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Abstract. We address various notions of shadowing and expansivity for continuous
maps restricted to a proper subset of their domain. We prove new equivalences of shadow-
ing and expansive properties, we demonstrate under what conditions certain expanding
maps have shadowing, and generalize some known results in this area. We also investigate
the impact of our theory on maps of the interval.

1. Introduction. Pseudo-orbit tracing, or shadowing, relates to the
stability of orbits in a dynamical system under small perturbations, and
has been studied by many authors in a variety of contexts. It has been
studied in the context of numerical analysis [11, 10, 20], at times being cited
as a prerequisite to achieving accurate mathematical models, and also as
a property in its own right [8, 12, 15, 17, 19, 21, 22, 25]. Bowen was one
of the first to consider this property in [6], where he used it in the study
of ω-limit sets of Axiom A diffeomorphisms. In [2], we use shadowing to
characterize ω-limit sets of tent maps, and, following on from [3], in [4] we
use various forms of shadowing to characterize ω-limit sets of topologically
hyperbolic systems. Of particular interest is a property called h-shadowing,
which we prove is equivalent to shadowing in certain expansive systems
(such as shifts of finite type), but is in general a stronger property, and one
which allows us to prove when internally chain transitive sets are necessarily
ω-limit sets [4]. The notion of an expanding (or expansive) map is closely
related to various dynamical properties. In [5], Blokh et al. use one notion
to characterize ω-limit sets of interval maps; in [24], Sakai explores various
connections between expansivity and shadowing; and in [23], Przytycki and
Urbański prove shadowing exists for open maps which are expanding on the
whole space.
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In this paper, we investigate the relationships between various notions of
expansivity and between various notions of shadowing, and we examine the
role that expansivity plays in shadowing. In Section 2, we analyze notions
of expansivity that appear both explicitly and implicitly in the literature.
In particular, we show that the natural notion of distance expanding (Defi-
nition 2.2) and the natural notion of ball expanding (Definition 2.4) are the
same (Theorem 2.5) away from what might be termed critical points, i.e.
points where the map is not locally open or not locally one-to-one. We do
similar analysis of notions of shadowing in Section 3. By considering these
properties on proper subsets of the space, we are able to extend earlier re-
sults from other papers, identifying some subtle changes to the theory in
this case.

In Section 4, we show how maps with different types of expansivity on
subsets of their domain have the various types of shadowing on these sets.
This allows us to extend Przytycki and Urbański’s result [23] that an open
expanding map has shadowing in Theorem 4.3 by weakening the assump-
tions and strengthening the conclusion. These results are summarized in
Figure 1.

In Section 5 we focus our attention on interval maps. There are many
interval maps which do not have shadowing on the whole interval. Never-
theless, it is often possible to identify regions where shadowing does occur,
especially away from the critical points. Coven et al. [12] show that tent
maps have shadowing precisely when the critical point obeys certain parity
rules with respect to its orbit; Chen [8] generalizes this, proving that maps
conjugate to piecewise linear interval maps with gradient modulus greater
than 1 at non-critical points have shadowing if and only if their critical
points obey the linking property. Theorem 5.2 shows that strong shadow-
ing properties hold in piecewise linear maps with gradient modulus greater
than 1 away from the critical points. Piecewise linear maps with gradient
modulus greater than 1 are expanding in a very strong way on open sets
separated from the set of critical points. There are however smooth interval
maps which also have shadowing properties (such as the logistic map; see
Example 5.5) but which do not share the nice expanding properties of lin-
ear maps. Theorem 5.6 addresses this. We end with a few remarks showing
that h-shadowing homeomorphisms are only possible on totally disconnected
sets. Throughout the paper we provide examples which help illustrate our
theory and definitions.

2. Expansivity and expanding maps. In this section we explore two
types of expansion in maps: expansive maps, in which distinct points must,
for some iterate of the map, be a set distance apart, and expanding maps, for
which distinct points which start close together are mapped further apart.
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The properties defined have been studied extensively, and can be found
in many texts, including [1, 17, 23, 24, 25]. We aim to demonstrate both
differences and similarities between these properties, and to show that there
are cases where maps have these properties on proper subsets of their domain
only.

For x ∈ X, we say that f is open at x if for every neighbourhood U of
x, f(x) ∈ int f(U), and that f is locally one-to-one at x if there is an open
set V 3 x such that f�V is injective. For a subset Λ ⊆ X, we say that f is
open on Λ if for every x ∈ Λ, f is open at x, and f is locally one-to-one on
Λ if for every x ∈ Λ, f is locally one-to-one at x. Notice that if f is locally
one-to-one on Λ, then it is locally one-to-one on an open neighbourhood
of Λ.

For any open cover U of Λ, the Lebesgue number of this cover is the
constant δ such that for any x ∈ Λ, the open δ-neighbourhood around x is
contained in some member of the cover.

Remark 2.1. Note that f is open on Λ if and only if for every x ∈ Λ
there is a neighbourhood basis {Ui}i≥0 such that f(Ui) is open for every
i ≥ 0.

Our (local) definition of openness is consistent with the standard defini-
tion of an open map. Namely, by Remark 2.1 if f is open on X then f(U)
is open for every open set U .

We say that f is positively expansive (with expansive constant b > 0) if
for any x, y ∈ X the condition

d(fn(x), fn(y)) < b for every n ∈ Z, n ≥ 0,

implies that x = y. Moreover, if f is a surjective map it is said to be c-
expansive (with expansive constant b′ > 0) if for any x, y ∈ X and any full
orbits {xm}m∈Z and {yn}n∈Z through x and y respectively the condition

d(xn, yn) < b′ for every n ∈ Z
implies that x = y. A continuous map f is said to be topologically hyperbolic
if it is c-expansive and has the shadowing property.

There is a large class of topologically hyperbolic maps. The classical
example is an Axiom A diffeomorphism restricted to its non-wandering set
(see [6] for example). Another important class are shifts of finite type (one-
or two-sided). The reader is referred to [1] for a more complete exposition
on properties of c-expansive and topologically hyperbolic maps (called TA-
maps in that text).

Many authors refer to maps which are expanding on the whole space
[17, 22, 23, 24]; there are many situations however where a map will be
expanding only in a local sense i.e. only on a subset of the space (such as
interval maps which are not expanding on any neighbourhood of a critical
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point). To tackle this issue, we consider expansion on subsets, and obtain
results in this context; the general case of expansion on the whole space is
always a natural consequence.

Definition 2.2. Let (X, d) be a compact metric space, and f : X → X
be continuous. If there are δ > 0, µ > 1 such that d(f(x), f(y)) ≥ µd(x, y)
provided that x, y ∈ Λ ⊆ X and d(x, y) < δ then we say that f is expanding
on Λ. If there is a neighbourhood U of Λ such that the property holds for
every x, y ∈ U , we say that f is expanding on a neighbourhood of Λ. In the
case that Λ = X we simply say that f is expanding.

