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Elementary equivalence of lattices of open sets
definable in o-minimal expansions of real closed fields

by

Vincent Astier (Dublin)

Abstract. We prove that the boolean algebras of sets definable in elementarily equiv-
alent o-minimal expansions of real closed fields are back-and-forth equivalent, and in par-
ticular elementarily equivalent, in the language of boolean algebras with new predicates
indicating the dimension, Euler characteristic and open sets. We also show that the boolean
algebra of semilinear subsets of [0, 1]n definable in an o-minimal expansion of a real closed
field is back-and-forth equivalent to the boolean algebra of definable subsets of [0, 1]n defin-
able in the same o-minimal expansion, in the language of boolean algebras with new predi-
cates indicating the dimension, Euler characteristic and open sets, as well as related results.

1. Introduction. It is well-known that any two real closed fields R and
S are elementarily equivalent. We can then consider some simple construc-
tions of new structures out of real closed fields, and try to determine if these
constructions, when applied to R and S, give elementarily equivalent struc-
tures. We can for instance consider def(Rn, R), the ring of definable functions
from Rn to R, and deduce without difficulty that the rings def(Rn, R) and
def(Sn, S) are elementarily equivalent ([A]).

However, if we consider cdef(Rn, R), the ring of continuous definable
functions from Rn to R, the situation becomes more complicated: Unpub-
lished results of M. Tressl show that, for n > 1, cdef(Rn, R) defines the set
of constant functions with integer value, by a formula that is independent
of R and n. Therefore we may have cdef(Rn, R) 6≡ cdef(Sn, S), for instance
if one field is Archimedean and the other not.

This shows that introducing conditions linked to the topology of the real
closed field may present an obstacle to elementary equivalence. To under-
stand the situation better it is natural to consider simpler structures than
rings of continuous definable functions, but that still demand some topolog-
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ical information on the field. This is what we do in this paper, where we
consider the lattices of open definable sets. We show in particular, in Corol-
lary 2.16, that if R and S are elementarily equivalent o-minimal expansions
of real closed fields, then the lattices of open definable subsets of Rn and
of open definable subsets of Sn are L∞ω-elementarily equivalent in the lan-
guage of bounded lattices expanded by predicates for the dimension and
Euler characteristic. The proof is done by a back-and-forth argument.

It is worth noting that by [G, Corollary 1], for n > 1, the lattice of
semi-algebraic open subsets of Rn (for R a real closed field) is undecidable.
In particular, there can be no description of the theory of such lattices in
terms of “simpler” structures that would be constructive enough to give
decidability results.

2. Boolean algebras of definable sets equipped with predicates
for dimension, Euler characteristic and open sets. We follow the no-
tation and definitions of [vD], in particular we use the definition of complex
that appears in this book. We work with o-minimal expansions of real closed
fields, i.e. with real closed fields that are o-minimal in a fixed language con-
taining Lof, the language of ordered fields.

Concerning the notation, we denote by N+ the set of positive integers,
by LBA = {∨,∧,¬,>,⊥} the language of boolean algebras, and by cl(A)
the topological closure of a set A. If ā = (a1, . . . , an) and ī = (i1, . . . , ik) ⊆
{1, . . . , n}, we denote by āī the tuple (ai1 , . . . , aik). Finally, by definable we
mean definable with parameters, unless otherwise specified.

Definition 2.1. Let M be an ordered field and let n ∈ N+. Let K be a
complex in Mn.

1. We denote by V (K) the set of vertices of K. If S = (a0, . . . , ak) ∈ K
and ā = (a0, . . . , ak), we denote by (ā) the simplex S.

2. Let x0, . . . , xl ∈ Mn. We denote by AI(x0, . . . , xl) the formula in the
language of fields expressing the fact that the points of coordinates
x0, . . . , xl are affinely independent.

3. Let ā = (a1, . . . , am) be an enumeration of the vertices of K and let
x̄ = (x1, . . . , xm) (where each xi is a tuple of n variables). We define
ΣK,ā(x̄), the type of K with respect to the enumeration ā, to be the
following set of Lof-sentences:

{AI(x̄ī) | ī ⊆ {1, . . . ,m} ∧ (āī) ∈ K}
∪ {cl((x̄ī)) ∩ cl((x̄j̄)) = cl((x̄k̄)) | ī, j̄, k̄ ⊆ {1, . . . ,m}

∧ (āī), (āj̄), (āk̄) ∈ K ∧ cl((āī)) ∩ cl((āj̄)) = cl((āk̄))}
∪ {cl((x̄ī)) ∩ cl((x̄j̄)) = ∅ | ī, j̄ ⊆ {1, . . . ,m} ∧ (āī), (āj̄) ∈ K

∧ cl((āī)) ∩ cl((āj̄)) = ∅}.
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Lemma 2.2. Let M be an ordered field and let n ∈ N+. Let K be a
complex in Mn with ā = (a1, . . . , am) an enumeration of V (K). Let S be
an ordered field and let s̄ ⊆ S be such that S |= ΣK,ā(s̄). We define the
following set of simplices in Sn:

W := {(s̄ī) | ī ⊆ {1, . . . ,m} ∧AI(x̄ī) ∈ ΣK,ā}.

