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The growth rate and dimension theory of beta-expansions
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Simon Baker (Manchester)

Abstract. In a recent paper of Feng and Sidorov they show that for β ∈
(1, (1 +

√
5)/2) the set of β-expansions grows exponentially for every x ∈ (0, 1/(β − 1)).

In this paper we study this growth rate further. We also consider the set of β-expansions
from a dimension theory perspective.

1. Introduction. Let 1 < β < 2 and Iβ = [0, 1/(β − 1)]. Each x ∈ Iβ
can be expressed as

x =

∞∑
n=1

εn
βn

for some (εn)∞n=1 ∈ {0, 1}N. We call such a sequence a β-expansion for x. We
define

Σβ(x) =

{
(εn)∞n=1 ∈ {0, 1}N :

∞∑
n=1

εn
βn

= x

}
.

In [2] it is shown that for β ∈ (1, (1 +
√

5)/2) and x ∈ (0, 1/(β − 1)) the
set Σβ(x) is uncountable. In [6, 7] Sidorov considers the case where β ∈
[(1 +

√
5)/2, 2). He shows that for Lebesgue almost every x ∈ Iβ the set

Σβ(x) is uncountable.

To describe the growth rate of β-expansions we set

Ek(x, β)=

{
(ε1, . . . , εk) ∈ {0, 1}k : ∃(εk+1, εk+2, . . .) ∈ {0, 1}N,

∞∑
n=1

εn
βn

= x

}
.

Each element of Ek(x, β) will be called a k-prefix for x. Moreover, we let

Nk(x, β) = #Ek(x, β)
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and define the growth rate of Nk(x, β) to be

lim
k→∞

log2Nk(x, β)

k
,

when this limit exists. When the limit does not exist we can consider the
lower and upper growth rates of Nk(x, β), defined to be

lim inf
k→∞

log2Nk(x, β)

k
and lim sup

k→∞

log2Nk(x, β)

k

respectively.
In this paper we also consider Σβ(x) from a dimension theory perspec-

tive. We endow {0, 1}N with the metric d(·, ·) defined as follows:

d(x, y) =

{
2−n(x,y) if x 6= y, where n(x, y) = inf{i : xi 6= yi},
0 if x = y.

We consider the Hausdorff dimension of Σβ(x) with respect to this metric.
It is a simple exercise to show that

(1) dimH(Σβ(x)) ≤ lim inf
k→∞

log2Nk(x, β)

k
≤ lim sup

k→∞

log2Nk(x, β)

k
.

In [4] the following theorem was shown to hold.

Theorem 1.1. Let β ∈ (1, (1 +
√

5)/2). Then

lim inf
k→∞

log2Nk(x, β)

k
≥ κ(β) > 0 for all x ∈

(
0,

1

β − 1

)
,

where κ(β) is given explicitly by the formula

κ(β) =


1

2

([
logβ

(
β2 − 1

1 + β − β2

)]
+ 1

)−1
if β >

√
2,

1

2

([
logβ

(
1

β − 1

)]
+ 1

)−1
if β ≤

√
2.

The growth rate of Nk(x, β) is addressed from the measure-theoretic
point of view in [5]. The following result is implicit there.

Theorem 1.2. For almost every β ∈ (1, 2) and almost every x ∈ Iβ,

lim sup
k→∞

log2Nk(x, β)

k
= log2

(
2

β

)
.

Moreover, for almost every β ∈ (1,
√

2) and almost every x ∈ Iβ,

lim
k→∞

log2Nk(x, β)

k
= log2

(
2

β

)
.

We remark that the bounds given in Theorem 1.1 are somewhat weak.
We observe that κ(β) → 0 as β → 1, contrary to what we would expect.
As β → 1 we would expect the number of k-prefixes for x to grow and the
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growth rate of Nk(x, β) to increase. In this paper we show that the following
theorem holds.

Theorem 1.3. There exists a strictly decreasing sequence (ωm)∞m=1 con-
verging to 1 such that if β ∈ (1, ωm] then

dimH(Σβ(x)) ≥ 2m

2m+ 1
for all x ∈

(
0,

1

β − 1

)
.