Remark 2.3. Przytycki and Urbański explore expanding maps in [23],
referring to the property as distance expanding. They also define a property
called expanding at Λ, which is equivalent to our notion of expanding on a
neighbourhood of Λ. If f is expanding on Λ then for each x ∈ Λ there is an
open set U 3 x such that f�U∩Λ is one-to-one. Furthermore, if f is expanding
on the invariant set Λ then it is easy to see that f is positively expansive
on Λ. It is also known that a positively expansive map is expanding with
respect to some equivalent metric (see [23]).

The following property (for the case Λ = X) was introduced implicitly
in [23] in the proof that expanding open maps have shadowing. In fact, it
implies stronger shadowing properties (see Theorem 4.3 below). Here Bε(x)
denotes the open ball {y : d(x, y) < ε} about x.

Definition 2.4. For a compact metric space X with metric d and a
subset Λ ⊆ X we say that a continuous map f : X → X is ball expanding
on Λ if there are a µ > 1 and a ν > 0 such that for every x ∈ Λ and every
ε < ν we have Bµε(f(x)) ⊆ f(Bε(x)).

Theorem 2.5. Let (X, d) be a compact metric space, f : X → X be
continuous and let Λ ⊆ X be closed (but not necessarily invariant). The
following are equivalent:

(1) f is open on a neighbourhood of Λ and expanding on a neighbourhood
of Λ,

(2) f is ball expanding on a neighbourhood of Λ and locally one-to-one
on (a neighbourhood of ) Λ.

Proof. (1)⇒(2). Let Q be the neighbourhood of Λ on which f is open
and expanding, and let µ > 1, δ > 0 be the constants as given in the
definition of expanding. By normality, there is some open set W such that
Λ ⊆W ⊆W ⊆ Q (if Λ = X take Λ = W = W = Q). Clearly f is one-to-one
on Q and therefore one-to-one on Λ.

Fix x ∈W . Then there is some ζ < δ such that f is open and expanding
on U = Bζ(x) ⊆ Q. Furthermore there is an η = η(x) > 0 such that
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Bµη(f(x)) ⊂ int f(U) since f is open at x. Fix any ρ < η. We claim that
Bµρ(f(x)) ⊆ f(Bρ(x)). To see this, let V = U ∩ f−1(Bµρ(f(x))) and notice
that f(V ) = Bµρ(f(x)). Suppose that V * Bρ(x). Then there is y ∈ V \
Bρ(x), so d(x, y) ≥ ρ and x, y ∈ U ⊆ Q, thus d(f(x), f(y)) ≥ µρ and we get
f(y) 6∈ Bµρ(f(x)) which is impossible, so the claim holds.

Let U ′ = f−1(Bµη/2(f(x))) ∩ U . Then x ∈ U ′ and we can take ν =
ν(x) < η/2 so that Bν(x) ⊆ U ′.

Take any z ∈ Bν(x) and ε ≤ ν so that Bε(z) ⊆ Bν(x); then f(z) ∈
f(U ′) = Bµη/2(f(x)) and so

Bµε(f(z)) ⊆ Bµη(f(x)) ⊆ int f(U).

Since z ∈ U , a similar argument shows that Bµε(f(z)) ⊆ f(Bε(z)). In other
words, for x ∈W and z ∈ X we have

Bε(z) ⊆ Bν(x)(x) ⇒ Bµε(f(z)) ⊆ f(Bε(z)).(2.1)

Note that W is compact and ν(x) is well-defined for every x ∈W , so there
are x1, . . . , xs such that

W ⊆
s⋃
i=1

Bν(xi)/2(xi).

Denote ξ = mini ν(xi)/2, fix any ε < ξ and any x ∈W . There is i such that
x ∈ Bν(xi)/2(xi) and so Bε(x) ⊆ Bν(xi)(xi). Hence by (2.1), Bµε(f(x)) ⊆
f(Bε(x)).

(2)⇒(1). Let W be the neighbourhood of Λ on which f is ball expanding
and let µ, ν be as given in Definition 2.4. Certainly for every x ∈ Λ there
is a ζ(x) such that f is one-to-one on Bζ(x)(x), and the collection of such
neighbourhoods cover Λ. Take β to be their Lebesgue number and let ε :=
min{β, ν}. Then f is one-to-one on Bε(x) for every x ∈ Λ.

Now consider a cover of Λ consisting of ε/3-neighbourhoods of points
in Λ, take a finite subcover {Bε/3(xi) : 1 ≤ i ≤ n}, and let U = W ∩⋃
i≤nBε/3(xi). Let δ = ε/3 and fix any x, y ∈ U with η = d(x, y) < δ. Then

for some i ≤ n, d(x, xi) < ε/3.
Suppose that d(f(x), f(y)) < µd(x, y) = µη. Then we have

f(y) ∈ Bµη(f(x)) ⊆ f(Bη(x))

since f is ball expanding at x, and η < ν. But y /∈ Bη(x), so there is a
z ∈ Bη(x) for which f(z) = f(y). Since both y and z are in Bε(xi) this
contradicts the fact that f is one-to-one on Bε(xi). Thus d(f(x), f(y)) ≥
µd(x, y) for all x, y ∈ U with d(x, y) < δ, and hence f is expanding on U .

To see that f is open on W , take any x ∈ W and any 0 < ε < ν. Then
Bµε(f(x)) ⊆ f(Bε(x)), which implies that f(x) ∈ int f(Bε(x)).

Example 2.6. Suppose that f : [0, 1] → [0, 1] is a piecewise linear map
such that f(0) = 1/2 and the gradient on [0, 1/8] is 3/2. Then f is neither
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open at 0 nor ball expanding on Λ = [0, 1/16] but it is locally one-to-one
and expanding on a neighbourhood of Λ.

The distinction between expanding on Λ and expanding on a neighbour-
hood of Λ suggests the following intermediate property:

(?) there are δ > 0, µ > 1 such that d(f(x), f(y)) ≥ µd(x, y) provided
that x ∈ Λ and d(x, y) < δ.

The property (?) is intermediate between expanding on Λ and on a neigh-
bourhood, namely it is immediate that maps which are expanding on a
neighbourhood of Λ have (?) and that (?) implies expanding on Λ. The
proof of the following is similar to that of Theorem 2.5 and is left to the
reader.

Theorem 2.7. Let (X, d) be a compact metric space, f : X → X be
continuous and Λ ⊆ X be closed.

(1) If f is open on Λ and has (?), then f is ball expanding on Λ.
(2) If f is ball expanding and locally one-to-one on Λ, then f has (?).

The next two examples illustrate the differences between maps which are
expanding and those which are ball expanding.

