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Abstract. We continue the study of remainders of metrizable spaces, expanding and
applying results obtained in [Fund. Math. 215 (2011)]. Some new facts are established.
In particular, the closure of any countable subset in the remainder of a metrizable space
is a Lindelöf p-space. Hence, if a remainder of a metrizable space is separable, then this
remainder is a Lindelöf p-space. If the density of a remainder Y of a metrizable space does
not exceed 2ω, then Y is a Lindelöf Σ-space. We also show that many of the theorems
on remainders of metrizable spaces can be extended to paracompact p-spaces or to spaces
with a σ-disjoint base. We also extend to remainders of metrizable spaces the well known
theorem on metrizability of compacta with a point-countable base.

1. Introduction. In this article, a “space” is a Tikhonov topological
space. A compactification of a space X is any compact space bX such that
X is a subspace of bX and X is dense in bX. A remainder Y of a space X is
the subspace Y = bX \X of a compactification bX of X. One of the major
tasks in the theory of compactifications is to investigate how the properties
of a space X are related to the properties of some or all of the remainders
of X.

We are especially interested in the invariant properties of the remain-
ders of X, that is, in the properties that do not depend on the choice of a
compactification bX of X. In this connection, we recall a concept introduced
in [19]. A topological property is perfect if it is preserved by perfect map-
pings in both directions. The importance of perfect properties for us is due
to the fact that if some remainder of a space X has a perfect property, then
every remainder of X has this property. For example, being a paracompact
p-space is a perfect property [17]. Being a Lindelöf p-space and being a Lin-
delöf Σ-space are also perfect properties. But metrizability is not a perfect
property.
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If every remainder of a space X has a certain property P, then we say
that X has the property P′. The next statement from [19, Theorem 2.7] is
obvious:

Proposition 1.1. If P is a perfect property, then so is P′.

Recall that a space X is of countable type if every compact subspace of
X is contained in a compact subspace of X which has a countable base of
open neighbourhoods in X [1]. All metrizable spaces and all locally compact
spaces, as well as all Čech-complete spaces, are of countable type [1].

Recently, several investigations on remainders of spaces have been con-
ducted (see [7], [6], [9], [8], [20]). See also [11], where it has been observed
that remainders of metrizable spaces are quite close in their properties to
compacta.

This article is a continuation of [10], where several new results on re-
mainders of metrizable spaces have been presented. We apply results from
[10] and develop further the techniques from [10] to establish some new facts
on remainders of metrizable and close to metrizable spaces.

It is proved that the closure of any countable subset in the remainder of a
metrizable space is a Lindelöf p-space. Hence, if a remainder of a metrizable
space is separable, then this remainder is a Lindelöf p-space. If the density of
a remainder of a metrizable space does not exceed 2ω, then this remainder is
a Lindelöf Σ-space. We also prove that if a remainder of a metrizable space
is symmetrizable, then this remainder is separable and metrizable. Several
new results in the article concern some generalizations of metrizable spaces,
such as paracompact p-spaces and spaces with a σ-disjoint base.

A famous classical result in the theory of compactifications is the follow-
ing theorem of M. Henriksen and J. Isbell [19]:

Theorem 1.2. A space X is of countable type if and only if the remain-
der in any (or some) compactification of X is Lindelöf.

It follows from this theorem that every remainder of a metrizable space
is Lindelöf. A much stronger property is enjoyed by remainders of sepa-
rable metrizable spaces. It was observed in [6] that every remainder of a
separable metrizable space is a Lindelöf p-space. Recall that paracompact
p-spaces introduced in [1] can be characterized as preimages of metrizable
spaces under perfect mappings. A Lindelöf p-space is the preimage of a sep-
arable metrizable space under a perfect mapping. However, it is not true
that every remainder of any metrizable space is a paracompact p-space (see
[10]). A strong necessary condition for a space to be a remainder of some
metrizable space has been obtained in [10]. An attractive condition of this
kind has been established in [10] for metrizable spaces of weight not greater
than 2ω. Here it is:
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Theorem 1.3. If X is a metrizable space of weight not greater than 2ω,
then every remainder of X is a Lindelöf Σ-space.

