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Nonstandard hulls of locally uniform groups

by

Isaac Goldbring (Chicago, IL)

Abstract. We present a nonstandard hull construction for locally uniform groups in
a spirit similar to Luxemburg’s construction of the nonstandard hull of a uniform space.
Our nonstandard hull is a local group rather than a global group. We investigate how
this construction varies as one changes the family of pseudometrics used to construct the
hull. We use the nonstandard hull construction to give a nonstandard characterization
of Enflo’s notion of groups that are uniformly free from small subgroups. We prove that
our nonstandard hull is locally isomorphic to Pestov’s nonstandard hull for Banach–Lie
groups. We also give some examples of infinite-dimensional Lie groups that are locally
uniform.

1. Introduction. In [L], Luxemburg constructs the nonstandard hull of
a uniform space (X,U). Roughly speaking, the nonstandard hull of (X,U) is
the quotient of the set of “finite” elements of X∗ by the equivalence relation
of being infinitely close, where x, y ∈ X∗ are infinitely close if the pair (x, y)
belongs to the (nonstandard extension of) every entourage in U .

A natural example of a uniform space is the case of a topological group
equipped with either its left uniformity or right uniformity. A natural ques-
tion to ask is whether the nonstandard hull of a topological group is naturally
a topological group. In this paper, we show that if the topological group G
is locally uniform, that is, the group multiplication is uniformly continuous
near the identity, then there is a suitable modification of Luxemburg’s con-
struction that yields a nonstandard hull that is a local group. (A local group
is like a topological group except elements can only be multiplied if they are
sufficiently close to the identity, and a suitable version of the associative law
is required; see [Go] for a precise definition.) If one is unhappy about the
fact that the nonstandard hull of a topological group is no longer a group,
we show that there is a topological group naturally associated to the local
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group nonstandard hull via the Mal’cev hull construction. Unfortunately,
this process does not lead to a canonical choice of global nonstandard hull.

A defect of Luxemburg’s construction is that it is not a uniform invariant
in the sense that the construction of the nonstandard hull of a uniform
space depends on the choice of a generating set of pseudometrics for the
uniformity, and changing the set of pseudometrics drastically changes the
appearance of the nonstandard hull. In this paper, we always use a set
of left-invariant pseudometrics when constructing the nonstandard hull of a
group and discuss the effect of changing the set of generating pseudometrics.
In general, using different sets of pseudometrics does not lead to locally
isomorphic nonstandard hulls. However, if G is metrizable, then any two
nonstandard hulls constructed by using left-invariant metrics will be locally
isomorphic.

The notion of a locally uniform group was first introduced by Enflo
in [E] as a way to approach Hilbert’s fifth problem in infinite dimensions.
Indeed, locally compact groups are locally uniform and Enflo’s aim was to
generalize some of the theory of locally compact groups to the setting of
locally uniform groups. In this vein, Enflo introduced a uniform version of
the no small subgroups property (the property that was integral in settling
Hilbert’s fifth problem), aptly named uniformly free from small subgroups.
The prime examples of groups that are uniformly free from small subgroups
are Banach–Lie groups and diffeomorphism groups of compact manifolds.
Groups that are uniformly free from small subgroups are locally uniform and
metrizable. We show that a group is uniformly free from small subgroups if
and only if its metric nonstandard hull is free from small subgroups. (This
is a common phenomenon in nonstandard analysis, namely that a standard
object has the uniform version of a property if and only if some associated
nonstandard object has the nonuniform version of the property.)

Since Banach–Lie groups are locally uniform, our nonstandard hull pro-
cedure applies to them. In [P], Pestov, using a different construction and
some nontrivial Lie theory, developed a nonstandard hull construction for
Banach–Lie groups. We will show that, for Banach–Lie groups, our nonstan-
dard hull is locally isomorphic to Pestov’s nonstandard hull; in fact, for a
suitable choice in our construction, our global nonstandard hull is the uni-
versal covering group of Pestov’s nonstandard hull. Our nonstandard hull
has the advantage of being a purely topological construction, involving no
Lie-theoretic facts in its construction.

Pestov used his nonstandard hull construction to prove a useful local
criterion for when a Banach–Lie algebra is enlargeable in the sense that it
is the Lie algebra of a Banach–Lie group. It is our hope that our general
nonstandard hull construction will be of use in settling some of the open
problems in infinite-dimensional Lie theory presented in [N]. Of course, in
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order to achieve this goal, it will be useful to understand which infinite-
dimensional Lie groups are locally uniform; we devote some time here to
discussing this issue.

We assume that the reader is familiar with nonstandard analysis; other-
wise [D] or [He1] can be consulted. We will also assume that the reader has
some basic knowledge of Lie theory, although we might occasionally recall
some of the relevant facts.

2. Locally uniform groups. If X is a set and U is a uniformity on X,
then we set

µ(U) :=
⋂
{U∗ : U ∈ U},

and we write x ≈U y to indicate (x, y) ∈ µ(U). If U1 and U2 are uniformities
on X, then it is easy to see that U1 = U2 if and only if µ(U1) = µ(U2).
Indeed suppose that U ∈ U1 \ U2. Then for every V ∈ U2, V \ U 6= ∅.
By saturation,

⋂
{V ∗ : V ∈ U2} \ U∗ 6= ∅, contradicting µ(U1) = µ(U2).

It is also easy to see that if (X,U) and (Y,V) are uniform spaces, then a
map f : X → Y is uniformly continuous if and only if, for all x, y ∈ X∗,
x ≈U y ⇒ f(x) ≈V f(y).

Throughout this paper, G denotes a (Hausdorff) topological group with
nonstandard extension G∗; we denote the monad of the identity simply by µ.
We let Ul denote the left uniformity of G, that is, the uniformity on G which
has sets of the form {(x, y) : x−1y ∈ U} as a basis, where U ranges over the
open neighborhoods of the identity. For x, y ∈ G∗, we write x ≈l y if and
only if (x, y) ∈ µ(Ul); equivalently, x ≈l y if and only if x−1y ∈ µ. Similarly,
we have the right uniformity Ur of G, which has as a basis sets of the form
{(x, y) : xy−1 ∈ U}, where U ranges over the open neighborhoods of the
identity. For x, y ∈ G∗, we write x ≈r y if and only if (x, y) ∈ µ(Ur), or
equivalently, xy−1 ∈ µ. Clearly ≈l and ≈r are equivalence relations on G∗.

For A ⊆ G and n ∈ N>0, we write An := {x1 . . . xn : each xi ∈ A}.
Lemma 2.1 ([E, Proposition 1.1.2]). Suppose that U is a symmetric open

neighborhood of the identity and U is a uniformity on G compatible with the
topology on G such that the map (x, y) 7→ xy : U2×U2 → U4 is U-uniformly
continuous. Then U|U = Ul|U = Ur|U and x 7→ x−1 : U → U is U-uniformly
continuous.

Proof. Suppose that x, y ∈ U∗ are such that x ≈U y. Since x−1 ≈U x−1,
we get x−1x ≈U x−1y, that is, x−1y ≈U e. Since U is compatible with the
topology of G, we have x−1y ∈ µ, that is, x ≈l y. Conversely, suppose
that x ≈l y, that is, x−1y ∈ µ. Since U is compatible with the topology
of G, we have x−1y ≈U e, so x ≈U y. Consequently, µ(U) ∩ (U∗ × U∗) =
µ(Ul) ∩ (U∗ ∩ U∗), whence U|U = Ul|U . One argues in the same way to
obtain the same result for Ur.
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Now suppose that x, y ∈ U∗ and x ≈U y. Then x ≈l y, so x−1y ∈ µ, so
x−1y ≈U e, so x−1yy−1 ≈U y−1, that is, x−1 ≈U y−1.

Following Enflo, we say that G is locally uniform if there is a uniformity
U on G compatible with the topology and a symmetric open neighborhood
U of the identity such that the map (x, y) 7→ xy : U2×U2 → U4 is uniformly
continuous. If we want to specify U , we say that G is U -locally uniform. If
we can take U = G, we say that G is uniform.

Let Pl denote the set of left-invariant pseudometrics on G which are
continuous (as maps from G×G into R) and let Pr denote the set of right-
invariant pseudo-metrics on G which are continuous. Then Pl generates Ul,
that is, the sets of the form Vp,r := {(x, y) ∈ G × G : p(x, y) < r} form a
subbase for Ul as p ranges over Pl and r ranges over R>0. Similarly, Pr gen-
erates Ur. Observe that if p1, . . . , pn ∈ Pl, then max(p1, . . . , pn) ∈ Pl, whence
the sets Vp,r form a base for Ul; a similar observation holds for Pr and Ur.

Lemma 2.2. The following are equivalent:

(1) G is U -locally uniform;
(2) Ul|U = Ur|U ;
(3) µ(Ul) ∩ (U∗ × U∗) = µ(Ur) ∩ (U∗ × U∗);
(4) for all x, y ∈ U∗, x−1y ∈ µ⇔ xy−1 ∈ µ;
(5) µ is “normal” in U∗: for all x ∈ U∗ and y ∈ µ, we have xyx−1 ∈ µ;
(6) for all x, y ∈ U∗,

p(x, y) ≈ 0 for all p ∈ Pl ⇔ q(x, y) ≈ 0 for all q ∈ Pr.