Example 2.8. There is a continuous function from the Cantor set to
itself that is expanding but not ball expanding. Our Cantor set X is the
subset of [−1, 1] consisting of the union of the middle third Cantor set on
[0, 1] and its left shift by −1, with the usual metric. For each 0 < n, let
Cn = X ∩ [2/3n, 1/3n−1] and C−n = X ∩ [−1/3n−1,−2/3n], so that X =
{0} ∪

⋃
n∈Z\{0}Cn. For n > 0, let C+

n = Cn ∩ [8/3n+1, 1/3n−1] be the right

hand half of Cn and C−n = [2/3n, 7/3n+1] be the left hand half, so that
Cn = C−n ∪ C+

n . Clearly 3Cn = Cn−1 for 1 < |n|, and C+
n and C−n are both

isometric copies, indeed translations, of Cn+1. Our function f fixes 0 and
expands each Cn by a multiple of 3 and then translates it so that the image is
embedded into X in the following way: C−3 and C3 are expanded by a factor
of 9, all other Cns are expanded by a factor of 3 and f(C−1) = X ∩ [−1, 0],
f(C1) = X ∩ [0, 1],

f(Cn) =


C1 if n = ±2,±3,

C+
n−2 if n > 3,

C−|n|−2 if n < −3.

Clearly f is expanding, with δ = 1/9 and µ = 3, for example, in Definition
2.2. However, for n ≥ 4, f(X ∩ (−2/3n, 2/3n)) = X ∩ [0, 1/3n−3], so that for
any ε < 1/27, if δ > 0, then Bδ(f(0)) is not a subset of f(Bε(0)). Hence there
is no µ > 1 such that Bµε(f(0)) ⊆ f(Bε(0)), i.e. f is not ball expanding.
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Example 2.9. The full tent map T2 is an example of a map which is ball
expanding on [0, 1] but not expanding and not locally one-to-one. Indeed,
since T2 is unimodal and the image of the critical point and the end points
is an end point, T2 is open on [0, 1]. Since the gradient has modulus 2 except
at 1/2, T2 is therefore easily seen to be ball expanding. However, as it is
open, but not one-to-one on any neighbourhood of the critical point, T2 is
not expanding on [0, 1].

3. Shadowing on subspaces. Let X be a compact metric space and
f : X → X be continuous. For ε > 0, the (finite or infinite) sequence
{x0, x1, . . .} ⊆ X is an ε-pseudo-orbit if d(f(xn), xn+1) < ε for all n ≥ 0. The
sequence (when infinite) is an asymptotic pseudo-orbit if d(f(xn), xn+1)→ 0
as n→∞, and an asymptotic ε-pseudo-orbit if both conditions hold.

Let ε > 0, and let K be either N or {0, 1, . . . , k − 1} for some k ∈ N.
The sequence {yn}n∈K ε-shadows the sequence {xn}n∈K if for every n ∈ K,
d(yn, xn) < ε. Furthermore, we say that {yn}n∈N asymptotically shadows
{xn}n∈N if limn→∞ d(xn, yn) = 0. If both conditions hold simultaneously,
we say that {yn}n∈N asymptotically ε-shadows {xn}n∈N. If yn = fn(y) for
every n ∈ N then we say that the point y shadows (in whichever sense is
appropriate) the sequence {xn}n∈N.

To complement our treatment of expansive properties, we introduce
many of the following definitions with respect to a given set, as well as
in a general form.

The standard version of shadowing is the following; it appeared in [6],
where it was used in the study of ω-limit sets of Axiom A diffeomorphisms.

Definition 3.1. Let (X, d) be a compact metric space, f : X → X be
continuous and let Y be a subset of X. We say that f has the pseudo-orbit
tracing property on Y (or shadowing on Y ) if for every ε > 0 there is δ > 0
such that every infinite δ-pseudo-orbit in Y is ε-shadowed by a point y ∈ X.
If this property holds on Y = X, we simply say that f has shadowing.

Remark 3.2. It is easy to see that f has shadowing if and only if for ev-
ery ε > 0 there is a δ > 0 such that every finite δ-pseudo-orbit is ε-shadowed.

Definition 3.3. Let (X, d) be a compact metric space, f : X → X be
continuous and let Y be a subset of X. We say that f has limit shadowing
on Y if for any asymptotic pseudo-orbit {xn}n∈N ⊆ Y there is a point y ∈ X
which asymptotically shadows {xn}n∈N. If this property holds on Y = X,
then we say that f has limit shadowing.

The definition of limit shadowing was extended in [17] to a property
called s-limit shadowing, to account for the fact that many systems have
limit shadowing but not shadowing [15, 22].
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Definition 3.4. Let (X, d) be a compact metric space, and f : X → X
be continuous. We say that f has s-limit shadowing on Y ⊆ X if for every
ε > 0 there is δ > 0 such that the following two conditions hold:

(1) for every δ-pseudo-orbit {xn}n∈N ⊆ Y of f , there is y ∈ X such that
y ε-shadows {xn}n∈N,

(2) for every asymptotic δ-pseudo-orbit {zn}n∈N ⊆ Y of f , there is y ∈ X
such that y asymptotically ε-shadows {zn}n∈N.

In the special case Y = X we say that f has s-limit shadowing.

Example 3.5. Let X = [0, 1] ∪ {−1/2n : n ≥ 1}. Let f : X → X be any
homeomorphism such that f(x) = x for x = 1 or x ≤ 0 and f(x) < x for
x ∈ (0, 1). We claim that f has shadowing and limit shadowing, but that it
does not have s-limit shadowing.

Note first that if δ < 1/2n for some n ≥ 1, then any δ-pseudo-orbit,
{xi}i≥0, either is a constant sequence or is contained in [−1/2n, 1]. In the sec-
ond case, there is a δ-pseudo-orbit {yi}i≥0 ⊆ [0, 1] such that d(xi, yi) ≤ 1/2n.
If {xi}i≥0 is an asymptotic pseudo-orbit in X, then either it is eventually
constant, or there is an asymptotic pseudo-orbit {yi}i≥0 ⊆ [0, 1] such that
d(xi, yi) → 0 as i → ∞. But it is also well-known that the restriction of f
to [0, 1] has shadowing and limit shadowing. It follows that so does f .

To see that f does not have s-limit shadowing, let ε = 1/4 and choose
any δ > 0. Fix N > 0 such that fN (1/2) < δ and 2−N < δ. Then the
sequence

{xi}i≥0 =

{
1

2
, f

(
1

2

)
, . . . , fN

(
1

2

)
, 0,− 1

2N
,− 1

2N
, . . .