Recall that a space is a Lindelöf Σ-space if it is the image of a Lindelöf p-
space under a continuous mapping. This important class has been introduced
by K. Nagami [23]. There is a very useful characterization of Lindelöf Σ-
spaces in terms of their location in compactifications. We recall it now. Let
X and Y be some subspaces of a space Z, and γ be a family of subsets of
Z such that for any x ∈ X and any y ∈ Y , where x 6= y, there exists P ∈ γ
such that x ∈ P and y /∈ P . Then we will say that γ is a T0-separator in Z for
the pair (X,Y ). A T0-separator γ is called closed (or open) if every member
of γ is closed (respectively, open) in Z. The following fact is well-known:

Theorem 1.4. A space X is a Lindelöf Σ-space if and only if for every
(or equivalently, for some) compact space B containing X there exists a
countable closed T0-separator in B for the pair (X,B \X).

In [10], it was shown that one of the main results of [10], Theorem 1.3,
cannot be extended to the class of all metrizable spaces.

In Section 2, we find a new sufficient condition for a remainder of a space
to be a Lindelöf Σ-space, considerably extending [10, Theorem 1.3]. The
proof of this result is based on a new technique, and provides an alternative
and simpler proof for [10, Theorem 1.3]. In Section 3 we provide new results
on remainders of spaces close to metrizable without strong restrictions on
the weight.

2. Remainders of “small” spaces with a σ-disjoint base. We call
a Tikhonov space X an s-space if, for some compactification bX of X, there
exists a countable open T0-separator in bX for the pair (X, bX \X). See [16,
3.9.E] for references to some early appearances of s-spaces in the literature
and for comments.

Every Lindelöf p-space is an s-space. However, an s-space need not be
a p-space [12]. Our next statement obviously follows from Theorem 1.4. It
shows how s-spaces are related to Lindelöf Σ-spaces.

Proposition 2.1. A space X is an s-space if and only if any (or some)
remainder of X is a Lindelöf Σ-space.

Here is a curious application of the above statement:

Proposition 2.2. Being an s-space is a perfect property.

Proof. Being a Lindelöf Σ-space is a perfect property. Therefore, Propo-
sition 1.1 implies that being an s-space is a perfect property.

A space X is said to be perfect if every closed subset of X is a Gδ-set
in X. We need the following result from [12]:
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Theorem 2.3. If a perfect space is an s-space, then it is a p-space.

The next result immediately follows from Proposition 2.1 and Theo-
rem 2.3.

Corollary 2.4. If a perfect space X has a remainder which is a Lin-
delöf Σ-space, then X is a p-space.

Now we can show that Theorem 1.3 cannot be extended to spaces X
with a point-countable base such that |X| ≤ 2ω.

Theorem 2.5. Under the Continuum Hypothesis [CH], there exists a
Lindelöf space X with a point-countable base such that no remainder of X
is a Lindelöf Σ-space.

Proof. Assuming [CH], E. K. van Douwen, F. D. Tall, and W. Weiss have
constructed a non-metrizable hereditarily Lindelöf space X with a point-
countable base [15].

We claim that no remainder of X is a Lindelöf Σ-space. Assume the
contrary. Then, by Proposition 2.1, X is an s-space. It is also perfect, being
hereditarily Lindelöf. Therefore, it follows from Theorem 2.3 that X is a p-
space. Since it is a Lindelöf p-space with a point-countable base, we conclude
that it is metrizable, a contradiction.

Clearly, the following statement also holds:

Proposition 2.6. For any hereditarily Lindelöf space X, the following
three conditions are pairwise equivalent:

(1) X is a p-space.
(2) Some (or every) remainder of X is a Lindelöf Σ-space.
(3) Some (or every) remainder of X is a Lindelöf p-space.

The class of spaces with a σ-disjoint base lies between the classes of
metrizable spaces and of spaces with a point-countable base. We show be-
low that here the situation of remainders is closer to that of remainders of
metrizable spaces.

Theorem 2.7. Suppose that X is a space with a σ-disjoint base B such
that |B| ≤ 2ω. Then every remainder of X is a Lindelöf Σ-space.

To prove this theorem, we need the following lemma:

Lemma 2.8. Suppose that γ is a disjoint family of open subsets of a
topological space X such that |γ| ≤ 2ω. Then there exists a countable family
W of open subsets of X satisfying the following condition:

(s) For each V ∈ γ and any x, y ∈ X such that x ∈ V and y /∈ V , there
exists W ∈W such that x ∈W and y /∈W .
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Proof. Since |γ| ≤ 2ω, there exists a countable family E of subfamilies of
γ satisfying the following condition:

(c) For any distinct V1, V2 ∈ γ, there exists η ∈ E such that V1 ∈ η and
V2 /∈ η.