Then W is a complex in Sn and ΣW,s̄ = ΣK,ā. We say that the complex W
is determined by ΣK,ā.

Proof. We follow the definition of complex given in [vD, Chapter 8, Def-
inition 1.5]. It is clear that each (s̄ī) ∈ W is a simplex since by hypothesis
s̄ī is affine independent, and the other conditions in the definition of com-
plex are also satisfied since the definition of ΣK,ā mimics the definition of
complex. The fact that ΣW,s̄ = ΣK,ā follows from the definition of W .

Definition 2.3. Let M be an o-minimal expansion of a real closed field.
A homeomorphism of complexes is a triple (ξ,K,W ) such that

1. K and W are complexes in Mn for some n ∈ N+,
2. ξ : |K| → |W | is a homeomorphism,
3. ξ�V (K) is a bijection from V (K) to V (W ),
4. for every C = (a0, . . . , ak) ∈ K, ξ(C) is equal to (ξ(a0), . . . , ξ(ak)),

has dimension k, and belongs to W ,
5. the map ξ̃ : K → W , which sends a simplex C ∈ K to the simplex
ξ(C) ∈W , is a bijection.

We say that two complexes K and W in Mn are homeomorphic as complexes
if there is a map ξ such that the triple (ξ,K,W ) is a homeomorphism of
complexes. We say that this homeomorphism of complexes is (M -)definable
if the map ξ is (M -)definable.

Proposition 2.4. Let M be an o-minimal expansion of a real closed
field and let n ∈ N+. Let K and W be complexes in Mn. Then K and W
are definably homeomorphic as complexes if and only if ΣK,ā = ΣW,b̄ for

some well-chosen enumerations ā and b̄ of the vertices of K and W .

Proof. “⇒” Let (ξ,K,W ) be a homeomorphism of complexes between
K and W (it does not need to be definable). Let ā = (a1, . . . , am) be an
enumeration of V (K). Then ξ(ā) is an enumeration of V (W ). By hypothesis
(ai0 , . . . , aik) is a simplex in K if and only if (ξ(ai0), . . . , ξ(aik)) is a simplex
in L, and since ξ is a homeomorphism, it follows that ΣK,ā = ΣW,ξ(ā).

“⇐” Let ā = (a1, . . . , am) be an enumeration of V (K) and let b̄ =
(b1, . . . , bm) be an enumeration of V (W ) such that ΣK,ā = ΣW,b̄. For every
tuple i0, . . . , ik ∈ {1, . . . ,m} we have (ai0 , . . . , aik) ∈ K if and only if
(bi0 , . . . , bik) ∈W .
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Let C = (ai0 , . . . , aik) ∈ K. For k = 0 we define ξ(ai0 )((ai0)) = (bi0) and
for k ≥ 1 we define

ξC : C → (bi0 , . . . , bik),
k∑
r=0

trair 7→
k∑
r=0

trbir ,

(all tr > 0,
∑k

r=0 tr = 1). It is clear that ξC is a homeomorphism for every
C ∈ K, and we define

ξ : |K| → |W |, ξ =
⋃
C∈K

ξC .

It is easy to check that ξ is continuous, for instance using [vD, Chapter 6,
Lemma 4.2]: Let x belong to some C ∈ K and let γ : (0, 1) → |K| be
definable continuous such that limt→0+ γ(t) = x. Since we are only interested
in the behaviour of γ at 0+, we can assume by o-minimality that there
is a simplex T ∈ K such that γ((0, 1)) ⊆ T . Say C = (ai0 , . . . , aik) and
T = (aj0 , . . . , ajl) with {i0, . . . , ik} ⊆ {j0, . . . , jl} (since C ⊆ cl(T )). By
definition of ξ we have ξ(C) = (bi0 , . . . , bik) and ξ(T ) = (bj0 , . . . , bjl). We
then see easily that limt→0+ ξ ◦ γ(t) = ξ(x).

Moreover, ξ−1 =
⋃
C∈K ξ

−1
C , and since ξ−1

C is defined in a similar way
to ξC , we see that ξ−1 is also continuous, and so that ξ is a homeomorphism.
The other conditions in Definition 2.3 follow directly from the definition
of ξ.

Observe that by construction of ξ we have ξ(ā) = b̄.

Definition 2.5. Let R ≺M be two ordered fields in some language L.