As an immediate corollary of Theorem 1.3 we deduce that

inf
x∈(0, 1

β−1
)
dimH(Σβ(x))→ 1 as β → 1.

By (1) similar statements hold for the lower and upper growth rate of
Nk(x, β).

We also improve on the bounds given in Theorem 1.1. We show that the
following theorem holds.

Theorem 1.4. There exists a strictly increasing sequence (λm)∞m=1 con-
verging to (1 +

√
5)/2 such that for β ∈ (1, λm],

dimH(Σβ(x)) ≥ 1

m+ 2
for any x ∈

(
0,

1

β − 1

)
.

In Section 2 we prove Theorem 1.3, and in Section 3 we prove Theorem
1.4 by a similar argument. In Section 4 we give some bounds for the upper
growth rate of Nk(x, β), while in Section 5 we use our results to obtain
bounds for the local dimension of Bernoulli convolutions.

2. Proof of Theorem 1.3. To prove Theorem 1.3 we devise an al-
gorithm for generating β-expansions. We then show that the Hausdorff di-
mension of the set of expansions generated by this algorithm is greater than
or equal to 2m/(2m + 1) for β ∈ (1, ωm]. Before giving the details of this
algorithm we provide a useful reinterpretation of Nk(x, β) and define the
sequence (ωm)∞m=1.

2.1. Bk(x, β) and the sequence (ωm)∞m=1

2.1.1. Reinterpretation of Nk(x, β). Fix T0,β(x) = βx and T1,β(x) =
βx− 1. We let

Ωk = {a = (an)kn=1 ∈ {T0,β, T1,β}k}.
For x ∈ Iβ and a ∈ Ωk, we denote ak ◦ ak−1 ◦ · · · ◦ a1(x) by a(x). We let

|a|0 = #{1 ≤ n ≤ k : an = T0,β}, |a|1 = #{1 ≤ n ≤ k : an = T1,β}.
Finally we define

Tk(x, β) = {a ∈ Ωk : a(x) ∈ Iβ}, Bk(x, β) = #Tk(x, β).

Proposition 2.1. Nk(x, β) = Bk(x, β).
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Proof. Following [4] we observe that

Ek(x, β) =

{
(ε1, . . . , εk) ∈ {0, 1}k : x− 1

βk(β − 1)
≤

k∑
n=1

εn
βn
≤ x

}

=

{
(ε1, . . . , εk) ∈ {0, 1}k : 0 ≤ x−

k∑
n=1

εn
βn
≤ 1

βk(β − 1)

}

=

{
(ε1, . . . , εk) ∈ {0, 1}k : 0 ≤ βkx−

k∑
n=1

εnβ
k−n ≤ 1

β − 1

}
=

{
(ε1, . . . , εk) ∈ {0, 1}k : 0 ≤ (Tε1,β, . . . , Tεk,β)(x) ≤ 1

β − 1

}
.

Our result follows immediately.

By Proposition 2.1 we can identify elements of Tk(x, β) with elements
of Ek(x, β), so that we can also call elements of Tk(x, β) k-prefixes of x. To
help with our later calculations we include the following technical lemmas.

Lemma 2.2. For all k, n ∈ N,

T k1,β

(
βn

β2 − 1

)
=
βn+k − βk+1 − βk + β + 1

β2 − 1
.

The proof of this lemma is trivial and hence omitted.

Lemma 2.3. Assume a ∈ Ω2k+1 and |a|0 ≥ k + 1. Then for all x ∈ R,

a(x) ≥ (

k︷ ︸︸ ︷
T1,β, . . . , T1,β,

k+1︷ ︸︸ ︷
T0,β, . . . , T0,β)(x).

Similarly, if |a|1 ≥ k + 1 then

a(x) ≤ (

k︷ ︸︸ ︷
T0,β, . . . , T0,β,

k+1︷ ︸︸ ︷
T1,β, . . . , T1,β)(x).

Proof. Suppose a ∈ Ω2k+1 and |a|0 ≥ k + 1. By a simple calculation we
have

a(x) = β2k+1x−
2k+1∑
n=1

χn(a)β2k+1−n,

where χn(a) = 1 if an = T1,β and 0 otherwise. Since |a|0 ≥ k + 1 we have
χn(a) = 1 for at most k different values of n. It follows that

a(x) ≥ β2k+1x− β2k − · · · − βk+1.