Proof. The implication (1)⇒(2) was part of Lemma 2.1 and clearly
(2)–(6) are equivalent. We prove (3)⇒(1). Fix x, x1, y, y1 ∈ U∗ such that
x ≈l x1 and y ≈l y1. It suffices to show that xy ≈l x1y1. It is clear
that xy ≈l xy1 and, by (3), we have xy1 ≈r x1y1. By (3) again, we have
xy1 ≈l x1y1, whence xy ≈l x1y1.

Examples 2.3.

(1) Any locally compact group is locally uniform; in fact, if U is a sym-
metric open neighborhood of the identity with compact closure, then
G is U -locally uniform. In particular, compact groups are uniform.

(2) Any abelian group is uniform. More generally, if U is a symmetric
open neighborhood of the identity such that xy = yx for all x, y ∈ U ,
then G is U -locally uniform.

(3) If G admits a two-sided invariant metric, then G is uniform. More
generally, if d is a metric for G and U is a symmetric open neigh-
borhood of the identity such that d|(U2×U2) is two-sided invariant,
then G is U -locally uniform.
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We will encounter other examples of locally uniform groups later. The
following characterization of uniform groups appears in Enflo [E] (without
proof) and has an easy nonstandard proof.

Lemma 2.4. G is uniform if and only if for every neighborhood U of e
there is a neighborhood V of e such that gV g−1 ⊆ U for all g ∈ G.

Proof. Suppose that G is uniform and U is a neighborhood of e. Let
V ⊆ µ be an internal neighborhood of the identity. For g ∈ G, we have
gV g−1 ⊆ µ ⊆ U∗ by Lemma 2.2(5). By transfer, the desired V exists. For
the converse, we prove that µ is normal in G∗. Given x ∈ G∗ and y ∈ µ,
we must show that xyx−1 ∈ µ. Fix an open neighborhood U of the identity.
Then we are guaranteed V so that gV g−1 ⊆ U for all g ∈ G. By transfer,
we have xyx−1 ∈ xµx−1 ⊆ xV ∗x−1 ⊆ U∗. Thus, xyx−1 ∈ µ.

3. Nonstandard hulls. Generalizing the notion of a nonstandard hull
of a normed space, Luxemburg [L] constructs a nonstandard hull for any
uniform space (X,U) as follows. Fix a set P of pseudometrics generating U .
Set

Xf,P := {x ∈ X∗ : p(x) ∈ Rf for all p ∈ P}.

For x ∈ Xf,P , let [x] denote the equivalence class of x with respect to the

equivalence relation ≈U . Set X̂P := {[x] : x ∈ Xf,P }. Then X̂P is a uniform
space with respect to the family of pseudometrics ◦P := {◦p : p ∈ P}, where
◦p([x]) := st(p(x)).

Ideally, one would hope that the nonstandard hull of a topological group
could once again be equipped with a group structure such that the resulting
group is a topological group. However, showing that the infinitesimals are a
normal subgroup of the finite elements requires that the group multiplication
be uniformly continuous. If we only assume that the topological group is
locally uniform, then we can obtain a nonstandard hull which is a local
group; we refer the reader to [Go] for an introduction to local groups.

Let us carry out these details now. First, for x ∈ G∗, we set

µ(x) := {y ∈ G∗ : x ≈l y} and in(U∗) := {x ∈ U∗ : µ(x) ⊆ U∗}.

We clearly have U ⊆ in(U∗).

Suppose that G is U -locally uniform and S ⊆ Pl is such that S gener-
ates Ul. Without loss of generality, we may assume that if p1, . . . , pn ∈ S,
then max(p1, . . . , pn) ∈ S.

We set

US,f := {x ∈ in(U∗) : p(x, e) ∈ Rf for all p ∈ S}.

Given x ∈ US,f , we write [x] for the≈l-equivalence class of x (which coincides
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with the ≈r-equivalence class of x). We then set

ÛS := {[x] : x ∈ US,f}.

Given p ∈ S, we define ◦p : ÛS → R by ◦p([x]) := st(p(x)). Then ◦p is a
left-invariant pseudometric on ÛS . We view ÛS as a uniform space by giving
it the uniformity generated by the set Ŝ := {◦p : p ∈ S}.

Notice that if x, y, x1, y1 ∈ US,f are such that x ≈l x1, y ≈l y1, and
xy ∈ US,f , then x1y1 ∈ US,f . Thus, we can set

Ω := {([x], [y]) ∈ ÛS × ÛS : xy ∈ US,f}.
We first claim that Ω is open. (In fact, this was the entire reason for requiring
US,f ⊆ in(U∗).) Fix ([x], [y]) ∈ Ω. By saturation, there are p ∈ S and
r ∈ R>0 such that, for all z ∈ G∗, if p(xy, z) < r, then µ(z) ⊆ U∗. By uniform
continuity, there are p′ ∈ S and r′ ∈ R>0 such that, for all a, b, c, d ∈ U2,
if p′(a, c), p′(b, d) < r′, then p(ab, cd) < r. Now suppose that ([x1], [y1]) ∈
ÛS × ÛS is such that ◦p′([x], [x1]),

◦p′([y], [y1]) < r′. Then p′(x, x1), p
′(y, y1)

< r′, so p(xy, x1y1) < r, whence µ(x1y1) ⊆ U∗. If q ∈ S, then

q(x1y1, e) ≤ q(x1y1, x1) + q(x1, e) = q(y1, e) + q(x1, e) ∈ Rf .
Consequently, µ(x1y1) ⊆ US,f . It follows that Ω is open.

By uniform continuity, we can define m : Ω → ÛS by m([x], [y]) := [xy].
Arguing as in the previous paragraph, we see that m is uniformly continuous.
Next notice that if x ∈ US,f , then x−1 ∈ US,f . Indeed, it is easy to see that
x−1 ∈ U∗ and p(x−1, e) ∈ Rf for every p ∈ S. It remains show µ(x−1) ⊆ U∗.
However, by uniform continuity, we have µ(x−1) = µ(x)−1 ⊆ U∗ because
x ∈ in(U∗) and U is symmetric. Thus, by uniform continuity, we can define
ι : ÛS → ÛS by ι([x]) = [x−1]. It is easy to see that ι is continuous. It follows
that (ÛS ,m, ι, [e]) is a globally inversional local group. Moreover, U ⊆ US,f
and the map x 7→ [x] : U → ÛS is a uniformly continuous, injective strong
morphism of local groups.

Remark 3.1. Suppose that A ⊆ U∗ is such that:

• for all x ∈ A, x−1 ∈ A;
• there is an open V ⊆ U such that, for all (x, y) ∈ A × A, if xy ∈ V ∗,

then xy ∈ A.

Then Â := {[x] : x ∈ A} is a local subgroup of ÛS . Indeed, let p ∈ S be such
that {x ∈ G : p(x, e) < 1} ⊆ V . Now suppose that ([x], [y]) ∈ (Â × Â) ∩ Ω
and ◦p([xy], [e]) < 1/2. Then p(xy, e) < 1, so xy ∈ V ∗, whence xy ∈ A.
Thus, [x][y] ∈ Â.

Remark 3.2. One should note that in the case that G is uniform, the
nonstandard hull we constructed above is just the usual nonstandard hull
of a uniform space as constructed by Luxemburg.
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Example 3.3. Suppose that G is locally compact. Further suppose that
U is a symmetric open neighborhood of the identity with compact closure.
Then it is easy to see that US,f =in(U∗)={x ∈ U∗ : x ≈l y for some y∈U}.
Consequently, the map x 7→ [x] : U → ÛS is an isomorphism of local
groups.

Example 3.4. If S = Pl, then we write Uf instead of UPl,f and Û

instead of ÛPl . We refer to Û as the canonical nonstandard hull. Observe
that the canonical nonstandard hull is in some sense the “smallest” of the
nonstandard hulls. Indeed, if S ⊆ Pl is as above, then Uf ⊆ US,f and the

mapping [x] 7→ [x] : Û → ÛS is an injective morphism of local groups.

Example 3.5. At the opposite extreme, if we set

P1 := {min(p, 1) : p ∈ Pl},
then P1 generates Ul and UP1,f := in(U∗). Consequently, if S ⊆ Pl is any

generating set of pseudometrics, then the map [x] 7→ [x] : ÛS → ÛP1 is an
injective morphism of local groups.

If H is a local group with domain of multiplication ΩH , then one defines
the notion “xn is defined” by recursion on n: x1 is always defined and, for
n ≥ 2, xn is defined if xi is defined for all i < n and (xi, xj) ∈ ΩH for all
i, j < n such that i+ j = n. (This is not the definition given in [Go] but is
proved there to be equivalent.)

Remark 3.6. An easy inductive argument shows that, for all x ∈ US,f ,
if [x]n is defined, then xn ∈ US,f and [x]n = [xn].

Remark 3.7. Observe that we only constructed nonstandard hulls for
locally uniform groups. In fact, for metrizable groups, this was a necessary
assumption. Indeed, suppose that G is a topological group and we wanted to
define [x] · [y] := [xy] for x, y ∈ UF , where UF is the set of all elements of U∗

(U being a neighborhood of the identity) which are “finite” in some sense.
Any sensible notion of finiteness will include the requirement that V ∗ ⊆ UF
for some neighborhood V of the identity. Then the well-definedness of the
group operation on the nonstandard hull implies that multiplication on UF is
S-continuous, whence multiplication on V is uniformly continuous, whence
G is locally uniform.

