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Pavel Pyrih and Benjamin Vejnar (Praha)

Abstract. We study compactifications of a ray with remainder a simple closed curve.
We give necessary and sufficient conditions for the existence of a bijective (resp. surjec-
tive) mapping between two such continua. Using those conditions we present a simple
proof of the existence of an uncountable family of plane continua no one of which can
be continuously mapped onto any other (the first such family, so called Waraszkiewicz’s
spirals, was created by Z. Waraszkiewicz in the 1930’s).

1. Introduction. In the 1930’s Z. Waraszkiewicz constructed an un-
countable family of plane continua no one of which can be mapped onto
any other by a continuous mapping [War]. This family consists of continua
which can be obtained as compactifications of a ray with remainder a simple
closed curve.

Using the same construction Z. Waraszkiewicz [War2] proved that there
is no universal continuum (a continuum which can be mapped onto all con-
tinua), solving a problem posed by H. Hahn [Hahn, p. 357].

Unfortunately both proofs are very technical and long. A nice short
proof of the second result was given by D. P. Bellamy (the proof was never
published; a modification of Bellamy’s original proof can be found in [MaTy,
pp. 49–50]).

In the present paper a simple proof of Waraszkiewicz’s first result is
given (notice that the existence of an uncountable family with no common
preimage does not imply the incomparability of members of the family, i.e.
the second result does not imply the first one).

Notice that since Waraszkiewicz’s results, a lot of other attempts has
been made to construct an uncountable family with some additional proper-
ties. We mention D. P. Bellamy [Bel] for chainable continua, M. M. Awartani
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[Awa] for chainable compactifications of a ray, P. Minc [Min] for dendroids
and C. Islas [Isl] for planar fans.

The existence of a common model for some classes of continua (a contin-
uum which can be mapped onto all members of a given class) is discussed
in R. L. Russo [Rus] (using Waraszkiewicz’s original method from [War2]).

Our proof consists of several steps. First, we reformulate the original
topological problem into the language of real functions. Next, we prove that
it is enough to obtain a special combinatorial structure. Finally, we construct
such a structure.

2. Preliminaries. A continuum is a non-empty compact connected
metrizable space. By a path component of a continuum we mean a maxi-
mal subset S of the continuum such that for any pair of points x and y from
S there always exists a continuous mapping of the unit interval into S which
sends 0 to x and 1 to y.

An arc is a space homeomorphic to the closed unit interval [0, 1]. A ray is
a space homeomorphic to [0, 1). A simple closed curve is a space homeomor-
phic to the unit circle. A spiral is a continuum obtained by compactification
of a ray with remainder a simple closed curve.

We denote by S the unit circle {z ∈ C : |z| = 1} in the complex plane.
A lift of a continuous mapping ϕ : S→ S is a continuous function j : R→ R
such that e2πij(s) = ϕ(e2πis) for any s ∈ R.

An almost disjoint system S on a set S is a family of subsets of S such
that the intersection of any two distinct elements of S is finite.

We say that two continua are (continuously) comparable if there is a
mapping from one onto the other. Otherwise we call them mutually incom-
parable.

3. Spirals. We give a complete characterization of comparability of two
spirals using real functions only. Consequently, we give a simple necessary
condition for comparability of two spirals.

Notation 1. We denote by H the ray [0,∞) and by H the one-point
compactification H ∪ {∞}. With every continuous function f : H → R we
associate a continuum

Wf = {(e2πif(t), t) ∈ S×H : t ≥ 0} ∪ (S× {∞})
considered as a subspace of S×H.

Theorem 2. Let f, g : H→ R be two continuous functions which do not
have a finite limit at infinity. Then Wf can be continuously mapped onto
Wg if and only if there exist k ∈ Z and continuous functions h : H→ H and
j : R→ R such that
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• h is onto,
• limt→∞ h(t) =∞,
• j(s + 1)− j(s) = k for every s ∈ R,
• j(R) contains an interval of length one,
• limt→∞(j ◦ f(t)− g ◦ h(t)) = 0.

Moreover Wf is homeomorphic to Wg if and only if there is a homeomor-
phism h : H → H and a homeomorphism j : R → R such that all the five
conditions hold with k = 1.