We can also assume that γ ∈ E. For each η ∈ E, put Wη =
⋃
η, and let

W = {Wη : η ∈ E}.
Clearly, W is a countable family of open subsets of X. Let us show that

W satisfies condition (s).
Fix V ∈ γ and take any x, y ∈ X such that x ∈ V and y /∈ V .

Case 1: There exists U ∈ γ such that y ∈ U . Clearly, U 6= V . By
condition (c), there exists η ∈ E such that V ∈ η and U /∈ η. Then, obviously,
x ∈Wη =

⋃
η and y /∈Wη. Thus, in this case condition (s) holds.

Case 2: y /∈
⋃
γ. Then y /∈ Wγ ∈ W and x ∈ Wγ . Again, condition (s)

holds.

Proof of Theorem 2.7. Let bX be any compactification of X. We have
a base B =

⋃
{µn : n ∈ ω} of X such that |B| ≤ 2ω and each family µn is

disjoint. Since X is dense in bX, we can find a disjoint family γn of open
subsets of bX such that µn = {W ∩X : W ∈ γn} and |γn| = |µn| ≤ 2ω for
n ∈ ω.

By Lemma 2.8, for each n ∈ ω, we can fix a countable family Wn of open
subsets of bX satisfying the following condition:

(sn) For each V ∈ γn and any x, y ∈ bX such that x ∈ V and y /∈ V ,
there exists W ∈Wn such that x ∈W and y /∈W .

Put S =
⋃
{Wn : n ∈ ω}. Clearly, S is a countable family of open subsets

of bX.

Claim 1. For each x ∈ X and each y ∈ Y = bX \X, there exists W ∈ S

such that x ∈W and y /∈W .

Clearly, x 6= y. Since B is a base for X, we can find V0 ∈ B such that
x ∈ V0 and y is not in the closure of V0 in bX. Now we can find k ∈ ω
such that V0 ∈ µk. By the definition of the family γk, V0 = W ∩X for some
W ∈ γk. Then x ∈ W and y /∈ W , since W ⊂ V0 and y /∈ V0. By condition
(sk), there exists W ∈ Wk such that x ∈ W and y /∈ W . Then W ∈ S, so
that Claim 1 is established.

It follows from Claim 1 that X is an s-space. Hence, by Proposition 2.1,
Y is a Lindelöf Σ-space.

Corollary 2.9. Suppose that a space X is the union of a countable
family η of dense metrizable subspaces and that |X| ≤ 2ω. Then every re-
mainder of X is a Lindelöf Σ-space.
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Proof. Fix a compactification bX of X. Every member of η has a σ-
disjoint base. Therefore, the space X also has a σ-disjoint base B. Clearly,
|B| ≤ |X| ≤ 2ω. It remains to apply Theorem 2.7.

Example 2.10. The assumption in Corollary 2.9 that every member of
η is dense in X is essential. Take for X the countable Fréchet–Urysohn fan
V (ω). Then V (ω) is the union of two discrete (hence, metrizable) subspaces
Y and Z one of which is a singleton and consists of the unique non-isolated
point of V (ω). The space V (ω) is countable but not first-countable. There-
fore, it is not of countable type. Hence, by the Henriksen–Isbell Theorem,
no remainder of V (ω) is Lindelöf.

The restriction on the cardinality of the base B in Theorem 2.7 is also
essential, as we have seen in the Introduction. However, we have the following
two results related to Theorem 2.7.

Theorem 2.11. Suppose that X is a space with a σ-disjoint base B.
Then the remainder of X in each homogeneous compactification bX of X is
a Lindelöf Σ-space.

Proof. Clearly, bX is first-countable at every point of X. Therefore, bX is
first-countable at every point, since it is homogeneous. Since bX is compact,
it follows that |bX| ≤ 2ω ([3]). It remains to apply Theorem 2.7.

Theorem 2.12. Suppose that X is a Lindelöf space with a σ-disjoint
base B. Then every remainder of X is a Lindelöf Σ-space.

Proof. The cardinality of X does not exceed 2ω, since X is Lindelöf and
first-countable [3]. It remains to apply Theorem 2.7.

3. Remainders of paracompact p-spaces. Results in this section
are presented in a rather general form. However, their main, and still new,
corollary concerns remainders of metrizable spaces. Besides, in the proofs
metrizability will be used in a decisive way. We also rely upon the concept
of an Eberlein compactum [4, Chapter 4, Section1], [5]. See also [21], [22].

We start by formulating our main result in the simplest case.

