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Abstract. Ressayre considered real closed exponential fields and “exponential” in-
teger parts, i.e., integer parts that respect the exponential function. In 1993, he outlined
a proof that every real closed exponential field has an exponential integer part. In the
present paper, we give a detailed account of Ressayre’s construction and then analyze the
complexity. Ressayre’s construction is canonical once we fix the real closed exponential
field R, a residue field section k, and a well ordering ≺ on R. The construction is clearly
constructible over these objects. Each step looks effective, but there may be many steps.
We produce an example of an exponential field R with a residue field section k and a well
ordering ≺ on R such that Dc(R) is low and k and ≺ are ∆0

3, and Ressayre’s construction
cannot be completed in LωCK

1
.

1. Introduction

Definition 1 (Real closed field). A real closed field is an ordered field
in which every nonnegative element is a square, and every odd degree poly-
nomial has a root.

Tarski’s celebrated elimination of quantifiers [27] shows that the axioms
for real closed fields generate the complete theory of the ordered field of
reals, so this theory is decidable.

Definition 2 (Integer part). An integer part for an ordered field R is
a discretely ordered subring Z such that for each r ∈ R, there exists some
z ∈ Z with z ≤ r < z + 1.

If R is Archimedean, then Z is the unique integer part. In general, the
integer part for R is not unique. Shepherdson [26] showed that a discrete
ordered ring Z is an integer part for some real closed field if and only if Z
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satisfies Open Induction, a weak fragment of first order Peano Arithmetic (1)
(PA) with induction axioms just for open (i.e., quantifier-free) formulas. In
[19], Mourgues and Ressayre proved the following.

Theorem A. Every real closed field has an integer part.

By a deep result of Wilkie [28], the theory of the ordered field of reals with
the exponential function ex is model complete. Macintyre and Wilkie [18]
showed that this theory is decidable, assuming that Schanuel’s Conjecture
holds for the reals. Ressayre isolated a set of axioms for real closed fields
with an exponential function, such that each model has an integer part
“respecting” the exponential function. In this setting, 2x is a more natural
exponential function to use than ex (although 2x and ex are interdefinable).

Definition 3 (Real closed exponential field). A real closed exponential
field is a real closed field R with a function x 7→ 2x satisfying the following
axioms:

(1) 2x+y = 2x2y,
(2) x < y implies 2x < 2y,
(3) for all x > 0, there exists some y such that 2y = x, i.e., log(x) is

defined,
(4) 21 = 2,
(5) for n ≥ 1, for all x ∈ R, x > n2 implies 2x > xn.

We say what it means for an integer part to respect the exponential
function.

Definition 4 (Exponential integer part). Let R be a real closed expo-
nential field. An exponential integer part is an integer part Z such that for
all positive z ∈ Z, we have 2z ∈ Z.

The result below is the natural analogue of Theorem A for exponential
real closed fields. Ressayre outlined the proof of Theorem B in an extended
abstract [23].

Theorem B (Ressayre). If R is a real closed exponential field, then R
has an exponential integer part.

There is further work using the ideas from [19] and [23]. In [6], it is shown
that every real closed field can be embedded in an “initial” substructure of
the surreal numbers. In [16] and [8] embeddings of ordered fields in fields of
power series are further analyzed, giving a valuation-theoretic interpretation
of the results in [19].

(1) First order Peano Arithmetic has the axioms for discretely ordered commutative
rings with unity, plus an induction axiom for each elementary first order formula ϕ(u, x)
saying that for all tuples of parameters u, if the set of nonnegative elements satisfying
ϕ(u, x) contains 0 and is closed under successor, then it includes all nonnegative elements.
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In this paper, we first revisit Ressayre’s extended abstract, filling in the
details. We then analyze the complexity of the construction. Typically, in
computable structure theory, we locate objects at various finite levels in
the “arithmetical” hierarchy. Occasionally, we pass to some infinite level in
the “hyperarithmetical” hierarchy. It turns out that Ressayre’s construction
cannot be located in the hyperarithmetical hierarchy. We say just a little
about these hierarchies here. For more information, see [24], [1], or [13].

We say that Y is computable relative to X, for X,Y ∈ P(ω), and we write
Y ≤T X, if there is a program that computes the characteristic function for
Y given answers to questions about membership in X. The set X is referred
to as the oracle in this computation. A set X is computable if X ≤T ∅, i.e.,
no oracle is needed to compute X. We have an effective list of the programs.
We write ϕXe for the partial function computed using program number e
with oracle X. We write ϕXe (n)↓ if program e eventually halts, given oracle
X and input n. We let ϕe denote ϕ∅e.

The effective list of programs immediately suggests a way to build more
complicated sets. For an arbitrary set X ⊂ ω, the jump is X ′={e : ϕXe (e)↓}.
This set is computably enumerable (c.e.) but not computable relative to X.
A set X is low if X ′ ≤T ∅′. We can iterate the jump to get X(n), for n ∈ ω.
We let X(0) = X and X(n+1) = (X(n))′. We may continue the iteration
process through the “computable” ordinals (2). Let X(ω) = {〈n, x〉 : n ∈ ω
& x ∈ X(n)} and X(α+1) = (X(α))′. In general, for limit α, the set X(α)

represents {〈β, x〉 : β < α&x ∈ X(β)}. (To make this last definition precise,
we code the ordinal β by a natural number, using Kleene’s system of ordinal
notation.)

Stephen Kleene and Andrzej Mostowski independently defined what is
now called the arithmetical hierarchy. Martin Davis and Andrzej Mostowski
independently defined what is now called the hyperarithmetical hierarchy,
extending the arithmetical hierarchy through the computable ordinals. We
give the definition in a uniform way:

• Arithmetical hierarchy. For 1 ≤ n < ω, a set is Σ0
n if it is computably

enumerable relative to ∅(n−1). A set is Π0
n if the complement is Σ0

n,
and it is ∆0

n if it is both Σ0
n and Π0

n. A set is arithmetical if it is ∆0
n

for some n ∈ ω.
• Hyperarithmetical hierarchy. For computable ordinals α ≥ ω, a set is

Σ0
α if it is c.e. relative to ∅(α). A set is Π0

α if the complement is Σ0
α,

and it is ∆0
α if it is both Σ0

α and Π0
α. A set is hyperarithmetical if it is

∆0
α for some computable ordinal α.

We can relativize. In particular, a set is Σ0
n(X) if it is c.e. relative to X(n−1).

(2) An ordinal α is computable if there is a linear ordering L of order type α such that
the atomic diagram D(L) is computable.
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Ressayre’s construction is canonical with respect to a given real closed
field, a residue field section, and a well ordering of the elements of the real
closed field. We produce an example of a real closed exponential field R with
a residue field section k and a well ordering ≺ of R, all arithmetical, such
that when we apply Ressayre’s construction, it is not completed in LωCK

1
,

where ωCK
1 (“Church–Kleene ω1”) is the first noncomputable ordinal (3). We

note that the subsets of ω in LωCK
1

are exactly the hyperarithmetical ones.

Here is our main new result. In it, the notation Dc(R) stands for the
complete (or elementary) diagram of R.

Theorem C (Main new result). There is a countable real closed ex-
ponential field R with a residue field section k and a well ordering < (of
order type ω + ω) such that Dc(R) is low, k and < are ∆0

3, and Ressayre’s
construction applied to R, k, and < is not completed in LωCK

1
.

We state one more result below. It is an easy consequence of older work of
Ressayre. To state it, we need just a little more background. An “admissible”
set is a transitive set satisfying the axioms of Kripke–Platek set theory. This
is a weak version of ZF, in which we drop the power set axiom and restrict the
comprehension and separation axioms to formulas with bounded quantifiers.
For an admissible set A, a fattening is an extension B to a larger admissible
set with no new ordinals. We note that LωCK

1
is the least admissible set

(containing ω). A fattening of LωCK
1

may have nonconstructible subsets of ω,

but the ordinals are just the computable ones.

Theorem D. For any countable real closed exponential field R, there
is an exponential integer part Z such that (R,Z) lives in a fattening of the
least admissible set over (i.e., containing) R.

In §2, we give some algebraic preliminaries. In §3, we briefly outline
Mourgues and Ressayre’s construction of an integer part for a real closed
field. In §4, we give Ressayre’s construction of an exponential integer part for
a real closed exponential field. In §5, we describe some background needed
for Theorems C and D, and in §6, we prove these results.

2. Algebraic preliminaries. In this section, we give some algebraic
background for the construction of Mourgues and Ressayre. We recall the
natural valuation on an ordered field R.

Definition 5 (Archimedean equivalence). For x, y ∈ R× := R − {0},
x ∼ y iff there exists n ∈ N such that n|x| ≥ |y| and n|y| ≥ |x|, where
|x| := max{x,−x}. We denote the equivalence class of x ∈ R by v(x).