Lemma 3.8. Suppose that G is both U -locally uniform and V -locally uni-
form. Then ÛS and V̂S are locally isomorphic local groups.

Proof. Let p ∈ S and r ∈ R>0 be such that V ∗p,r ⊆ in(U∗)∩ in(V ∗). Then

[x] 7→ [x] : Û |V◦p,r → V̂ |V◦p,r is a local group isomorphism.

In view of the preceding lemma, given a set S of generating pseudomet-
rics, all of the above nonstandard hulls are locally isomorphic to one another
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and thus are “essentially the same” local group. In fact, we could even define
the germ nonstandard hull of G with respect to S to be the local group germ
made up of all nonstandard hulls ÛS , where G is U -locally uniform. (A local
group germ is the equivalence class of a local group where the equivalence
relation is local isomorphism.)

Sometimes, changing the generating set of pseudometrics has no effect
on the nonstandard hull.

Lemma 3.9. Suppose that U is metrizable, with compatible (not neces-
sarily left-invariant) metric d. Further suppose that there is a continuous
map

√
· : U → U so that

√
x ·
√
x = x for all x ∈ U and so that

√
·

is a d-contraction. Then p(x, e) ∈ Rf for all p ∈ P and all x ∈ U∗ with
d(x, e) ∈ Rf .

Proof. Given p ∈ P , there is ε > 0 so that d(y, e) < ε implies p(y, e) < 1.
Fix c ∈ (0, 1) such that d(

√
x,
√
y) ≤ cd(x, y) for all x, y ∈ U . Given n ∈ N

and x ∈ U , let x1/2
n

denote the nth iterate of
√
· applied to x. Then, for

any n, d(x1/2
n
, e) ≤ cnd(x, e). If x ∈ U∗ is such that d(x, e) ∈ Rf , then for

n sufficiently large, d(x1/2
n
, e) < ε, whence p(x1/2

n
, e) < 1. Now notice that

p(x, e) ≤ p(x,
√
x) + p(

√
x, e) = 2p(

√
x, e) by left-invariance. By induction,

p(x, e) ≤ 2np(x1/2
n
, e) < 2n.

Remark 3.10. In the proof of the previous lemma, all we needed was
there to be c ∈ (0, 1) such that d(

√
x, e) ≤ cd(x, e) for all x ∈ U .

Corollary 3.11. Suppose that E is a normed vector space and exp :
E → G is a local homeomorphism, say exp|V : V → U is a homeomorphism,
where V is a balanced neighborhood of 0. Then there is an open neighborhood
U1 of e in G contained in U such that p(x, e) ∈ Rf for all x ∈ U∗1 and all
p ∈ P .

Proof. Let d be the metric on U given by d(exp(x), exp(y)) := ‖x− y‖.
Now define

√
· : U → U by

√
exp(x) := exp

(
1
2x
)
. Then, for all exp(x) ∈ U ,

we have d(
√

exp(x), e) =
∥∥1
2x
∥∥ = 1

2‖x‖ = 1
2d(exp(x), e). Thus, by the pre-

vious lemma, for all x ∈ U∗ with d(x, e) ∈ Rf , we have p(x, e) ∈ Rf for all
p ∈ P . Therefore, we can take U1 to be any d-ball centered at 0 of a finite
radius.

In particular, by the previous result, if G is a locally exponential Lie
group whose Lie algebra is normable, then we can form the nonstandard
hull using any collection of left-invariant pseudometrics that generates the
uniformity Ul.

Metric nonstandard hulls. Suppose now that G is metrizable, say
with left-invariant metric d. We can then take S = {d}, in which case we
denote US,f by Ud,f and ÛS by Ûd. Let r ∈ R>0 be such that G is U -locally
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uniform for U := Bd(e, r). Then Ud,f := {x ∈ U∗ : st(d(x, e)) < r} and the

local group Ûd is metrizable with metric d̂([x], [y]) := st(d(x, y)). We now
address the question: How are various metric nonstandard hulls related?

Suppose that d is a left-invariant metric on G and S ⊆ Pl is a generating
set of pseudometrics closed under max. Let s ∈ R>0 be small enough so that
G is V -locally uniform for V := Bd(e, s). Fix p ∈ S and r ∈ R>0 so that, for
all x ∈ G, if p(x, e) < r, then d(x, e) < s/2. Set U := {x ∈ G : p(x, e) < r},
so G is also U -locally uniform. Notice that if x ∈ UP,f , then st(d(x, e)) < s,

whence x ∈ Vd,f . Consequently, we get a map φ : ÛP → V̂d, φ([x]P ) = [x]d,
which is clearly injective and a morphism of discrete local groups. In order
to see that φ is continuous, it suffices to check continuity at [e]P . Given
ε > 0, choose q ∈ P and δ > 0 so that, for all x ∈ G, if q(x, e) < δ,
then d(x, e) < ε/2. Now suppose that q̂([x]P , [e]P ) < δ. Then q(x, e) < δ, so

d(x, e) < ε/2, whence d̂([x]d, [e]d) < ε. It follows that the metric nonstandard
hull is, in some sense, the largest nonstandard hull.

Now suppose, in addition, that S = {d′}, where d′ is also a left-invariant
metric on G. We claim that the map φ (where U = Bd′(e, r)) is an open mor-
phism of local groups with open image. Indeed, take ε ∈ (0, r]. We must show

that φ(Bd̂′([e]d′ , ε)) is an open subset of V̂d. Suppose that d̂′([x]d′ , [e]d′) < ε,
so st(d′(x, e)) < ε. Take δ ∈ R>0 such that, for all y ∈ G∗, if d′(x, y) < δ,
then st(d′(y, e)) < ε. Take η ∈ R>0 such that, for all a, b ∈ G, if d(a, b) < η,
then d′(a, b) < δ. (This uses left-invariance of both δ and δ′.) Now suppose

that d̂([x]d, [y]d) < η. Then d′(x, y) < δ, so st(d′(y, e)) < ε. In other words,
Bd̂([x]d, η) ⊆ φ(Bd̂′([e]d′ , ε)).

It now follows that Ûd′ is isomorphic to V̂d|φ(Ûd′). Indeed, suppose that
[x]d, [y]d ∈ φ(Ûd′) satisfy ([x]d, [y]d) ∈ ΩV̂d and [x]d · [y]d ∈ φ(Ûd′). Then

[xy]d = [z]d for some z ∈ Ud′,f . Since xy ≈ z, it follows that xy ∈ Ud′,f , so
([x], [y]) ∈ ΩÛd′ . In particular, we have proven the following result:

Proposition 3.12. Any two metric nonstandard hulls are locally iso-
morphic.

This allows us to speak of the metric germ nonstandard hull.

Global nonstandard hulls. One may be a bit perturbed by the fact
that the nonstandard hull of a locally uniform group is merely a local group.
However, some local groups (most importantly for us, our local nonstandard
hulls) can be embedded into topological groups, a procedure that we briefly
recall here; more details can be found in [DG]. Until further notice, we let
H denote a globally inversional local group.

First, there exists a topological group HM , called the Mal’cev hull of H,
and a local group morphism ι : H → HM , satisfying the universal property
that whenever φ : H → T is a local group morphism into a topological
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group, there is a unique topological group morphism ϕ : HM → T such that
φ = ϕ ◦ ι. In fact, HM is the set of words on H modulo the equivalence
relation generated by the following four operations:

• (x1, . . . , xm) 7→ (x1, . . . , xi−1, xixi+1, xi+2, . . . , xm) if (xi, xi+1) ∈ ΩH .
• (x1, . . . , xm) 7→ (x1, . . . , xi−1, xi+2, . . . , xm) if (xi, xi+1) ∈ ΩH and
xixi+1 = 1.
• (x1, . . . , xm) 7→ (x1, . . . , xi−1, a, b, xi+1, . . . , xm) if xi = ab for some

(a, b) ∈ ΩH .
• (x1, . . . , xm) 7→ (x1, . . . , xi, a, a

−1, xi+1, . . . , xm) for any a ∈ H.

Let wM denote the equivalence class of the word w in HM . Then the
group operation on HM is wM · w′M := (w_w′)M , the map ι : H → HM is
given by ι(x) = (x)M , and the map ϕ : HM→T is given by ϕ((x1, . . . , xm)M )
= ϕ(x1) · · ·ϕ(xm).

Given elements a1, . . . , an ∈ H and b ∈ H, we write (a1, . . . , an)  b
to mean that there is a way of introducing parentheses into the sequence
a1, . . . , an such that all intermediate products exist and the resulting overall
product is b. (See [DG] for a precise definition by recursion.)

Definition 3.13.

(1) We say that H is neat if (x, y) ∈ ΩH implies (xy, y−1) ∈ ΩH .
(2) We say that H is ∞-associative if whenever a1, . . . , an, b, c ∈ H are

such that (a1, . . . , an) b and (a1, . . . , an) c, then b = c.

Fact 3.14 (Mal’cev [M]; van den-Dries & Goldbring [DG]). If H is neat
and ∞-associative, then ι : H → HM is injective.

We now return to the setting of a locally uniform group G and a neigh-
borhood U of 1 in G such that G is U -locally uniform. We fix a generating
set S ⊆ Pl of pseudometrics and suppress mention of S for the remainder of
this subsection. It is then easy to see that the local group Û is∞-associative
and neat. Consequently, Û embeds into its Mal’cev hull, which we denote
by ĜU . One may refer to Û as a local nonstandard hull of G and to ĜU as
a global nonstandard hull of G.