}
is both a δ-pseudo-orbit and an asymptotic pseudo-orbit. But now, if z ∈ X
satisfies limi→∞ d(f i(z), xi) = 0 then z = −1/2N and so it does not ε-shadow
our δ-pseudo-orbit {xi}i≥0. Indeed, f does not have s-limit shadowing.

We conjecture that one might extend this example to an interval map
but the details of the proof seem convoluted.

Walters [25] showed that a shift space is of finite type if and only if it has
shadowing. The following definition was introduced in [4] and is motivated
by the fact that shifts of finite type actually have a stronger shadowing
property, which happens to coincide with shadowing in shift spaces (but not
in other systems—see Example 6.4). Later, we will show that h-shadowing
is satisfied by various interval maps on regions excluding local extrema.

Definition 3.6. Let (X, d) be a compact metric space, and f : X → X
be continuous. We say that f has h-shadowing on Y ⊆ X if and only if
for every ε > 0 there is a δ > 0 such that for every finite δ-pseudo-orbit
{x0, x1, . . . , xm} ⊆ Y there is y ∈ X such that d(f i(y), xi) < ε for every
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i < m and fm(y) = xm. If Y = X then we simply say that f has h-
shadowing.

It is easy to see that every map with h-shadowing has shadowing. The
converse is not true however, as Example 6.4 shows. The following theorem
relates h-shadowing, s-limit shadowing and limit shadowing. (In [4] it was
shown that, if Λ ⊆ f(Λ) ⊆ X, in particular if f is onto, and f has s-limit
shadowing on Λ then f has also limit shadowing on Λ.)

Theorem 3.7. Let (X, d) be a compact metric space, f : X → X be
continuous and suppose that Λ ⊆ X is closed.

(1) If f has s-limit shadowing on Λ, then f has limit shadowing on Λ.
(2) If there is an open set U such that Λ ⊆ U and f has h-shadowing on

U , then f has s-limit shadowing on Λ.
(3) If Λ is invariant and f�Λ has h-shadowing then f�Λ has s-limit shad-

owing and limit shadowing.
(4) If f has h-shadowing then f has s-limit shadowing and limit shad-

owing.

Proof. (1) To prove limit shadowing, take any asymptotic pseudo-orbit
{zn}n∈N in Λ. Fix ε > 0 and let δ be provided for ε by s-limit shadowing,
and let γ < δ be provided for δ by the same condition. There is K such that
{zn}n≥K is a γ-pseudo-orbit, so it is asymptotically δ-shadowed by a point z.
It follows that the ω-limit set, ω(z), is a subset of Λ. By [14, Theorem 8.7],
there exists a minimal subset M of ω(z) and a point y ∈ M such that
lim infj→∞ d(f j(z), f j(y)) = 0. But f�M is onto, so there exists a point x
such that fK(x) = y. There is also N > 0 such that d(fN (y), fN (z)) < δ/2
and d(fN (z), zN+K) < δ/2. Therefore the sequence

ξ = {x, f(x), . . . , fK+N−1(x), zN+K , zN+K+1, . . .}
is an asymptotic δ-pseudo-orbit in Λ. Now, it is enough to use s-limit shad-
owing obtaining a point which asymptotically ε-shadows ξ, and as a result
asymptotically shadows {zn}n∈N.

(2) Since every map with h-shadowing has shadowing, the first half of
the definition of s-limit shadowing is satisfied trivially.

So fix ε > 0 such that B(Λ, 3ε) ⊆ U and denote εn = 2−n−1ε. By
the definition of h-shadowing there are {δn}n∈N such that every δn-pseudo-
orbit in U is εn-shadowed (with exact hit at the end). Fix any infinite δ0-
pseudo-orbit {xn}n∈N ⊆ Λ such that limn→∞ d(f(xn), xn+1) = 0. There is an
increasing sequence {ki}i∈N such that {xn}∞n=ki is an infinite δi-pseudo-orbit

and obviously k0 = 0. Note that if w is a point such that fki(w) = xki then
the sequence

w, f(w), . . . , fki(w), xki+1, . . . , xki+1

is a δi-pseudo-orbit.
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Let z0 be a point which ε0-shadows the δ0-pseudo-orbit x0, . . . , xk1 with
exact hit (i.e. such that fk1(z0) = xk1). Notice that f j(z0)∈U for 0≤ j ≤ k1.

For i ∈ N, assume that zi is a point which εi-shadows the δi-pseudo-orbit

zi−1, f(zi−1), . . . , f
ki(zi−1), xki+1, . . . , xki+1

⊆ U
with exact hit. Then by h-shadowing there is a point zi+1 which εi+1-
shadows the δi+1-pseudo-orbit

zi, f(zi), . . . , f
ki+1(zi), xki+1+1, . . . , xki+2

⊆ U
with exact hit. Thus we can produce a sequence {zi}∞i=0 with the following
properties:

(a) d(f j(zi−1), f
j(zi)) < εi for j ≤ ki and i ≥ 1,

(b) d(f j(zi), xj) < εi for ki < j ≤ ki+1 and i ≥ 0,
(c) fki+1(zi) = xki+1

for i ≥ 0,
(d) d(f j(zi), Λ) < ε for j ≤ ki+1,

There is an increasing sequence {si}i∈N such that the limit z = limi→∞ zsi
exists.

For any j, n ∈ N there exist i0 ≥ 0 and m ≥ i0 such that ki0 < j ≤ ki0+1

and d(f j(z), f j(zsm)) < εn+1. So we get

d(f j(z), xj) ≤ d(f j(z), f j(zsm)) + d(f j(zi0), xj) +

sm−1∑
i=i0

d(f j(zi), f
j(zi+1))

≤ εn+1 + εi0 +

sm−1∑
i=i0

εi+1≤ ε2−n−2 +

∞∑
i=i0

2−i−1ε≤ ε(2−n−2 +2−i0)

≤ ε(2−n−2 + 1).

But we can fix n to be arbitrarily large in that case, which immediately
implies that

d(f j(z), xj) ≤ ε.
Furthermore, for any n, let j > kn+2. There is i1 ≥ n + 2 such that ki1 <
j ≤ ki1+1 and there is m > i1 such that d(f j(z), f j(zsm)) < εn+1. Then as
before we obtain

d(f j(z), xj) ≤ ε(2−n−2 + 2−i1) ≤ ε(2−n−2 + 2−n−2) = εn.

This immediately implies that lim supj→∞ d(f j(z), xj) ≤ εn, which, since n

was arbitrary, finally gives limj→∞ d(f j(z), xj) = 0. This shows that f has
s-limit shadowing on Λ.

(3) and (4) follow directly from (1) and (2) (since U = Λ is open in Λ).

We finish this section by proving a result which shows that provided we
can find some iterate of a map which has h-shadowing, we can deduce that
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the map itself has h-shadowing. We need the following result, which follows
easily from the definitions.