(3) The constructible hierarchy is defined as follows: L0 = ∅, Lα+1 is the family of sets
definable (with parameters) in Lα, and for limit α, we have Lα =

⋃
β<α Lβ .
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Definition 6 (Value group). The value group of R is the set of Archime-
dean equivalence classes, v(R×) = {v(x) : x ∈ R×}, with multiplication on
v(R×) defined to be v(x)v(y) := v(xy). We endow v(R×) with the order

v(x) < v(y) if (∀n ∈ N)[n|x| < |y|].

By convention, we let v(0) < v(R×). Although the value group is Abelian,
and it is traditional to denote the operation by +, we shall use ·.

Under the given operation and ordering, v(R×) is an ordered Abelian
group with identity v(1). Moreover, the map x 7→ v(x) is a valuation, i.e. it
satisfies the axioms v(xy) = v(x)v(y) and v(x+ y) ≤ max{v(x), v(y)}.

If R is a real closed field, then the value group v(R×) is divisible [7,
Theorem 4.3.7]. An Abelian group (G, ·) (with multiplication as the group
operation) is divisible if for all g ∈ G and all 0 6= n ∈ N, there exists
h ∈ G such that hn = g. Note that a divisible Abelian group (G, ·) is a
Q-vector space when scalar multiplication by q ∈ Q is defined to be gq. This
observation motivates the following definition.

Definition 7 (Generating set). Let (G, ·) be a divisible Abelian group.
We say that B is a generating set for G if each element of G can be expressed
as a finite product of rational powers of elements of B. We denote the
Abelian group generated by a set B ⊆ R by 〈B〉Q.

Definition 8 (Value group section). A value group section for R is
the image of an embedding t : v(R×) ↪→ R>0 of ordered groups such that
v(t(g)) = g for all g ∈ v(R×).

If R is a real closed field, there are subgroups of (R>0, ·) that are value
group sections for R (see [10, Theorem 8]). Note that we use the term “value
group section” to refer to the image of the described embedding, not the
embedding itself. In [14], it is shown that for a countable real closed field R,
there is a value group section G that is ∆0

2(R). Moreover, this is sharp, in
the sense that there is a computable real closed field R such that the halting
set ∅′ is computable relative to every value group section.

Definition 9 (Valuation ring). The valuation ring is the ordered ring

Ov := {x ∈ R : v(x) ≤ 1}

of finite elements.

The valuation ring has a unique maximal ideal

Mv := {x ∈ R : v(x) < 1}

of infinitesimal elements.

Definition 10 (Residue field). The residue field is the quotientOv/Mv.



168 P. D’Aquino et al.

The residue field k is an ordered field under the order induced by R. It
is Archimedean, so it is isomorphic to a subfield of R.

Definition 11 (Residue field section). A residue field section is the
image of an embedding of ordered fields ι : k ↪→ R such that ι(c) +Mv = c
for all c ∈ k.

If R is a real closed field, then k is real closed [7, Theorem 4.3.7] and
residue field sections exist [10, Theorem 8]. To construct a residue field
section, we look for a maximal real closed Archimedean subfield. In [14], the
second and fourth authors proved the following result on the complexity of
residue field sections.

Proposition 2.1. For a countable real closed field R, there is a residue
field section that is Π0

2(R).

Proposition 2.1 is sharp in the following sense.

Proposition 2.2. There is a computable real closed field with no Σ0
2

residue field section.

Definition 12 (k((G))). Let k be an Archimedean ordered field and let
G be an ordered Abelian group.

(1) The field k((G)) of generalized series is the set of formal sums s =∑
g∈G agg, where ag ∈ k and Supp(s) := {g ∈ G : sg 6= 0} is an

anti-wellordered subset of G.
(2) The length of s is the order type of Supp(s) under the reverse order-

ing. Later, we may write s =
∑

i<α aigi, where gi ∈ G with gi > gj
for i < j < α, and ai ∈ k×. Under this notation, the length of s is α.

(3) For s =
∑

g∈S agg and t =
∑

g∈T bgg in k((G)) where Supp(s) ⊆ S
and Supp(t) ⊆ T , the sum s+ t and the product s · t are defined as
for ordinary power series:

(a) In s+ t, the coefficient of g is ag + bg.
(b) In s · t, the coefficient of g is the sum of the products ag′bg′′ ,

where g = g′ · g′′.
(4) k((G)) is ordered anti-lexicographically by setting s > 0 if ag > 0

where g := max(Supp(s)).

For a proof that k((G)) is a totally ordered field, see [9, Chapter VIII,
Theorem 10]. If k is real closed and (G, ·) is an ordered divisible Abelian
group, then k((G)) is real closed by [7, Theorem 4.3.7]. The field k((G)) car-
ries a canonical valuation v : k((G))× → G, defined by s 7→ max(Supp(s)),
with value group G. Given a subset X ⊆ G, we set

k((X)) = {s ∈ k((G)) : Supp(s) ⊆ X}.
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We let G≤1 = {g ∈ G : g ≤ 1}, and similarly define G<1 and G>1. The
valuation ring is the ring of finite elements k((G≤1)), its valuation ideal is
the ideal of infinitesimals k((G<1)), and the residue field is k. The canonical
additive complement to the valuation ring is k((G>1)), the ring of purely
infinite series. The group of positive units of k((G≤1)) is denoted by U>0

v , and
consists of series s in the valuation ring with coefficient ag > 0 for g = 1. In
this setting the following decompositions of the additive and multiplicative
groups of k((G)) will be useful:

(k((G)),+) = k((G≤1))⊕ k((G>1)) and (k((G))>0, ·) = U>0
v ·G.

2.1. Truncation-closed embeddings

Definition 13 (Truncation-closed subfield). Let F be a subfield of
k((G)). We say that F is truncation closed if whenever s =

∑
g∈G agg ∈ F

and h ∈ G, the restriction s<h =
∑

g<h agg also belongs to F . We call any
such s<h a truncation of s.

Definition 14. Let R be a real closed field with value group section G
and residue field section k. Let δ be an order preserving embedding from R
into k((G)). We say that δ is an embedding over k and G if its restriction
to k and G is the identity map.

In [19, Lemma 3.2], Mourgues and Ressayre observed the following.

Proposition 2.3 (Mourgues–Ressayre). If F is a truncation closed sub-
field of k((G)) and ZF = {t+ z : t ∈ F ∩ k((G>1)) & z ∈ Z}, then ZF is an
integer part for F .

Proof. If s ∈ F , we have s = t+t′, where t ∈ k((G>1)) and t′ ∈ k((G≤1)).
Take z ∈ Z such that z ≤ t′ < z + 1. Then t+ z ≤ s < t+ z + 1.

In [19, Corollary 4.2], they proved the following restatement of Theo-
rem A.

Theorem A′ (Mourgues–Ressayre). Let R be a real closed field with
value group section G and residue field section k. Then there is an order
preserving embedding δ from R onto a truncation closed subfield F of k((G))
(over k and G). Thus δ−1(ZF ) is an integer part for R.

We refer to δ as a “development function”.

2.2. Exponential integer parts. In [23] Ressayre imposed further
conditions on the value group section G and the development function δ
which ensure that the truncation integer part is also closed under exponen-
tiation. The following is a rephrasing of Theorem B and of [23, Theorem 4].

Theorem B′. Let (R, 2x) be an exponential real closed field. Fix a resi-
due field section k ⊆ R. Then there is a value group section G ⊆ R>0 and
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an order preserving embedding from R onto a truncation closed subfield F
of k((G)) (over k and G) such that

(2.1) δ(log(G)) = δ(R) ∩ k((G>1)).

Condition (2.1) is equivalent to the following:

• for all g ∈ G, we have δ(log(g)) ∈ k((G>1));
• if r ∈ R satisfies δ(r) ∈ k((G>1)), then 2r ∈ G.

If G and δ satisfy condition (2.1), and F is the image of R under δ, then
the exponential function 2x on R induces an exponential function on F . We
let 2y = δ(2x), where y = δ(x). We have the natural integer part ZF , de-
fined as in the construction of Mourgues and Ressayre. The simple lemma
below, which appears in [3, Proposition 5.2], says that this is an exponential
integer part for F . It follows that δ−1(ZF ) is an exponential integer part
for R.

Lemma 2.4. Let G and δ satisfy condition (2.1), and let F be the image
of R under δ. Then ZF is an exponential integer part of F with respect to
the induced exponential function.

