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Embeddings of C(K) spaces into C(S,X) spaces
with distortion strictly less than 3
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Abstract. In the spirit of the classical Banach–Stone theorem, we prove that if K
and S are intervals of ordinals and X is a Banach space having non-trivial cotype, then
the existence of an isomorphism T from C(K,X) onto C(S,X) with distortion ‖T‖ ‖T−1‖
strictly less than 3 implies that some finite topological sum of K is homeomorphic to some
finite topological sum of S. Moreover, if Xn contains no subspace isomorphic to Xn+1 for
every n ∈ N, then K is homeomorphic to S. In other words, we obtain a vector-valued
Banach–Stone theorem which is an extension of a Gordon theorem and at the same time
an improvement of a Behrends and Cambern theorem. In order to prove this, we show
that if there exists an embedding T of a C(K) space into a C(S,X) space, with distortion
strictly less than 3, then the cardinality of the αth derivative of S is finite or greater than
or equal to the cardinality of the αth derivative of K, for every ordinal α.

1. Introduction. We follow the standard notation and terminology of
Banach space theory that can be found in [17]. Let S be a compact Hausdorff
space and X a Banach space. We denote by C(S,X) the Banach space of
all X-valued continuous functions on S endowed with the supremum norm.
If X is the scalar field, this space will be denoted by C(S). Moreover, when
S is an ordinal interval [1, α] this space will be denoted by C(α,X). Given
Banach spaces X and Y, the Banach–Mazur distance between X and Y is
given by infT {‖T‖ ‖T−1‖}, where T runs through all isomorphisms of X
onto Y . If there is an isomorphism T of X onto Y with ‖T−1‖ ‖T‖ < λ for

some 1 < λ <∞, we will write X
<λ∼ Y .

The source of our research is the classical Banach–Stone theorem which
states that if C(K) and C(S) are isometrically isomorphic (for short, C(K)=
C(S)), then K and S are homeomorphic (written K ≈ S). This result was
obtained by Banach [4] for compact metric spaces and extended by Stone
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[20] to compact Hausdorff spaces. Amir [3] and independently Cambern [6]
generalized this theorem as follows.

Theorem 1.1. Let K and S be compact Hausdorff spaces. Then

C(K)
<2∼ C(S) ⇒ K ≈ S.

Moreover, Amir conjectured that the number 2 may be replaced by 3 in
this theorem. Cohen [9] disproved this conjecture for the class of uncount-
able compact metric spaces. However, this conjecture is true in the class of
countable compact metric spaces. Indeed, Gordon [15] proved:

Theorem 1.2. Let K and S be countable compact metric spaces. Then

C(K)
<3∼ C(S) ⇒ K ≈ S.

The Banach–Stone theorem has also been generalized to real vector-
valued continuous functions. In this setting, the farthest-reaching result is
the following one, due to Behrends and Cambern [5] (see also [16]).

Theorem 1.3. Suppose that X is a uniformly non-square Banach space.
Then there exists 1 < λ < 2 such that for any compact Hausdorff spaces K
and S we have

C(K,X)
<λ∼ C(S,X) ⇒ K ≈ S.

Recall that a Banach space X is said to be uniformly non-square if and
only if there is a δ > 0 such that there do not exist x and y in the the unit
ball of X for which∥∥1

2(x+ y)
∥∥ > 1− δ and

∥∥1
2(x− y)

∥∥ > 1− δ.

In the present paper we are mainly interested in getting vector-valued
Banach–Stone type theorems for C(S,X) spaces with Banach–Mazur dis-
tances strictly less than 3. The motivation for this work is to look for some
improvements of Theorems 1.2 and 1.3. The difficulty in obtaining some
results in this direction can be summarized in the following fact:

Remark 1.4. Let S be an arbitrary countable compact metric space. By
the classical Mazurkiewicz and Sierpiński theorem [19, Theorem 8.6.10], S is
homeomorphic to an ordinal interval [1, ωαm], where ω is the first infinite
ordinal, α is countable and m is finite and different from zero. Consequently,

if X is a Banach space satisfying X
<d∼ X ⊕∞ X, then

C(S,X) = C(ωαm,X)
<d∼ C(ωαm,X ⊕∞ X) = C(ωαm2, X).

In particular, if X = lp, then d = 21/p is arbitrarily close to 1 when p is very
large. However, according to [19, Proposition 8.6.9], S is not homeomorphic
to [1, ωα2m].
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In order to state our theorems, recall that a Banach space X 6= {0} is
said to have cotype 2 ≤ q <∞ [10] if there is a constant κ > 0 such that no
matter how we select finitely many vectors v1, . . . , vn from X,

(1.1)
( n∑
i=1

‖vi‖q
)1/q

≤ κ
( 1�

0

∥∥∥ n∑
i=1

ri(t)vi

∥∥∥2 dt)1/2,
where ri : [0, 1]→ R denote the Rademacher functions, defined by setting

ri(t) = sign(sin 2iπt).