Since

β2k+1x− β2k − · · · − βk+1 = (

k︷ ︸︸ ︷
T1,β, . . . , T1,β,

k+1︷ ︸︸ ︷
T0,β, . . . , T0,β)(x)

the desired result follows. The second inequality is proved similarly.
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2.1.2. The sequence (ωm)∞m=1. We now define our sequence (ωm)∞m=1.
For each m ∈ N we consider the polynomials

P 1
m(x) = x4m+3 − x2m+2 − xm+2 − xm+1 + x+ 1,

P 2
m(x) = x2m+3 − x2m+2 − x2 + 1,

P 3
m(x) = x2m+3 − x− 1.

We define ω
(i)
m to be the smallest real root of P im(x) greater than 1. Clearly

P 3
m(x) has such a root; so do P 1

m(x) and P 2
m(x), as can be seen by ob-

serving that P im(1) = 0 and (P im)′(1) < 0 for i = 1, 2. We define ωm =

min{ω(1)
m , ω

(2)
m , ω

(3)
m }. We now state some properties of (ωm)∞m=1 that will be

useful in our later analysis.

Property 2.4. For β ∈ (1, ωm],

β4m+3 − β2m+2 − βm+2 − βm+1 + β + 1 ≤ 0.

Proof. This follows since ωm ≤ ω(1)
m , P 1

m(1) = 0 and (P 1
m)′(1) < 0.

Property 2.5. For β ∈ (1, ωm],

T 2m+1
0,β

(
β

β2 − 1

)
=
β2m+2

β2 − 1
∈ Iβ.

Proof. It suffices to show that

β2m+2

β2 − 1
≤ 1

β − 1
.

This is equivalent to

β2m+3 − β2m+2 − β2 + 1 ≤ 0,

which is true for β ∈ (1, ωm] since ωm ≤ ω(2)
m , P 2

m(1) = 0 and (P 2
m)′(1) < 0.

Property 2.6. For β ∈ (1, ωm],

T 2m+1
1,β

(
β

β2 − 1

)
=
−β2m+1 + β + 1

β2 − 1
∈ Iβ.

Proof. The equality follows by Lemma 2.2. It remains to show that

−β2m+1 + β + 1

β2 − 1
≥ 0.

This is equivalent to

β2m+1 − β − 1 ≤ 0,

which is true for β ∈ (1, ωm] since ωm ≤ ω(3)
m and P 3

m(1) < 0.

Property 2.7. The sequence (ωm)∞m=1 is strictly decreasing and con-
verging to 1.
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This follows from the fact that (ω
(i)
m )∞m=1 is strictly decreasing and con-

verging to 1 for i = 1, 2, 3.

In Section 6 we include a table of values for (ωm)∞m=1.

2.2. Algorithm for generating β-expansions. We now give details
of our algorithm for generating β-expansions that we mentioned at the start
of this section. In what follows we assume β ∈ (1, ωm] and x ∈ (0, 1/(β−1)).

We define

Im =

[
T 2m+1
1,β

(
1

β2 − 1

)
, T 2m+1

0,β

(
β

β2 − 1

)]
=

[
−β2m+2 + β + 1

β2 − 1
,
β2m+2

β2 − 1

]
.

Then Im ⊂ Iβ by Properties 2.5 and 2.6.

Remark 2.8. The significance of the points 1/(β2 − 1) and β/(β2 − 1)
is that

T0,β

(
1

β2 − 1

)
=

β

β2 − 1
and T1,β

(
β

β2 − 1

)
=

1

β2 − 1
.

Therefore it is not possible for a point to pass over the interval
[

1
β2−1 ,

β
β2−1

]
without landing in it.

Step 1. There exists a minimal number j(x) of transformations that

map the point x into Im. This follows from the fact that
[

1
β2−1 ,

β
β2−1

]
⊂ Im

and Remark 2.8. We choose a sequence a ∈ Ωj(x) of transformations such
that a(x) ∈ Im. We fix the first j(x) entries in our β-expansion of x to be
those uniquely determined by a.