1. Let φ(x̄) be an L-formula. If C = φ(Rn) is a definable subset of Rn,
we denote by CM the subset φ(Mn) of Mn.

2. If K = {C1, . . . , Cl} is a complex in Rn, we denote by KM the complex
{(C1)M , . . . , (Cl)M} in Mn.

Definition 2.6. Let R and S be o-minimal expansions of real closed
fields in the same language L, and let M be an elementary extension of R
and S. Let n ∈ N+, let φ be a bounded definable subset of Rn, and let ψ be
a bounded definable subset of Sn.

We denote by I(φ, ψ) the set of all bijections f : A → B, where

1. A is a partition of φ into definable sets and B is a partition of ψ into
definable sets,

2. there are

• two complexes K in Rn and W in Sn,
• a triangulation (F,K) of φ partitioning every element of A,
• a triangulation (G,W ) of ψ partitioning every element of B, and
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• an M -definable homeomorphism of complexes (ξ,KM ,WM ):

|KM |
ξ // |WM |

|K|

OO

|W |

OO

φ

F

OO

ψ

G

OO

such that f is the map induced by the above diagram, i.e. for every A ∈ A
such that F (A) = C1∪· · ·∪Cl and ξ((Ci)M ) = (Ei)M with Ci ∈ K, Ei ∈W
(for i = 1, . . . , l), we have

f(A) = G−1(E1 ∪ · · · ∪ El).
Every partition A of φ generates a boolean subalgebra BA(A) of the

boolean algebra of subsets of φ, whose atoms are precisely the elements
of A. So if f ∈ I(φ, ψ), f induces an LBA-isomorphism

BA(f) : BA(A)→ BA(B), A1 ∪· · · · ∪· Ar 7→ f(A1) ∪· · · · ∪· f(Ar)

(where A1, . . . , Ar ∈ A). We denote by IBA(φ, ψ) the set of all BA(f) :
BA(A)→ BA(B) for f ∈ I(φ, ψ).

Definition 2.7. We define the languages Ln and L̃n by

Ln := LBA ∪ {Dk | k = 0, . . . , n} ∪ {Ek | k ∈ ω} ∪ {Open},
L̃n := {∨,∧,>,⊥} ∪ {Dk | k = 0, . . . , n} ∪ {Ek | k ∈ ω},

where the Dk’s, Ek’s and Open are new unary predicates.
In a structure whose elements are definable subsets of Rn, where R is

an o-minimal expansion of a real closed field, the new predicates will be
interpreted as follows:

Dk(A) ⇔ dimA = k,

Ek(A) ⇔ E(A) = k (where E denotes the Euler characteristic),

Open(A) ⇔ A is open in Rn.

Lemma 2.8. With notation as in Definition 2.6, let f ∈ I(φ, ψ). Then
BA(f) is an Ln-isomorphism from

(BA(A);∨,∧,¬,>,⊥, (Dk)
n
k=0, (Ek)k∈ω,Open)

to
(BA(B);∨,∧,¬,>,⊥, (Dk)

n
k=0, (Ek)k∈ω,Open).

Proof. Since BA(f) is an LBA-isomorphism, we only have to show that
BA(f) is a ({Dk | k = 0, . . . , n} ∪ {Ek | k ∈ ω} ∪ {Open})-isomorphism.
Let A ∈ BA(A). Then F (A) = C1 ∪ · · · ∪ Cl for some C1, . . . , Cl ∈ K, and
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if E1, . . . , El ∈ W are such that ξ((Ci)M ) = (Ei)M for i = 1, . . . , l, then
f(A) = G−1(E1 ∪· · · · ∪· El). The result for the predicates Dk and Open then
follows from

dimA = dimF (A) = max{dimCi | i = 1, . . . , l}
= max{dimEi | i = 1, . . . , l} = dim f(A)

and

A open ⇔ C1 ∪ · · · ∪ Cl open ⇔ ξ((C1)M ) ∪ · · · ∪ ξ((Cl)M ) open

⇔ (E1)M ∪ · · · ∪ (El)M open ⇔ E1 ∪ · · · ∪El open ⇔ f(A) open.

For the Euler characteristic, we first observe that E(Ci) = E(Ei) for i =
1, . . . , l (indeed, if Ci is a simplex of dimension k, then Ei is also a simplex of
dimension k and E(Ci) = (−1)k = E(Ei)). Since F and G are definable bi-
jections, by [vD, Chapter 4, Proposition 2.4], to prove that E(A) = E(f(A))
we only have to check that E(C1 ∪ · · · ∪Cl) = E(E1 ∪ · · · ∪El). Since these

unions are disjoint unions, this statement is equivalent to
∑l

i=1E(Ci) =∑l
i=1E(i) (see [vD, Chapter 4, 2.9]), and the result is proved.

Definition 2.9. If M is an o-minimal structure, n ∈ N+ and Ω is a
definable subset of Mn, we denote by

1. defM (Ω) the boolean algebra of subsets of Ω that are definable in M ,
2. odefM (Ω) the lattice of open subsets of Ω that are definable in M .

