈N

⋃
n∈F i

k

f−1n (G).

Clearly, ψ(G) is an Fσ-set of X.

Claim. f−1(G) ⊂ ψ(G) ⊂ f−1(G).

To prove the claim, let x ∈ f−1(G). There is kx ∈ N such that F ikx ∩
{n ∈ N : fn(x) ∈ G} 6= ∅ for every i ∈ N. Thus f−1(G) ⊂ ψ(G). To show the
second inclusion, suppose that there is x ∈ ψ(G) such that f(x) ∈ Y \ G.
Let kx ∈ N witness that x ∈ ψ(G). Using (i) of 5.2, there is i ∈ N such that
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F ikx ⊂ {n ∈ N : fn(x) ∈ Y \ G}, which is impossible because fn(x) ∈ G for
some n ∈ F ikx .

Having proved the Claim, let us assign a sequence (G̃n)n∈N of open sets
to each open set G ⊂ Z, so that G =

⋃
n∈N G̃n and G̃n ⊂ G for every n ∈ N.

a) Let G ⊂ Z be an open set. By the Claim, we have f−1(G̃n) ⊂ ψ(G̃n) ⊂
f−1(G̃n) for each n ∈ N. Let F =

⋃
n∈N ψ(G̃n). Then F is an Fσ-set and

(∗) f−1(G) ⊂
⋃
n∈N

f−1(G̃n) ⊂ F ⊂
⋃
n∈N

f−1(G̃n) ⊂ f−1(G).

This proves that f is Fσ-measurable.
b) To show that f is strongly σ-discrete, we shall proceed as in the proof

of [23, Proposition 1.10]. Choose a base
⋃
n∈NMn of the metric space Z such

that for each n ∈ N,Mn is a discrete open collection [9]. Let j, k, l ∈ N and
m ∈ F 0

k . Define

B(j, k, l,m) =
{
f−1m (G̃l) ∩

(⋂
i≥1

⋃
n∈F i

k

f−1n (G̃l)
)
: G ∈Mj

}
.

Since the function fm is continuous and Mj is discrete, the collection
B(j, k, l,m) is discrete. On the other hand, according to (∗), the collection
B =

⋃
{B(j, k, l,m) : j, k, l ∈ N,m ∈ F 0

k } is a closed base for f . Hence f is
strongly σ-discrete.

We turn now to the proof of (2)⇒(1). Notice first that the function
1F : F ∪ F∗ → {0, 1} is Fσ-measurable (if and) only if F is separated from
its dual F∗ by an Fσ-set of 2N. Since 1F is the F-limit of a sequence of
continuous functions, Lemma 5.4 applies.

For a space X and a filter F on N, let BF (X) be the set of F-limits of
F-convergent sequences of continuous real-valued functions defined on X. If
F is the Fréchet filter, then BF (X) = B1(X) is the set of first Baire class
functions defined on X. The following is established in [18] for Borel filters:

Corollary 5.8. Let F be a filter on N. Then the following are equiva-
lent:

(i) F is ω-diagonalizable by F-universal sets.
(ii) BF (X) ⊂ B1(X) for every metrizable space X.

In view of [23, Theorem 3.7] and 5.7, the implication (i)⇒(ii) in Corol-
lary 5.8 remains true for any normal space X, furthermore the reals can
be replaced by any arcwise connected and locally arcwise connected metric
space.

The following brief discussion will lead us to an open question. Let F be
a filter on N such that the function 1F : X → {0, 1} is weakly separated,
where X = F ∪F∗. Then there is no Baire subspace C of X such that both
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C ∩ F and C ∩ F∗ are dense in C. Indeed, otherwise the restriction of 1F
to C would be cliquish (see Propositions 2.4 and 3.2), but this is impossible
because F and F∗ are dense in C. Consequently, Proposition 5.5 gives:

Proposition 5.9. Let F be a filter which is ω-diagonalizable by F-
universal sets. Then there is no Baire subspace C of F ∪ F∗ such that F
and F∗ are dense in C.

Question 5.10. Is the converse of Proposition 5.9 true for any filter F?
The answer is yes if F is analytic. Indeed, if F is not ω-diagonalizable by

F-universal sets, then, by Lemma 5.4, F is not Fσ-separated from F∗. Now,
by [16] there is a Cantor set, hence a Baire subspace C of F ∪F∗ such that
F and F∗ are dense in C.
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