Proof. Let z ∈ ZF and z > 0. Then z = a + y where y ∈ F ∩ k((G>1))
and a ∈ Z. We compute 2z = 2a2y. If y = 0 then a > 0, so 2z ∈ N ⊆ ZF .
If y 6= 0 then y > 0, and 2y > 1. We now show that 2y ∈ G. By (2.1),
y = δ(log(g)) for some g ∈ G. Then 2y = δ(2log(g)) = δ(g) = g, as required.
Therefore, 2y ∈ G>1, and so 2z = 2a2y belongs to k((G>1)), and also to
F = δ(R). Hence, 2z ∈ F ∩ k((G>1)) ⊆ ZF .

We shall return to the proof of Theorem B′ later.

3. Development triples. Mourgues and Ressayre proved Theorem A′

by showing how to extend a partial embedding φ from a subfield A of R onto
a truncation closed subfield F of k((G)) to a larger domain while preserving
truncation closure.

Definition 15 (Development triple). Suppose R is a real closed field,
with residue field section k. We say that (A,H, φ) is a development triple
with respect to R and k if

(1) A is a real closed subfield of R containing k,
(2) H ⊆ A>0 is a value group section for A, and
(3) φ is an embedding from A onto a truncation closed subfield of k((H))

(over k and H).

Notation. We write (A′, H ′, φ′) ⊇ (A,H, φ) if A′ ⊇ A, H ′ ⊇ H, and
φ′ ⊇ φ. We also write RC(X) to denote the real closure of X for any X ⊆ R.
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Given a development triple (A,H, φ) and an element r ∈ R − A, we
want a development triple (A′, H ′, φ′) ⊃ (A,H, φ) with r ∈ A′. We use the
following definitions to describe φ′(r).

Definition 16. Let α be an ordinal. The development of r ∈ R over
(A,H, φ) of length α (if it exists) is an element tα ∈ k((H)) satisfying:

• t0 = 0 if α = 0, and otherwise,
• tα =

∑
i<α aigi where

(3.1) (∀β < α)(∃r̂β ∈ A)
[
φ(r̂β) =

∑
i<β

aigi & gβ = v(r − r̂β) ∈ G
]
.

It is straightforward to prove the next lemma.

Lemma 3.1. Let (A,H, φ) be a development triple, r ∈ R, and γ an
ordinal for which tγ exists. Then:

(1) tγ is unique and, for all β ≤ γ, tβ = (tγ)<β.
(2) There is a development tα of r over (A,H, φ) of maximum length α.

Lemma 3.1 allows us to make the following definition.

Definition 17. The development of r over (A,H, φ) is the unique de-
velopment of r over (A,H, φ) of maximum length α.

We now restate the key lemma of Theorem A by Mourgues and Ressayre
[19] in the language of development triples, since we will use development
triples with additional properties in the exponential case.

Lemma 3.2 (Mourgues–Ressayre). Suppose (A,H, φ) is a development
triple with respect to a real closed field R and r ∈ R − A. There is a de-
velopment triple (A′, H ′, φ′) ⊇ (A,H, φ) such that r ∈ A′. Moreover, if the
development of r over (A,H, φ) is tα ∈ k((H)), then φ′(r)<α = tα.

We say just a little about the proof. Let t = tα be the development of r
over (A,H, φ). There are two cases to consider.

Case 1: Suppose tα ∈ φ(A), that is, we have r̂α ∈ A with φ(r̂α) = tα,
and r − rα has no valuation in H. In this case, we let g = |r − rα| and
let H ′ = 〈H ∪ {g}〉Q. We let A′ = RC(A(g)). We note that r and g are
inter-algebraic over A; in particular, r = r̂α + εg for ε = ±1, so r ∈ A′. We
let φ′(g) = g. There is a unique extension of φ′ onto the domain A′. In [10],
this is the “value transcendental” case.

Case 2: Suppose tα 6∈ φ(A). In this case, we let H ′ = H, and we set
φ′(r) = tα. We let A′ = RC(A(r)). Again, there is a unique extension of φ′

onto the domain A′. In [10], this is the “immediate transcendental” case.

To see that the restriction of φ′ to A and the one new element g or r is
an elementary embedding, it is enough to show that for all x ∈ A, x < g
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(or x < r) if and only if φ(x) < g (or φ(x) < t). This can be found in [5,
p. 191, Lemma 3.3]. Then φ′ is an isomorphism from A′ onto RC(φ(A)(t)).
In [19] it is shown that φ′(A′) is truncation closed.

Lemma 3.3 (Mourgues–Ressayre). Let F be a truncation closed subfield
of k((G)), and let t ∈ k((G))−F , where all proper truncations of t are in F .
Then the real closure of F (t) is also a truncation closed subfield of k((G)).

Thus, in both cases, we have defined a development triple (A′, H ′, φ′)
extending (A,H, φ) with r ∈ A′ = RC(A(r)). This is all we shall say about
the proof of Lemma 3.2.

We will use the next notion extensively in §4 on the exponential case.

Definition 18. Let (A′, H ′, φ′) and (A,H, φ) be development triples.

(1) The triple (A′,H ′,φ′) is a value group preserving extension of (A,H, φ)
if (A′, H ′, φ′) extends (A,H, φ) and H ′ = H.

(2) A triple (A,H, φ) is maximal if (A,H, φ) admits no proper value
group preserving extension.

Note that (k, {1}, id) is a maximal development triple as is any triple of
the form (R,G, δ) with respect to a real closed field R.

Lemma 3.4. Given a real closed field R, a residue field section k, and a
well ordering ≺ of R, there is a canonical development triple (R,G, δ) with
respect to R, k, and ≺.

Proof. We obtain (R,G, δ) from a chain of development triples. We
let (R0, G0, δ0) be (k, {1}, id). Given (Ri, Gi, δi), if R − Ri 6= ∅, let r be
the least element of R − Ri under ≺. By Lemma 3.2, there is an exten-
sion (Ri+1, Gi+1, δi+1) of (Ri, Gi, δi) with r ∈ Ri+1. For limit α, we obtain
(Rα, Gα, δα) by taking the unions of the components Ri, Gi, and δi, for
i < α. For some α bounded by the order type of ≺, we have Rα = R.

In the same way, we can prove the following.

Lemma 3.5. Let (A,H, φ) be a development triple with respect to R
and k. Given a well ordering ≺ of R, there is a canonical maximal de-
velopment triple (A′, H, φ′) extending (A,H, φ).

4. Exponential integer parts. We saw in §2.2 that it suffices to prove
Theorem B′ to demonstrate the existence of exponential integer parts for
real closed exponential fields. We now define a special kind of development
triple, which we then use to prove Theorem B′.

Definition 19 (Weak dyadic development triple). LetR be a real closed
exponential field, and let k be a residue field section. Let (A,H, φ) be a
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development triple with respect to R and k. Then (A,H, φ) is a weak dyadic
triple with respect to R and k if

(4.1) φ(log(H)) = φ(A) ∩ k((H>1)).

Equivalently, (A,H, φ) is weak dyadic if

(1) for all r ∈ H, log(r) ∈ A and φ(log(r)) ∈ k((H>1)), and
(2) for all r ∈ A, if φ(r) ∈ k((H>1)), then 2r ∈ H.

Definition 20 (Dyadic development triple). Let R be a real closed
exponential field, and let k be a residue field section. The triple (A,H, φ) is
a dyadic development triple for R and k if it is a weak dyadic triple for R
and k that is also maximal.

Proving Theorem B′ is equivalent to showing that every real closed ex-
ponential field R with a residue field section k has a dyadic triple (R,G, δ)
with respect to R and k.

4.1. Extending dyadic triples. Proposition 4.1 below allows us to
produce the desired dyadic triple (R,G, δ) needed for Theorem B′ as a union
of a chain of dyadic triples.

Proposition 4.1. Suppose (A,H, φ) is a dyadic triple with respect to a
real closed exponential field R and a residue field section k, and y ∈ R−A.
Then there is a dyadic triple (A′, H ′, φ′) ⊇ (A,H, φ) such that y ∈ A′.

Proof. Since (A,H, φ) is maximal, we may suppose that v(y) 6∈ H. Oth-
erwise, we could replace y by y − yβ, where φ(yβ) is the development of y
over (A,H, φ). We may further suppose that y > 0, since otherwise we could
replace y by −y. Finally, we may suppose that v(y) > 1, since otherwise we
could replace y by y−1. We will obtain the required dyadic triple (A′, H ′, φ′)
as the union of a chain of development triples (Bi, Hi, φi) satisfying the
following conditions:

(1) H0 ⊇ H is a value group section for RC(A∪{logi(y) : i ∈ ω}) where
log0(y) = y and logi+1(y) = log(logi(y)) for all i ∈ ω.

(2) If r ∈ Hi, then log(r) ∈ Bi and φi(log(r)) ∈ k((H>1
i )).

(3) If r ∈ Bi and φi(r) ∈ k((H>1
i )), then 2r ∈ Hi+1.

(4) (Bi, Hi, φi) is a maximal development triple.

