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Abstract. For every € > 0, any subset of R" with Hausdorff dimension larger than
(1 — &)n must have ultrametric distortion larger than 1/(4¢).

We prove the following theorem.

THEOREM 1. For every D > 1, every n € N, and every norm || - ||
on R", any subset S C R™ having ultrametric distortion at most D must
have Hausdorff dimension at most

(s

An ultrametric space (X, p) is a metric space satisfying

p(z,y) < max{p(z,z), p(y, z)}

for all z,y, z € X. The ultrametric distortion of a metric space (X,d), writ-
ten cum (X, d), is the infimum over D such that there exists an ultrametric
p on X satisfying
for all z,y € X. The Euclidean distortion ca(X,d) of (X,d) is defined sim-
ilarly with respect to Hilbertian metrics over X. The diameter of a metric
space (X, d) is given by

diam(X) = sup d(z,y).

z,yeX
The a-Hausdorff content of a metric space (X, d) is defined as
Co(X) = inf{z diam(4;)* : | J A; 2 X},
iEN ieN

and the Hausdorff dimension of X is dimp(X) = inf{a > 0: C*(X) = 0}.
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Theorem (1| proves that the Euclidean spaces R™ form (asymptotically)
tight examples to the following Dvoretzky-type theorem for Hausdorff di-
mension from [4].

THEOREM 2 ([4]). For every € € (0,1), every locally compact metric
space (X,d) contains a subset S C X having ultrametric distortion at most
9/e, while having Hausdorff dimension at least (1 — &) dimy(X).

Since separable ultrametrics embed isometrically in Hilbert space [5],
Theorem [2] is also true if one replaces “ultrametric distortion” with “Eu-
clidean distortion.” Of course, for this (weaker) Euclidean version of The-
orem [2| Fuclidean spaces cannot serve as tight examples. Tight examples
for the Euclidean version of Theorem [2] are constructed in [4]; those spaces
are stronger than R” in the current context, but being “fractals” based on
expander graphs, they are also more exotic.

Previously, Luosto [3] proved a qualitative result along the lines of The-
orem [l Any subset S C R" of the n-dimensional Euclidean space which
has finite ultrametric distortion must have dimp (S) < n, where dimy(.5)
is the Assouad dimension of S (note that dima(X) > dimg(X) for every
metric space X). Luosto’s proof gives only a weak quantitative bound on
the Assouad dimension, namely, dima (S) < (1 — ¢/(2Dn)"™)n for some uni-
versal constant ¢ > 0. The proof of Theorem [I| presented here is sufficiently
flexible to derive a stronger version of Theorem [I], with Assouad dimension
replacing Hausdorff dimension; see Remark [6] This variant of Theorem [I] is
an asymptotically tight quantitative version of Luosto’s theorem.

It is not clear whether the constant 1 — 1/(2(D + 1)) in Theorem [ is
close to optimal when D is large. However, it is clear that Theorem [I] does
not give meaningful estimates when D > 1 is small. Luosto [3] observed
that the Hausdorff dimension of subsets S C R™ must approach 0 as their
ultrametric distortion approaches 1, i.e., for every § > 0 there exists € > 0
such that if cum(S) < 14¢€, then dimg(S) < 0. On the other hand, we have
the following proposition.

PROPOSITION 3. For every € € [0,1/4] and n € N, there exists S C R"
for which cym(S) < 1+3e and dimy(S) > logc(%n for some universal ¢ > 0.

Sketch of proof. The argument is similar to [Il, Lemma 8]. Take a binary

code in C' C {0,1}" of size 2°°™ in which all pairwise Hamming distances
are in the range [(1 —e)n/2, (1 4+ ¢)n/2]. The set S C [0,1]" is defined as

S = {i(l —e)elay ;€ C’}. "

1=0
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This property of R" is qualitatively different from general metric spaces,
where there is an example of a compact metric space X for which dimp(X)
= 00, but for every subset S C X, if cym(S) < 2, then dimg(S) = 0;
see [4] 2.

Proof of Theorem Fix D > 1, n € N and a norm || - || on R".
Denote by B°(r) = {x € R" : ||z|| < r} the open ball of radius r around the
origin. For subsets A, B C R™ we denote the Minkowski sum of A and B by
A+B={a+b:a€ A, be B}, and for measurable sets A, we use |A| for
the n-dimensional Lebesgue measure of A.

CLAM 4. Let (X,d) a metric space that embeds in an ultrametric space
with distortion at most D, and let xg,...,xym € X. Then max; d(z;, x;—1) >
d(zo, xm)/D.