Lemma 3.8. Let (X, d) be a compact metric space, and f : X → X be
continuous. Let ε > 0 and n ∈ N. There is a δ = δ(n, ε) > 0 such that if
{x0, . . . , xn} is a δ-pseudo-orbit and y ∈ X is such that d(y, x0) < δ then
d(fk(y), xk) < ε for k = 1, . . . , n.

Theorem 3.9. Let (X, d) be a compact metric space, and f : X → X
be continuous. If Λ is a closed set such that f(Λ) ⊇ Λ then the following
conditions are equivalent:

(1) f has h-shadowing on Λ,
(2) fn has h-shadowing on Λ for some n ∈ N,
(3) fn has h-shadowing on Λ for all n ∈ N,

Proof. Implication from (3) to (2) is trivial.
Implication from (1) to (3) is also obvious, since for any δ > 0 and n > 0

if {y0, y1, . . . , ym} is a δ-pseudo-orbit for fn then the sequence

y0, f(y0), . . . , f
n−1(y0), y1, f(y1), . . . , f

n−1(ym−1), ym

is a δ-pseudo-orbit for f .
For the proof of the last implication fix ε > 0 and suppose that fn has

h-shadowing on Λ for some n ∈ N. By Lemma 3.8 there is an ε′ > 0 such that
if {x0, . . . , xn} ⊆ Λ is an ε′-pseudo-orbit and y ∈ X is such that d(y, x0) < ε′

then d(fk(y), xk) < ε for k = 1, . . . , n.
By h-shadowing there is a δ > 0 such that every δ-pseudo-orbit of fn

is ε′-shadowed by a point in X which hits the last element of the pseudo-
orbit. Again by Lemma 3.8 (with y = x0), there is a γ < δ/n such that
whenever {x0, . . . , xn} is a γ-pseudo-orbit for f we have d(f i(x0), xi) < δ
for i = 1, . . . , n.

Let {x0, . . . , xm} ⊆ Λ be any γ-pseudo-orbit for f , and write m = jn+ r
for some j ≥ 0 and some r < n. Since f is surjective on Λ (i.e. Λ ⊆ f(Λ))
there is a point z ∈ Λ such that fn−r(z) = x0. Then {z, f(z), . . . , fn−r(z),
x1, . . . , xm} ⊆ Λ is a γ-pseudo-orbit for f , which we enumerate obtaining
the sequence {y0, . . . , y(j+1)n}. We now claim that {y0, yn, y2n, . . . , y(j+1)n}
is a δ-pseudo-orbit for fn. Indeed, {y0, . . . , fn−r(y0) = yn−r, . . . , yn} is a
γ-pseudo-orbit (of length n+ 1) for f and so d(fn(y0), yn) < δ. Similarly we
have d(fn(ykn), y(k+1)n) < δ for 1 ≤ k ≤ j.

By h-shadowing of fn there is u such that d(fkn(u), ykn) < ε′ for k =
0, 1, . . . , j+ 1 and f (j+1)n(u) = y(j+1)n. Thus by the definition of ε′ we have

d(fkn+i(u), ykn+i) < ε for k = 0, . . . , j + 1 and for i = 0, . . . , n − 1. So the
point u ε-shadows the γ-pseudo-orbit{y0, . . . , y(j+1)n}={z, f(z), . . . , fn−r(z)
= x0, x1, . . . , xm}, and consequently the point w = fn−r(u) ε-shadows the
γ-pseudo-orbit {x0, . . . , xm}, with fm(w) = f (j+1)n(u) = y(j+1)n = xm.
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4. Expansivity and shadowing. In this section we show that the
various shadowing properties we have discussed are seen (and many are
indeed equivalent) for certain expanding maps.

The following result appears in [4], and we omit the proof here.

Proposition 4.1. Let (X, d) be a compact metric space and let f : X →
X be continuous.

(1) If f is positively expansive then f has shadowing if and only if f has
h-shadowing.

(2) If f is c-expansive then f has shadowing if and only if f has s-limit
shadowing.

Corollary 4.2 follows immediately from Theorem 3.7 and Proposition 4.1.

Corollary 4.2. Let (X, d) be a compact metric space, and f : X → X
be continuous and positively expansive. Then f has shadowing if and only if
it has h-shadowing if and only if it is s-limit shadowing. In this case f also
has limit shadowing.

The following theorem extends Przytycki and Urbański’s result that
open, expanding maps have shadowing [23, Corollary 3.2.4].

Theorem 4.3. Let (X, d) be a compact metric space, f : X → X be
continuous, and let M ⊆ X. If f is ball expanding on M then f has h-
shadowing on M .

Proof. Let ε > 0, let µ, ν be as given in Definition 2.4, let ε′ = min{ε, ν}
and let δ = (µ− 1)ε′. Then for every x ∈M ,

Bε′+δ(f(x)) ⊆ Bµε′(f(x)) ⊆ f(Bε′(x)).(4.1)

Suppose that {x0, . . . , xm} ⊆M is a δ-pseudo-orbit. Notice that by (4.1) we
have Bε′+δ(f(xi)) ⊆ f (Bε′(xi)) for i = 0, 1, . . . ,m− 1, so

(4.2) Bε′(xi+1) ⊆ f(Bε′(xi)) for i = 0, 1, . . . ,m− 1.

Let J0 = Bε′(x0) and then define inductively Ji = f−i(Bε′(xi)) ∩ Ji−1.
Clearly the Ji are nested, and by (4.2) we can prove by induction that

f i(Ji) = Bε′(xi), since

Bε′(xi) ⊇ f i(Ji) ⊇ f i(Ji−1) ⊇ f(Bε′(xi−1)) ⊇ Bε′(xi).
In particular, f i(Jm) ⊆ Bε′(xi) for i = 0, 1, . . . ,m and fm(Jm) =

Bε′(xm), thus there is a point y ∈ Jm such that f i(y) ∈ Bε′(xi) and for
which fm(y) = xm.

The following corollary is now immediate from Theorems 2.5 and 4.3.

Corollary 4.4. Let (X, d) be a compact metric space, and f : X → X
be continuous.

(1) If f is ball expanding, then f has h-shadowing.
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(2) If f is open and expanding, then f has h-shadowing.

Figure 1 summarizes the situation for continuous functions of a compact
metric space.

Fig. 1. The relationships between expansivity and shadowing properties of a continuous
map f on a subset Λ of a compact metric space.

5. Expansivity and shadowing in interval maps. We now consider
our results in the context of interval maps. Let f : [0, 1]→ [0, 1] be continu-
ous. By a critical point of f we mean a point at which the map fails to be
locally one-to-one. We denote the set of critical points by C.