Proof. Let us start with the direct implication. We suppose there is a
continuous onto mapping ϕ : Wf → Wg. Since neither f nor g has a finite
limit at infinity, it follows that the continua Wf and Wg each have two path
components, one of which is dense and the other not. This implies that ϕ
maps the dense path component {(e2πif(t), t) : t ≥ 0} of Wf onto the dense

path component {(e2πig(t), t) : t ≥ 0} of Wg, and S × {∞} onto S × {∞}.
We denote by p : S×H→ H the projection onto the second coordinate and
define h : H→ H by h(t) = p ◦ ϕ(e2πif(t), t). We observe that

ϕ(e2πif(t), t) = (e2πig◦h(t), h(t)).

The function h is continuous and onto. Moreover h(t) converges to infinity
as t goes to infinity.

There exists a continuous function j′ : R → R which is a lift of ϕ re-
stricted to S×{∞}. Hence ϕ(e2πis,∞) = (e2πij

′(s),∞) for every s ∈ R. The
difference j′(s+ 1)− j′(s) is a fixed integer k. Since ϕ(S×{∞}) = S×{∞},
we see that j′([0, 1]) contains an interval of length one.

Now we are going to prove that all the cluster points of the function
j′ ◦ f − g ◦ h are integers, i.e. if tn →∞ and j′ ◦ f(tn)− g ◦ h(tn) converges
to r ∈ R ∪ {−∞,∞} then r ∈ Z. Towards a contradiction, suppose there is
a cluster point r ∈ R ∪ {−∞,∞} of j′ ◦ f − g ◦ h which is not an integer.

Suppose first that r ∈ R. Then there is a sequence (tn) in H which
converges to infinity and for which j′ ◦ f(tn)− g ◦ h(tn)→ r. By passing to
a subsequence we can assume that e2πif(tn) → e2πis for some s ∈ R. Then
e2πij

′◦f(tn) → e2πij
′(s). Since ϕ is continuous we find that ϕ(e2πif(tn), tn) →

ϕ(e2πis,∞). Thus (e2πig◦h(tn), h(tn))→ (e2πij
′(s),∞) and hence e2πig◦h(tn) →

e2πij
′(s), so e2πi(g◦h(tn)−j

′◦f(tn)) converges to 1. But it converges to e−2πir,
thus r ∈ Z. This is a contradiction.

If r ∈ {−∞,∞} we can find a sequence (tn) in H converging to infinity
such that e2πi(j

′◦f(tn)−g◦h(tn)) = −1 for every n, and we obtain a contradic-
tion as in the previous part.

Since j′ ◦ f − g ◦ h is a continuous function whose cluster points are
integers, it follows that there is a unique integer cluster point m and thus it
is the limit of this function at infinity.
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Finally we put j = j′ −m. It follows that j(s + 1) − j(s) = k for every
s ∈ R, j(R) contains an interval of length one and

lim
t→∞

(j ◦ f(t)− g ◦ h(t)) = m−m = 0.

Moreover if ϕ is a homeomorphism then so are h and j, and we have k = 1.
For the reverse implication suppose we are given k, h and j as in the

statement. We define ϕ : Wf →Wg by

ϕ(e2πif(t), t) = (e2πig◦h(t), h(t)) if t ∈ H,

ϕ(e2πis,∞) = (e2πij(s),∞) if s ∈ R.
This is a correctly defined mapping since j(s + 1)− j(s) is an integer. The
mapping ϕ is onto, because h is onto and j(R) contains an interval of length
one. Clearly ϕ is continuous at all points of the form (e2πif(t), t) for t ∈ H,
because h is continuous. Moreover the restriction of ϕ to S×{∞} is contin-
uous, because j is continuous.

It remains to show that the ϕ image of a sequence (e2πif(tn), tn) con-
verging to (e2πis,∞) converges to ϕ(e2πis,∞). Thus we have to show that
(e2πig◦h(tn), h(tn)) → (e2πij(s),∞). Clearly h(tn) → ∞, because h(t) → ∞
as t → ∞. We know that e2πi(j◦f(tn)−g◦h(tn)) → 1 and e2πij◦f(tn) → e2πij(s).
Hence e2πig◦h(tn) → e2πij(s). Thus ϕ maps continuously Wf onto Wg. More-
over if h and j are homeomorphisms and k = 1 we can easily observe that
ϕ is a one-to-one mapping and thus a homeomorphism, being a bijection of
two compact spaces.