We recall the following definition, a reformulation of [H, pp. 97–98].

Definition 2.10. Let L be a first-order language and let M and N be
L-structures.

1. A partial L-isomorphism fromM to N is an L-isomorphism between
an L-substructure of M and an L-substructure of N .

2. A set I of partial L-isomorphisms fromM to N is called a back-and-
forth system if for every f ∈ I:

(a) for every a ∈ M there is g ∈ I such that a ∈ dom g and
g extends f ,

(b) for every b ∈ N there is g ∈ I such that b ∈ Im g and g extends f .

3. We say that M and N are back-and-forth equivalent if there is a
non-empty set of partial L-isomorphisms from M to N that is a
back-and-forth system.

Lemma 2.11. With the same notation as in Definition 2.6, assume that
I(φ, ψ) is non-empty. Then IBA(φ, ψ) is a back-and-forth system between
defR(φ) and defS(ψ).

Proof. Let f ∈ I(φ, ψ) and let U be a definable subset of φ such that
U 6∈ dom(BA(f)) = BA(A). (The case of U being a definable subset of ψ,
U 6∈ Im f , is similar.)
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By the triangulation theorem [vD, Chapter 8, Theorem 2.9] there is a
triangulation (F1,K1) of |K| partitioning F (U) and every element of K. By
definition of triangulation, the map F1 is definable in R, say the graph of
F1 is defined by a formula F1(r̄, v̄) where v̄ is a tuple of 2n variables, r̄ ⊆ R,
and F1(ū, v̄) is a formula without parameters.

In such a case, i.e. if a formula θ(c̄, v̄) defines the graph of a function
(where c̄ is a tuple of parameters), we will denote this function by fθ(c̄,v̄). So
for instance, in the situation described above we have F1 = fF1(r̄,v̄).

We fix an enumeration ā of the vertices of K and an enumeration
ā′ of the vertices of K1. Then ξ(ā) is an enumeration of the vertices of
W and ΣK,ā = ΣW,ξ(ā). The following set of L-sentences describes how the
simplices of K1 are included in the image of the simplices of K by fF1(r̄,v̄):

ΣF1(x̄, ȳ) = {(yi1 , . . . , yit) ⊆ fF1(z̄,v̄)((xj1 , . . . , xjl)) |
AI(xj1 , . . . , xjl) ∈ ΣK,ā(x̄) ∧AI(yi1 , . . . , yit) ∈ ΣK1,ā′(ȳ)

∧ (a′i1 , . . . , a
′
it) ⊆ fF1(r̄,v̄)((aj1 , . . . , ajl))}

∪ {(yi1 , . . . , yit) ∩ fF1(z̄,v̄)((xj1 , . . . , xjl)) = ∅ |
AI(xj1 , . . . , xjl) ∈ ΣK,ā(x̄) ∧AI(yi1 , . . . , yit) ∈ ΣK1,ā′(ȳ)

∧ (a′i1 , . . . , a
′
it) ∩ fF1(r̄, v̄)((aj1 , . . . , ajl)) = ∅}.

We have

R |= ∃x̄∃ȳ∃z̄ ΣK,ā(x̄) ∧ΣK1,ā′(ȳ)

∧ [F1(z̄, v̄) defines the graph of a triangulation from the

complex determined by ΣK,ā(x̄) to the complex

determined by ΣK1,ā′(ȳ), partitioning the simplices

in the complex determined by ΣK,ā(x̄)]

∧ΣF1(x̄, ȳ).

(The above sentence can be expressed as a first-order sentence in the lan-
guage L.) Since R ≡ S and ΣK,ā = ΣW,ξ(ā), it follows that

S |= ∃x̄∃ȳ∃z̄ ΣW,ξ(ā)(x̄) ∧ΣK1,ā′(ȳ)(2.1)

∧ [F1(z̄, v̄) defines the graph of a triangulation from the

complex determined by ΣW,ξ(ā)(x̄) to the complex

determined by ΣK1,ā′(ȳ), partitioning the simplices

in the complex determined by ΣW,ξ(ā)(x̄)]

∧ΣF1(x̄, ȳ).

Let ᾱ, b̄ and s̄ ⊆ S be tuples realising the variables x̄, ȳ and z̄ respectively
in (2.1). Let W ′ be the complex in S determined by ᾱ (as in Lemma 2.2)
and let W1 be the complex in S determined by b̄. Since ΣK1,ā′ = ΣW1,b̄

and
ΣW ′,α = ΣW,ξ(ā), by Proposition 2.4 there is an M -definable homeomor-
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phism of complexes (σ, (K1)M , (W1)M ) and an S-definable homeomorphism
of complexes (ξ′,WM ,W

′
M ) which yield the following (informal) diagram:

(K1)M
σ // (W1)M

KM
ξ //

fF1(r̄,v̄)

OO

WM
ξ′ //W ′M

fF1(s̄,v̄)

OO

φM

F

OO

ψM

G

OO
(2.2)

This diagram need not be commutative at the level of maps (i.e. there is
no reason why we should have σ ◦ fF1(r̄,v̄) = fF1(s̄,v̄) ◦ ξ′ ◦ ξ), but is actually
commutative at the level of boolean algebras generated by the complexes,
as proved in the following claim.

