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Abstract. We give a uniform proof that λ+ 9 [λ+;λ+]2λ+ holds for every regular
cardinal λ.

1. Introduction. Recall that λ 9 [λ]2κ asserts the existence of a func-
tion f : [λ]2 → κ such that f“[X]2 = κ for all X ∈ [λ]λ. Recall also that
λ 9 [λ;λ]2κ asserts the existence of a function f : [λ]2 → κ such that
f [X ~ Y ] = κ for all X,Y ∈ [λ]λ (1).

In [7], the second author introduced the method of walks on ordinals
and proved that λ+ 9 [λ+]2λ+ holds for all infinite regular cardinals λ. This
was done by defining a square-bracket operation [αβ] that selects a point
in the trace of the walk from β to α using the oscillation of upper traces
of certain walks that start from α and from β. As for singular cardinals, it
is a longstanding open problem whether λ+ 9 [λ+]2λ+ holds for all singu-
lar cardinals λ, but by a result of the first author [3], λ+ 9 [λ+]2λ+ entails
λ+ 9 [λ+;λ+]2λ+ for every singular cardinal λ.

In the present paper, we focus on λ+ 9 [λ+;λ+]2λ+ for λ regular. In [4],

Shelah proved that this relation holds for all regular λ > 2ℵ0 , and later in [5],
he improved this to all regular λ > ℵ1. Then, in [6], Shelah handled the case
λ = ℵ1, and finally, in [2], Moore established the missing case λ = ℵ0. It was
unknown whether there exists a uniform proof that handles all successors
of regulars (or even just λ+ for λ ∈ {ℵ0,ℵ1,first inaccessible}), and in par-
ticular, whether and how Moore’s technique generalizes to higher cardinals.
In this paper, we provide such a uniform proof. This is established by com-
bining the analysis [2] of oscillations over the lower trace, together with the

2010 Mathematics Subject Classification: Primary 03E02; Secondary 03E05.
Key words and phrases: walks on ordinals, successor cardinal, square-bracket operation,
partition relations.

(1) Here, X ~ Y := {(α, β) ∈ X × Y | α ∈ β}, and [X]2 := X ~X.
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analysis [7] of the upper trace function. More specifically, we show that the
ρ1-function on λ+ oscillates on the lower traces much the same way it does on
ω1 (regardless of the value of λ<λ), giving us a function o : [λ+]2 → ω whose
composition with the upper trace function tr : [λ+]2 → ω(λ+) establishes
λ+ 9 [λ+;λ+]2λ+ .

We expect that the new square-bracket operation will have applications
of similar wealth as the original square-bracket operation (see, for example,
the relevant chapters of [9]) and that the arrow notation λ+ 9 [λ+;λ+]2λ+
captures only a small part of its properties. Judging on the basis of pre-
vious experiences, it is expected that applications will come after a deeper
understanding of the relationship between the functions such as tr and o
rather than on modifying the arrow notation to express more complicated
statements. One example that shows this most clearly is the original proof
(see, for example, [1]) that the Proper Forcing Axiom implies that 2ℵ0 = ℵ2.
That proof depends heavily on the properties of the oscillation mapping
osc : (ωω)2 → ω ∪ {ω} introduced in [8], properties that cannot be captured
by the arrow notation such as b 9 [b; b]2ω nor any of its strengthenings that
involve only the notion of cardinality.

2. Statement of the main result

2.1. Preliminaries. For the rest this paper, we fix an infinite regular

cardinal λ, and a sequence
−→
C = 〈Cα | α < λ+〉 such that the following two

hold:

(1) Cα+1 = {α} for all α < λ+;
(2) Cα is a club subset of α of order-type ≤ λ for all limit α < λ+.

Definition 2.1. Given α < β < λ+, define:

• tr(α, β) ∈ ωλ+, by recursively letting, for all n < ω,

tr(α, β)(n) :=


β, n = 0,

min(Ctr(α,β)(n−1) \ α), n > 0 & tr(α, β)(n− 1) > α,

α, otherwise;

• ρ2(α, β) := min{n < ω | tr(α, β)(n) = α};
• ρ1β ∈ βλ, by ρ1β(α) := max{otp(Ctr(α,β)(j) ∩ α) | j < ρ2(α, β)};
• L(α, β) := {maxi≤j sup(Ctr(α,β)(i) ∩ α) | j < ρ2(α, β)};
• tr◦(α, β) := tr(α, β)�ρ2(α, β).

We consider tr◦(α, α) and L(α, α) as the empty set.

Notation 2.2. By A = B ⊕ C, we mean that:

• A = B ∪ C;
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• B 6= ∅, C 6= ∅;
•

⋃
B ∈

⋂
C.

Denote Eλ
+

λ := {δ < λ+ | cf(δ) = λ}.