Proposition 3.1. Suppose that X is a metrizable space, and that Y is
an arbitrary remainder of X. Then Y has the following property:

P0: For any countable subset C of Y , the closure of C in Y is a Lindelöf
p-space.

This result obviously follows from the following general statement:

Theorem 3.2. Suppose that X is a paracompact p-space, and that Y is
an arbitrary remainder of X. Then Y has the following property:
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Pc: Any closed subspace P of Y such that the Suslin number c(P ) of P
is countable is a Lindelöf p-space.

To prove Theorem 3.2, we need the following fact:

Proposition 3.3. Pc is a perfect property.

Proof. Suppose that f is a perfect mapping of a space Z onto a space Y .

a) Assume that Y has Pc. Take any closed subspace F of Z with c(F )
countable, and put P = f(F ). Clearly, P is closed in Y , and c(P ) ≤ ω.
Therefore, P is a Lindelöf p-space, since Y has Pc. It follows that f−1(P )
is a Lindelöf p-space, since f is a perfect mapping. Note that F is a closed
subspace of f−1(P ). Hence, F is also a Lindelöf p-space.

b) Assume that Z has Pc. Take any closed subspace P of Y with c(P )
countable. Since f is perfect and f(Z) = Y , there exists a closed subspace
F of Z such that the restriction of f to F is an irreducible perfect mapping
of F onto P . Thus c(F ) is countable. Hence, F is a Lindelöf p-space, since
Z has Pc. It follows that P = f(F ) is a Lindelöf p-space.

Proof of Theorem 3.2. Since Pc is a perfect property, the property

P′c: every remainder of X has Pc

is also a perfect property, by Proposition 1.1. Therefore, since there exists a
perfect mapping of X onto a metrizable space, we can assume that X itself
is metrizable.

Since Pc is a perfect property, it suffices to show that some remainder
of X has Pc. By [4, Theorem 4.1.25], we can fix a compactification bX of
X such that bX is an Eberlein compactum. The remainder Y of X has Pc,
since every subspace M of an Eberlein compactum with c(M) countable is
metrizable (see [5] or [4, Chapter 4, Section 1]).

Corollary 3.4. Every remainder of a paracompact p-space has the
property P0.

Corollary 3.5. If a paracompact p-space X has a separable remainder,
then every remainder of X is a Lindelöf p-space.

The last statement shows that there are Lindelöf Σ-spaces that cannot
be represented as remainders of paracompact p-spaces (just take any non-
metrizable countable Tikhonov space).

Corollary 3.6. Suppose that X is a paracompact p-space, and Y is
a remainder of X. Then every closed subspace P of Y with a countable
network has a countable base.

Proof. This follows from Corollary 3.4, since every p-space with a count-
able network has a countable base, and hence is metrizable [1].
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The next statement and its proof are similar to Theorem 3.2 and its
proof, but we use one more technical tool in the argument.

Theorem 3.7. Suppose that X is a paracompact p-space. Then any re-
mainder Y of X has the following property:

Ps: For any subset L of Y such that |L| ≤ 2ω, the closure of L in Y is
a Lindelöf Σ-space.

Proof. A standard argument shows that Ps is a perfect property (see the
proof of Proposition 3.3). Therefore, so is P′s. Hence, it suffices to consider
the case when X is metrizable, and to prove the statement for some remain-
der Y of X. Again, we can fix an Eberlein compactification bX of X. Put
Y = bX \X, and fix any subset L of Y such that |L| ≤ 2ω. Let K be the
closure of L in Y .

It is known (see [5] or [4, Chapter 4, Section 1]) that the tightness of
any Eberlein compactum is countable. Thus, for each h ∈ L, we can fix a
countable subset Ah of X such that h ∈ Ah. Put A =

⋃
{Ah : h ∈ L}.

Clearly, |A| ≤ 2ω, and L ⊂ A. Let B be the closure of A in X. Since X is a
metric space, we have |B| ≤ 2ω. The closure of B in bX is a compactification
bB of the metric space B. By Theorem 2.7, S = bB\B is a Lindelöf Σ-space.
Consequently, K is a Lindelöf Σ-space, as K ⊂ S and K is closed in S.

4. Applications to remainders of some “large” spaces. It was
shown in [10] that not for every metrizable space are all its remainders
Lindelöf Σ-spaces. We do not know yet how to characterize remainders
of metrizable spaces. However, a partial result has been obtained in [10].
It is based on the concept of a charming space [10]. A space X is called
charming if there exists a Lindelöf Σ-subspace Y of X such that, for each
open neighbourhood U of Y in X, the subspace X \U is also a Lindelöf Σ-
space. The idea of this definition can be used to construct other interesting
new classes of spaces (see [13]).