Proof. Let p be an ultrametric on X such that d < p < D - d. We claim
that max; p(z;, z;—1) > p(xo, Tp,). Indeed, by induction

p(x()vxm) S ma‘x{p(x()vxl)?p(‘rl)xm)}
< max{p(xo, x1), p(x1,22), p(22, Tm)} < - -
< maX{p(an .Zl?l), p($17 1‘2), e 7p(xm*1> l’m)}

Hence,

d(xo, m) < p(To, Tm) < max p(x;—1,z;) < D - -maxd(z;—1,x;). =
1 T

CLAIM 5. Let S C R™ be a subset that embeds in an ultrametric space
with distortion D. If C is a path-connected subset of S+B°(r), then diam(C)
<2(D+ 1)r.

Proof. Suppose for the sake of contradiction that diam(C') > 2(D + 1)r.
Fix n > 0, and let ag,a; € C be such that |jag — a1|| > 2(D + 1)r. Since C
is path-connected, there exists a continuous path a : [0,1] — C such that
a(0) = ap and a(1) = ay. Define b : [0, 1] — S, where b(t) € S is a point in S
such that ||b(t) — a(t)|| < r. From the continuity of a there exists a sequence
of points 0 = ¢y < t1 < -+ < t;, = 1 such that |la(t;) — a(ti—1)]| < n for
every i € {1,...,m}. Hence ||b(tg) — b(tm)| > 2(D + 1)r — 2r, and for every
i€ {l,...,m}, ||b(t;) — b(ti—1)|| < 2r + 2n. But from Claim [4]

16(t0) — b(tm)|l
o) .
Since the above is true for any n > 0, we conclude that

16(t0) — b(tm) |l
B S > 2r,

contradicting our initial assumption. =

2r + 20 > max [[b(t;) — b(ti—1) | >

2r >
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Proof of Theorem . Suppose that cunm(S) < D. We may assume with-
out loss of generality that S C B°(1) (since one can find a countable subset
N C R™ such that [, ((x 4+ B°(1)) N S) = S, and for any countable col-
lect of subsets { Ay }zen we have dimp (U, cpr Az) = sup,ep dimpu(Az)). Fix
§>0, fix r > 0, and fix a path-component C C S + B°(er) of
S + B°(e’r). Note that C is an open subset. By Claim [5|, diam(C) <
2(D + 1)e’r, and hence |C| < |B°(2(D + 1)er)|, which means that

B - = (et o

CTIIE\ 9Dt '

Let A= (SNC)+ B°(r). Observe that C = A+ B°((e® — 1)r), and that A,
B°((e® — 1)r), and C are bounded and open. By the Brunn-Minkowski
inequality,

o1
/n ~ 1/n _ |mo((,0 I/n ~ o € 1/n‘
) WP < jopn e - o < (1= o )il

Since the path-components of S +B°(e57“) are open, and constitute a pairwise
disjoint cover of S + B°(er), by summing the nth power of over the
path-components of S + B°(e’r), we obtain

ed — "
(2) |S+Hwﬂg<1—%D+wa|s+B%&my

é
1 -1
o> <1+5 log(l 2(D—|—1)e§>>n

We will prove that C*(S) = 0 by constructing a sequence of covers of S.
The jth cover of S is the set of path-components of S + B°(e~%). Let § =
|B°(1)| > 0. Note that S 4 B°(1) C B°(2), and hence |S + B°(e)| < 2"83.
By inductively applying , we obtain

Fix

5 6(5_1 Jjn
O(e” < T ———— " 3.
S+ BO(e ﬂ_(l %D+U&> g

On the other hand, each path-component of S + 'B"(e—‘;j ) has a volume at
least |B°(e~%)| = e~%"B. Therefore, S + B°(e~%7) has at most

(0 as))

path-components, and by Claim [b| each of the components has diameter at
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most 2(D + 1)e~%. Hence,

e n e’ —1 an —0j\a
c*(9) <2 <€5(1_2(D+1)66>> - (2(D 4 1)e™%)
6 ef—1
€ (1 - 2(D+1)65> jn
< 2"(4D)" - ( ST > P 0,

and therefore dimy(S) < «. Since the preceding bound is true for every
0 > 0 and every
6
e’ —1
>(146og (1 - —— ) |n,
o (107t (1= ) )
we conclude that

o1
. < T -1 _ €
dimg (5) _51_1351+ (1—1—5 log <1 2(D+1)€6>>n

:(1_2(D1+1)>n..

REMARK 6. One may obtain the same conclusion with Assouad dimen-
sion replacing Hausdorff dimension. This follows from the fact that we have
a uniform bound on the diameter of the elements in our cover at every step;
hence the same sequence of covers shows that

dima (S) < <1 - 2(D1+1)>n

as well. We leave verification as an exercise for the interested reader.
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