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Abstract. For every ε > 0, any subset of Rn with Hausdorff dimension larger than
(1 − ε)n must have ultrametric distortion larger than 1/(4ε).

We prove the following theorem.

Theorem 1. For every D > 1, every n ∈ N, and every norm ‖ · ‖
on Rn, any subset S ⊂ Rn having ultrametric distortion at most D must
have Hausdorff dimension at most(

1− 1

2(D + 1)

)
n.

An ultrametric space (X, ρ) is a metric space satisfying

ρ(x, y) ≤ max{ρ(x, z), ρ(y, z)}
for all x, y, z ∈ X. The ultrametric distortion of a metric space (X, d), writ-
ten cUM(X, d), is the infimum over D such that there exists an ultrametric
ρ on X satisfying

d(x, y) ≤ ρ(x, y) ≤ D · d(x, y)

for all x, y ∈ X. The Euclidean distortion c2(X, d) of (X, d) is defined sim-
ilarly with respect to Hilbertian metrics over X. The diameter of a metric
space (X, d) is given by

diam(X) = sup
x,y∈X

d(x, y).

The α-Hausdorff content of a metric space (X, d) is defined as

Cα(X) = inf
{∑
i∈N

diam(Ai)
α :
⋃
i∈N

Ai ⊇ X
}
,

and the Hausdorff dimension of X is dimH(X) = inf{α > 0 : Cα(X) = 0}.
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Theorem 1 proves that the Euclidean spaces Rn form (asymptotically)
tight examples to the following Dvoretzky-type theorem for Hausdorff di-
mension from [4].

Theorem 2 ([4]). For every ε ∈ (0, 1), every locally compact metric
space (X, d) contains a subset S ⊆ X having ultrametric distortion at most
9/ε, while having Hausdorff dimension at least (1− ε) dimH(X).

Since separable ultrametrics embed isometrically in Hilbert space [5],
Theorem 2 is also true if one replaces “ultrametric distortion” with “Eu-
clidean distortion.” Of course, for this (weaker) Euclidean version of The-
orem 2, Euclidean spaces cannot serve as tight examples. Tight examples
for the Euclidean version of Theorem 2 are constructed in [4]; those spaces
are stronger than Rn in the current context, but being “fractals” based on
expander graphs, they are also more exotic.

Previously, Luosto [3] proved a qualitative result along the lines of The-
orem 1: Any subset S ⊆ Rn of the n-dimensional Euclidean space which
has finite ultrametric distortion must have dimA(S) < n, where dimA(S)
is the Assouad dimension of S (note that dimA(X) ≥ dimH(X) for every
metric space X). Luosto’s proof gives only a weak quantitative bound on
the Assouad dimension, namely, dimA(S) ≤ (1− c/(2Dn)n)n for some uni-
versal constant c > 0. The proof of Theorem 1 presented here is sufficiently
flexible to derive a stronger version of Theorem 1, with Assouad dimension
replacing Hausdorff dimension; see Remark 6. This variant of Theorem 1 is
an asymptotically tight quantitative version of Luosto’s theorem.

It is not clear whether the constant 1 − 1/(2(D + 1)) in Theorem 1 is
close to optimal when D is large. However, it is clear that Theorem 1 does
not give meaningful estimates when D > 1 is small. Luosto [3] observed
that the Hausdorff dimension of subsets S ⊂ Rn must approach 0 as their
ultrametric distortion approaches 1, i.e., for every δ > 0 there exists ε > 0
such that if cUM(S) < 1 + ε, then dimH(S) < δ. On the other hand, we have
the following proposition.

Proposition 3. For every ε ∈ [0, 1/4] and n ∈ N, there exists S ⊂ Rn

for which cUM(S) ≤ 1+3ε and dimH(S) ≥ cε2

log(1/ε)n for some universal c > 0.

Sketch of proof. The argument is similar to [1, Lemma 8]. Take a binary

code in C ⊂ {0, 1}n of size 2cε
2n in which all pairwise Hamming distances

are in the range [(1− ε)n/2, (1 + ε)n/2]. The set S ⊂ [0, 1]n is defined as

S =
{ ∞∑
i=0

(1− ε)εixi : xi ∈ C
}
.
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This property of Rn is qualitatively different from general metric spaces,
where there is an example of a compact metric space X for which dimH(X)
= ∞, but for every subset S ⊂ X, if cUM(S) < 2, then dimH(S) = 0;
see [4, 2].

Proof of Theorem 1. Fix D > 1, n ∈ N and a norm ‖ · ‖ on Rn.
Denote by Bo(r) = {x ∈ Rn : ‖x‖ < r} the open ball of radius r around the
origin. For subsets A,B ⊂ Rn we denote the Minkowski sum of A and B by
A + B = {a + b : a ∈ A, b ∈ B}, and for measurable sets A, we use |A| for
the n-dimensional Lebesgue measure of A.

Claim 4. Let (X, d) a metric space that embeds in an ultrametric space
with distortion at most D, and let x0, . . . , xm ∈ X. Then maxi d(xi, xi−1) ≥
d(x0, xm)/D.

Proof. Let ρ be an ultrametric on X such that d ≤ ρ ≤ D · d. We claim
that maxi ρ(xi, xi−1) ≥ ρ(x0, xm). Indeed, by induction

ρ(x0, xm) ≤ max{ρ(x0, x1), ρ(x1, xm)}
≤ max{ρ(x0, x1), ρ(x1, x2), ρ(x2, xm)} ≤ · · ·
≤ max{ρ(x0, x1), ρ(x1, x2), . . . , ρ(xm−1, xm)}.