One may wonder what the relationship is between G and ĜU? First recall
that the map x 7→ [x] : U → Û is an injective morphism of local groups.
Since Û embeds into its Mal’cev hull ĜU , we have an injective morphism
of local groups φ : U → ĜU . Let UM denote the Mal’cev hull of U and let
ϕ : UM → ĜU be the unique topological group morphism “extending” φ.

Lemma 3.15. With the notation as above, ϕ is injective.

Proof. Suppose ϕ((x1, . . . , xm)M ) is the identity. Then φ(x1) · · ·φ(xm)
is the identity in ĜU , meaning that there is a sequence w1, . . . , wk of words
on Û starting with ([x1], . . . , [xm]) and ending in the empty word, where
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each wi+1 is obtained from wi using one of the four “moves” from above.
We then see that (x1, . . . , xm) is internally equivalent to the empty word
in UM , whence by transfer, it is actually equivalent to the empty word.

By the universal mapping property, there is a canonical group morphism
iM : UM → G induced by the inclusion i : U → G. Since iM acts hom-
eomorphically on U , iM is a covering map. If iM is an isomorphism, then
we get an injective morphism ϕ : G → ĜU of topological groups (which is
something that one expects of a nonstandard hull operation). There is one
natural setting when iM : UM → G is an isomorphism, as the following
unpublished result of Lou van den Dries demonstrates:

Proposition 3.16 (van den Dries). Suppose G is locally path-connected
and simply connected, and U is connected. Then iM is a topological group
isomorphism.

Proof. Since U is connected, so is UM (as the image of U generates UM ).
It remains to use the fact (which is a standard consequence of the Mon-
odromy Theorem) that any covering map Y → X, where Y is connected
and X is simply connected and locally path-connected, is an isomorphism.

For use in the last section, we will need another unpublished result of
Lou van den Dries concerning the map iM :

Proposition 3.17 (van den Dries). Suppose G is connected and locally
simply connected. Let V be a simply connected open neighborhood of 1 in G,
and U a connected symmetric open neighborhood of 1 in G with U2 ⊆ V .
Then iM : UM → G is a universal group covering of G.

Proof. We only need to show that UM is simply connected. Let p :
G̃→ G be the usual universal group covering of G, let V ′ be the connected
component of the identity in p−1(V ). Then p maps V ′ homeomorphically
onto V , and V ′ is open-and-closed in p−1(V ). Let v 7→ v′ : V → V ′ be the
inverse of x 7→ p(x) : V ′ → V , and set

U ′ := {u′ : u ∈ U} = V ′ ∩ p−1(U).

Then U ′ is a connected open neighborhood of the identity in G̃. Moreover,
U ′2 ⊆ V ′, because u′1u

′
2 ∈ p−1(U2) ⊆ p−1(V ) for all u1, u2 ∈ U and so

{(u1, u2) ∈ U × U : u′1u
′
2 ∈ V ′}

is open-and-closed in the connected space U ×U . Also, considering {u ∈ U :
u′−1 ∈ V ′} we see that U ′ is symmetric. It is now easy to check that
u 7→ u′ : G|U → G̃|U ′ is an isomorphism of local groups. This induces a
topological group isomorphism UM ∼= (U ′)M . As U ′ is connected, (U ′)M is
homeomorphic to G̃, by Proposition 3.16. Thus UM is simply connected.



104 I. Goldbring

We should stress that neither Proposition 3.16 nor Proposition 3.17 re-
quires that G be locally uniform.

In general, if G is both U -locally uniform and V -locally uniform, then ĜU
and ĜV can be nonisomorphic, whence the global nonstandard hull construc-
tion is noncanonical. For example, let G be a compact, locally connected,
disconnected group (e.g. G = On(R)). Let U be the connected component of
the identity in G, a symmetric open neighborhood of the identity. Then G is
both U -locally uniform and G-locally uniform. Notice that Û is isomorphic
(as a local group) to U (see Example 3.3), so ĜU is connected, while ĜG = Ĝ
is isomorphic to G, which is not connected.

4. U-finiteness. There is another notion of finiteness for uniform spaces
due to Henson [He2]. Suppose that (X,U) is a uniform space. We say that
a ∈ X∗ is U-finite if, for every A ∈ U , there is a sequence a0, . . . , an from
X∗ such that a0 = a, an ∈ X, and (ai, ai+1) ∈ A∗ for each i < n. It is easy
to see that every U-finite element of X is also finite in the above sense, that
is, if P is a family of pseudometrics generating U , then whenever a ∈ X∗ is
U-finite, then p(a, x) ∈ Rf for all p ∈ P and all x ∈ X. We let XUf denote
the set of U-finite points of X∗.

Returning to our situation of locally uniform groups: Suppose that G is
U -locally uniform and suppose that V is a symmetric open neighborhood of
the identity such that V 2 ⊆ U .

Lemma 4.1. (UUf )−1 = UUf and V Uf · V Uf ⊆ UUf .

Proof. We only prove the second assertion; the proof of the first assertion
is similar using uniform continuity of inversion. Suppose that x, y ∈ V Uf . Fix

p ∈ P and ε ∈ R>0. Take a sequence y0, . . . , yn ∈ V ∗ such that y0 = y,
yn ∈ V and p(yi, yi+1) < ε for each i < n. Since the map a 7→ ayn : V → U is
uniformly continuous, there are q ∈ P and δ > 0 such that, for all a, a′ ∈ V ,
q(a, a′) < δ ⇒ p(ayn, a

′yn) < ε. Take a sequence x0, . . . , xm ∈ V ∗ such
that x0 = x, xm ∈ V , and q(xj , xj+1) < δ for j < m. Then the sequence
x0y0, . . . , x0yn, x1yn, . . . , xmyn witnesses that xy ∈ UUf .

Corollary 4.2. If G is a uniform group, then GUf is a subgroup of Gf .

Suppose that G is a uniform group and set ĜU := GUf /µ. By the last

corollary, ĜU is a subgroup of ĜS for any generating set S ⊆ Pl.
By Theorems 3.2 and 3.3 of [He2], we have X∗ = XUf if and only if every

uniformly continuous function X → R is bounded if and only if X is “finitely
chainable.” (This is some strengthening of the notion of “pseudocompact.”)
In particular, if X is finitely chainable, then p(a, x) ∈ Rf for all p ∈ P , all
a ∈ X∗, and all x ∈ X, where P is a generating family of pseudometrics for
the uniformity on X. Thus, for finitely chainable uniform groups, it does not
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matter what family of left-invariant pseudometrics we take in the definition.
We should observe that if a group is finitely chainable, then it can never
have R as a quotient (for the quotient map π : G → R would be uniformly
continuous). More generally, if G is complete and finitely chainable, then
any topological group morphism φ : G→ R must be trivial. (Indeed, in this
case, φ(G) is a closed subgroup of R, whence it is {0}, R, or Z · r for some
r ∈ R.) Observe also that if G is uniform but not finitely chainable, then
ĜU is a proper subgroup of the canonical nonstandard hull.

Problem 4.3. Is there a characterization of the finitely chainable groups?

A test-case: Locally convex vector spaces. We now consider the
special case of the additive group of a locally convex vector space. Let (E,+)
be a locally convex space. Then there is yet another notion of finiteness for
such spaces. Let Γ denote the set of continuous seminorms on E. We say
that x ∈ E∗ is tvs-finite if p(x) ∈ Rf for every p ∈ Γ . We let Etvs

f denote
the set of tvs-finite elements of E∗.

Proposition 4.4. Ef = EUf = Etvs
f .

Proof. Suppose that x ∈ EUf and let p ∈ Γ . Take a sequence x0, . . . , xn
∈ E∗ such that x0 = x, xn ∈ E, and p(xi − xi+1) < 1 for i < n. Then
p(x − xn) < n, so p(x) ∈ Rf . Thus, x ∈ Etvs

f and EUf ⊆ Etvs
f . Conversely,

suppose that x ∈ Etvs
f . Fix p ∈ Γ and ε > 0. Let n ∈ N>0 be such that

1
np(x) < ε; this is possible because p(x) ∈ Rf . Let xi := n−i

n x ∈ E∗. Then

x0 = x, xn = 0, and p(xi − xi+1) = p
(
1
nx
)

= 1
np(x) < ε. Thus x ∈ EUf and

EUf = Etvs
f . It remains to show that Ef ⊆ Etvs

f . However, this follows from
the fact that any p ∈ Γ induces p̂ ∈ Pl by p̂(x, y) = p(x− y).

Consequently, we get one notion of a nonstandard hull for the additive
group of a locally convex space, which we may unambiguously write as Ê.

5. Functoriality. We would like the above construction to be functo-
rial, that is, if G and H are locally uniform and f : G→ H is a topological
group morphism, we would like to obtain an induced morphism f̂ : Û → V̂ .
Fix S ⊆ Pl,G and S′ ⊆ Pl,H .

Lemma 5.1. Suppose that f(US,f ) ⊆ VS′,f and f(in(U∗)) ⊆ in(V ∗).

Then there is an induced map f̂ : ÛS → V̂S′ given by f̂([x]) := [f(x)].