Step 2. If

a(x) ∈
[

1

β2 − 1
,
β2m+2

β2 − 1

]
then we can extend the j(x)-prefix a to a (j(x) + 2m+ 1)-prefix by concate-
nating a with any element a(1) ∈ Ω2m+1 such that |a(1)|1 ≥ m + 1. To see
why aa(1) is a (j(x) + 2m+ 1)-prefix for x we observe that

−β2m+2 + β + 1

β2 − 1
= T 2m+1

1,β

(
1

β2 − 1

)
≤ aa(1)(x) ≤ aa(1)

(
β2m+2

β2 − 1

)

≤ (

m︷ ︸︸ ︷
T0,β, . . . , T0,β,

m+1︷ ︸︸ ︷
T1,β, . . . , T1,β)

(
β2m+2

β2 − 1

)
= Tm+1

1,β

(
β3m+2

β2 − 1

)
=
β4m+3 − βm+2 − βm+1 + β + 1

β2 − 1
,
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by Lemmas 2.2 and 2.3. The inequality

β4m+3 − βm+2 − βm+1 + β + 1

β2 − 1
≤ β2m+2

β2 − 1

is equivalent to β4m+3−β2m+2−βm+2−βm+1 +β+1 ≤ 0, which is true for
β ∈ (1, ωm] by Property 2.4. Therefore aa(1)(x) ∈ Im for all a(1) ∈ Ω2m+1

such that |a(1)|1 ≥ m + 1, which by the remarks following Proposition 2.1
implies that aa(1) is a (j(x) + 2m+ 1)-prefix for x.

If

a(x) ∈
[
−β2m+2 + β + 1

β2 − 1
,

1

β2 − 1

]
then we consider elements a(1) ∈ Ω2m+1 such that |a(1)|0 ≥ m + 1. By a
similar argument it can be shown that aa(1)(x) ∈ Im for all a(1) ∈ Ω2m+1

such that |a(1)|0 ≥ m+ 1. As

#{a ∈ Ω2m+1 : |a(1)|1 ≥ m+ 1} = #{a ∈ Ω2m+1 : |a(1)|0 ≥ m+ 1} = 22m,

our algorithm generates 22m (j(x) + 2m+ 1)-prefixes for x.

Step 3. We proceed inductively: if aa(1)(x) ∈
[

1
β2−1 ,

β2m+2

β2−1
]

then we

extend the (j(x) + 2m + 1)-prefix aa(1) to a (j(x) + 4m + 2)-prefix for x
by concatenating aa(1) with any element a(2) ∈ Ω2m+1 such that |a(2)|1 ≥
m+1. Similarly, if aa(1)(x) ∈

[−β2m+2+β+1
β2−1 , 1

β2−1
]

then we consider elements

a(2) ∈ Ω2m+1 such that |a(2)|0 ≥ m+ 1. We repeat this process indefinitely.

Remark 2.9. It is clear that by proceeding inductively our algorithm
generates 22km (j(x) + k(2m+ 1))-prefixes for x, for each k ∈ N.

Remark 2.10. The construction of our interval Im is somewhat arbi-
trary. We could have begun by choosing any interval of the form [z, βz] for
some z∈(0, 1/(β−1)). We then construct the interval [T 2m+1

1,β (z), T 2m+1
0,β (βz)]

to perform the role of Im. By defining a similar set of polynomials to P 1
m(x),

P 2
m(x) and P 3

m(x) and assuming our β satisfies certain restrictions imposed
by these polynomials we can ensure that [T 2m+1

1,β (z), T 2m+1
0,β (βz)] ⊂ Iβ and

if x ∈ [T 2m+1
1,β (z), T 2m+1

0,β (βz)] then a(x) ∈ [T 2m+1
1,β (z), T 2m+1

0,β (βz)] for 22m

elements of Ω2m+1. It would be interesting to know whether Im is the most
efficient choice of interval for this method.

We denote by Σβ(x,m) the set of β-expansions generated by this al-
gorithm, and by Σβ(x,m, k) the set of k-prefixes for x generated by the
algorithm.

Property 2.11. The cardinality of Σβ(x,m, k) is increasing with k.
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Property 2.12. Let s, s′∈N and s>s′. If b∈Σβ(x,m, j(x)+s′(2m+1))
then

#{a ∈ Σβ(x,m, j(x) + s(2m+ 1)) : an = bn for 1 ≤ n ≤ j(x) + s′(2m+ 1)}
= 22m(s−s′).