Remark 5.1. Let f : [0, 1] → [0, 1] be continuous. Notice that C is a
closed subset of [0, 1]. If U is an open set that contains a critical point,
then f is not expanding on U , since expanding maps are one-to-one. On the
other hand, if U is open and disjoint from C, then U can be written as a
countable union of disjoint open connected subsets of [0, 1] on which f is
one-to-one (these subsets are open intervals, except maybe at most two of
them containing end points). Therefore, if U does not contain either of the
end points 0 or 1, then f is open on U . It follows that if f is expanding
on an open set U that does not contain any critical points or end points,
then f is open on U . So if Λ is a closed subset of [0, 1] that is disjoint
from C ∪ {0, 1} and f is expanding on a neighbourhood of Λ, then f is
open on a neighbourhood U of Λ, and by Theorem 2.5 we deduce that f is
ball expanding on U . By normality, then, there is an open set V such that
Λ ⊆ V ⊂ V ⊆ U .

From [12], we know that tent maps have shadowing when the orbit of the
critical point obeys certain rules. There are examples of tent maps where
these rules are broken, yet the map still has shadowing on a subset of the
interval. We make this idea precise in the following theorem, and complement
it with an example of when this occurs.
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Theorem 5.2. Let f : [0, 1] → [0, 1] be a continuous function and let C
be a closed, nowhere dense subset of [0, 1] that contains the critical points
of f . Suppose that f is C1 with gradient modulus strictly greater than 1 on
every interval in (0, 1) \ C. If Λ is a closed subset of [0, 1] that is disjoint
from C ∪ {0, 1}, then f has shadowing, s-limit shadowing and h-shadowing
on Λ.

Proof. Since Λ and C∪{0, 1} are both closed, there is an open set U ⊇ Λ
with U ∩ (C ∪ {0, 1}) = ∅. Notice that U is a subset of only finitely many
intervals, U1, . . . , Um, of the (possibly countably many) intervals comprising
(0, 1) \ C. To see this, note that otherwise we would be able to find an
increasing or decreasing sequence of points (xn) with x2k ∈ U and x2k+1 ∈ C,
which would imply that U and C have a common limit point. Clearly f is
expanding on U ′ = U1 ∪ · · · ∪ Um (take δ > 0 in the definition of expanding
to be half the minimum of {d(x, c) : x ∈ U, c ∈ C}, and µ > 1 to be the
minimum gradient modulus of f on the Ui, i ≤ m). By Remark 5.1, f is open
on U ′ and f is ball expanding on U ′, thus by Theorem 4.3, f has h-shadowing
on U ′. Shadowing follows directly from h-shadowing, and Theorem 3.7(2)
tells us that f has s-limit shadowing on Λ, since Λ ⊆ U ′.

Remark 5.3. If f is a piecewise linear map (i.e. there is a decomposition
of [0, 1] into finitely many pieces, and f is linear on each of them with
gradient modulus strictly greater than 1), then clearly the assumptions of
Theorem 5.2 are satisfied. This extends to maps with infinitely many pieces
of linearity as well.

Example 5.4. The tent map T2 (with slope 2) is ball expanding (see
Example 2.9) and, therefore, has h-shadowing by Theorem 4.3. As an ex-
ample of a piecewise linear map which has shadowing on a subset of the
interval [0, 1] but not on the interval itself, consider a tent map with gra-
dient λ ∈ (1, 2) whose critical point c is not recurrent. This map does not
have shadowing [12], but by Theorem 5.2, for any closed set Λ ⊆ [0, 1] for
which c /∈ Λ we find that f has shadowing (and s-limit shadowing and
h-shadowing) on Λ.

The situation is less clear when the map in question is smooth, and the
conditions which imply shadowing in smooth maps are more subtle. We
explore them in the next result.

Example 5.5. The logistic map g4(x) = 4x(1 − x) is conjugate to the
tent map T2, with gradient modulus 2, which we know to have shadowing
[12], and as noted in Example 5.4, T2 has h-shadowing. Thus we conclude
that g4 has h-shadowing (it is easy to show that h-shadowing is preserved
between conjugate maps of a compact space). However, neither Corollary
4.4 nor Theorem 4.3 apply here, since no member of the logistic family



Shadowing and expansivity in subspaces 237

is expanding or ball expanding on any neighbourhood of the critical point
1/2.

Recall that the Schwarzian derivative S(f)(x) of a map f at the point x
is given by

S(f)(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

.

For ε > 0, a subset N of a metric space X is said to be an ε-net if N ∩
Bε(y) 6= ∅ for all y ∈ X. We will interchangeably use the notation D(f) = f ′,
D(2)(f) = f ′′, etc.

In [18], Misiurewicz proves that for smooth maps with negative Schwarzian
derivative and no sinks, there are open intervals U on which the derivative
of some iterate m > 0 of the map is greater than 1, even when the derivative
of the map itself is close to zero; this notion relies on the fact that f i(U)
avoids neighbourhoods of the critical points for every 0 ≤ i < m. Here we
use a similar idea, proving that maps whose pre-critical points form a dense
set have various shadowing properties on closed sets which do not contain
their critical points.

Theorem 5.6. Suppose that f : [0, 1] → [0, 1] is continuous and Λ ⊂
(0, 1) is closed and strongly invariant. Suppose further that:

(1) the set of critical points C is closed and for every ε > 0 there is some
m > 0 such that f−m(C) is an ε-net.

(2) S(f(x)) is defined and non-positive for all x ∈ [0, 1] \ C;
(3) Λ ∩ C = ∅.

Then f has shadowing, s-limit shadowing and h-shadowing on Λ.

Proof. We claim that for some m ∈ N, the derivative D
(
fm
)
(x) has

absolute value strictly greater than 1 for all x ∈ Λ. Suppose that this is
not the case, so that for every m ∈ N, there is some xm ∈ Λ such that
|D(fm)(xm)| ≤ 1. Let δ < d(Λ, C)/2 and fix m such that f−m(C) forms a
δ/2-net. Note that if δ is sufficiently small then xm ∈ [δ/2, 1− δ/2], because
xm ∈ Λ, which is a closed subset of (0, 1). We can find c1, c2 ∈ f−m(C) such
that c1 < xm < c2. Since Λ is invariant and disjoint from C, xm /∈ f−m(C).

Moreover, as f−m(C) is closed, we may assume that c1 = max{y ∈
f−m(C) : y < xm} and c2 = min{y ∈ f−m(C) : xm < y}. It follows that
c2−c1 ≤ δ and f−m(C)∩(c1, c2) = ∅. Now the Schwarzian derivative S(fm) is
well-defined on (c1, c2), and by the proof of [13, Proposition 11.3], S(fm) ≤ 0
on (c1, c2). It follows (see page 18 of [18], for example) that |D(fm)| has no
positive strict local minima on (c1, c2). Since |D(fm)(xm)| ≤ 1, we see that
|D(fm)(y)| ≤ |D(fm)(xm)| ≤ 1 for all y in one of the intervals (c1, xm)
or (xm, c2). Suppose, without loss of generality, that the first of these cases
holds (the arguments for the second are identical). Then |fm(c1)−fm(xm)| ≤
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|D(fm)(xm)| |c1−xm| ≤ δ, which contradicts the fact that d(Λ, C) > δ. The
proof of the claim is finished.