Moreover, a Banach space X is said to have non-trivial cotype if it has cotype
q for some 2 ≤ q <∞.

Our vector-valued Banach–Stone type theorems are as follows. For a
Banach space X and n ∈ N we denote by Xn the finite sum of n copies
of X.

Theorem 1.5. Suppose that X is a Banach space having non-trivial
cotype such that Xn contains no subspace isomorphic to Xn+1 for every
n ∈ N. Then for any ordinal intervals K and S we have

C(K,X)
<3∼ C(S,X) ⇒ K ≈ S.

Remark 1.6. Notice that each finite-dimensional space X satisfies the
assumptions of Theorem 1.5. Thus, if X is the scalar field and K and S are
countable compact metric spaces, then by the above mentioned Mazurkie-
wicz and Sierpiński theorem, we see that Theorem 1.5 is exactly Theorem
1.2. On the other hand, it is well known that every uniformly non-square
space is a Banach space having non-trivial cotype [10, Theorem 14.1]. Thus,
Theorem 1.5 shows that, in the case of certain Banach spaces X and compact
spaces K and S, we can replace the number 1 < λ < 2 in Theorem 1.3 by 3.

Moreover, in Remark 4.1 we will show that there exist 2ℵ0 infinite-dimen-
sional separable Banach spaces satisfying the hypotheses of Theorem 1.5. In
contrast with Remark 1.4, each of these spaces contains a complemented
copy of some lp space.

Remark 1.7. Without the hypothesis on finite sums of the Banach space
X in the statement of Theorem 1.5, we can deduce that some finite topo-
logical sum of K is homeomorphic to some finite topological sum of S. This
follows immediately from the next theorem and the Cantor normal form of
an ordinal (see [19, Proposition 8.6.5]).

Theorem 1.8. Suppose that X is a Banach space having non-trivial
cotype, α and β are ordinals and 1 ≤ m,n < ω. Then

C(ωαm,X)
<3∼ C(ωβn,X) ⇒ α = β.
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Remark 1.9. Notice that Remark 1.4 implies that Theorem 1.8 cannot
be improved to state that also m = n. However, we do not know whether
the number 3 in the above theorem may be replaced by 4 at least for the
case where X is the scalar field.

The techniques developed to prove Theorems 1.5 and 1.8 allow us to get
a general result on stability of the cardinality of the αth derivative of the
compact space S via C(S,X) spaces with Banach–Mazur distances strictly
less than 3. This result is a vector-valued extension of another theorem of
Gordon’s [15, The Main Theorem]. To state it we recall that the derivative
of a topological space S is the space S(1) obtained by deleting from S its
isolated points. The αth derivative S(α) is defined recursively by setting
S(0) = S, S(α+1) = (S(α))(1) and S(β) =

⋂
γ<β S

(γ) for a limit ordinal β. The

space S is said to be scattered if S(α) = ∅ for some ordinal α. In this case,
the minimal α such that S(α) = ∅ is called the height of S (denoted ht(S)).
As usual, by −1 + α we denote the difference between the ordinal α and 1.
The cardinality of a set Γ will be denoted by |Γ |.

Theorem 1.10. Suppose that X is a Banach space having non-trivial
cotype, and K and S are compact Hausdorff spaces. Then

C(K,X)
<3∼ C(S,X) ⇒ |K(α)| = |S(α)|

for every ordinal α, different from −1+ht(S) in the case where S is scattered.

Remark 1.11. Remark 1.4 also shows that we cannot remove the hy-
pothesis on ht(S) in Theorem 1.10 even when ht(S) > 1.

All the above results are direct consequences of our study of embeddings
T of C(K) spaces into C(S,X) spaces with distortion ‖T‖ ‖T−1‖ less than 3,
where X is a Banach space having non-trivial cotype. This study will be
presented in the next section. In Section 3 we will prove Theorems 1.5, 1.8
and 1.10.

Finally observe that in this paper we deal only with C(K,X) spaces
for compact Hausdorff spaces K, but a somewhat related research has been
done in the case where K are locally compact Hausdorff spaces, starting
with a paper by Cambern [7] showing that if c denotes the space of complex-
valued convergent sequences and c0 the space of complex-valued sequences
convergent to zero, then the Banach–Mazur distance between c and c0 is 3.
For further results in this direction see the recent paper [8].