We now prove two technical lemmas.

Lemma 2.13. Let β ∈ (1, ωm] and x ∈ (0, 1/(β − 1)). If k ≥ j(x) then

#Σβ(x,m, k) ≥ 22m(
k−j(x)
2m+1

−1).

Proof. We have

#Σβ(x,m, k) ≥ #Σβ

(
x,m,

(
(2m+ 1)

[
k − j(x)

2m+ 1

]
+ j(x)

))
≥ 22m[

k−j(x)
2m+1

]

≥ 22m(
k−j(x)
2m+1

−1).

Lemma 2.14. Let l ≥ j(x) and b ∈ Σβ(x,m, l). Then for k ≥ l,

#{a = (an)kn=1 ∈ Σβ(x,m, k) : an = bn for 1 ≤ n ≤ l} ≤ 22m( k−l
2m+1

+2).

Proof. We remark that j(x) + (2m+ 1)
[ l−j(x)
2m+1

]
is an integer of the form

j(x) + s(2m+ 1), not exceeding l, while j(x) + (2m+ 1)
([k−j(x)

2m+1

]
+ 1
)

is an
integer of the form j(x) + s(2m + 1) greater than or equal to k. It follows
immediately that

#{a = (an)kn=1 ∈ Σβ(x,m, k) : an = bn for 1 ≤ n ≤ l}

≤ #

{
a = (an)

j(x)+(2m+1)([
k−j(x)
2m+1

]+1)

n=1

∈ Σβ
(
x,m, j(x) + (2m+ 1)

([
k − j(x)

2m+ 1

]
+ 1

))
:

an = bn for 1 ≤ n ≤ j(x) + (2m+ 1)

[
l − j(x)

2m+ 1

]}
≤ 22m([

k−j(x)
2m+1

]+1−[ l−j(x)
2m+1

]) ≤ 22m(
k−j(x)
2m+1

+1− l−j(x)
2m+1

+1) = 22m( k−l
2m+1

+2),

by Properties 2.11 and 2.12.

2.2.1. Proof of Theorem 1.3. The proof is based upon the argument
given in Example 2.7 of [3].

By the monotonicity of Hausdorff dimension with respect to inclusion it
suffices to show that dimH(Σβ(x,m)) ≥ 2m/(2m+ 1). Further, it suffices to
show that for any sufficiently small cover {Ui}∞i=1 of Σβ(x,m) we can bound∑∞

i=1 Diam(Ui)
2m/(2m+1) below by a positive constant independent of our

choice of cover.
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It is a simple exercise to show that Σβ(x,m) is a compact set; hence we
may restrict to finite covers. Let {Ui}Ni=1 be a finite cover of Σβ(x,m). We

may assume that Diam(Ui) < 2−j(x) for all i. For each Ui there exists l(i)
such that

2−(l(i)+1) ≤ Diam(Ui) < 2−l(i).

It follows that there exists z(i) ∈ {0, 1}l(i) such that yn = z
(i)
n for all y ∈ Ui,

for 1 ≤ n ≤ l(i). We may assume that z(i) ∈ Σβ(x,m, l(i)), since otherwise
Σβ(x,m) ∩ Ui = ∅ and we can remove Ui from our cover. We set

Ci = {(εn)∞n=1 ∈ {0, 1}N : εn = z(i)n for 1 ≤ n ≤ l(i)}.

Clearly Ui ⊂ Ci and therefore {Ci}Ni=1 is a cover of Σβ(x,m).

Since there are only finitely many elements in our cover, there exists J
such that 2−J ≤ Diam(Ui) for all i. We now consider the set Σβ(x,m, J).

Since {Ci}Ni=1 is a cover of Σβ(x,m), each a ∈ Σβ(x,m, J) satisfies an = z
(i)
n

for 1 ≤ n ≤ l(i), for some i. Therefore

#Σβ(x,m, J) ≤
N∑
i=1

#{a ∈ Σβ(x,m, J) : an = z(i)n for 1 ≤ n ≤ l(i)}.