Claim 2.12. Let C ∈ K and E ∈W ′ be such that ξ′ ◦ ξ(CM ) = EM . Let
fF1(r̄,v̄)(CM ) = (C ′1)M ∪ · · · ∪ (C ′r)M with C ′i ∈ K1 and σ((C ′i)M ) = (E′i)M
for E′i ∈W1 and i = 1, . . . , l. Then fF1(s̄,v̄)(EM ) = (E′1)M ∪ · · · ∪ (E′r)M .

Proof of Claim 2.12. Let C = (aj1 , . . . , ajl), i.e. E = (ξ′ ◦ ξ(aj1), . . . ,
ξ′ ◦ ξ(ajl)). If a′i1 , . . . , a

′
it

, taken from the tuple ā′, are such that (a′i1 , . . . , a
′
it

)
∈ K1 (i.e. (bi1 , . . . , bit) ∈W1), we have

(a′i1 , . . . , a
′
it) ⊆ fF1(r̄,v̄)(C)

⇔ (yi1 , . . . , yit) ⊆ fF1(z̄,v̄)((xj1 , . . . , xjl)) ∈ ΣF1(x̄, ȳ)

⇔ (bi1 , . . . , bit) ⊆ fF1(s̄,v̄)((αj1 , . . . , αjl))

⇔ σ((a′i1 , . . . , a
′
it)) ⊆ fF1(s̄,v̄)((ξ

′ ◦ ξ(aj1), . . . , ξ′ ◦ ξ(ajl)))
⇔ σ((a′i1 , . . . , a

′
it)M ) ⊆ fF1(s̄,v̄)(EM ),

which proves the statement. Claim 2.12

We simply follow diagram (2.2) to find what set we associate to U in the
back-and-forth process:

Let C ′1, . . . , C
′
l be simplices in K1 such that (fF1(r̄,v̄) ◦ F )(UM ) =

(C ′1)M ∪ · · · ∪ (C ′l)M . Observe that for i = 1, . . . , l, each σ((C ′i)M ) is a
simplex in (W1)M , i.e. is equal to (E′i)M for some E′i ∈ W1. In particular
the set E := (fF1(s̄,v̄))

−1(E′1 ∪ · · · ∪ E′l) is definable in S and if we define

V := (ξ′ ◦G)−1(E), then V is also definable in S. We define a map f ′ such
that BA(f ′) extends BA(f) and sends U to V .

Let A′ := (fF1(r̄,v̄) ◦ F )−1(K1) and B′ := (fF1(s̄,v̄) ◦ ξ′ ◦G)−1(W1). Since
F1(r̄, v̄) partitions the simplices of K and F1(s̄, v̄)◦ξ′ partitions the simplices
of W ,A′ is a refinement ofA and B′ is a refinement of B. In particular,A′ is a
partition of φ, B′ is a partition of ψ, BA(A) ⊆ BA(A′) and BA(B) ⊆ BA(B′).
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For each (fF1(r̄,v̄) ◦ F )−1(C ′) with C ′ ∈ K1, there is a unique E′ ∈ W1

such that σ(C ′M ) = E′M , and we define f ′ : A′ → B′ as follows:

f ′((fF1(r̄,v̄) ◦ F )−1(C ′)) := (fF1(s̄,v̄) ◦ ξ′ ◦G)−1(E′).

It is clear that f ′ is a bijection from A′ to B′.

Claim 2.13.

1. U ∈ BA(A′);
2. BA(f ′) extends BA(f);
3. f ′ ∈ I(φ, ψ).

Proof of Claim 2.13. 1. This holds by definition of A′ and the triangu-
lation (fF1(r̄,v̄),K1).

2. Let A ∈ A. Since F partitions every element of A we have F (AM ) =
(C1)M ∪ · · · ∪ (Cl)M for some C1, . . . , Cl ∈ K, and since fF1(r̄,v̄) partitions
the simplices in K, we have fF1(r̄,v̄)((Ci)M ) = (C ′i,1)M ∪ · · · ∪ (C ′i,ri)M for
some C ′i,j ∈ K1. Let E1, . . . , El ∈ W be such that ξ((Ci)M ) = (Ei)M for
i = 1, . . . , l, and let E′i,j ∈ W1 be such that σ((C ′i,j)M ) = (E′i,j)M for i =
1, . . . , l, j = 1, . . . , ri.

Since (ξ′ ◦ ξ)((Ci)M ) = ξ′((Ei)M ), Claim 2.12 gives, for i = 1, . . . , l,

(2.3) (fF1(s̄,v̄) ◦ ξ′)((Ei)M ) = (E′i,1)M ∪ · · · ∪ (E′i,ri)M .