Hence,

d(x0, xm) ≤ ρ(x0, xm) ≤ max
i
ρ(xi−1, xi) ≤ D ·max

i
d(xi−1, xi).

Claim 5. Let S ⊂ Rn be a subset that embeds in an ultrametric space
with distortion D. If C is a path-connected subset of S+Bo(r), then diam(C)
≤ 2(D + 1)r.

Proof. Suppose for the sake of contradiction that diam(C) > 2(D+ 1)r.
Fix η > 0, and let a0, a1 ∈ C be such that ‖a0 − a1‖ > 2(D + 1)r. Since C
is path-connected, there exists a continuous path a : [0, 1] → C such that
a(0) = a0 and a(1) = a1. Define b : [0, 1]→ S, where b(t) ∈ S is a point in S
such that ‖b(t)−a(t)‖ ≤ r. From the continuity of a there exists a sequence
of points 0 = t0 < t1 < · · · < tm = 1 such that ‖a(ti) − a(ti−1)‖ ≤ η for
every i ∈ {1, . . . ,m}. Hence ‖b(t0)− b(tm)‖ > 2(D+ 1)r− 2r, and for every
i ∈ {1, . . . ,m}, ‖b(ti)− b(ti−1)‖ ≤ 2r + 2η. But from Claim 4,

2r + 2η ≥ max
i
‖b(ti)− b(ti−1)‖ ≥

‖b(t0)− b(tm)‖
D

.

Since the above is true for any η > 0, we conclude that

2r ≥ ‖b(t0)− b(tm)‖
D

> 2r,

contradicting our initial assumption.
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Proof of Theorem 1. Suppose that cUM(S) ≤ D. We may assume with-
out loss of generality that S ⊆ Bo(1) (since one can find a countable subset
N ⊂ Rn such that

⋃
x∈N ((x+ Bo(1)) ∩ S) = S, and for any countable col-

lect of subsets {Ax}x∈N we have dimH(
⋃
x∈N Ax) = supx∈N dimH(Ax)). Fix

δ > 0, fix r > 0, and fix a path-component C ⊂ S + Bo(eδr) of
S + Bo(eδr). Note that C is an open subset. By Claim 5, diam(C) ≤
2(D + 1)eδr, and hence |C| ≤ |Bo(2(D + 1)eδr)|, which means that

|Bo((eδ − 1)r)| ≥
(

eδ − 1

2(D + 1)eδ

)n
|C|.

Let A = (S ∩C) +Bo(r). Observe that C = A+Bo((eδ − 1)r), and that A,
Bo((eδ − 1)r), and C are bounded and open. By the Brunn–Minkowski
inequality,

(1) |A|1/n ≤ |C|1/n − |Bo((eδ − 1)r)|1/n ≤
(

1− eδ − 1

2(D + 1)eδ

)
|C|1/n.

Since the path-components of S+Bo(eδr) are open, and constitute a pairwise
disjoint cover of S + Bo(eδr), by summing the nth power of (1) over the
path-components of S +Bo(eδr), we obtain

(2) |S +Bo(r)| ≤
(

1− eδ − 1

2(D + 1)eδ

)n
|S +Bo(eδr)|.

Fix

α >

(
1 + δ−1 log

(
1− eδ − 1

2(D + 1)eδ

))
n.

We will prove that Cα(S) = 0 by constructing a sequence of covers of S.
The jth cover of S is the set of path-components of S +Bo(e−δj). Let β =
|Bo(1)| > 0. Note that S + Bo(1) ⊂ Bo(2), and hence |S + Bo(eδ0)| ≤ 2nβ.
By inductively applying (2), we obtain

|S +Bo(e−δj)| ≤
(

1− eδ − 1

2(D + 1)eδ

)jn
2nβ.

On the other hand, each path-component of S + Bo(e−δj) has a volume at
least |Bo(e−δj)| = e−δjnβ. Therefore, S +Bo(e−δj) has at most

2n
(
eδ
(

1− eδ − 1

2(D + 1)eδ

))jn
path-components, and by Claim 5 each of the components has diameter at
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most 2(D + 1)e−δj . Hence,

Cα(S) ≤ 2n
(
eδ
(

1− eδ − 1

2(D + 1)eδ

))jn
· (2(D + 1)e−δj)α

≤ 2n(4D)α ·
(eδ(1− eδ−1

2(D+1)eδ

)
eδα/n

)jn
−−−→
j→∞

0,

and therefore dimH(S) ≤ α. Since the preceding bound is true for every
δ > 0 and every

α >

(
1 + δ−1 log

(
1− eδ − 1

2(D + 1)eδ

))
n,

we conclude that

dimH(S) ≤ lim
δ→0+

(
1 + δ−1 log

(
1− eδ − 1

2(D + 1)eδ

))
n

=

(
1− 1

2(D + 1)

)
n.

Remark 6. One may obtain the same conclusion with Assouad dimen-
sion replacing Hausdorff dimension. This follows from the fact that we have
a uniform bound on the diameter of the elements in our cover at every step;
hence the same sequence of covers shows that

dimA(S) ≤
(

1− 1

2(D + 1)

)
n

as well. We leave verification as an exercise for the interested reader.
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