2. On embbedings of C(K) spaces into C(S,X) spaces. The main
aim of this section is to prove the following theorem.

Theorem 2.1. Let X be a Banach space having non-trivial cotype, and
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K and S compact Hausdorff spaces. Suppose that there exists an isomor-
phism T from C(K) into C(S,X) with ‖T‖ ‖T−1‖ < 3. Then:

(a) If S is scattered, then so is K and ht(K) ≤ ht(S).
(b) For all ordinal α, S(α) is finite or |K(α)| ≤ |S(α)|.

Proof. Without loss of generality we may assume that ‖T−1‖ = 1 and
hence ‖T‖ < 3 and ‖f‖ ≤ ‖Tf‖ for each f ∈ C(S). Set ε = (1 − ‖T‖/3)/2
and put for k ∈ K,

Fk = {f ∈ C(K) : 0 ≤ f ≤ 1 and f(k) > ‖T‖/3},
Λk = {s ∈ S : ‖Tf(s)‖ ≥ ε for every f ∈ Fk}.

In order to prove items (a) and (b) of the theorem we first prove three
claims concerning the sets Λk.

Claim 1. Λk is a non-empty closed set for every k ∈ K.

Indeed, Λk is the intersection of closed sets, so it is closed. To see that
is non-empty we check that it has the finite intersection property. Thus fix
f1, . . . , fn ∈ Fk and take g = mini fi. Then also g ∈ Fk and ‖1+2g−2fj‖ ≤ 1
for every j. Since

‖T (1 + 2g)‖ ≥ ‖1 + 2g‖ > 1 + 2‖T‖/3,
it follows that there is a point s ∈ S such that

‖T (1 + 2g)(s)‖ > 1 + 2‖T‖/3,
and we show that ‖Tfj(s)‖ ≥ ε for every j. Indeed, if this were false for
some i, then

‖T‖ ≥ ‖T (1 + 2g − 2fi)‖ ≥ ‖T (1 + 2g − 2fi)(s)‖
≥ ‖T (1 + 2g)(s)‖ − 2‖Tfi(s)‖ > 1 + 2‖T‖/3− 2ε,

contradicting the choice of ε.

Claim 2. Let Λ be the set-valued map given by Λ(k) = Λk for every
k ∈ K. Then there exists an m ∈ N such that |Λ−1(s)| ≤ m for every s ∈ S.

First of all observe that Λ−1(s) = {k : s ∈ Λk}. Now pick s ∈ S and
suppose Λ−1(s) contains n distinct points {k1, . . . , kn}. We shall derive an
upper bound for n that is independent of s.

Let fj ∈ Fkj be disjointly supported functions with ‖Tfj(s)‖ ≥ ε. Since
ε ≤ ‖Tfj(s)‖ for each 1 ≤ j ≤ n and X has cotype q for some 2 ≤ q < ∞,
there exists by (1.1) a constant Q > 0 such that for an appropriate choice
of scalars rj = ±1 we have

εQ q
√
n ≤

∥∥∥ n∑
j=1

rj · Tfj(s)
∥∥∥.
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Disjointness of the functions fj implies that ‖
∑n

j=1 rj · fj‖ ≤ 1. Then

εQ q
√
n ≤

∥∥∥T( n∑
j=1

rj · fj
)

(s)
∥∥∥ ≤ ‖T‖ ≤ 3.

Consequently, n ≤
(

3
εQ

)q
. So we are done.

Claim 3. Denote F = Λ(K). Then F is a closed subset of S and
Λ−1(F (α)) ⊃ K(α) for every ordinal α.

First notice that Λ−1(F (α)) = {k : Λk ∩ Fα 6= ∅} for each ordinal α.
Now, let G = {(k, s) ∈ K × S : s ∈ Λk} be the graph of Λ. Assume that
(ki, si)→ (k, s) with (ki, si) ∈ G for each i in a directed set I. If f ∈ Fk then
f(k) > ‖T‖/3 and there exists i0 ∈ I such that f ∈ Fki for every i ≥ i0.
Thus ‖Tf(si)‖ ≥ ε for each i ≥ i0. Therefore ‖Tf(s)‖ ≥ ε by continuity. So
G is closed. In particular, the image F = Λ(K), which is the projection of
G on the S coordinate, is closed.

We show by induction that Λk ∩ F (α) 6= ∅ for every k ∈ K(α). If α = 0
then Λk ⊂ F . So, by Claim 1 we infer that Λk 6= ∅ for every k.