By definition of BA(f) and BA(f ′),

BA(f)(AM ) = G−1((E1)M ∪ · · · ∪ (El)M ),

BA(f ′)(AM ) =
l⋃

i=1

(fF1(s̄,v̄) ◦ ξ′ ◦G)−1((E′i,1)M ∪ · · · ∪ (E′i,ri)M )

= G−1
[ l⋃
i=1

(fF1(s̄,v̄) ◦ ξ′)−1((E′i,1)M ∪ · · · ∪ (E′i,ri)M )
]
,

and the assertion follows by (2.3).

3. To finish checking that f ′ ∈ I(φ, ψ), we have to verify the second item
in Definition 2.6. For this we consider the complexes K1 and W1, and the
maps fF1(r̄,v̄) ◦ F and fF1(s̄,v̄) ◦ ξ′ ◦G. We know that (fF1(r̄,v̄) ◦ F,K1) is an
R-definable triangulation, while (fF1(s̄,v̄) ◦ξ′ ◦G,W1) is an S-definable trian-
gulation. Finally, (σ,K1M ,W1M ) is an M -definable homeomorphism of com-
plexes, and the rest of Definition 2.6 is satisfied by definition of f ′. Claim 2.13

Therefore IBA(φ, ψ) is a back-and-forth system.

Our main result now follows from Karp’s theorem, which we briefly recall
(see [H, Corollary 3.5.3]).
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Theorem 2.14 (Karp). Let L be a first-order language and let M and
N be L-structures. ThenM and N are back-and-forth equivalent if and only
if they are L∞ω-equivalent (i.e. satisfy the same L∞ω-formulas).

Theorem 2.15. Let R and S be elementarily equivalent o-minimal L0-
structures that are expansions of real closed fields, and let φ, θ1, . . . , θk be
L0-formulas with n free variables such that θi(R

n) ⊆ φ(Rn) for i = 1, . . . , k.
Then the structures

(defR(φ(Rn));∨,∧,¬,>,⊥, (Dl)
n
l=0, (El)l∈ω,Open, θ1(Rn), . . . , θk(R

n))

and

(defS(φ(Sn));∨,∧,¬,>,⊥, (Dl)
n
l=0, (El)l∈ω,Open, θ1(Sn), . . . , θk(S

n))

are Ln∞ω-equivalent.

Proof. We first observe that Rn and (0, 1)R
n on the one hand, and Sn

and (0, 1)S
n on the other hand, are definably homeomorphic, using hom-

eomorphisms that are defined by the same L0-formula without parameters
in R and S. Therefore, and up to applying these homeomorphisms, we can
assume that φ defines a bounded subset of Rn and Sn.

By Lemma 2.11 and Theorem 2.14, it suffices to show that the set
I(φ(Rn), φ(Sn)) is non-empty and contains a map sending θi(R

n) to θi(S
n)

for i = 1, . . . , k. Let (F1,K) be a triangulation of φ(Rn) partitioning
θ1(Rn), . . . , θk(R

n). Let F1(ȳ, ū) be an L0-sentence such that F1(r̄, ū) de-
fines the graph of F1 for some r̄ ∈ R, and let ā be an enumeration of V (K).
Then

R |= ∃x̄∃z̄ ΣK,ā(x̄) ∧ [F1(z̄, ū) defines the graph

of a triangulation from φ to the complex

determined by ΣK,ā(x̄), partitioning θ1, . . . , θk].

The above sentence can be expressed as a first-order L0-sentence Ω and,
since R ≡ S, it follows that

(2.4) S |= Ω.

Let b̄, s̄ ⊆ S be realisations of the variables x̄ and z̄ in (2.4), let W be the
complex in Sn determined by ΣK,ā(b̄) and let G1 be the triangulation whose
graph is defined by F1(s̄, ū). We have ΣK,ā(x̄) = ΣW,b̄(x̄). Let A = F−1

1 (K)

and B = G−1
1 (W ).

By Proposition 2.4, ifM is any common elementary extension ofR and S,
there is a homeomorphism of complexes (ξ,KM ,WM ) such that for every
simplex (ai1 , . . . , ail) of K, ξ((ai1 , . . . , ail)M ) = (bi1 , . . . , bil)M . It follows
that the map

f : A → B, F−1
1 (C) 7→ G−1

1 (E)
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(where C ∈ K and E is the unique element in W such that EM = ξ(CM )) is
in I(φ(Rn), φ(Sn)), with f(θi(R

n)) = θi(S
n) for i = 1, . . . , k, and the result

follows.