We focus first on building the group H0, starting with the dyadic triple
(A,H, φ), and y ∈ R− A, where y > 0, v(y) > 1, and v(y) /∈ H. The group
H0 is an extension of H so that any maximal triple (A′, H0, φ

′) extending
(A,H, φ) has logi(y) ∈ A′ for all i ∈ ω. In the case where (A,H, φ) =
(k, {1}, id), H0 will be 〈{logi(y)}i∈ω〉Q. In general, H0 will be generated by
the elements of H and a specially chosen sequence (yi)i∈ω.
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Definition of (yi)i∈ω. We define a sequence (yi)i∈ω inductively so that

(4.2) yi > 0 & v(yi) > 1 & v(yi) 6∈ H.
We let y0 = y. Given yi satisfying (4.2), we let pi+1 be the development of
log(yi) over (A,H, φ). We claim that φ assigns pi+1 to some r′i+1 in A. As-
suming this, we let yi+1 = |log(yi)− r′i+1|. Lemma 4.2 justifies the definition
and claim.

Lemma 4.2 (Inductive Lemma). Suppose (A,H, φ) is a dyadic triple. Let
yi ∈ R − A, where yi satisfies (4.2). Let pi+1 be the development of log(yi)
over (A,H, φ). Then

(1) (∃r′i+1 ∈ A)[φ(r′i+1) = pi+1],
(2) yi+1 := |log(yi)− r′i+1| satisfies (4.2), and
(3) pi+1 ∈ k((H>1)).

Proof. Suppose that yi satisfies (4.2). Let pi+1 be the development of
log(yi) over (A,H, φ). Since (A,H, φ) is maximal, there exists some r′i+1 ∈ A
such that φ(r′i+1) = pi+1. By the definition of (maximum) development, we
have v(yi+1) 6∈ H, and, in particular, v(yi+1) 6= 1. Suppose (expecting a
contradiction) that v(yi+1) < 1 or yi+1 = 0. We have log(yi) = r′i+1 +±yi+1,
and r′i+1 = s+s′, where φ(s) ∈ k((H>1)) is the truncation of φ(r′i+1) so that

φ(s′) ∈ k((H≤1)). So, yi = 2s2s
′
2±yi+1 . Since v(s′) ≤ 1, we see that 2s

′
equals

some c with v(c) = 1. If v(yi+1) < 1 or yi+1 = 0, then 2±yi+1 = (1+d), where
d is 0 or v(d) < 1. Since (A,H, φ) is weak dyadic and φ(s) ∈ k((H>1)), we
have 2s ∈ H. Then v(yi) = 2s, contradicting our assumption that v(yi) 6∈ H.
So, yi+1 6= 0 and v(yi+1) > 1. Since v(yi+1) < v(g) for all g ∈ Supp(φ(r′i+1)),
we conclude that φ(r′i+1) = pi+1 ∈ k((H>1)).

Lemma 4.3. For all i, n ∈ ω, (yi+1)
n < yi. Hence, v(yi) 6= v(yj) for

i 6= j.

Proof. From the definition of yi+1, we see that yi+1 < log(yi), so yni+1 <

log(yi)
n. Since v(yi) > 1, log(yi)

n < 2log(yi) = yi by the growth axioms for
real closed exponential fields (axiom (5) in Definition 3).

Let H0,n = 〈H ∪ {yi | i < n}〉Q. Let H0 =
⋃
n∈ωH0,n.

Lemma 4.4. For each n, v(yn) 6∈ H0,n. Hence, H0 ⊃ H is a value group
section for RC(A ∪H0).

Proof. The statement is clear for n = 0. Assuming that it holds for n,
we prove it for n+ 1. We assume (expecting a contradiction) that v(yn+1) ∈
H0,n+1, i.e., yn+1 = cgyq00 · . . . · y

qn
n , where c ∈ R, v(c) = 1, g ∈ H, and

qi ∈ Q. Taking logs, we obtain

(4.3) log(yn+1) = log(c) + log(g) + q0 log(y0) + · · ·+ qn log(yn).
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Recall that, by definition, log(yi) = r′i+1 + εi+1yi+1, where φ(r′i+1) is the
development of log(yi) over (A,H, φ) and εi+1 = ±1. Then, by substitution
and rearranging terms, we find that εn+2yn+2 equals

log(c) + [log(g) + q0r
′
1 + · · ·+ qnr

′
n+1 − r′n+2] + [q0ε1y1 + · · ·+ qnεn+1yn+1].

We have v(log(c)) = 1, v(log(g) + q0r
′
1 + · · · + qnr

′
n+1 − r′n+2) ∈ H>1, and

v(q0ε1y1 + . . .+ qnεn+1yn+1) = v(y1) by Lemmas 4.2 and 4.3. Thus, v(yn+2)
either is in H or equals v(y1), contradicting Lemma 4.2 or 4.3.

Lemma 4.5. If h ∈ H0, then the development of log(h) over (A,H, φ) is
in k((H>1

0 )).

Proof. Let h ∈ H0 with h = g
∏n
i=0 y

qi
li

. So,

(4.4) log(h) = log(g) +

n∑
i=0

qi(r
′
i+1 +±yi+1)

where qi ∈ Q. The developments of log(g) and r′i+1 are in k((H>1)) since
(A,H, φ) is weak dyadic and by construction. Since v(yi+1) > 1, log(h) has
a development in k((H>1

0 )).

Defining the sequence (Bj , Hj , φj). We have described the groupH0.
By Lemmas 3.2 and 3.5, we obtain B0 and φ0 such that (B0, H0, φ0) is
maximal and extends (A,H, φ). The rest of the chain (Bi, Hi, φi) is built on
this foundation so that the union of the chain is dyadic. We define

H1 = 〈H0 ∪ {2r : r ∈ B0 & φ0(r) ∈ k((H>1
0 ))}〉Q.

As done for H0, we ensure that for all h ∈ H1, φ0(log(h)) ∈ k((H>1
0 )), and

that H1 is a value group section for RC(B0∪H1). We then apply Lemmas 3.2
and 3.5 to get B1 and φ1 such that (B1, H1, φ1) extends (B0, H0, φ0) and is
maximal (for H1).

In general, given (Bi, Hi, φi)i<α such that (Bi, Hi, φi) is maximal and
φi(h) ∈ k((H>1

i )) for all h ∈ Hi, we let

Hj+1 = 〈Hj ∪ {2r : r ∈ Bj & φj(r) ∈ k((H>1
j ))}〉Q.

We must check that φj(log(h)) ∈ k((H>1
j )) for all h ∈ Hj+1 and that Hj+1

is a value group section for RC(Bi ∪Hα). We apply Lemmas 3.2 and 3.5 to
obtain Bj+1 and φj+1 such that (Bj+1, Hj+1, φj+1) extends (Bj , Hj , φj) and
is maximal (for Hj+1).

For α a limit ordinal, we let Hα =
⋃
i<αHi. If (

⋃
i<αBi, Hα,

⋃
i<α φi) is

not maximal, then we use Lemma 3.5 to find a maximal triple (Bα, Hα, φα)
extending (

⋃
i<αBi, Hα,

⋃
i<α φi) and continue. If (

⋃
i<αBi, Hα,

⋃
i<α φi)

is maximal, then we set Bα =
⋃
i<αBi and φα =

⋃
i<α φi. In this case,

(Bα, Hα, φα) is the desired dyadic triple (A′, H ′, φ′).

The analogue of the proof of Lemma 4.5 shows the following.
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Lemma 4.6. For all α, if h ∈ Hα, then φα(log(h)) ∈ k((H>1
α )).

The next lemma shows that Hα is a value group section for RC(
⋃
i<αBi

∪Hα).

Lemma 4.7. For all α, if h, h′ ∈ Hα and v(h) = v(h′), then h = h′.

Proof. If v(h) = v(h′), then h = ch′ for some c ∈ R>0 with v(c) = 1.
By Lemma 4.6, we have φα(log(h)), φα(log(h′)) ∈ k((H>1

α )). Since log(h) =
log(c) + log(h′), we must have φα(log(h)) = φα(log(h′)) and log(c) = 0, so
c = 1.

Since R is a set, there exists some limit ordinal λ such that Bλ =
⋃
i<λBi

and φλ =
⋃
i<λ φi, that is, (

⋃
i<λBi, Hα,

⋃
i<λ φi) is maximal, so the chain

as constructed is completed. Then (Bλ, Hλ, φλ) is a dyadic triple extending
(A,H, φ) and for which y ∈ Bλ, as required for Proposition 4.1.

Lemma 4.8. Given a real closed exponential field R, a residue field sec-
tion k, and a well ordering ≺ of R, there is a canonical dyadic triple (R,G, δ)
with respect to R, k, and ≺.