By counting the elements of Σβ(x,m, J) and by Lemmas 2.13 and 2.14
we obtain

22m(
J−j(x)
2m+1

−1) ≤ #Σβ(x,m, J)

≤
N∑
i=1

#{a ∈ Σβ(x,m, J) : an = z(i)n for 1 ≤ n ≤ l(i)}

≤
N∑
i=1

22m(
J−l(i)
2m+1

+2) = 2
2mJ+1
2m+1

+4m
N∑
i=1

2
−2m(l(i)+1)

2m+1

≤ 2
2mJ+1
2m+1

+4m
N∑
i=1

Diam(Ui)
2m

2m+1 .

Dividing through by 2
2mJ+1
2m+1

+4m yields

N∑
i=1

Diam(Ui)
2m

2m+1 ≥ 2
−12m2−(6+2j(x))m−1

2m+1 ,

as desired.

3. Proof of Theorem 1.4. The proof is analogous to that of Theorem
1.3, so we only give the details where appropriate. As before, we devise an
algorithm for generating β-expansions; the Hausdorff dimension of the set
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of expansions generated by this algorithm will be greater than 1/(m+2) for
β ∈ (1, λm].

3.1. The sequence (λm)∞m=1. Let λm be the smallest real root of the
equation

xm+3 − xm+2 − xm+1 + 1 = 0

greater than 1. The sequence (λm)∞m=1 is well known (see [1] for the details).

Remark 3.1. To see that Pm(x) = xm+3 − xm+2 − xm+1 + 1 has a real
root greater than 1, it suffices to observe that Pm(1) = 0 and P ′m(1) < 0.

Property 3.2. For β ∈ (1, λm],

βm+3 − βm+2 − βm+1 + 1 ≤ 0.

Remark 3.3. Each λm is a Pisot number, i.e. a real algebraic integer
greater than 1 whose Galois conjugates are of modulus strictly less than 1.
Moreover, λ1 is the greatest real root of x3 − x − 1 = 0, the first Pisot
number.

Property 3.4. The sequence (λm)∞m=1 is strictly increasing and con-
verges to (1 +

√
5)/2 as m→∞.

In Section 6 we include a table of values for (λm)∞m=1.

3.2. Algorithm for generating β-expansions. We define

I =

[
T1,β

(
1

β2 − 1

)
, T0,β

(
β

β2 − 1

)]
=

[
1 + β − β2

β2 − 1
,

β2

β2 − 1

]
.

For 1 < β < (1 +
√

5)/2 the interval I is contained in Iβ. This interval
will play a similar role to Im. Before giving the details of our algorithm we
require the following technical lemma.

Lemma 3.5. For β ∈ (1, λm],

Tm+1
0,β

(
1 + β − β2

β2 − 1

)
≥ 1

β2 − 1
and Tm+1

1,β

(
β2

β2 − 1

)
≤ β

β2 − 1
.

Proof. It is a simple exercise to show that

Tm+1
0,β

(
1 + β − β2

β2 − 1

)
=
βm+1 + βm+2 − βm+3

β2 − 1
.

This is greater than or equal to 1
β2−1 precisely when βm+3−βm+2−βm+1 +

1 ≤ 0, which is true by Property 3.2. The second inequality is proved simi-
larly.

We now formalise our algorithm for generating expansions.

Step 1. Let x ∈ (0, 1/(β − 1)). By Remark 2.8 there exists a minimal
number g(x) of transformations that map x into the interval I. We choose
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a sequence a ∈ Ωg(x) of transformations such that a(x) ∈ I. We fix the first
g(x) entries in our β-expansion to be those uniquely determined by a.

Step 2. If a(x) ∈
[

1
β2−1 ,

β
β2−1

]
then we can extend a(x) to a (g(x) + 1)-

prefix by either T0,β or T1,β; we then choose a(i)(x) ∈ Ωm+1 such that

a(i)◦Ti,β◦a(x) ∈ I, for i = 0, 1. This defines two prefixes of length g(x)+m+2
for x.

If a(x) ∈
[1+β−β2

β2−1 , 1
β2−1

]
we iterate T0,β until T k0,β ◦ a(x) ∈

[
1

β2−1 ,
β

β2−1
]
.