Now, assume that α is a limit ordinal and fix k ∈ K(α). Hence by the
induction hypothesis Λk ∩ F (β) 6= ∅ for every β < α. Since these sets are a
decreasing family of closed non-empty sets, they have a non-empty intersec-
tion.

Next, suppose that α = δ + 1. Given k ∈ K(δ+1) there is a net (ki)I
in K(δ) \ {k} converging to k. By the induction hypothesis we can choose
si ∈ Λki ∩ F (δ). Since F (δ) is a compact set, there is a subnet, say (sj)J ,
converging to s ∈ F (δ). Consider also the subnet (kj)J which converges to k.
For each j0 ∈ J there is j ≥ j0 such that sj 6= s, because otherwise it would
be possible to find infinitely many distinct elements {kj1 , kj2 , . . .} such that
s ∈

⋂
n≥1 Λkjn , contradicting Claim 2. Thus s ∈ F (δ+1), and since G is

closed, s ∈ Λk.
Now we pass to the proof of items (a) and (b) of the theorem.
(a) According to Claim 3, we deduce that if S is scattered then so is K

and ht(K) ≤ ht(F ) ≤ ht(S).
(b) By Claim 2, there is an m ∈ N such that |Λ−1(s)| ≤ m for each

s ∈ S. Then, if S(α) is infinite we can write

|K(α)| ≤ |Λ−1(F (α))| =
∣∣∣ ⋃
s∈F (α)

Λ−1(s)
∣∣∣ ≤ |F (α)| ·m ≤ |S(α)|.

3. The proofs of the vector-valued Banach–Stone type theo-
rems. In this section, we first prove Theorem 1.10. Then, as a consequence,
we deduce Theorem 1.8. Finally, we provide the proof of Theorem 1.10 by
using Theorem 1.8 and Proposition 3.1.
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Proof of Theorem 1.10. Let T be an isomorphism of C(K,X) onto
C(S,X) with ‖T‖ ‖T−1‖ < 3. We distinguish two cases:

Case 1: S is scattered. By restricting T to C(K) and applying Theorem
2.1(a) we deduce that K is scattered and ht(K) ≤ ht(S). Moreover, by
restricting T−1 to C(S), again according to Theorem 2.1(a) we conclude
that ht(S) ≤ ht(K). Hence ht(K) = ht(S).

Now, let α be an ordinal different from −1 + ht(K). If α ≥ ht(K), then
by the definition of height we infer that |K(α)| = |S(α)| = 0 and we are done.
Otherwise, α < −1 + ht(K). Thus |K(α)| and |S(α)| are infinite. Therefore
applying Theorem 2.1(b) twice it follows that |K(α)| = |S(α)| and we are
also done.

Case 2: S is not scattered. In this case, proceeding as in Case 1 we
prove that K is not scattered either. Since |K(α)| and |S(α)| are infinite for
every α, it suffices to apply Theorem 2.1(b) twice to see that |K(α)| = |S(α)|.
This completes the proof of Theorem 1.10.

Proof of Theorem 1.8. Denote K = [1, ωαm] and S = [1, ωβn]. By [19,
Theorem 8.6.6] we know that ht(K) = α + 1 and ht(S) = β + 1. Then, by
what we have just stated at the beginning of the proof of Case 1 of Theorem
1.10, we have α+1 = ht(K) = ht(S) = β+1. Thus the theorem is proved.

Finally, we turn to the proof of Theorem 1.5. We recall that a closed
subset A ⊂ K admits a regular simultaneous extension operator if there
is a bounded linear operator L : C(A) → C(K) satisfying Lf |A = f for
all f ∈ C(A), with ‖L‖ = 1 and L(1A) = 1K . It is well known that such
extensions exist whenever K is metrizable [19, Theorem 21.1.4], and a direct
construction shows this is also true when K is an interval of ordinals (see
for instance [1, Proposition 1.1.c]).

Proposition 3.1. Suppose that X is Banach space having non-trivial
cotype, K and S compact Hausdorff spaces, T an isomorphism of C(K,X)
onto C(S,X) satisfying ‖T‖ < 3 and ‖f‖ ≤ ‖Tf‖, ε = (1 − ‖T‖/3)/2 and
A ⊂ K a closed set admitting a regular simultaneous extension operator. For
an ordinal α, if A(α) 6= ∅, then for every ϕ ∈ C(K,X) such that ‖ϕ‖ = 1
and ‖ϕ(k)‖ = 1 for every k ∈ A, there is an s ∈ S(α) satisfying ‖Tϕ(s)‖ ≥ ε.

Proof. Assume that ϕ ∈ C(K,X), ‖ϕ‖ = 1 and ‖ϕ(k)‖ = 1 for every
k ∈ A. Let L : C(A)→ C(K) be a regular simultaneous extension operator.
Define TA : C(A)→ C(S,X) by

TAf = T (ϕLf).