Proof. As in Lemma 3.4, we obtain a dyadic triple (R,G, δ) as the union
of a chain of dyadic triples (Ri, Gi, δi), where (R0, Gi, δ0)=(k, {1}, id), and
when we pass from (Ri, Gi, δi) to (Ri+1, Gi+1, δi+1), we include in Ri+1 the
≺-first element of R − Ri. At limit steps in our construction we use the
corollary below.

Corollary 4.9. Suppose (A,H, φ) is the union of a chain of dyadic
triples. Then there is a dyadic triple (A′, H ′, φ′) extending (A,H, φ).

Proof. The triple (A,H, φ) may not be maximal. By Lemma 3.5, we

extend (A,H, φ) to a maximal triple (Â,H, φ̂). If Â = R, then (R,H, φ̂) is a

dyadic triple. If not, we can extend (Â,H, φ̂) to a dyadic triple (A′, H ′, φ′)
using the second half of the proof of Proposition 4.1.

5. Recursive saturation, Barwise–Kreisel Compactness, and Σ-
saturation. In this section, we give some background on “recursive satura-
tion” and “Barwise–Kreisel Compactness”, which we use in proving our main
new result, Theorem C. We also include some background on Σ-saturation,
used for Theorem D.

5.1. Recursive saturation and models of PA. Recursive satura-
tion is a weak version of ω-saturation, which was defined by Barwise and
Schlipf [2].

Definition 21 (Recursive saturation). A structure A is recursively sat-
urated if for all tuples a in A and all c.e. sets of formulas Γ (y, x), if every
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finite subset of Γ (a, x) is satisfied in A, then some b ∈ A satisfies all of
Γ (a, x).

Countable recursively saturated structures have the property of “resplen-
dence”, meaning that they can be expanded as follows.

Theorem 5.1 (Barwise–Schlipf). Let A be a countable recursively sat-
urated L-structure. Let Γ be a c.e. set of sentences in a language L′ ⊇ L.
If the consequences of Γ in the language L are true in A, then A can be
expanded to a model of Γ .

In [20], it is shown that a countable model of Presburger arithmetic
can be expanded to a model of PA iff it is either standard or recursively
saturated. In [4], it is shown that a countable real closed field has an integer
part satisfying PA iff it is either Archimedean or recursively saturated. Recall
that a set X is low if X ′ ≤T ∅′. Gödel’s Incompleteness Theorem implies
that there is no computable completion of PA. The next result implies that
there is a low completion of PA.

Theorem 5.2 (Low Basis Theorem, Jockusch–Soare). Given a countable
c.e. set A of elementary first order sentences that is consistent, there is a
low completion of A.

Scott [25] looked at families of sets coded in completions of PA.

Definition 22 (Scott set). A Scott set S is a subset of P (ω) satisfying
the following conditions:

(1) If X ∈ S and Y ≤T X, then Y ∈ S.
(2) If X,Y ∈ S, then the join of X and Y , denoted X ⊕ Y , is in S.
(3) If A ∈ S is a consistent set of first order sentences (identified with

their Gödel numbers), then there is a completion Â of A in S.

Scott showed that the families of sets coded in a natural way in comple-
tions of PA are exactly the countable Scott sets.

Definition 23 (Enumeration of a family of sets). For a countable family
S ⊆ P (ω) of sets, an enumeration of S is a binary relation E such that
S = {En : n ∈ ω}, where En = {k : (n, k) ∈ E}.

Remark 1. If K is a completion of PA, and (ϕn(x))n∈ω is a computable
list of the formulas with just x free, we obtain a natural enumeration E of
the Scott set associated with K by taking the set of pairs (n, k) ∈ ω2 such
that ϕn(k) ∈ K. The relation E is clearly computable in K.

For more information about arithmetic, see [1, §19.1].

In [17] Macintyre and Marker considered the complexity of recursively
saturated models. They proved the following.



178 P. D’Aquino et al.

Theorem 5.3 (Macintyre–Marker). Suppose E is an enumeration of
a countable Scott set S. Let T be a complete theory in S. Then T has a
recursively saturated model A such that Dc(A) ≤T E.

The next result may be well-known. The proof will be obvious to anyone
familiar with the proof of Theorem 5.1.

Proposition 5.4. Suppose A is a countable recursively saturated struc-
ture, say with universe ω, and let Γ be a c.e. set of finitary sentences, in an
expanded language, such that the consequences of Γ in the base language are
all true in A. Then A can be expanded to a model Â of Γ such that Dc(Â)
is computable in the jump of Dc(A).

Proof sketch. We carry out a Henkin construction, as Barwise and Schlipf
did, and we observe that the jump of Dc(A) is sufficient for this construction.
Recall that A has universe ω. We make a computable list of the sentences
ϕ(a) in the expanded language, including the new symbols used in Γ , plus
elements of ω, which we consider to be constants. We also make a com-
putable list of the c.e. sets Λ(a, x). At each stage s, we have put into Dc(Â)
a c.e. set Σs(a) of sentences involving a finite tuple of constants, such that
the consequences of the constants a in the language of A are true in A.
At stage s + 1, we consider the next sentence ϕ(a). We add ϕ(a) to Σs(a)
if our consistency condition is satisfied (which is computable in the jump
of Dc(A)), and otherwise we add the negation. Then we consider the next
c.e. set Λ(a, x). To check consistency, we see if the consequences of adding
this, with some new constant e for x, are true of a (again using the jump of
Dc(A)). If so, we can find some b ∈ ω such that for b = x the consequences
are satisfied by a, b by the recursive saturation of A.

5.2. Compactness for infinitary logic. Recall that an admissible
set is a transitive model of KP, a weak fragment of set theory. If A is an
admissible set, and B ⊆ A, then B is Σ1 on A if it is defined in A by a
finitary formula with only existential and bounded quantifiers—the formula
may have parameters. A set is A-finite if it is an element of A. The least
admissible set is A = LωCK

1
. In this case, a set B ⊆ ω is Σ1 on A if it is

“Π1
1”—this means that n ∈ B iff (∀f ∈ ωω)(∃s) R(n, f�s), where the relation

R(n, u) (on numbers and finite sequences) is computable. A set B ⊆ ω is
A-finite in LωCK

1
if it is hyperarithmetical. For a countable language L, there

are uncountably many formulas of Lω1ω. For a countable admissible set A,
the admissible fragment LA consists of the Lω1ω-formulas that are elements
of A, so it is countable.

Theorem 5.5 (Barwise Compactness). Let A be a countable admissible
set, and let L be an A-finite language. Suppose Γ is a set of LA-sentences
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that is Σ1 on A. If every A-finite subset of Γ has a model, then Γ has a
model.

In the case where A is the least admissible set, the LA-formulas are
essentially the computable infinitary formulas. These are formulas of Lω1ω

in which the infinite disjunctions and conjunctions are over c.e. sets. For
more on computable infinitary formulas, see [1]. As a special case of Barwise
Compactness, we have the result below.

Theorem 5.6 (Barwise–Kreisel Compactness). Let L be a computable
language. Suppose Γ is a Π1

1 set of computable infinitary L-sentences. If
every hyperarithmetical subset of Γ has a model, then Γ has a model.

Ressayre’s notion of Σ-saturation, defined in [21], [22], is associated with
Barwise Compactness.

Definition 24. Suppose A is an admissible set and let L be an A-finite
language. An L-structure M is ΣA-saturated if:

(1) For any tuple a inM and any set Γ of LA-formulas, with parameters
a and free variable x, if Γ is Σ1 on A and every A-finite subset is
satisfied, then the whole set is satisfied.

(2) Let I be an A-finite set, and let Γ be a set, Σ1 on A, consisting of
pairs (i, ϕ), where i ∈ I and ϕ is an LA-sentence. For each i, let
Γi = {ϕ : (i, ϕ) ∈ Γ}. Similarly, if Γ ′ ⊆ Γ , let Γ ′i = {ϕ : (i, ϕ) ∈ Γ ′}.
If for each A-finite Γ ′ ⊆ Γ , there is some i such that all sentences
in Γ ′i are true inM, then there is some i such that all sentences in Γi
are true in M.

The second property may look mysterious. It is needed for the proof that
countable Σ-saturated structures have the property of expandability below.

Theorem 5.7 (Ressayre). Suppose M is a countable ΣA-saturated L-
structure. Let L′ ⊇ L, and let Γ be a set of L′A-sentences, Σ1 on A, such
that the consequences of Γ in the language L are all true in M. Then M
has an expansion satisfying Γ . Moreover, we may take the expansion to be
ΣA-saturated, in the language L′.

We shall use the following result.

Proposition 5.8. Let A be a countable admissible set, and let M be a
countable ΣA-saturated structure for a countable language L. Then M lives
in a “fattening” of A, i.e., an extension of A to an admissible set with no
new ordinals.