By Lemma 3.5 and the monotonicity of T0,β we have k ≤ m + 1. The
transformation T k0,β ◦ a(x) defines a (g(x) + k)-prefix. We can extend it to a

(g(x) + k + 1)-prefix by either T0,β or T1,β; we then choose a(i) ∈ Ωm+1−k
such that a(i) ◦ Ti,β ◦ T k0,β ◦ a(x) ∈ I. This defines two prefixes of length
g(x) +m+ 2 for x.

If a(x) ∈
[ β
β2−1 ,

β2

β2−1
]

then by a similar argument to the previous case we

can formalise a method for choosing a(0), a(1) ∈ Ωm+2 such that a(i) ◦ a(x)
∈ I, for i = 0, 1.

At this stage our algorithm has generated two prefixes of length g(x) +
m+ 2 for x.

Step 3. The two prefixes defined in Step 2 map x into I, so we can
apply Step 2 to the image of x under the transformations corresponding to
those prefixes. This defines four prefixes of length g(x)+2(m+2). We repeat
this process indefinitely.

Remark 3.6. Proceeding inductively our algorithm generates 2k pre-
fixes of length g(x) + k(m+ 2) for x, for all k ∈ N.

Repeating the arguments given in Section 2 we can show that analogues
of Property 2.12, Lemma 2.13 and Lemma 2.14 all hold. Theorem 1.4 then
follows by an analogous argument to the one given in the proof of Theo-
rem 1.3.

Remark 3.7. As in the proof of Theorem 1.3, our choice of interval I is
somewhat arbitrary. It would be interesting to know whether I is the most
efficient choice of interval for this method.

4. Upper bounds for the upper growth rate of Nk(x, β). Our main
result in this section is the following theorem.

Theorem 4.1. The supremum of the upper growth rates converges to 0
as β → 2, i.e.,

sup
x∈(0, 1

β−1
)

{
lim sup
k→∞

log2Nk(x, β)

k

}
→ 0 as β → 2.
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By (1) similar statements hold for dimH(Σβ(x)) and the lower growth
rate of Nk(x, β). Theorem 4.1 can be interpreted as an analogue of Theorem
1.3 in the case where β is close to 2.

Proof of Theorem 4.1. Fix m ∈ N. Recall that

(2) Nm(x, β) = #

{
(ε1, . . . , εm) ∈ {0, 1}m : x− 1

βm(β − 1)
≤

m∑
n=1

εn
βn
≤ x

}
.

Let

L(m,β) =
{ m∑
n=1

εn
βn

: (ε1, . . . , εm) ∈ {0, 1}m
}
.

Since L(m, 2) is the set of dyadic rationals of degree m, we have |x−y| ≥ 2−m

for all x, y ∈ L(m, 2) such that x 6= y. By continuity, for each m ∈ N there
exists δ(m) > 0 such that, for all β ∈ (2− δ(m), 2),

|x− y| > 1

2βm(β − 1)
for all x, y ∈ L(m,β) with x 6= y.

It follows that any interval of length 1/(βm(β − 1)) contains at most two
elements of L(m,β). By (2) for β ∈ (2 − δ(m), 2) any x ∈ (0, 1/(β − 1))
has at most two prefixes of length m. Proceeding inductively we can deduce
that for β ∈ (2− δ(m), 2) and x ∈ (0, 1/(β − 1)),

Nkm(x, β) ≤ 2k for all k ∈ N.

By a simple argument it follows that

lim sup
k→∞

log2Nk(x, β)

k
≤ 1

m
.

As m was arbitrary, we can deduce our result.

The following result gives an upper bound for the upper growth rate of
Nk(x, β) for β close to 1.

Theorem 4.2. Let m ∈ N and m ≥ 2. For β ∈ (21/m, 2),

lim sup
k→∞

log2Nk(x, β)

k
≤ log2(2

m − 1)

m
for all x ∈

(
0,

1

β − 1

)
.

Proof. It is a simple exercise to show that

T−m1,β (0) =
βm − 1

βm(β − 1)
and T−m0,β

(
1

β − 1

)
=

1

βm(β − 1)
.

By a simple manipulation T−m1,β (0)>T−m0,β (1/(β−1)) is equivalent to βm>2.