Since Λ is compact, Λ is disjoint from C, S(f) exists on [0, 1] \ C, and
Df is continuous on [0, 1] \ C, it follows that there is some µ > 1 and
a neighbourhood U of Λ on which the derivative of fm is greater than
µ in absolute value. So, by Remark 5.1, fm is open, expanding and ball
expanding on a neighbourhood of Λ. Therefore by Theorems 4.3 and 3.9
(the latter applies since f(Λ) = Λ), f has h-shadowing on a neighbourhood
of Λ; shadowing on Λ is immediate, and s-limit shadowing follows from
Theorem 3.7(2).

We end this section with an example which illustrates when Theorem 5.6
can apply. In this example we draw heavily upon the theory presented in [9].
While we provide precise references to facts used where possible, the reader
is referred to [9] for many of the definitions, such as kneading sequence,
∗-product etc.

Example 5.7. Consider the sequence K = RLLRRLRRRLRRRRL . . .
and observe that it is not recurrent under the left shift map. Note that K
is not a ∗-product, i.e. K 6= B ∗ Q for any non-empty word B and any
sequence Q 6= C (see [9] for the full definition). Let fµ : [−1, 1] → [−1, 1]
be the family of maps of the form fµ(x) = 1 − µx2 with µ ∈ [1, 2] and
denote J(fµ) = [fµ(1), 1]. Each fµ is C3, unimodal with critical point 0, has
maximum value fµ(0) = 1, satisfies f ′µ(x) 6= 0 and S(fµ)(x) < 0 for every
x 6= 0, and is surjective on J(fµ). Therefore each fµ satisfies the definition
of S-unimodal from [9]. Additionally f1(1) = 0, f2(1) = f2(−1) = −1 (fµ is
a so-called full family) and so by [9, III.1.2] there is µ ∈ (1, 2) such that
F = fµ has kneading sequence exactly equal to K (note that K is not the
kneading sequence of either f1 or f2).

Since K is infinite but not periodic, [9, II.6.2] implies that F has no
stable periodic orbit in J(F ). But in our case F ([−1, 1]) = J(F ) so there
is no stable periodic orbit of F in [−1, 1] either. We can, therefore, apply
[9, II.5.5] to see that the set of pre-critical points

⋃
m≥0 F

−m({0}) is dense
in [−1, 1]. Since K is not a ∗-product, by [9, II.7.14 and II.7.12] there is
some λ ∈ (

√
2, 2) such that F |J(F ) is conjugate to the map gλ|J(gλ) where

gλ(x) = 1− λ|x| for x ∈ [−1, 1]. Repeating the arguments from the proof of
[7, Lemma 2] it is not hard to show that gλ restricted to J(gλ) is topologically
exact, that is, for every open interval I ⊂ J(gλ) there is an n > 0 such that
gnλ(I) ⊃ J(gλ). By conjugacy, F |J(F ) is also topologically exact, and since
the pre-critical points are dense, for every interval I ⊂ [−1, 1] there is n such
that Fm(I) ⊃ J(F ) for every m > n. Now if we fix any ε > 0 and cover
[−1, 1] with finitely many non-degenerate intervals I1, . . . , Ik with diameters
smaller than ε then there is also an m > 0 such that 0 ∈ J(F ) ⊂ Fm(Ii)
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for each i = 1, . . . , k. This shows that condition (1) from Theorem 5.6 is
satisfied.

Now we are going to show that F does not have shadowing. Observe
that the point 0 is not recurrent, as in such a case K has to be recurrent.
Therefore we can find ε > 0 such that

|Fn(0)− 0| > ε for every n > 0,(5.1)

and for which F 2([−ε, ε]) ⊂ [F (1), 0). If F had shadowing we would have
some δ > 0 such that every δ-pseudo-orbit is ε-shadowed. We will show that
this is not the case. Recall that 1 < µ < 2 and so −1 < F (1) < 0. Fix
any 0 < δ < F (1) + 1 and let x0 = 0, x1 = 1, x2 = F (1) − δ/2, and for
i > 2, xi = F i−2(x2). Suppose that the δ-pseudo-orbit Γ = {x0, x1, x2, . . .}
is ε-shadowed by the point y ∈ [−1, 1]. The pre-critical points are dense, so
since x2 < F 2(y) < 0 there is some least n > 2 for which 0 is between Fn(y)
and xn. Notice that F 2(0) ∈ [x2, F

2(y)] but 0 /∈ [x2, F
2(y)] so F 3(0) lies

between F 3(y) and F (x2) = x3. Repeating this argument for every i < n
we deduce that F i(0) lies between F i(y) and xi but 0 does not (by the
definition of n). Thus 0 and Fn(0) both lie between Fn(y) and xn, and this
contradicts (5.1) since |Fn(y)−xn| < ε. To finish our example, fix any closed
and invariant set Λ ⊂ (−1, 0) ∪ (0, 1) and observe that by Theorem 5.6 our
map F has shadowing, h-shadowing and s-limit shadowing on Λ, while it
does not have (global) shadowing as shown above.

In other words, whilst not having any form of global shadowing, smooth
maps such as F have various shadowing properties on closed, invariant sub-
sets of the interval which do not contain any critical point.

By changing the lengths of the blocks of R, one can easily show that
there are uncountably many such interval maps.

6. A final remark on h-shadowing homeomorphisms. Homeomor-
phisms with h-shadowing have a number of interesting properties, some of
which we explore in this section.

Recall that a point x ∈ X is an equicontinuity point of f if for every ε > 0
there is a δ > 0 such that given a point y ∈ X, d(fn(x), fn(y)) < ε holds
for all n whenever d(x, y) < δ. If every x ∈ X is a point of equicontinuity
then we say that f is equicontinuous.

Theorem 6.1. Let (X, d) be a compact metric space, and f : X → X be
a homeomorphism. The following conditions are equivalent:

(1) f has h-shadowing;
(2) f has shadowing and f−1 is equicontinuous;
(3) f is equicontinuous and X is totally disconnected.
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Proof. First we prove (1)⇒(2). Fix any ε > 0 and let δ > 0 be provided
by h-shadowing. We may assume that δ < ε. Fix any x, y ∈ X and assume
that d(x, y) < δ. For any n > 0 the sequence

f−n(x), f−n+1(x), . . . , f−1(x), y

is a δ-pseudo-orbit, so by h-shadowing of f there exists z such that

d(f−n+i(x), f i(z)) < ε for i = 0, . . . , n

and additionally fn(z) = y. In other words

d((f−1)n(x), (f−1)n(y)) = d(f−n(x), z) < ε,

which proves that f−1 is equicontinuous. Every map with h-shadowing has
shadowing and so the implication follows.