Corollary 2.16. Let R and S be o-minimal L0-structures that are ex-
pansions of real closed fields, and let A ⊆ R ∩ S be such that R and S are
elementarily equivalent as L0(A)-structures (where L0(A) is the language L0

expanded by constants for the elements of A). Let φ be an L0(A)-formula
with n free variables. Then

1. the bounded lattices

(odefR(φ(Rn));∨,∧,>,⊥, (Dl)
n
l=0, (El)l∈ω, θ1(Rn), . . . , θk(R

n))

and

(odefS(φ(Sn));∨,∧,>,⊥, (Dl)
n
l=0, (El)l∈ω, θ1(Sn), . . . , θk(S

n))

are L̃n∞ω-equivalent for any open subsets θ1(Rn), . . . , θk(R
n) of φ(Rn)

that are definable with parameters in A.

In particular, if R ≺ S then

2. (odefR(φ(Rn);∨,∧,>,⊥, (Dl)
n
l=0, (El)l∈ω) is an L̃n-elementary sub-

structure of (odefS(φ(Sn));∨,∧,>,⊥, (Dl)
n
l=0, (El)l∈ω).

Proof. Statement 1 follows immediately from Theorem 2.15, while state-
ment 2 is a clear consequence of the first one.

3. Link with semilinear sets. We refer to [vD, Chapter 1] for the
notion of semilinear set, and recall [vD, Chapter 8, 2.14, Exercise 2]: Let
S1, . . . , Sk be semilinear subsets of a bounded semilinear set S ⊆ Rn (where
R is an ordered field). Then there is a complex K in Rn such that |K| = S
and each Si is a union of elements of K. For the sake of terminology, it is
convenient to reformulate this as a triangulation result: If S is a bounded
semilinear subset of Rn and S1, . . . , Sk are semilinear subsets of S, then
there is a complex K in Rn such that (id : S → |K|,K) is a triangulation
of S partitioning S1, . . . , Sk.

We say that a triangulation (F,K) of some definable set is semilinear
if the homeomorphism F is semilinear. In this section, R denotes a fixed
o-minimal expansion of a real closed field.

Much credit for this section goes to Marcus Tressl, who provided both the
question and the reference to [B]. We recall Definition 1.3 and Theorem 1.4
from [B] (restated to follow our notational conventions).

Definition 3.1. Let K be a complex in Rn. A triangulation (f,K ′) of
|K| is a normal triangulation of the complex K if
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1. (f,K ′) partitions every simplex in K,
2. K ′ is a subdivision of K, and
3. for every T ∈ K ′ and S ∈ K, if T ⊆ S then T ⊆ f(S).

Observe that in such a case we have f(S) = S for every S ∈ K. Defini-
tion 1.3 in [B] asks that φ′(T ) ⊆ S whenever T ∈ K ′ and S ∈ K are such that
T ⊆ S (and where φ′ is the homeomorphism in the normal triangulation).
This is due to a different notation for triangulations: a triangulation (F,W )
of the set S would be denoted in [B] by (W,F−1), i.e. the homeomorphism
starts from the realisation of the complex.

Theorem 3.2 (Normal triangulation theorem). Let K be a complex
in Rn and let S1, . . . , Sl be definable subsets of |K|. Then there exists a
normal triangulation of K partitioning S1, . . . , Sl.

Definition 3.3. Let n ∈ N+ and let Ω be a semilinear subset of Rn.
We denote by

1. slR(Ω) the boolean algebra of semilinear subsets of Ω that are defin-
able with parameters from R,

2. oslR(Ω) the lattice of open semilinear subsets (for the order topology
on R) of Ω that are definable with parameters from R.

Methods similar to those of the previous section, together with Theo-
rem 3.2, allow us to compare the structures defR(φ) and slR(φ), and well as
odefR(φ) and oslR(φ), when φ is a bounded semilinear subset of Rn.

Definition 3.4. Let n ∈ N+ and assume that φ is a bounded semilinear
subset of Rn. We denote by I(φ) the set of all bijections f : A → B such
that

1. A is a partition of φ into definable sets, and B is a partition of φ into
semilinear sets,

2. there are
• a complex K in Rn,
• a triangulation (F,K) of φ partitioning every element of A, and
• a semilinear triangulation (G,K) of φ partitioning every element

of B:
|K|

φ

F
??

φ

G
__

such that f is the map induced by the above diagram, i.e. for every
A ∈ A such that F (A) = C1 ∪ · · · ∪Cl with Ci ∈ K (for i = 1, . . . , l),
we have

f(A) = G−1(C1 ∪ · · · ∪ Cl).
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As in Lemma 2.8, such a map f induces an Ln-isomorphism BA(f) from
BA(A) to BA(B), and defining

IBA(φ) := {BA(f) | f ∈ I(φ)},

we have the following lemma.

Lemma 3.5. With the same notation and hypotheses as in Definition 3.4,
assume that I(φ) is non-empty. Then IBA(φ) is a back-and-forth system
between defR(φ) and slR(φ).