Then ‖TA‖ < 3 and ‖f‖ ≤ ‖TAf‖ for every f ∈ C(A). Indeed, for every
k ∈ A,

‖TAf‖ = ‖T (ϕLf)‖ ≥ ‖ϕ(k)f(k)‖ = |f(k)|.
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Set εA = (1 − ‖TA‖/3)/2. We can thus define for every k ∈ A, as in the
proof of Theorem 2.1, the sets FAk and ΛAk associated with TA, and the
image FA ⊂ S of ΛA. So, according to Claim 3 of Theorem 2.1 we see that

A(α) ⊂ (ΛA)−1(F
(α)
A ) for every ordinal α. In particular, if A(α) 6= ∅, there is

an s ∈ F (α)
A ⊂ S(α) such that ‖Tϕ(s)‖ = ‖TA1(s)‖ ≥ εA ≥ ε.

Proof of Theorem 1.5. Let T be an isomorphism of C(K,X) onto C(S,X).
Without loss of generality we may assume that ‖T−1‖=1. Therefore ‖T‖<3
and ‖f‖ ≤ ‖Tf‖ for each f ∈ C(K,X). By [19, Proposition 8.6.5] we may
assume that K = [1, ωαm] and S = [1, ωβn] for some ordinals α, β, m and
n different from zero, where m and n are finite numbers. It follows from
Theorem 1.8 that α = β. So, it is enough to show that m = n.

To see this, write K(α) = {k1, . . . , km} and let A1, . . . , Am be mutually
disjoint clopen sets such that kj ∈ Aj for each j and K =

⋃m
j=1Aj .

Now identify Xm and Xn with C(K(α), X) and C(S(α), X) respectively.
Next assign to each z = (z1, . . . , zm) ∈ Xm the function ϕz =

∑m
j=1 1Ajzj ∈

C(K,X). Clearly, ‖ϕz‖ = ‖z‖ and the linear operator Φ : Xm → Xn given
by

Φ(z) = Tϕz|S(α)

satisfies ‖Φ‖ ≤ ‖T‖. Fix z = (z1, . . . , zm) in the unit sphere of Xm. Without
loss of generality we may suppose that ‖z‖ = ‖z1‖.

Set ε = (1− ‖T‖/3)/2. Then, by applying Proposition 3.1 with A = A1

and ϕ = ϕz, we conclude that there is an s ∈ S(α) such that

‖Φz‖ ≥ ‖Φz(s)‖ = ‖Tϕz(s)‖ ≥ ε.
Hence, for every z ∈ Xm,

‖Φz‖ ≥ ε‖z‖.
Since by our hypothesis Xn contains no subspace isomorphic to Xn+1 we
must have m ≤ n. Switching the roles of K and S in the above proof we
also obtain n ≤ m.

4. Final remark. In this last section we show that there exist many
Banach spaces satisfying the conditions of Theorem 1.5.

Remark 4.1. Denote by H the separable uniformly convex hereditarily
indecomposable Banach space introduced by Ferenczi in [12]. Then each of
the isomorphically different spaces X = lp ⊕ H having non-trivial cotype,
with 1 ≤ p <∞ [10, Theorem 14.1], satisfies the conditions of Theorem 1.5.
Indeed, first suppose that lp ⊕ H is isomorphic to lq ⊕ H. Since lp and lq
are essentially incomparable with H [2, Proposition 4.11], it follows by [14,
Remark 3.3] that there exist m and n in N such that lp ⊕Rm is isomorphic
to lq ⊕ Rn. Hence p = q.
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Now assume that (lp⊕H)n contains a subspace isomorphic to (lp⊕H)n+1

for some n ∈ N. Then there exists T : Hn+1 → lp ⊕Hn which is an isomor-
phism onto its image. Let P be the natural projection of lp ⊕ Hn onto lp.
Since PT is strictly singular, it follows by [18, Proposition 2.c.10] that
(I − P )T : Hn+1 → Hn has a closed range and its kernel is a finite-dimen-
sional space V . Fix a Banach space W such that Hn+1 = W ⊕ V . Then the
restriction of (I − P )T to W is an isomorphism onto its image. This means
that Hn contains a subspace isomorphic to W . Now, let Z be a subspace of
H such that H = V ⊕ Z. Then Hn+1 ⊕ Z ∼W ⊕ V ⊕ Z is isomorphic to a
subspace of Hn ⊕ V ⊕ Z ∼ Hn+1, which is absurd by [13, Corollary 2].
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