Proof sketch. Let M∗ = (M ∪ V,M), where M is the universe of M,
and V is an infinite set disjoint from M . Note that M∗ is ΣA-saturated.
Consider the language L′ with a new symbol ∈, in addition to the symbols
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from L. In the language of set theory, for each a ∈ A, we have an LA-
formula ϕa(x) uniquely describing the element a as follows: If a = ∅, then
ϕa(x) = (∀y) ¬y ∈ x. In general, ϕa(x) = (∀y) [y ∈ x↔

∨∨
b∈a ϕb(y)].

We have a set Γ of L′A-sentences, Σ1 on A, consisting of the following:

(1) axioms of KP,
(2) sentences saying that ω (in the model of KP) is M (the universe

of M), and the basic relations of M∗ are also present,
(3) for each a ∈ A, a sentence saying (∃x) ϕa(x).

The consequences of Γ in the language L are true in M∗. We get a
ΣA-saturated expansion ofM∗ to a model of Γ . If b is a new ordinal in this
model, then using ΣA-saturation, we can show that there is another new
ordinal b′ < b. Then there is a new b′′ < b, and so on. The model of KP
has a well-founded part that is isomorphic to an admissible set extending A,
with no new ordinals, so this is the required fattening.

We note that the converse of Proposition 5.8 also holds, at least in the
case where A has the form Lγ , or Lγ(X)—so that A is Σ1 on the fattening.
We do not use this fact.

Some people omit the axiom of infinity from KP, so that Lω qualifies
as an admissible set. For A = Lω, ΣA-saturation is the same as recursive
saturation. Ressayre worked independently of Barwise and Schlipf, and the
first version of his definition, in [21], was actually earlier than [2]. For more
on infinitary logic, see [11], [12].

6. Complexity of exponential integer parts. We have seen (in
Lemma 4.8) that given a countable real closed exponential field R, a residue
field section k, and a well ordering ≺ of R, Ressayre’s construction of an
exponential integer part is canonical. Each step is sufficiently effective that
the whole construction is constructible. However, there may be many steps.
We shall determine a low real closed exponential field R, a residue field
section that is ∆0

3, and a ∆0
3 well ordering ≺ of R, of order type ω + ω,

such that when we run Ressayre’s procedure, it is not finished in LωCK
1

; in

fact, we do not even reach the first nontrivial dyadic triple. Recall that the
procedure starts with the trivial dyadic triple (R0, G0, δ0) = (k, {1}, id). Let
y be the ≺-first element of R− k, adjusted so that y is positive and infinite.
We extend (R0, G0, δ0) to a first nontrivial dyadic triple (R1, G1, δ1) with
y ∈ R1. Specifically, we show the following.

Theorem C. There is a low real closed exponential field R, with a ∆0
3 re-

sidue field section k and a ∆0
3 ordering ≺ of type ω+ω, such that Ressayre’s

construction, even of the first nontrivial dyadic triple (R1, G1, δ1), is not
completed in LωCK

1
.
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We begin by choosing the real closed exponential field R.

Lemma 6.1. There is a recursively saturated real closed exponential field
R such that Dc(R) is low.

Proof. By Theorem 5.2, there is a low completion K of PA. Let S be the
Scott set naturally associated with K. By Remark 1, there is an enumeration
E of S such that E ≤T K. Since S is a Scott set, it contains a completion T
of the set of axioms for real closed exponential fields. By Theorem 5.3, of
Macintyre and Marker [17], there is a recursively saturated model R of T
such that Dc(R) ≤T E.

Next, we choose the residue field section k for R. Applying Proposition
2.1 to the real closed exponential field R that we chose above (recursively
saturated, with complete diagram that is low), we get the following.

Corollary 6.2. For our real closed exponential field R, there is a ∆0
3

residue field section k.

Proof. By Proposition 2.1, there is a residue field section k that is Π0
2(R).

Since R is low and k is co-c.e. relative to R′, k is co-c.e. relative to ∅′. Then
k is Π0

2, so it is ∆0
3.

To obtain (R1, G1, δ1) as in Proposition 4.1, we form a chain of develop-
ment triples (Bj , Hj , φj)j<ζ satisfying the following conditions:

(1) H0 = 〈{yi = logi(y) : i ∈ ω}〉Q,
(2) Hj+1 = 〈Hj ∪ {2r : r ∈ Bj & φj(r) ∈ k((H>1

j ))}〉Q,
(3) for limit j, Hj =

⋃
j′<j Hj′ ,

(4) for all j, (Bj , Hj , φj) is maximal.

The length of the chain is the first limit ordinal ζ such that the triple
(
⋃
j<ζ Bj ,

⋃
j<ζ Hj ,

⋃
j<ζ φj) is maximal.

We see two possible sources of complexity.

(i) Some object in the chain (Bj , Hj , φj)j<ζ leading to the first non-
trivial dyadic triple may not be hyperarithmetical, i.e., it may lie
outside LωCK

1
.

(ii) The length ζ of the chain (Bj , Hj , φj)j<ζ leading to the first non-
trivial dyadic triple may not be a computable ordinal.

We shall produce a ∆0
3 well ordering ≺ of R such that either the chain

(Bj , Hj , φj)j<ζ includes a nonhyperarithmetical object, or else ζ ≥ ωCK
1 .

We will apply Theorem 5.6 (Barwise–Kreisel Compactness) to the set Γ
consisting of the following computable infinitary sentences:

(1) A sentence ψ characterizing the “ω-models” of KP. An ω-model has
the feature that each element of the definable element ω has only
finitely many elements, a fact that we can express using a computable
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infinitary sentence. An ω-model of KP contains the hyperarithmeti-
cal sets. In particular, we have the real closed exponential field R
and the residue field section k, with the indices we have chosen for
them.

(2) A sentence ϕ≺ saying of a new symbol ≺ that it is a ∆0
3 ordering

of R of order type ω+ω. The sentence says that ≺ is an ordering of
type ω+ω and for some e ∈ ω (this is a disjunction) the eth partial
∆0

3 function f on pairs is total with m ≺ n for f(m,n) = 1 and
m 6≺ n for f(m,n) = 0.

(3) A sentence ϕα, for each computable ordinal α, saying that for all
limit β < α, if the sequence (Bj , Hj , φj)i<β is in Lα, then Bβ 6=⋃
j<β Bj . We identify an element of k((Hi)) of ordinal length β < α

with a function from β to k ×Hi such that the second components
(the elements of Hi) are decreasing.

We must show that every hyperarithmetical subset of Γ has a model.
For a computable ordinal α, let Γα consist of ψ, ϕ≺ and ϕα′ for α′ ≤ α.
Each hyperarithmetical subset of Γ is included in one of the sets Γα. It is
enough to show that for each computable ordinal α, Γα has a model. We
must produce a ∆0

3 ordering ≺α on R, of order type ω + ω, such that if we
run Ressayre’s construction according to the well ordering ≺α, then for each
limit β < α, if the sequence (Bj , Hj , φj)j<β is in Lα, then Bβ 6=

⋃
j<β Bj .

Throughout the remainder of this section, when we refer to the “devel-
opment” of an element r ∈ R1 (where R1 =

⋃
i<ζ Bi), we mean the image

δ1(r) ∈ k((G1)).

6.1. Special elements. Let α be a computable ordinal. To show that
Γα has a model, we use some special elements, which we name by constants.
We identify the ordinals β < α with natural number codes. (We fix a no-
tation a ∈ O for α, and we identify each ordinal β < α with its unique
notation b <O a.) Our special elements are named by constants y, yi, i ∈ ω,
cβ for β < α either 0 or a limit ordinal, and cβ,i for all β < α and all
i ∈ ω.

We first state some properties that we would like for the constants. We
define all of the constants in terms of y, c0, and cβ for limit β < α. Assuming
that the sequence (Bj , Hj , φj)j<β is in Lα, we want cβ ∈ Bβ −

⋃
j<β Bj . To

ensure this, we specify a development that we want for cβ, in terms of
constants cj+1,i for j < β, which we want in Hj+1 − Hj . Next, we give
a c.e. set of finitary axioms, partially describing the constants. Since R is
recursively saturated, we can apply Theorem 5.1 of Barwise and Schlipf to
get an expansion Rα satisfying these finitary axioms. Finally, we choose a
∆0

3 well ordering ≺α such that when we run Ressayre’s construction using
R, k, and ≺α, the constants will have all the desired properties.
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In this way, we have a model of Γα. We take an ω-model of KP that
includes the full chain (Bj , Hj , φj)j<ζ of development triples leading to the
first nontrivial dyadic triple. Inside this model, we can define Lα. Using the
constants from Rα, we see that for each computable limit ordinal β < α, if
(Bj , Hj , φj)j<β is in Lα, then cβ ∈ Bβ −

⋃
j<β Bj .