Corollary 3. Let f, g : H → R be two continuous functions which do
not have a finite limit at infinity. If Wf can be continuously mapped onto
Wg then there exist a continuous function h : H → H converging to infinity
and k ∈ Z such that

sup
t∈H
|kf(t)− g ◦ h(t)| <∞.

Proof. By Theorem 2 there exist k ∈ Z, h : H → H and j : R → R with
the properties given there. We can assume that the function s 7→ j(s)− ks
is periodic and continuous and hence bounded. Let l be a number such that
|j(s)− ks|+ 1 ≤ l for every s ∈ R. Since j ◦ f(t)− g ◦ h(t) → 0 as t → ∞,
there exists t0 ∈ H such that |j ◦ f(t)− g ◦ h(t)| ≤ 1 for every t > t0. Thus
for t > t0 we obtain

|kf(t)− g ◦ h(t)| ≤ |kf(t)− j ◦ f(t)|+ |j ◦ f(t)− g ◦ h(t)| ≤ l − 1 + 1 = l.

Moreover the function |kf(t)− g ◦h(t)| is continuous and hence bounded on
[0, t0]. Thus the required inequality holds.

Example 4. Let f : H → R be the identity function and let g : H → R
be a piecewise linear function whose break points are at positive integers and
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for which g(2n− 2) = 0 and g(2n− 1) = 2n− 1 for every positive integer n.
We claim that the corresponding spirals Wf and Wg are incomparable.

Indeed, suppose first that Wf can be continuously mapped onto Wg.
Then by Corollary 3 there is a continuous mapping h : H → H converging
to infinity and k ∈ Z such that

sup
t∈H
|kf(t)− g ◦ h(t)| <∞.

Hence l := supt∈H |kt−g◦h(t)| <∞. There is an increasing sequence (ti)
∞
i=1

of positive numbers converging to infinity such that h(ti) is always an even
integer. Thus |kti−g◦h(ti)| ≤ l and hence |kti| ≤ l for every i. Consequently,
k = 0. Let (ui)

∞
i=1 be an increasing sequence converging to infinity for which

h(ui) is always an odd integer and u1 > t0. Then |g ◦ h(ui)| ≤ l for every i
and hence |h(ui)| ≤ l for every i. This contradicts the fact that h converges
to infinity.

Now suppose that Wg can be continuously mapped onto Wf . By Corol-
lary 3 there is a continuous mapping h : H → H converging to infinity and
k ∈ Z such that

sup
t∈H
|kg(t)− f ◦ h(t)| <∞.

Hence l := supt∈H |kg(t)− h(t)| <∞. Let (ti)
∞
i=1 be an increasing sequence

of even positive integers converging to infinity. Then |kg(ti)−h(ti)| ≤ l and
thus |h(ti)| ≤ l for every i. This again contradicts the fact that h converges
to infinity.

4. Peak points. We define a notion of peak point. We prove two simple
lemmas about the behavior of this notion with respect to composition of
functions and with respect to near functions.

Definition 5. Let I ⊆ R be an interval, f : I → R a continuous func-
tion, x ∈ I and v ∈ R. We say that f has a peak of height v at x if there exists
an interval [a, b] ⊆ I containing x such that f(t) ≤ f(x) for all t ∈ [a, b],
f(a) ≤ f(x)− v and f(b) ≤ f(x)− v.

Lemma 6. Let I ⊆ R be an interval, g : I → R a continuous function
and h : I → I a continuous onto function. If g has a peak of height v at y,
then there is an x ∈ I such that g ◦ h has a peak of height v at x and
g(y) = g ◦ h(x).

Proof. Since h is onto, there is an x ∈ I such that h(x) = y. Clearly
g(y) = g ◦ h(x). Since y is a peak point of height v, there exists an interval
[a, b] ⊆ I containing y such that g(t) ≤ g(y) for t ∈ [a, b], g(a) ≤ g(x) − v
and g(b) ≤ g(x) − v. There is an interval [c, d] ⊆ I containing y for which
h({c, d}) = {a, b} and h([c, d]) = [a, b]. Clearly for any t ∈ [c, d] we get
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g ◦ h(t) ≤ g(y) = g ◦ h(x), and g ◦ h(c) as well as g ◦ h(d) are less than
g(y)− v = g ◦ h(x)− v. Thus x is a peak point of g ◦ h of height v.

Lemma 7. Let I ⊆ R be an interval, u > 0 and f, g : I → R two con-
tinuous functions such that |f − g| ≤ u. If f has a peak point x of height v
then g has a peak point y of height v − 2u such that |f(x)− g(y)| ≤ u.