Morever, f̂ is a morphism of local groups.

Proof. First suppose that x, x1 ∈ in(U∗) are such that x ≈ x1. Then
x−1x1 ≈ e, so f(x−1x1) ≈ e by continuity of f , whence f(x) ≈ f(x1).

Consequently, we can define f̂ as in the statement of the lemma. It is clear
that f̂ respects multiplication and inversion. To check continuity of f̂ , it
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suffices to check continuity at [eG]; however, this follows easily from the
continuity of f at eG.

We would first like to know how to ensure that f(US,f ) ⊆ VS′,f . Certainly,
if S′ = PH,1, then this is satisfied. (See Example 3.5.) Also, if we use S =
Pl,G, then this is satisfied as well. Indeed, given a continuous left-invariant
pseudometric q on H, we observe that q ◦ (f × f) is a continuous left-
invariant pseudometric on G. Moreover, if x ∈ GS,f , then q(f(x), eH) =
q(f(x), f(eG)) = (q◦(f×f))(x, eG) ∈ Rf . Finally, if G and H are metrizable,
say with left-invariant metrics d and d′, and U and V are suitable open balls,
then f(Ud,f ) ⊆ Vd′,f .

A more serious issue is how to ensure that f(in(U∗)) ⊆ in(V ∗). The easi-
est case to deal with is the metric case. Indeed, suppose that H is metrizable
and f(U) ⊆ B(eH , ε/2). Then f(U∗) ⊆ B(eH , ε/2)∗ ⊆ in(B(eH , ε)

∗). We
have thus established:

Proposition 5.2. Let MGrp denote the category of metrizable topolog-
ical groups with continuous group morphisms as arrows. Let LocGrp denote
the category of local group germs with morphisms of local group germs as
arrows. Then the canonical nonstandard hull construction is a functor from
MGrp to LocGrp.

What about the more general situation?

Lemma 5.3. Suppose that f : G→ H is a continuous, open group mor-
phism. Then f(in(U∗)) ⊆ in(V ∗).

Proof. It is enough to prove that, for every a ∈ in(U∗), f(µ(a)) =
µ(f(a)). By uniform continuity, f(µ(a)) ⊆ µ(f(a)). For the other direc-
tion, suppose that f(a) ≈l b but b /∈ f(µ(a)). Then by saturation, there are
p ∈ P and ε > 0 such that p(x, a) < ε implies b 6= f(x). Since f is open,
there are q ∈ Q and δ > 0 such that {y ∈ H : q(y, f(a)) < δ} ⊆ f({x ∈ G :
p(x, a) < ε}). Since b ≈l f(a), we have q(b, f(a)) < δ, so b = f(x) for some
x ∈ G with p(x, a) < ε, a contradiction. (Note that we have never used the
fact that a ∈ in(U∗) here.)

Corollary 5.4. Let TopGrpOp denote the wide subcategory of the cat-
egory TopGrp, where the arrows are the open topological group morphisms.
Then the canonical nonstandard hull is a functor TopGrpOp→ LocGrp.

A curious by-product of the above proof is the following generalization
of Enflo’s [E, Proposition 1.1.6].

Corollary 5.5. If f : G → H is an open group morphism and G is
locally uniform, then H is locally uniform. More precisely, if G is U -locally
uniform, then H will be f(U)-locally uniform.
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Proof. Suppose that z, z′, w, w′ ∈ f(U)∗ are such that z ≈ z′ and w ≈ w′.
Write z = f(x) and w = f(y), with x, y ∈ U∗. By the proof of the above
lemma, we see that z′ = f(x′), w = f(y′), where x′ ∈ µ(x) and y′ ∈ µ(y).
Notice that x′ = x(x−1x′) ∈ (U∗)2 since x−1x′ ∈ µ(e) ⊆ U∗. Likewise,
y′ ∈ (U∗)2. Since multiplication on U2 is uniformly continuous, we have
xy ≈ x′y′, whence, by uniform continuity of f , we conclude that

zw = f(x)f(y) = f(xy) ≈ f(x′y′) = f(x′)f(y′) = z′w′.

Enflo’s [E, Proposition 1.1.6] is the special case of the above result when
H was taken to be a quotient G/N for N a closed, normal subgroup of G.

6. Uniformly NSS. A group G is said to be uniformly NSS (UNSS) if
there is a neighborhood U of the identity such that, for every neighborhood
V of the identity, there is nV ∈ N such that, for all x ∈ G, x /∈ V ⇒ xn /∈ U
for some n ≤ nV ; one then says that the neighborhood U is uniformly free
from small subgroups. It is clear that uniformly NSS groups are NSS. For
locally compact groups, the concepts coincide:

Lemma 6.1. If G is locally compact, then G is uniformly NSS if and
only if G is NSS.

Proof. Let U be a compact neighborhood of the identity containing no
nontrivial subgroups. Let V be an open neighborhood of the identity and
suppose, towards a contradiction, that for every m ∈ N, there is x ∈ G \ V
with xn ∈ U for n = 1, . . . ,m. Then, by saturation, there is x ∈ G∗ \ V ∗
such that xn ∈ U∗ for all n ∈ N. Let y := st(x) ∈ U ; then the subgroup
generated by y is a subgroup of G contained in U which is nontrivial since
y /∈ V (else x ∈ V ∗).

Suppose that G is uniformly NSS as witnessed by U . Set

1

n
U := {x ∈ G : xk ∈ U for k = 1, . . . , n}.

Then clearly
(
1
nU : n ≥ 1

)
is a neighborhood base for the identity. Conse-

quently, G is metrizable.
There exist groups which are NSS but not uniformly NSS. For example,

let G = RN as an abstract group. Equip G with the topology whose base
is given by products of open intervals. Then G is easily seen to be NSS.
However, G is not metrizable, whence it follows from the previous paragraph
that G is not UNSS. (This example is Example 2.1.1 from [E]).

Proposition 6.2 ([E, Theorem 2.1.1]). If G is UNSS, then G is locally
uniform.

Proof. Let d be a left-invariant metric for G and let U be uniformly free
from small subgroups. Let r ∈ R>0 be such that B(e, r) ⊆ U . We claim



108 I. Goldbring

that multiplication is d-uniformly continuous when restricted to B(e, r/2)×
B(e, r/2). Suppose not. Then there are x, y, x1, y1 ∈ B(e, r/2)∗ such that
d(x, x1), d(y, y1) ≈ 0 but d(xy, x1y1) 6≈ 0. Let a = xy, b = x1y, and c = y−1.
Then d(a, b) 6≈ 0 while d(ac, bc) ≈ 0. Set f = a−1b. Then d(f, e) 6≈ 0 but
d(fc, c) ≈ 0. By left-invariance, for each n ∈ N, we have d(fnc, fn−1c) =
d(fc, c) ≈ 0. Consequently, for each n ∈ N, we have d(fnc, c) ≈ 0. Thus,
for each n ∈ N, we have d(fn, e) ≤ d(fnc, c) + d(c, e) < r. However, since
d(f, e) 6≈ 0, there is some n ∈ N such that fn /∈ U∗; in particular, d(fn, e) ≥ r
for this n, a contradiction.

Let H be a local group. We say that H is uniformly free from small
subgroups (UNSS) if there is a neighborhood U of the identity in H so that,
for any neighborhood V of the identity, there is nV ∈ N such that, for all
x ∈ G, if x /∈ V and xnV is defined, then xi /∈ U for some i ∈ {1, . . . , nV }. It
is clear that H being UNSS implies that H is NSS. It is also clear that
if H ′ is locally isomorphic to H, then H is UNSS if and only if H ′ is
UNSS.

Lemma 6.3. Let H be a neat, ∞-associative local group with Mal’cev
hull HM . Then H is UNSS if and only if HM is UNSS.

Proof. The “if” direction is obvious, so we prove the “only if” direction.
Suppose that H is UNSS and U is a symmetric open neighborhood of the
identity of H uniformly free from small subgroups such that U × U ⊆ ΩH .
By Lemma 2.2 of [DG], H|U = HM |U . Let V be an open neighborhood
of the identity in H and let x ∈ HM be such that x /∈ V . We claim that
xi /∈ U for some i ≤ nV . Suppose, towards a contradiction, that xi ∈ U
for all i ≤ nV . We then claim that xi is defined (in H) for all i ≤ nV ,
contradicting the definition of nV . We prove our claim by induction on i,
the base case being trivial. Suppose the claim is true for some i < nV . Since
xi is defined, we need only show that (xj , xk) ∈ ΩH for all j, k ∈ {1, . . . , i}
with j+ k = i. However, this follows immediately from the assumption that
xj ∈ U for each j ≤ nV and U × U ⊆ ΩH .

Note that if ι : H → H ′ is an injective morphism of local groups and
H ′ is NSS, then H is NSS. (This need not be true for UNSS.) Thus, if G
is locally uniform, then some nonstandard hull of G is NSS if and only if
the canonical nonstandard hull of G is NSS. If G is metrizable and locally
uniform, then every nonstandard hull of G is NSS if and only if the metric
nonstandard hull of G is NSS.

Proposition 6.4. Let G be a locally uniform group. Then the following
are equivalent:

(1) G is uniformly NSS;
(2) G is metrizable and the metric nonstandard hull is uniformly NSS;
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(3) G is metrizable and the metric nonstandard hull is NSS;
(4) G is metrizable and every nonstandard hull of G is NSS.