6.1.1. Desired properties of the constants. These properties are:

• y is positive and infinite, and yi = logi(y) ∈ H0,
• c0 = c0,1 ∈ B0, with development

∑
1≤i<ω yi,

• cn+1,i ∈ Hn+1 −Hn,
• cω ∈ Bω −

⋃
n∈ω Bn, with development

∑
1≤i<ω ci,i,

• in general cβ+1,i ∈ Hβ+1 −Hβ, and
• for limit β, cβ ∈ Bβ −

⋃
γ<β Bγ .

6.1.2. Finitary descriptions of the constants. Now, we give a c.e. set of
finitary axioms, saying what we can about the constants, in an effort to make
them eligible for the developments we want for them, or for membership in
the appropriate value group section:

• y > n for all positive integers n, and yi = logi(y).
This guarantees that y is positive and infinite, and all the yi are

also positive and infinite, with y0 > y1 > y2 > y3 > · · · . We can make
sure that yi ∈ H0 by putting y first in the well ordering ≺α. Then∑

1≤i<ω yi is in k((H>1
0 )).

• y1 < c0 < 2y1, y2 < c0 − y1 < 2y2, y3 < c0 − y1 − y2 < 2y3, etc.
This guarantees that if H0 = 〈{yi}i∈ω〉Q, then c0 is a possible

candidate for the development
∑

1≤i<ω yi. It will get this development
provided that no other element is assigned it first.
• c0,i = c0 −

∑i−1
j=1 yj .

This guarantees that if c0 is assigned the development
∑

1≤i<ω yi,
then c0,i will have the development

∑
i≤j<ω yj .

• Let γ < α be a successor ordinal with γ = β + 1. We define cγ,j to be
cβ+1,j = 2cβ,j+1 for 0 < j < ω.

Assuming cβ∈k((H>1
β ))∩Bβ, this guarantees that cβ+1,j∈Hβ+1.

• Finally, let γ < α be a limit ordinal, where the notation for γ gives a
sequence of successor ordinals (γi)i∈ω converging to γ. Assuming that
cγi,i ∈ H>1

γi , we can show that
∑

1≤i<ω cγi,i ∈ k((H>1
γ )).

Our description of cγ = cγ,1 says cγ1,1 < cγ < 2cγ1,1, cγ2,2 <
cγ − cγ1,1 < 2cγ2,2, etc. This description guarantees that cγ is eligible
for the development

∑
1≤i<ω cγi,i. It will get this development provided

that no other element is assigned it first.
• We define cγ,i to be cγ −

∑i−1
j=1 cγj ,j .
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This completes our descriptions of the constants y, yi, and cγ,i for γ < α
and 0 < i ∈ ω. In order that

∑
i≤j<ω cγj ,j ∈ k((H>1

γ )) for some limit γ,
we need the fact that each element cγj ,j is a member of the appropriate
value group section H>1

γj , together with the fact that cγj ,j > cγj+1,j+1 for all
nonzero j ∈ ω. The next lemma shows that the latter condition does hold.

Lemma 6.3. The descriptions of the constants cβ,i for β < α and i ∈ ω
imply that, for all β < α,

(6.1) y0 > cβ,1 > y1 > cβ,2 > y2 > cβ,3 > y3 > cβ,4 > · · · .

Proof. From the description of c0,i, we can see that (6.1) holds for β = 0.
Let γ < α be a successor ordinal with γ = β + 1. We inductively assume
that the descriptions for the elements cβ,k imply the ordering in (6.1). By
applying a power of 2 to the inequalities in (6.1) and the definition of cγ,i,
we obtain the ordering

(6.2) y0 > cγ,1 > y1 > cγ,2 > y2 > cγ,3 > y3 > cγ,4 > · · · .

Let γ < α be a limit ordinal, where our notation for γ gives a sequence of
successor ordinals (γi)i∈ω converging to γ. Moreover, by induction, we find
that the descriptions of the (cγi,i)i∈ω imply that

(6.3) y0 > cγ1,1 > y1 > cγ2,2 > y2 > cγ3,3 > y3 > cγ4,4 > · · · .
By the description of cγ,i, we have

(6.4) y0 > cγ,1 > cγ1,1 > y1 > cγ,2 > cγ2,2 > y2 > cγ,3 > cγ3,3 > y3 > . . . ,

completing the induction.

For the given computable ordinal α, we may take the set of finitary
sentences describing the constants to be computably enumerable. It is clearly
consistent. Since R is recursively saturated, we can apply Theorem 5.1 to
get an expansion Rα of R with special elements y, yi, and cβ,i, for β < α
and i ∈ ω, satisfying the finitary sentences. By Proposition 5.4, we may
take Dc(Rα) to be ∆0

2 since Dc(R) is low. This means that we can find the
element of R playing the role of y or cβ using the oracle ∅′.

6.2. The ordering. We describe a ∆0
3 well ordering ≺α of R, of order

type ω+ω, such that when we run Ressayre’s construction on R, k, and ≺α
for any limit ordinal β < α, if the sequence (Bj , Hj , γj)j<β is in Lα, then
Bβ 6=

⋃
j<β Bj . To show this, it is enough to give the constants c0 and cβ

for β < α the intended developments. So, we locate these constants (in ≺α)
before the other elements that might compete for the intended developments.

The elements of R are natural numbers, so R inherits from ω the usual
ordering < of type ω. We let y be the ≺α-least element of R. The special
elements cβ for β < α, ordered by <, make up the remainder of the initial
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segment of type ω, and the other elements, ordered by <, make up the re-
maining segment of type ω. Since Dc(Rα) is ∆0

2, we can use ∆0
3 to determine,

for a given r ∈ Rα, whether there exists some β < α such that r = cβ, i.e.,
whether r should be placed in the initial ω segment or the latter. Hence,
≺α is ∆0

3.

We have determined R, k, and ≺α. We run Ressayre’s construction to
obtain (Bi, Hi, φi)i<ζ , the resulting chain of development triples leading to
the first nontrivial dyadic triple (R1, G1, δ1).

6.2.1. Lemmas about the constants. We must check that if (Bj , Hj , φj)j<β
is in Lα, then the constants cγ and cγ,i for γ ≤ β have the properties we
want for them. The following lemmas are useful.

Lemma 6.4. For all β < α, for all h ∈ H>1
β , there is some i such that

h > yi.

Proof. We proceed by induction on β. Since y is the ≺α-least element
of R, H0 equals 〈{yi}i<ω〉Q. So, h ∈ H0 is a finite product of rational powers
of the yi. Let i be least such that there is a factor yqii . Since h ∈ H>1

0 , qi
must be positive. Then h > yi+1. Suppose the statement holds for β, and
h ∈ H>1

β+1. By construction, we may assume that h = 2r, where φβ(r) ∈
k((H>1

β )) has a positive initial coefficient.

Say v(r) = h′ > yi. Then h > 2yi > yi. Finally, suppose the statement
holds for γ < β, where β is a limit ordinal. Since Hβ =

⋃
γ<β Hγ , the

statement holds for Hβ.

Lemma 6.5. For all β < α, if h ∈ Hβ and h 6= 1, then there is some γ
with γ = 0 or γ < β such that log(h) ∈ Bγ and φγ(log(h)) ∈ k((H>1

γ )).

Proof. We prove the lemma by induction on β < α. If h ∈ H0, then
h =

∏n
i=0 y

qi
li

with all qi ∈ Q nonzero and li < li+1 for 0 ≤ i < n.

Then log(h) =
∑n

i=0 qi log(yli). Since log(yli) = yli+1, log(h) ∈ B0 and
φ0(log(h)) ∈ k((H>1

γ )).

Suppose the statement holds for all λ < β. If β is a limit ordinal, h ∈ Hβ

implies h ∈ Hλ for some successor ordinal λ < β, so the statement holds
by induction. Suppose β = λ + 1 and h ∈ Hβ − Hλ. By construction,
h = h′

∏n
i=02

ti where h′ ∈ Hλ and ti ∈ Bλ and φλ(ti) ∈ k((H>1
λ )) for all

1 ≤ i ≤ n. Then log(h) = log(h′) +
∑n

i=0 ti has the desired features by
induction.

To show that the elements cβ,i get the developments we want for them,
we must show that other elements cannot compete for these developments.

Lemma 6.6. Suppose Ressayre’s construction is run on R, k, and a well
ordering ≺ on R such that y is the ≺-first element and the elements cβ for
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β < α form the initial ω segment. For all β, γ < α, the following statements
hold:

(1) If γ is a limit ordinal greater than β, then cγ,i 6∈ Bβ (i.e., cγ,i is not
assigned a development by φβ).

(2) If γ is a successor ordinal greater than β, then cγ,i has no valuation
in Hβ.