Let β ∈ (21/m, 2) and x ∈ (0, 1/(β − 1)). Then by the above and the mono-
tonicity of the maps T0,β and T1,β, either Tm0,β(x) or Tm1,β(x) will lie outside
the interval Iβ. It follows that any x ∈ (0, 1/(β−1)) can have at most 2m−1
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m-prefixes. By an inductive argument it follows that

Nkm(x, β) ≤ (2m − 1)k for all k ∈ N.

Our result follows immediately.

5. Application to Bernoulli convolutions. Given 1 < β < 2 we
define the Bernoulli convolution µβ as follows. Let E ⊂ R be a Borel set.
Then

µβ(E) = P
({

(a1, a2, . . .) ∈ {0, 1}N :
∞∑
n=1

an
βn
∈ E

})
,

where P is the (1/2, 1/2) Bernoulli measure. For x ∈ Iβ we define the local
dimension of µβ at x by

d(µβ, x) = lim
r→0

logµβ([x− r, x+ r])

log r
,

when this limit exists. When the limit does not exist we can consider the
lower and upper local dimensions of µβ at x, defined as

d(µβ, x) = lim inf
r→0

logµβ([x− r, x+ r])

log r
,

and

d(µβ, x) = lim sup
r→0

logµβ([x− r, x+ r])

log r

respectively. In [4] the authors show that the following result holds.

Theorem 5.1. For any β ∈ (1, (1 +
√

5)/2) we have

d(µβ, x) ≤ (1− κ(β)) logβ 2 for all x ∈
(

0,
1

β − 1

)
,

where κ(β) is as in Theorem 1.1.

Replicating the arguments given in [4] and using the improved bounds
given by Theorems 1.3 and 1.4 we obtain

Theorem 5.2. If β ∈ (1, ωm], then

d(µβ, x) ≤ 1

2m+ 1
logβ 2 for every x ∈

(
0,

1

β − 1

)
.

Similarly, if β ∈ (1, λm], then

d(µβ, x) ≤ m+ 1

m+ 2
logβ 2 for every x ∈

(
0,

1

β − 1

)
.
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6. Open questions and tables for (ωm)∞m=1 and (λm)∞m=1. Here are
a few open questions:

• Does the positivity of the lower growth rate of Nk(x, β) imply the
Hausdorff dimension of Σβ(x) is positive?
• Do we have equality in (1)?
• Under what conditions do we have equality in (1)?
• Is our choice of interval Im in the proof of Theorem 1.3 the most

efficient?
• Is our choice of interval I in the proof of Theorem 1.4 the most effi-

cient?

The following tables list certain values of ωm and λm and their associated
polynomials.

Table 1. Table of values for the sequence (ωm)∞m=1

m ωm (to 5 DP) Associated polynomials

1 1.07445 P 1
1 (x) = x7 − x4 − x3 − x2 + x+ 1

P 2
1 (x) = x5 − x4 − x2 + 1

P 3
1 (x) = x5 − x− 1

2 1.02838 P 1
2 (x) = x11 − x6 − x4 − x3 + x+ 1

P 2
2 (x) = x7 − x6 − x2 + 1

P 2
3 (x) = x7 − x− 1

3 1.01492 P 1
3 (x) = x15 − x8 − x5 − x4 + x+ 1

P 2
3 (x) = x9 − x8 − x2 + 1

P 3
3 (x) = x9 − x− 1

10 1.00172 P 1
10(x) = x43 − x22 − x12 − x11 + x+ 1

P 2
10(x) = x23 − x22 − x2 + 1

P 3
10(x) = x23 − x− 1

100 1.00003 P 1
100(x) = x403 − x202 − x102 − x101 + x+ 1

P 2
100(x) = x203 − x202 − x2 + 1

P 3
100(x) = x203 − x− 1

Table 2. Table of values for the sequence (λm)∞m=1

m λm (to 5 DP) Associated polynomial

1 1.32472 (first Pisot number) x4 − x3 − x2 + 1

2 1.46557 x5 − x4 − x3 + 1

3 1.53416 x6 − x5 − x4 + 1

10 1.61575 x13 − x12 − x11 + 1

100 1.61804 x103 − x102 − x101 + 1
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