Proof. (1)⇒(2): Suppose that G is uniformly NSS. Fix a left-invariant
metric d on G. Without loss of generality, we may suppose that r ∈ R>0

has been chosen so that U := B(e, r) is uniformly free from small subgroups
and G is U -locally uniform. We will show that Ûd is uniformly free from
small subgroups. Fix δ > 0 and suppose that d̂([x], [e]) ≥ δ. Let nδ ∈ N be
such that, for all y ∈ G, if d(y, e) ≥ δ/2, then yi /∈ U for some i ≤ nδ. By
transfer, there is i ≤ nδ such that xi /∈ U∗, whence [x]nδ is not defined, by
Remark 3.6.

(2)⇒(3): Trivial.
(3)⇔(4): This follows from the remarks preceding the theorem.
(3)⇒(1): Suppose that G is metrizable and Ûd is NSS. Without loss of

generality, suppose that U = B(e, r) for some r ∈ R>0. Take ε ∈ (0, r) such

that U ′ := {[x] ∈ Ûd : d̂([x], [e]) < ε} contains no nontrivial subgroups. We
claim that W = B(e, ε/2) ⊆ G is uniformly free from subgroups. Suppose,
towards a contradiction, that there is an open neighborhood V of the identity
in G such that, for all n ∈ N, there is xn ∈ G \ V such that xmn ∈W for all
m ≤ n. Then, by saturation, there is x ∈ G∗ such that x /∈ V ∗ and xm ∈W ∗
for all m ∈ N. Since W ∗ ⊆ Ud,f , we see that [x]m is defined and in U ′ for all
m ∈ N. Since x /∈ V ∗, we have [x] 6= [e]. This contradicts the fact that U ′

contains no nontrivial subgroups.

Remarks 6.5. (1) The fact that a metrizable, locally uniform group is
uniformly NSS if and only if its metric nonstandard hull is NSS is an exam-
ple of a familiar phenomenon in nonstandard analysis, namely the uniform
version of a notion for an object X is equivalent to the ordinary notion of
the concept for some nonstandard object associated to X, e.g. X∗ or some
nonstandard hull of X. A recent interesting example of this phenomenon was
observed by David Ross, who showed that a group G is uniformly amenable
if and only if G∗ is amenable.

(2) The proof of (1)⇒(2) in the above proposition also shows that if G
is UNSS, then the canonical nonstandard hull of G is UNSS. Moreover, if
the canonical nonstandard hull of G is UNSS, then G is metrizable. Indeed,
consider the map ι : U → Û . Then given p ∈ P and r ∈ R>0, we have
ι−1(V◦p,r) = Vp,r. Since ι is continuous and Û is metrizable (as its Mal’cev
hull is UNSS), it follows that U has a countable base at the identity, whence
G has a countable base at the identity, and is thus metrizable.

(3) By Lemma 6.3, we can replace the local nonstandard hulls by their
global counterparts in the above proposition.

Problem 6.6. If the canonical nonstandard hull of G is (uniformly)
NSS, are all (or even some) metric nonstandard hulls of G UNSS?
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Problem 6.7. Is it possible to find a locally uniform group G so that Û
is NSS but not uniformly NSS? We observe that such a G would have to be
NSS but not uniformly NSS (and not metrizable).

We use Proposition 6.4 to give a simple proof of [E, Theorem 2.2.2].

Theorem 6.8. If G is a uniformly NSS group, then there is a neighbor-
hood U of 1 in G so that, for all x, y ∈ U , if x2 = y2, then x = y.

Proof. It is enough to show that for all x, y ∈ µ, if x2 = y2, then x = y.
Suppose this is not the case. Let x, y ∈ µ be such that x2 = y2 but x 6= y.
Let a := xy−1 ∈ µ \ {e} and note that y−1aky = a−k for all k. Construct
the local group Ûd as above. Since Ûd is NSS, we can choose η ∈ (0, ε) so

that {[z] ∈ Ûd : d̂([z], [e]) ≤ η} contains no nontrivial subgroups. Since G is
NSS, we know that ak /∈ µ for some k.

Claim. There is a k such that d(ak, e) > η.

Suppose this is not the case. Choose k with ak /∈ µ. Let b := [ak] ∈ Ûd.
Then b generates a nontrivial subgroup of Ûd contained in {[z] ∈ Ûd :

d̂([z], [e]) ≤ η}, a contradiction.
By the claim, we can choose k maximal such that d(ai, e) ≤ η for all

i ≤ k. Let c := [ak] ∈ Ûd. Then c 6= [e], but c = c−1, whence the non-

trivial subgroup {1, c} of Ûd is contained in {[z] ∈ Ûd : d̂([z], [e]) ≤ η}, a
contradiction.

Infinite-dimensional Lie groups and UNSS. One might wonder
which infinite-dimensional Lie groups are uniformly NSS. As far as the lo-
cally exponential ones are concerned, not many.

Lemma 6.9. Suppose that G is a topological group, E is a locally convex
space, and exp : E → G is a continuous map that is a local homeomorphism
at 0. Further suppose that exp(ka) = exp(a)k for all a ∈ E and k ∈ Z. Then
G is uniformly NSS if and only if E is normable.

Proof. The “if” direction is well-known, but we give the proof here for
the sake of completeness. Fix open U ′ ⊆ E and U ⊆ G, neighborhoods of 0
and 1 respectively, so that exp |U ′ is a homeomorphism from U ′ onto U . By
rescaling the norm if necessary, we may assume that U ′ = {x ∈ E : ‖x‖ < 1}.
Fix an open neighborhood V of 1. Without loss of generality, we may assume
that V ⊆ U . Take λ > 0 such that {x ∈ E : ‖x‖ < λ} ⊆ exp−1(V ). Take
nV ∈ N such that nV λ ≥ 1. Suppose that y ∈ U \ V ; write y = exp(x),
where x ∈ U ′ and ‖x‖ ≥ λ. Then ynV = exp(nV x); since ‖nV x‖ ≥ 1, we
have ynV /∈ U .

Conversely, suppose that G is uniformly NSS. Let U be an open, bal-
anced, convex neighborhood of 0 in E so that V := exp(U) is an open
neighborhood of the identity of G uniformly free from small subgroups and
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exp|U : U → V is a homeomorphism. It suffices to prove that U is a bounded
set. Let W be an open neighborhood of 0 in E. Without loss of generality,
W ⊆ U . Let W ′ := exp(W ) and set n := nW ′ . We claim that 1

nU ⊆W . Sup-
pose that y /∈W . Then exp(y) /∈W ′, so exp(y)i /∈ V for some i ∈ {1, . . . , n}.
For this i, exp(iy) /∈ V , so iy /∈ U , so y /∈ 1

iU . Since U is balanced, 1
nU ⊆

1
iU ,

whence y /∈ 1
nU .

The previous lemma is in a similar spirit to a result of Glöckner (which
appears in the introduction of [Gl1]) stating that, under the same hypotheses
on G and E, the group G is NSS if and only if the space E admits a
continuous norm. In the same paper, Glöckner proves that direct limits of
finite-dimensional Lie groups are NSS. However, as the referee pointed out
to us, a direct limit of finite-dimensional Lie groups is not UNSS (unless it is
already a finite-dimensional Lie group) as the model space of such a direct
limit group is not metrizable.

We now describe a large class of Lie groups which need not be locally ex-
ponential and which are uniformly NSS, namely the strong ILB-Lie groups.

Definition 6.10 (Omori, [O]). A Sobolev chain is a sequence (En :
n ≥ d) of Banach spaces, where each En is a Banach space and En+1 is
continuously, linearly, and densely embedded in En for all n ≥ d. We let
E := lim←−En, a Fréchet space. Without loss of generality, we may assume

each En+1 is a (dense) subspace of En and that E =
⋂
En, equipped with

the inverse limit topology.

Definition 6.11 (Omori, [O]). A topological group G is called a strong
ILB-Lie group modeled on the Sobolev chain (En : n ≥ d) if the following
conditions are satisfied:

(N1) There exists an open neighborhood U of 0 in Ed and a homeomor-
phism ψ of U ∩ E (equipped with the relative topology from E)
onto an open neighborhood Ũ of e in G such that ψ(0) = e.

(N2) There exists an open neighborhood V of 0 in Ed such that ψ(V ∩E)
is symmetric and ψ(V ∩ E)2 ⊆ ψ(U ∩ E).

(N3) Let η : (V ∩ E)× (V ∩ E)→ U ∩ E be defined by

η(u, v) = ψ−1(ψ(u)ψ(v)).

Then for every n ≥ d and every l ≥ 0, η can be extended to a
C l-mapping η : (V ∩ En+l)× (V ∩ En)→ U ∩ En.

(N4) For v ∈ V ∩E, let ηv : V ∩E → U∩E be defined by ηv(u) = η(u, v).
Then for every v ∈ V ∩E and every n ≥ d, ηv can be extended to
a C∞-mapping ηv : V ∩ En → U ∩ En.

(N5) Let θn : En × (V ∩ E)× (V ∩ E)→ En be defined by

θn(w, u, v) = (dηv)(u)(w).
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Then for every l ≥ 0, θn can be extended to a C l-mapping θn :
En+l × (V ∩ En+l)× (V ∩ En)→ En.