(3) If β is 0, then c0,i ∈ B0, and φ0(c0,i) =
∑

i≤j<ω yj. If β is a limit

ordinal, then cβ,i ∈ Bβ and φβ(cβ,i) =
∑

i≤j<ω cβj ,j in k((H>1
β )),

where (βi)i∈ω is the sequence of successor ordinals converging to β
given by our notation for β.

(4) If β is a successor ordinal, then cβ,i is in H>1
β .

Proof. The proof proceeds by induction on β. We begin with the case
where β = 0. Clearly, c0 will be assigned the development

∑
1≤i<ω yi if it is

the first element after y in ≺. However, c0 may not be the first such element;
there may be finitely many other cβ before c0 under ≺. Statements (1) and
(2) imply that these finitely many cβ would not interfere with φ0 assigning
the development

∑
1≤i<ω yi to c0. Hence, (1) and (2) give statement (3) (for

β = 0).

We begin by showing for all γ > 0 and all i ∈ ω that cγ,i has no valuation
in H0. Suppose otherwise, and let γ be the first ordinal witnessing the failure.
If γ is a limit ordinal, then the valuation of cγ,i is the same as that of cγi,i,
where γi is a smaller successor ordinal. So, we may suppose that γi = λ+ 1
for some λ. The element cλ+1,i was defined to be 2cλ,i+1 . Since cλ+1,i has a
valuation in H0, we find that cλ+1,i equals cyq00 y

q1
1 · · · y

qn
n , where c is finite

and the qi belong to Q. Then, taking logs, we have cλ,i+1 = log(c) + q0y1 +
q1y2 + · · ·+qnyn+1. We see that cλ,i+1 has valuation equal to some yi, which
is in H0, since both cλ+1,i and cλ,i+1 are infinite. We must have λ = 0 and
γ = 1, since otherwise we have reached a contradiction.

We have guaranteed that c0 gets the proper development by putting it
after y and before any of the other elements that could compete for the
development. Then c0,i+1 must be in B0 and c1,i = 2c0,i+1 is in H1 −H0 by
Ressayre’s construction. Therefore, c1,i has no valuation in H0. So, state-
ments (1)–(4) hold when β = 0.

Suppose β < α and the statements in Lemma 6.6 hold for all β′ < β.

We begin by proving (4) (for β). If β = λ+ 1 is a successor ordinal, we
have cβ,i = 2cλ,i+1 . If λ is itself a successor ordinal, we have cλ,i+1 ∈ H>1

λ
by (4) for λ of the induction hypothesis. Since cλ,i+1 ∈ H>1

λ , cβ,i = 2cλ,i+1 ∈
H>1
β by construction. If λ is a limit ordinal, then cλ,i+1 ∈Bλ is assigned a

development in k((H>1
λ )) by (3) for λ of the induction hypothesis. Again,

by construction, cβ,i = 2cλ,i+1 ∈ H>1
β as desired.
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We now show that (1) and (2) hold for β. The statements involve γ,
where β < γ < α. For our fixed β, we proceed by induction on γ. Given
some ordinal γ′ > β, additionally suppose that (1) and (2) hold for all
γ < γ′ with respect to β. First, suppose γ′ = γ + 1 is a successor ordinal,
and suppose for a contradiction that cγ′,i = 2cγ,i+1 has a valuation in Hβ.
By construction of Hβ, we have

(6.5) cγ′,i = 2cγ,i+1 = ch2b1 · · · 2bn ,
where c is finite, h ∈ Hλ, and bj ∈ Bλ so that φλ(bj) ∈ k((H>1

λ )) for some
ordinal λ < β. Taking logs of both sides, we obtain

(6.6) cγ,i+1 = log(c) + log(h) + b1 + · · ·+ bn.

By Lemma 6.5, log(h) ∈ Bλ and φλ(log(h)) ∈ k((H>1
λ )). Thus, v(cγ,i+1)

∈ Hλ. If γ is a successor ordinal, this would contradict statement (2) of
the inductive hypothesis with respect to λ. So, suppose γ is a limit ordinal.
Consider the sequence (γj)j∈ω of successor ordinals given by the notation
for γ such that limj→∞ γj = γ. Let l be the least natural number such that
γl > λ. We have cγj ,j ∈ H>1

λ for j < l by (4) of the inductive hypothesis.
Thus,

(6.7) cγ,i+1−
∑

i+1≤j<l
cγj ,j = log(c) + log(h) + b1 + · · ·+ bn−

∑
i+1≤j<l

cγj ,j .

The left hand side of the equation has the same valuation as cγl,l by definition
of cγ,i+1. The right hand side consists of elements whose developments are in
k((H>1

λ )) and the finite element log(c). Thus, v(cγl,l) ∈ H>1
λ , contradicting

statement (2) of the inductive hypothesis applied to λ. This completes the
case where γ′ is a succesor ordinal.

Next, suppose that γ′ is a limit ordinal, and suppose for a contradiction
that cγ′,i ∈ Bβ, i.e., φβ assigns cγ′,i a development in k((Hβ)). Consider the
sequence (γ′j)j∈ω of successor ordinals given by the notation for γ′ such that
limj→∞ γ

′
j = γ′. Let l be the least natural number such that γ′l > β. By (4)

of the induction hypothesis, cγ′j ,j ∈ H
>1
β for all γ′j < β. If β = γ′j , we also

have cγ′j ,j ∈ H
>1
β by the proof above of statement (4) for β. Since φβ assigns

cγ′,i a development in k((Hβ)), the embedding φβ also assigns the difference
cγ′,i −

∑
i≤j<l cγ′j ,j a development in k((Hβ)). Thus, cγ′,i −

∑
i≤j<l cγ′j ,j has

a valuation in Hβ. Since cγ′,i −
∑

i≤j<l cγ′j ,j has the same valuation as cγ′l ,l
by definition, v(cγ′l ,l) ∈ Hβ. Since γ′l > β is a successor ordinal less than γ′,

this contradicts statement (2) of the induction hypothesis with respect to β.
This completes our induction on γ′. We have proved (1) and (2) for β and
all γ < α.

We finally prove statement (3) for β. Suppose β is a limit ordinal. By
(3) and (4) of the induction hypothesis, we deduce that all cλ,i for λ < β
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are in Bλ and receive their desired developments under φλ. In particular,
cβj ,j ∈ H>1

β for all j ∈ ω. We observe that no element cγ,k for γ > β

is assigned a development by φβ by statements (1) and (2) for β. Since
the elements cγ are the only that could come before cβ in the initial ω
segment of the well ordering ≺, the element cβ,i will enter Bβ and φβ(cβ,i) =∑

i≤j<ω cβj ,j ∈ k((H>1
β )). Thus, (3) holds for β. This completes the proof of

Lemma 6.6.

We now show that Γα is consistent. The formulas ψ and ϕ≺ are satisfied
by R, k, and ≺α by construction. We prove that ϕα′ holds for each ordinal
α′ ≤ α. Let β be a limit ordinal less than α′. If (Bj , Hj , γj)j<β is in Lα′ , then
it is in Lα. By (1) and (2) of Lemma 6.6, there is an element of Bβ−

⋃
γ<j Bγ ,

namely cβ, so ϕα′ is satisfied. Thus, Γα is consistent.

We are in a position to apply Barwise Compactness. By Theorem 5.5,
we obtain an ω-model of KP with R and k as elements, and a ∆0

3 ordering
≺ of type ω + ω such that if Ressayre’s construction is run on R, k, and ≺,
producing a chain of development triples (Bi, Hi, φi)i<ζ leading to the first
nontrivial dyadic triple (R1, G1, δ1), then either some triple (Bj , Hj , γj) for
j < ζ is not in LωCK

1
, or else the length of the chain ζ is noncomputable.

This completes the proof of Theorem C. Ressayre’s construction on R, k,
and ≺ cannot be completed in LωCK

1
.

Although Ressayre’s construction may not be carried out in LωCK
1

, there

is a different method, using Ressayre’s notion of Σ-saturation, which yields
an exponential integer part in a fattening of LωCK

1
.

Proposition 6.7. Let R be a hyperarithmetical real closed exponential
field. Then R has an exponential integer part Z such that (R,Z) lives in a
fattening of LωCK

1
.

Proof. Let A = LωCK
1

. Since R is an element of A, it is trivially ΣA-

saturated. Let Γ be the natural set of sentences saying that Z is an expo-
nential integer part. By Theorem B, R has an exponential integer part, so
the consequences of Γ are true in R. Therefore, by Theorem 5.7 we deduce
that there is an exponential integer part Z such that (R,Z) is ΣA-saturated.
This means that (R,Z) lives in a fattening of LωCK

1
by Proposition 5.8.

The same reasoning shows that if R is a countable real closed exponential
field, with universe a subset of ω, and A is the least admissible set that
contains R, then R has an exponential integer part Z in a fattening of A.
This establishes Theorem D of the Introduction.
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