Proof. Let f ∈ I(φ). For this proof, we need to check both directions of
the back-and-forth.

• Let U ∈ slR(φ) be such that U 6∈ Im BA(f) = BA(B). As explained at
the beginning of this section, by [vD, Chapter 8, 2.14, Exercise 2] there is a
semilinear triangulation (id,W ) of |K| partitioning the semilinear set G(U)
and every element of K, so we have the following maps:

|W |

|K|

id

OO

φ

F
>>

φ

G
``

Let A′ := F−1(W ) and B′ := G−1(W ). The triangulations (F,W ) and
(G,W ) define a map f ′ : A′ → B′ by f ′(F−1(T )) := G−1(T ) for every
T ∈W . By definition we have f ′ ∈ I(φ), and U ∈ Im BA(f ′). We only need
to check that BA(f ′) extends BA(f). Let A ∈ BA(A) and write F (A) =
C1 ∪ · · · ∪ Cs with C1, . . . , Cs ∈ K. By definition we have BA(f)(A) =
G−1(C1 ∪ · · · ∪Cs). Furthermore, each Ci is of the form Di,1 ∪ · · · ∪Di,li for
some Di,1, . . . , Di,li ∈W , and

BA(f ′)(A) = G−1
( s⋃
i=1

Di,1 ∪ · · · ∪Di,li

)
= G−1

( s⋃
i=1

Ci

)
= BA(f)(A).

• Let U ∈ defR(φ) be such that U 6∈ dom BA(f) = BA(A). Applying
Theorem 3.2 we find a normal triangulation (H,K ′) of K partitioning F (U).
By definition of normal triangulation, K ′ is a subdivision of K and therefore
the identity map from |K| to |K ′| is a triangulation of |K| partitioning every
simplex in K. As observed after the definition of normal triangulation, we
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have H(S) = S for every S ∈ K.

|K ′|

|K|

H

II

id

UU

φ

F
>>

φ

G
``

We define A′ := (H ◦ F )−1(K ′) and B′ := (id ◦ G)−1(K ′). The tri-
angulations (H ◦ F,K ′) and (id ◦ G,K ′) define a map f ′ : A′ → B′ by
f ′((H ◦ F )−1(T )) := (id ◦G)−1(T ) for every T ∈ K ′. By definition we have
f ′ ∈ I(φ) and U ∈ dom BA(f ′). Observe that by construction H ◦ F (U) =
S′1 ∪ · · · ∪ S′r for some S′1, . . . , S

′
r ∈ K ′ and thus (id ◦ G)−1(H ◦ F (U)) is a

semilinear subset of φ.
We only have to check that BA(f ′) extends BA(f). Let A ∈ BA(A)

and write F (A) = C1 ∪ · · · ∪ Cr with C1, . . . , Cr ∈ K. By definition of f
we have BA(f)(A) = G−1(C1 ∪ · · · ∪ Cr). To compute BA(f ′)(A) we write
H(Ci) = C ′i,1 ∪ · · · ∪ C ′i,ri for some C ′i,1, . . . , C

′
i,ri
∈ K ′. It follows that

(3.1) C ′i,1 ∪ · · · ∪ C ′i,ri = H(Ci) = Ci

since H is a normal triangulation of K and Ci ∈ K. We have

A =
r⋃
i=1

ri⋃
j=1

(H ◦ F )−1(C ′i,j)

and thus

BA(f ′)(A) =
r⋃
i=1

ri⋃
j=1

(id ◦G)−1(C ′i,j) =

r⋃
i=1

G−1
( ri⋃
j=1

C ′i,j

)
=

r⋃
i=1

G−1(Ci) by (3.1)

= BA(f)(A).

The following two results follow, as in the previous section.

Theorem 3.6. Let φ be a bounded semilinear subset of Rn and let
θ1, . . . , θr be semilinear subsets of φ. Then the structures

(defR(φ);∨,∧,¬,>,⊥, (Dl)
n
l=0, (El)l∈ω,Open, θ1, . . . , θk)

and

(slR(φ);∨,∧,¬,>,⊥, (Dl)
n
l=0, (El)l∈ω,Open, θ1, . . . , θk)

are Ln∞ω-equivalent.
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Corollary 3.7. Let φ be a bounded semilinear subset of Rn.

1. The bounded lattices

(odefR(φ);∨,∧,>,⊥, (Dl)
n
l=0, (El)l∈ω, θ1, . . . , θk)

and

(oslR(φ);∨,∧,>,⊥, (Dl)
n
l=0, (El)l∈ω, θ1, . . . , θk)

are L̃n∞ω-equivalent for any open semilinear subsets θ1, . . . , θk of φ.
2. In particular (oslR(φ);∨,∧,>,⊥, (Dl)

n
l=0, (El)l∈ω) is an elementary

L̃n-substructure of (odefR(φ);∨,∧,>,⊥, (Dl)
n
l=0, (El)l∈ω).
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