(N6) Let ι : V ∩ E → V ∩ E be defined by ι(u) = ψ−1(ψ(u)−1). Then
for every n ≥ d and l ≥ 0, ι can be extended to a C l-mapping
ι : V ∩ En+l → V ∩ En.

(N7) For any g ∈ G, there exists an open neighborhood Wg of 0 in Ed
such that g−1ψ(Wg ∩ E)g ⊆ ψ(U ∩ E). Let Ag : Wg ∩ E → U ∩ E
be defined by Ag(u) = ψ−1(g−1ψ(u)g). Then for every n ≥ d, Ag
can be extended to a C∞-mapping Ag : Wg ∩ Ek → U ∩ Ek.

If all En are Hilbert spaces, then we speak of strong ILH-Lie groups.
Note that by (N1), a strong ILB-Lie group is a locally convex Lie group
modeled on a Fréchet space.

There are many natural examples of strong ILB-Lie groups:

Fact 6.12 (see Section 3.3 of [N]). Let M be a smooth compact manifold.
Then the following are strong ILH-Lie groups:

(1) Diff(M).
(2) Diff(M,ω) := {ϕ ∈ Diff(M) : ϕ∗ω = ω}, where ω is a symplectic

2-form on M , a volume form on M , or a contact form on M .
(3) Diff(M,N) := {ϕ ∈ Diff(M) : ϕ(N) = N}, where N is a closed

submanifold of M .
(4) DiffK(M) := {ϕ ∈ Diff(M) : ϕ ◦ k = k ◦ ϕ for all k ∈ K}, where K

is a compact subgroup of Diff(M).

Omori [O] shows that strong ILB-Lie groups are NSS. We repeat his
proof here as it actually shows that strong ILB-Lie groups are uniformly
NSS.

Proposition 6.13. If G is a strong ILB-Lie group, then G is uniformly
NSS.

Proof. By (N3), we have the C1-map η : (V ∩ Ed+1)× V → U . For u ∈
V ∩Ed+1, let ρu : V → U be defined by ρu(v) = η(u, v). Fix ε ∈ (0, 1). Then
there are open neighborhoods Wd+1 and Wd of V ∩Ed+1 and V respectively
such that for all u ∈Wd+1, v ∈Wd, and w ∈ Ed, we have

‖(dρu)(v)(w)− w‖d ≤ ε‖w‖d,
where ‖ · ‖d denotes the norm of Ed. Without loss of generality, we may
assume that Wd+1 is contained in the open ball in Ed of radius M . The
following claim finishes the proof of the proposition.

Claim. ψ(Wd+1 ∩ E) is uniformly free from subgroups.

Indeed, for v ∈ V , define ηv : V ∩ Ed+1 → U by ηv(u) = η(u, v). Let
u ∈ V ∩ Ed+1 and suppose that ηiu(u) ∈ Wd+1 for all i ∈ {1, . . . ,m}. Since
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we have

ηmu (u)− ηm−1u (u) =

1�

0

(dρ)ηm−1
u (u)(tu)(u) dt,

it follows that

ηmu (u) = mu+
m−1∑
i=0

1�

0

((dρ)ηiu(u) − I)(tu)(u) dt.

By the above estimates, we see that ‖ηmu (u)‖d ≥ m(1− ε)‖u‖d.
To finish the proof of the claim, suppose that Z is a neighborhood of

e in G and ψ(u) ∈ ψ(Wd+1 ∩ E) \ Z. Fix M ′ ∈ R such that if ψ(u) /∈ Z,
then ‖u‖d ≥M ′. Choose nZ so that nZ(1− ε)M ′ ≥M . It then follows that
ηiu(u) /∈Wd+1 ∩ E for some i ≤ nZ .

As a result, strong ILB-Lie groups are locally uniform. We should men-
tion that there are examples of strong ILB-Lie groups that are not locally
exponential; for example, by p. 343 of [N], the group Diff(M), where M is
a compact manifold, is not locally exponential.

Problem 6.14. Other than the locally compact Lie groups, additive groups
of locally convex spaces, and UNSS groups (and combinations theoreof, e.g. the
direct product RN×S1), are there any other examples of infinite-dimensional
Lie groups that are locally uniform?

Karl-Hermann Neeb suggested that the unit groups of continuous inverse
algebras might be locally uniform, but we were not able to establish this.

7. An example: the group of units of a unital Banach algebra.
Suppose that A is a unital Banach algebra and G = U(A) is the group
of units of A. Recall that G is an open neighborhood of 1 in A and that
{y ∈ A : ‖y − 1‖ < 1} ⊆ G. Since G is a Banach–Lie group, G is UNSS
and locally uniform. We can thus construct the metric nonstandard hull
of G. However, there is also the Banach algebra nonstandard hull Â of A.
The goal of this section is to understand the relationship between these two
nonstandard hulls.

We fix M ∈ R>0 such that ‖xy‖ ≤ M‖x‖ ‖y‖ for all x, y ∈ A; this is
possible by the uniform boundedness principle.

As usual, for x, y ∈ G∗, we write x ≈l y to mean that x−1y ∈ µ. For
x, y ∈ A∗, write x ≈A y to mean ‖x−y‖ ≈ 0. Let d be a left-invariant metric
on G compatible with the topology; in particular, for a ∈ G∗,

a ≈l 1 ⇔ d(a, 1) ≈ 0 ⇔ ‖a− 1‖ ≈ 0 ⇔ a ≈A 1.

Let ε ∈ R>0 be small enough so that, setting W := {x ∈ G : d(x, 1) < ε},
we have W ⊆ {x ∈ A : ‖x− 1‖ < 1} ⊆ G and G is W -locally uniform. Then
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W ∗ ⊆ Af := {x ∈ A∗ : ‖x‖ ∈ Rf}. Moreover, for x, y ∈W ∗,
x ≈l y ⇔ x−1y ∈ µ ⇔ ‖x−1y − 1‖ ≈ 0 ⇔ ‖x− y‖ ≈ 0.

Also notice that, if x ∈ in(W ∗) and y ∈ A∗ is such that x ≈A y, then
y ∈ W ∗. Indeed, we first remark that y ∈ G∗. To see this, observe that
d(x−1, 1) = d(1, x) < ε, so x−1 ∈ Af . We now have

‖x−1y − 1‖ = ‖x−1(y − x)‖ ≤M‖x−1‖ ‖y − x‖ ≈ 0,

whence x−1y ∈ G∗. It follows that y = x(x−1y) ∈ G∗. Now take δ ∈ R>0

with d(x, 1) < ε−δ. We have ‖x−y‖ ≈ 0⇒ ‖x−1y−1‖ ≈ 0, whence d(x, y) =
d(x−1y, 1) < δ and hence d(y, 1) < ε. Consequently, for x ∈ in(W ∗), we have

[x] := {y ∈W ∗ : x ≈l y} = {y ∈ A∗ : ‖x− y‖ ≈ 0}.
In particular, Ŵd ⊆ Â. Moreover, since Ŵd is globally inversional, we have
Ŵd ⊆ U(Â).

We claim that Ŵd is an open subset of U(Â). Fix [x] ∈ Ŵd. Fix δ > 0
so that d(x, 1) < ε − δ. Fix α > 0 small enough so that, for all z ∈ A, if
‖1 − z‖ < α, then z ∈ G and d(1, z) < δ/2. Fix η > 0 small enough so
that η‖x−1‖ < α. Now suppose that [y] ∈ Â satisfies ‖[x] − [y]‖ < η. Then
‖x − y‖ < η, so ‖1 − x−1y‖ = ‖x−1(x − y)‖ < α. Thus, x−1y ∈ G∗ and
d(1, x−1y) < δ/2, so d(x, y) < δ/2, whence d(y, 1) < ε − δ/2 and therefore
y ∈ in(W ∗) and [y]d ∈ Ŵ . We have thus proven:

Proposition 7.1. Ŵd is a restriction of U(Â) to a symmetric neigh-
borhood of the identity.

8. Relationship with Pestov’s nonstandard hull construction.
As Banach–Lie groups are uniformly NSS (and hence locally uniform), we
can consider their nonstandard hulls. Pestov [P] also has a nonstandard
hull construction for Banach–Lie groups; his nonstandard hull is once again
a Banach–Lie group. In this section, we show that the metric nonstandard
hull of a Banach–Lie group is locally isomorphic to the nonstandard hull that
Pestov constructs. The reason that the aforementioned fact is interesting is
that our nonstandard hull construction is purely topological, while Pestov’s
construction involves some nontrivial Lie theory. Moreover, we show that, for
a suitable choice of a locally uniform neighborhood, the corresponding global
nonstandard hull is the universal covering group of Pestov’s nonstandard
hull.

Throughout this section, G denotes a Banach–Lie group with Banach–
Lie algebra g. A norm ‖ · ‖ on g is fixed so that ‖[x, y]‖ ≤ ‖x‖‖y‖ for all
x, y ∈ g. Recall that we have the exponential map exp : g → G, which is
a local diffeomorphism. We let log : G ⇀ g be the inverse of exp. We will
need the following two lemmas.
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Lemma 8.1. exp : g → G is uniformly continuous on a neighborhood
of 0.