Proof. There is an interval [a, b] ⊆ I containing x such that f(t) ≤ f(x)
for every t ∈ [a, b], f(a) ≤ f(x) − v and f(b) ≤ f(x) − v. We take a point
y ∈ [a, b] at which g attains its maximum on [a, b]. Then |f(x)−g(y)| ≤ u. It
follows that g(a) ≤ f(a)+u ≤ f(x)−v+u ≤ g(y)+u−v+u = g(y)−(v−2u).
Similarly g(b) ≤ g(y)−(v−2u). Hence g has a peak point y of height v−2u.

Fig. 1. Peak point of height v − 2u for the mapping g

5. Reduction to a discrete case. We now associate a function with
every subset of positive integers. Then we give a condition under which the
spirals corresponding to two such functions are not comparable.

Notation 8. For an infinite set M of positive integers m1 < m2 < · · · ,
we define a continuous piecewise linear function fM : H → R whose only
break points are at positive integers and f(2i − 2) = 0 and f(2i − 1) = mi

for any positive integer i.

...

Fig. 2. Piecewise linear mapping fM
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Proposition 9. Let M,N be two infinite sets of positive integers and
suppose that WfM can be continuously mapped onto WfN . Then there exist
positive integers k and l such that for every n ∈ N there is m ∈M for which
|km− n| ≤ l.

Proof. Denote M = {m1 < m2 < · · · } and N = {n1 < n2 < · · · }.
By Corollary 3 there exist a continuous function h : H → H converging to
infinity, k ∈ Z and a positive integer l′ such that |kfM (t)−fN ◦h(t)| ≤ l′ for
any t ∈ H. Since fM as well as fN ◦h are unbounded non-negative functions
we see that k > 0. Fix a positive integer q greater than t0 and 2l′. Let l be
a positive integer greater than

max{l′, |km1 − n1|, . . . , |km1 − nq|}.
For any positive integer j > q the function fN has a peak point 2j − 1 of
height nj and fN (2j − 1) = nj . By Lemma 6 the function fN ◦ h has a
peak point x of height nj and fN ◦ h(x) = nj . Now, Lemma 7 applied to
g = kfM and f = fN ◦ h on the interval I = (0,∞) shows that kf has a
peak point y of height nj − 2l′ such that |kfM (y) − fN ◦ h(x)| ≤ l′. Note
that nj − 2l′ ≥ j − 2l′ > q − 2l′ > 0. We can see that the only peak points
of positive height of kfM are odd positive integers. Hence, there exists a
positive integer i such that 2i − 1 = y. Consequently, kfM (2i − 1) = kmi

and thus |kmi − nj | ≤ l′ ≤ l.

6. An uncountable family. We now construct an uncountable system
of infinite subsets of positive integers such that for any pair of distinct
elements the conclusion of Proposition 9 is not satisfied.

Proposition 10. There exists an uncountable system S of infinite sub-
sets of positive integers such that for any pair of distinct sets M,N ∈ S and
for any positive integers k and l there is a point n ∈ N such that |km−n| > l
for every m ∈M .

Proof. Let S be an uncountable almost disjoint system of infinite subsets
of {1!, 2!, 3!, . . . }. Suppose that M,N ∈ S are two distinct sets and k, l are
positive integers. Let n = j! be an element of N \M such that j is greater
than k and l + 1. Now for any m = i! ∈M we find that if i < j then

|km− n| ≥ n− km = j!− ki! ≥ j!− (j − 1)(j − 1)! = (j − 1)! ≥ j − 1 > l,

and if i > j then

|km− n| ≥ km− n = ki!− j! ≥ i!− j! ≥ (j + 1)!− j! ≥ j > l.

Corollary 11. There exists an uncountable collection of incomparable
plane continua.

Proof. We take an uncountable system S from Proposition 10. It follows
from Proposition 9 that the collection {WfM : M ∈ S} consists of pairwise
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incomparable continua. All of them are planar because they are subcontinua
of S×H.

7. Remarks. We note that the system S in Proposition 10 can be made
of size continuum (by well known simple constructions without using the
axiom of choice). Moreover in the proof of Proposition 10 we do not need
an almost disjoint system: it suffices to take a system of subsets of positive
integers such that the difference of any two distinct sets is infinite.
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