To prove (2)⇒(1), fix ε > 0 and choose 0 < γ < ε/2 which satis-
fies the definition of equicontinuity for ε/2. Let 0 < δ < γ be such that
every δ-pseudo-orbit is γ-shadowed. Fix any δ-pseudo-orbit x0, x1, . . . , xn
and let z be a point which γ-shadows it. By equicontinuity of f−1 we get
d(f−i(xn), f−i(fn(z))) < ε/2 for every i ≥ 0, since d(xn, f

n(z)) < γ. Denote
y = f−n(xn). But then

d(f j(y), xj) ≤ d(f j(y), f j(z)) + d(f j(z), xj)

≤ d(f j−n(xn), f j(z)) + γ < ε/2 + ε/2

and additionally fn(y) = xn.
To prove that (2)⇒(3) we argue as follows. First we claim that if f−1

is equicontinuous, then every x is recurrent under f , i.e. x ∈ ω(x, f). To
see this suppose that d(x, ω(x, f)) = ε > 0. If y ∈ ω(x, f), then, by the
equicontinuity of f−1, there is δ > 0 such that d(f−i(y), f−i(z)) < ε/2 for
all i, provided d(y, z) < δ. But there is m > 0 such that d(fm(x), y) < δ,
which is a contradiction.

We next claim that if f−1 is equicontinuous and f has shadowing, then f
is equicontinuous. Suppose that x is not a point of equicontinuity for f and
pick ε > 0 such that for all δ > 0 there are y and m such that d(x, y) < δ,
but d(fm(y), fm(x)) ≥ ε. For this x and ε/4, since f−1 is equicontinuous
we can choose 0 < η < ε/2 such that d(f−i(x), f−i(y)) < ε/4, for all i,
whenever d(x, y) < η. By shadowing of f , choose 0 < ξ < η/3 so that every
finite ξ-pseudo-orbit is η/3-shadowed. Now fix y such that d(x, y) < ξ and
there is m > 0 such that d(fm(x), fm(y)) ≥ ε. Since x and y are recurrent
there are r > 0 and s > 0 such that d(x, f r(x))< ξ and d(y, fs(y)) < ξ.
Consider the two ξ-pseudo-orbits of length rs+ 1 obtained by periodic con-
catenation of the finite orbits {x, f(x), . . . , f r−1(x)} s times followed by x and
{y, f(y), . . . , f s−1(y)} r times followed by y. Let the orbit of p η/3-shadow
the first of these and let q η/3-shadow the second. Note that d(f sr+1(p), x) <
η/3 < η and d(f rs+1(q), x) < ξ + η/3 < η. By the equicontinuity of f−1, we
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have d(fm(p), fm−sr−1(x)) < ε/4 and d(fm(q), fm−sr−1(x)) < ε/4, so that

d(fm(x), fm(y)) ≤ d(fm(x), fm(p)) + d(fm(p), fm−rs−1(x))

+ d(fm−rs−1(x), fm(q)) + d(fm(q), fm(y))

< η/3 + ε/4 + ε/4 + η/3 < ε,

which is a contradiction since d(fm(x), fm(y)) ≥ ε.
Finally we show that X is totally disconnected. Suppose not and let x

and y be distinct points in a non-trivial connected component of X with
d(x, y) = ε > 0. Since f is equicontinuous, there is 0 < η < ε/4 such that
d(f i(x), f i(z)) < ε/4 whenever d(x, z) < η. Since f has shadowing, there
is ξ > 0 such that every ξ-pseudo-orbit is η/2-shadowed. Since x and y are
in the same connected component, there is a sequence of open ξ/4-balls,
B0, . . . , Bn such that x ∈ B0 and y ∈ Bn and Bi ∩ Bi+1 6= ∅ for all i.
Since every point in X is recurrent, we can find xi ∈ Bi and si > 0 such
that x0 = x and xm = y and fsi(xi) ∈ Bi. Let Ai denote the sequence
{xi, f(xi), . . . , f

si−1(xi)}. Observe that the sequence A1A1A2A2 . . . AnAn
followed by y and the sequence A1A2 . . . AnAnAn−1 . . . A1 followed by x are
both ξ-pseudo-orbits of the same length, k say. Let the first of these be
η-shadowed by the orbit of p and the second be η-shadowed by the orbit
of q. Since d(x, p) < η/2 and d(x, q) < η/2, we have

d(x, y) ≤ d(x, fk(p)) + d(fk(p), fk(x)) + d(fk(x), fk(q)) + d(fk(q), y)

< η/2 + ε/4 + ε/4 + η/2 < ε,

which contradicts the fact that d(x, y) ≥ ε.
Finally we prove that (3)⇒(2). Every equicontinuous map on a totally

disconnected space has shadowing [16, Prop. 4.7]. Since f is a homeomor-
phism, every finite δ-pseudo-orbit for f is a δ′-pseudo-orbit for f−1, where
δ depends only on δ′, so it is not hard to verify that f has shadowing if and
only if f−1 has shadowing. Then by (2)⇒(3), f−1 is equicontinuous, since
f is equicontinuous and f−1 has shadowing.

Remark 6.2. Adding machines are a particular example of systems sat-
isfying the conditions of Theorem 6.1. Note that in (3) we cannot do better
than totally disconnected and prove that X is the Cantor set: the identity
map on the union of the Cantor set with some number of isolated points is
equicontinuous and has shadowing.

Recall that a map f is (topologically) transitive if for every pair of open
sets U and V , there is some n ∈ N such that fn(U) ∩ V 6= ∅, and that f
is topologically mixing if for every pair of open sets U and V , there is an
N ∈ N for which fn(U) ∩ V 6= ∅ for every n ≥ N . A map is said to be
(topologically) weakly mixing if the map f × f : X ×X → X ×X defined by
(f × f)(x, y) = (f(x), f(y)) is transitive.
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Remark 6.3. Let (X, d) be a compact metric space, and f : X → X
be a topologically weakly mixing homeomorphism. It is easily seen (and
known) that the maximal equicontinuous factor of a weakly mixing system
is trivial, therefore if a weakly mixing homeomorphism has h-shadowing, X
is a singleton. In other words, if X has more than one element, then f is
not equicontinuous, and by Theorem 6.1, f does not have h-shadowing.

Example 6.4. Consider any bi-infinite shift of finite type with at least
two elements. It has shadowing by [25], which demonstrates that h-shadowing
and shadowing are not equivalent.
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