Proof. Set x ∗ y := exp−1(exp(x) · exp(y)) : g × g ⇀ g. By Lemma 1.7
of [Gl2], we have x ∗ y = x + y + O(‖x‖ ‖y‖) for x, y small enough. As a
result, observe x ∗ (−y) = O(‖x − y‖), say ‖x ∗ (−y)‖ ≤ C‖x − y‖. Let U
be a neighborhood of the identity and choose ε > 0 small enough so that
‖z‖ < ε implies exp(z) ∈ U . Then if ‖x− y‖ < ε/C, we have

exp(x) exp(y)−1 = exp(x ∗ (−y)) ∈ U.

Lemma 8.2. log : G ⇀ g is uniformly continuous on a neighborhood
of 1.

Proof. Given ε > 0, we need a neighborhood U of 1 in G such that
whenever a, b are small enough and ab−1 ∈ U , then ‖log a − log b‖ < ε. We
remarked in the previous lemma that x∗y := x+y+O(‖x‖ ‖y‖) for x, y ∈ g
small enough. We then get

x = (x ∗ (−y)) ∗ y = (x ∗ (−y)) + y + z,

where ‖z‖ ≤ C ′‖x ∗ (−y))‖‖y‖. Since ‖y‖ is bounded, it then follows that
there is a constant C such that ‖x− y‖ ≤ C‖x ∗ (−y)‖.

Choose a neighborhood U of 1 such that c ∈ U implies ‖log c‖ < ε/C.
Suppose a, b ∈ G are sufficiently close to the identity and ab−1 ∈ U . Then if
a = exp(x) and b = exp(y), we have log(ab−1) = x ∗ (−y), so

‖log a− log b‖ = ‖x− y‖ ≤ C‖x ∗ (−y)‖ = C‖log(ab−1)‖ < ε.

We now summarize Pestov’s construction of the nonstandard hull of G,
which we will denote by ĜVP. Define µg := {x ∈ g∗ : ‖x‖ ∈ µ(0)}, which is a
Lie ideal of the Lie algebra gf := {x ∈ g∗ : ‖x‖ ∈ Rf}. Let ĝ := gf/µg be the
quotient Lie algebra. Let πg : gf → ĝ be the quotient map and define a norm
on ĝ by ‖πg(x)‖ := st(‖x‖). One then defines Gf,VP :=

⋃
n(exp(V ))n ⊆ G∗

where V is any ball of finite, noninfinitesimal radius in g∗. (This turns out
to be independent of V .) Pestov shows (using some nontrivial Lie theory)
that µ is a normal subgroup of Gf,VP. We set ĜVP := Gf,VP/µ and let

πG : Gf,VP → ĜVP be the quotient map. We define ˆexp : ĝ → ĜVP by
ˆexp(πg(x)) := πG(exp(x)). Pestov shows that there is a neighborhood of 0

in ĝ such that ˆexp restricted to this neighborhood is injective, and that there
is a unique structure of a Banach–Lie group on ĜVP such that ˆexp becomes
a local diffeomorphism.

Fix δ′ > 0 and M ∈ R>0 such that, if max(‖x‖, ‖y‖) < δ′, then

‖(x ∗ y)− (x+ y)‖ ≤M‖x‖ ‖y‖.

(See the proof of Lemma 8.1.) We now fix δ > 0 satisfying δ < min(δ′, 1/M)
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and so that, setting

V := {g ∈ g : ‖g‖ < δ}, Z := {g ∈ ĝ : ‖g‖ < δ}, W := exp(V ),

we have:

• exp|V : 2V → exp(V ) is a diffeomorphism onto a neighborhood of e
in G;
• ˆexp|3Z : 3Z → ˆexp(3Z) is a diffeomorphism onto an open neighbor-

hood of πG(e) in ĜVP;
• exp|V is an isomorphism of uniform spaces (which is possible by the

previous two lemmas);
• G is W -locally uniform.

Fix a left-invariant metric d on G such that W ⊆ Bd(e, 1). By transfer,
W ∗ = exp(V ∗) ⊆ Gf,VP. We can thus consider the injective map

i : Ŵd → ĜVP, i([x]) = πG(x).

We claim that i(Ŵd) ⊆ ˆexp(Z). To see this, take [x] ∈ Ŵd, so x = exp(u) for
some u ∈ V ∗. Then i([x]) = πG(x) = ˆexp(u + µg). It remains to show that
st(‖u‖) < δ, that is, u ∈ in(V ∗). Since exp|V is an isomorphism of uniform
spaces, we have µ(u) = logµ(x). Since µ(x) ⊆W ∗, we have µ(u) ⊆ V ∗.

In what follows, we view ˆexp(Z) as the local group ĜVP| ˆexp(Z).

Theorem 8.3. i : Ŵd → ˆexp(Z) is an isomorphism of local groups.
Moreover, ĜW is the universal covering group of ĜVP.

Proof. We first show that i is onto. Consider ˆexp(a+ µg), where a+ µg
∈ Z, so st(‖a‖) < δ. Then ˆexp(a + µg) = πG(exp(a)). We need to prove
that exp(a) ∈ in(W ∗). Since exp|V is an isomorphism of uniform spaces,
µ(exp(a)) = exp(µ(a)); since a ∈ in(V ∗), we have µ(exp(a)) ⊆W ∗.

If ([x], [y]) ∈ Ω, then

i([x] · [y]) = i([xy]) = πG(xy) = πG(x) · πG(y) = i([x]) · i([y]).

A similar argument shows that i respects inversion. Suppose now that
ˆexp(a+ µg) · ˆexp(b+ µg) = ˆexp(c+ µg), where c+ µg ∈ Z. Then we obtain

exp(a) exp(b) ≈ exp(c) ∈ in(W ∗), whence ([exp(a)], [exp(b)]) ∈ Ω. It follows
that i is a strong morphism of discrete local groups.

It remains to prove that i is a homeomorphism. By local homogeneity
(Lemma 2.16 of [Go]), it suffices to prove that i is continuous and open
at [e]. Towards this end, let O ⊆ ˆexp(Z) be an open neighborhood of πG(e);
we must prove that i−1(O) is open in Ŵd. Fix γ ∈ (0, δ) be so that if
‖g + µg‖ < γ, then ˆexp(g + µg) ∈ O. It suffices to find η > 0 such that if

[x] ∈ Ŵ is such that d̂([x], [e]) < η, then ‖ ˆexp−1(πG(x))‖ < γ. Fix γ1 ∈ (0, γ)
and let V1 := {g ∈ g : ‖g‖ < γ1}. Then exp(V1) is a neighborhood of e in G
and so we can choose 0 < η < 1 so that B(e, η) ⊆ exp(V1). We will show



Nonstandard hulls of locally uniform groups 117

that this is the desired η. Suppose d̂([x], [e]) < η. Then d(x, e) < η, whence
x = exp(x′) for x′ ∈ V ∗1 . Then πG(x) = πG(exp(x′)) = ˆexp(πg(x

′)). Since
‖πg(x′)‖ = st(‖x′‖) ≤ γ1 < γ, we have ‖ ˆexp−1(πG(x))‖ = ‖πg(x′)‖ < γ.

We now show that i is an open map. Fix α ∈ (0, 1]. It suffices to show

that i({[x] ∈ Ŵd : d̂([x], [e]) < α}) is an open subset of ĜVP. Fix [x] ∈ Ŵd

such that d̂([x], [e]) < α. Since πG(x) ∈ ˆexp(Z), we can write

πG(x) = ˆexp(a+ µg) = πG(exp(a))

for some a+µg ∈ Z. Fix β > 0 so that st(d(x, e))+β < α and fix η > 0 small
enough that, for any c, d ∈ V with ‖c−d‖ < η, we have d(exp(c), exp(d)) < β
(by uniform continuity of exp|V ) and further satisfying st(‖a‖) + η < δ. Let

O = ˆexp({b+ µg ∈ ĝ : ‖(a+ µg)− (b+ µg)‖ < η}).
Then O is an open subset of ˆexp(Z). We claim that if πG(y) ∈ O, then

πG(y) ∈ i({[x] ∈ Ŵ : d̂([x], [e]) < α}). Take b + µg so that st(‖a − b‖) < η
and πG(y) = ˆexp(b + µg) = πG(exp(b)). Then by transfer, we observe that
d(exp(a), exp(b)) < β, whence d(y, e) ≈ d(exp(b), e) ≤ d(exp(a), e) + β and
thus st(d(y, e)) < α.

We now prove the moreover part. Set Ĝo
VP to be the identity component

of ĜVP. Then Ĝo
VP is a connected, locally simply connected group. Fur-

thermore, ˆexp(3Z) is a simply connected open neighborhood of the iden-
tity in Ĝo

VP and ˆexp(Z) is a connected open neighborhood of the iden-

tity in Ĝo
VP satisfying ˆexp(Z)2 ⊆ ˆexp(3Z). To see this last part, consider

ˆexp(πg(a)), ˆexp(πg(b))∈ ˆexp(Z). Then ˆexp(πg(a)) ˆexp(πg(b))= ˆexp(πg(a∗b));
it remains to show that st(‖a ∗ b‖) < 3δ. However,

st(‖a ∗ b‖) ≤ st(‖a‖) + st(‖b‖) +M st(‖a‖) st(‖b‖) < 3δ

by the choice of δ. Thus, by Proposition 3.17, the Mal’cev hull of ˆexp(Z)
is the universal covering group of Ĝo

VP. The desired result follows from the

fact that ˆexp(Z) is isomorphic to Ŵd and that Ĝo
VP is locally isomorphic

to ĜVP.
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