Every Lindelöf Σ-space is charming. Hence, all separable metrizable
spaces and all Lindelöf p-spaces are charming as well. A motivation for the
study of charming spaces is provided by the following statement from [10]:

Theorem 4.1. Every remainder of a paracompact p-space is a charming
space.

We need yet another theorem from [10]:

Theorem 4.2. The cardinality of any charming space X such that every
x ∈ X is a Gδ-point in X does not exceed 2ω.

Theorem 4.3. If Y is a remainder of a paracompact p-space such that
every y ∈ Y is a Gδ-point in Y , then Y is a Lindelöf Σ-space.
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Proof. Indeed, it follows from Theorem 4.1 that Y is charming. There-
fore, |Y | ≤ 2ω, by Theorem 4.2. Now Theorem 3.7 implies that Y is a
Lindelöf Σ-space.

Some applications of the techniques developed above are summed up in
our next theorem. For the basic properties of symmetrizable spaces, see [2],
[24], or [18].

Theorem 4.4. Suppose that X is a paracompact p-space, and Y is a
remainder of X. Then any one of the following conditions is sufficient for
Y to be separable and metrizable:

(i) Y has a Gδ-diagonal;
(ii) Y has a point-countable base;
(iii) Y is a subspace of a symmetrizable space.

Proof. (i) Every y ∈ Y is a Gδ-point in Y . Therefore, Y is a Lindelöf
Σ-space by Theorem 4.3. By a result of K. Nagami [23], Y has a countable
network. Now Corollary 3.6 implies that Y is separable and metrizable.

(ii) The remainder Y is a Lindelöf Σ-space, by Theorem 4.3. But every
LindelöfΣ-space with a point-countable base is metrizable (see [18, Theorem
7.9 (ii)]).

(iii) The tightness of Y is countable, since Y is a subspace of a sym-
metrizable space.

Claim. The space Y is Fréchet–Urysohn.

Take any non-closed subset A of Y , and fix y ∈ A \ A. There exists
a countable subset B of A such that y ∈ B \ B. The subspace F = B
is a Lindelöf p-space, by Proposition 3.1. Every compact subspace of F
is symmetrizable, and therefore metrizable [2]. It follows that F is first-
countable, since it is of point-countable type. Hence, there exists a sequence
in B converging to y. The Claim is verified.

Since Y is Fréchet–Urysohn, and Y is a subspace of a symmetrizable
space, we conclude that Y is symmetrizable and first-countable [2], [18],
that is, Y is semi-metrizable. Hence, Y × Y is also semi-metrizable, which
implies that Y has a Gδ-diagonal. It remains to apply the sufficiency of (i).

Every compact space can be easily represented as the remainder of a
discrete (hence metrizable) space. Therefore, the sufficiency of (ii) in the
above theorem can be interpreted as a generalization of the well known
theorem of A. S. Mischenko on metrizability of every compact space with a
point-countable base [16].

Theorem 4.5. Suppose that X is a metrizable space and Y is a remain-
der of X in a compactification bX such that Y satisfies at least one of the
following conditions:
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(i) Y has a Gδ-diagonal;
(ii) Y has a point-countable base;

(iii) Y is a subspace of a symmetrizable space.

Then bX is an Eberlein compactum and the closure bY of Y in bX is metriz-
able.

Proof. By Theorem 4.4, the space Y is separable and metrizable. Hence,
by a result in [22], bX is an Eberlein compactum. The remainder Z = bY \Y
is Lindelöf [19]. Therefore, Z has a countable base, since Z ⊂ X and X is
metrizable. Hence, bY has a countable network and is metrizable.

Observe that if the metrizable space X in 4.5 is nowhere locally compact,
then the compactification bX = bY is metrizable.

Theorem 4.4 can be used to show that certain Lindelöf spaces cannot be
represented as remainders of metrizable spaces. For example, we see that
no Lindelöf version of the Michael line is a remainder of a paracompact p-
space, since it has a point-countable base but is not metrizable. Any version
of the Michael line has a metrizable remainder. Thus, having a metrizable
remainder and being a remainder of a metrizable space are not equivalent
properties. We also see that a charming space with a point-countable base
need not be metrizable.

Acknowledgements. I am grateful to the referee for many helpful sug-
gestions.
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