Fact 2.3 (Todorcevic, [9, §§2.1, 2.2, 6.2]). If λ is a regular cardinal and
otp(Cα) ≤ λ for every α < λ+, all of the following hold:

(1) for every α < λ+ and θ < λ, we have |{ξ < α | ρ1α(ξ) ≤ θ}| < λ;
(2) for every α < β < λ+, we have |{ξ < α | ρ1α(ξ) 6= ρ1β(ξ)}| < λ;

(3) for every δ ∈ Eλ+λ and β < λ+ above δ, we have max(L(δ, β)) < δ;
(4) for every α < β < γ < λ+, if α > max(L(β, γ)), then

tr◦(α, γ) = tr◦(β, γ)_tr◦(α, β);

(5) for every α < β < γ < λ+, if min(L(α, β)) > max(L(β, γ)), then

L(α, γ) = L(β, γ)⊕ L(α, β).

Definition 2.4. For a finite set L, and ordinal-valued functions f, g
with L ⊆ dom(f) ∩ dom(g), let

Osc(f, g, L) := |{ξ ∈ L ∩max(L) | f(ξ) = g(ξ) & f(ξL) > g(ξL)}|,
where ξL := min(L \ ξ + 1).

2.2. Result. Let {pl | l < ω} be some injective enumeration of the set
of prime integers. Let 〈Sζ | ζ < λ+〉 be a partition of λ+ into mutually

disjoint sets in such a way that Sζ ∩ Eλ
+

λ is stationary for every ζ < λ+.

Definition 2.5. Given α < β < λ+, let:

• osc(α, β) := Osc(ρ1α, ρ1β, L(α, β));
• o∗(α, β) := min{l < ω | pl does not divide osc(α, β)};
• c(α, β) := min{ζ < λ+ | tr(α, β)(o∗(α, β)) ∈ Sζ}.

Theorem 2.6 (Main result). For every regular cardinal λ:

• o∗ witnesses λ+ 9 [λ+;λ+]2ω;
• c witnesses λ+ 9 [λ+;λ+]2λ+.

3. Proofs. To make the paper self-contained, we commence with a proof
of Fact 2.3.

Proof of Fact 2.3. (1) Suppose not. Let α < λ+ be the least for which
there exists θ < λ and a set Γ ∈ [α]λ with ρ1α(γ) ≤ θ for all γ ∈ Γ .
In particular, otp(Cα ∩ γ) ≤ θ for all γ ∈ Γ . Define o : Γ → θ + 1 by
stipulating that o(γ) = otp(Cα ∩ γ). Then there exists Γ ′ ∈ [Γ ]λ on which
o is constant. In particular, min(Cα \ γ1) = min(Cα \ γ2) for all γ1, γ2 ∈ Γ ′.
Put α′ := min(Cα \ min(Γ ′)). Then Γ ′ ∈ [α′]λ, and so by α′ < α and
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minimality of the latter, we may find some γ′ ∈ Γ ′ such that ρ1α′(γ
′) > θ.

By min(Cα \ γ′) = α′, we have tr◦(γ′, α) = 〈α〉_ tr◦(γ′, α′), and hence

ρ1α(γ′) = max{otp(Cα ∩ γ′), ρ1α∗(γ′)} > θ.

This is a contradiction.
(2) Suppose not. Let β < λ+ be the least for which there exists α < β

and a subset Γ ⊆ α of order-type λ with ρ1α(ξ) 6= ρ1β(ξ) for all ξ ∈ Γ . Put
γ := sup(Γ ), γ− := sup(Cβ ∩ γ), and γ+ := min(Cβ \ γ). By cf(γ) = λ ≥
otp(Cβ), we infer that γ− < γ ≤ α ≤ γ+ < β.

Put θ := otp(Cβ ∩ γ), and Γ ′ := {ξ ∈ Γ \ γ− | ρ1β(ξ) > θ}. By the
previous item, we know that otp(Γ ′) = λ. It then follows from γ+ < β and
minimality of the latter that there exists ξ ∈ Γ ′ such that ρ1α(ξ) = ρ1γ+(ξ).

By γ− ≤ ξ < γ ≤ γ+, we know that min(Cβ \ ξ) = min(Cβ \ γ) and
otp(Cβ ∩ ξ) = otp(Cβ ∩ γ) = θ. That is, min(Cβ \ ξ) = γ+, and ρ1γ+(ξ) >
otp(Cβ ∩ ξ). So tr◦(ξ, β) = 〈β〉_tr◦(ξ, γ+), and hence

ρ1β(ξ) = max{otp(Cβ ∩ ξ), ρ1γ+(ξ)} = ρ1γ+(ξ) = ρ1α(ξ).

This is a contradiction.
(3) If δ ≥ max(L(δ, β)), then by Definition 2.1, there exists i < ρ2(δ, β)

such that sup(Ctr(δ,β)(i)∩δ) = δ. In particular, there exists an ordinal α with
δ < α < β such that sup(Cα ∩ δ) = δ. It follows that cf(δ) ≤ otp(Cα ∩ δ) <
otp(Cα) ≤ λ, contradicting the fact that δ ∈ Eλ+λ .

(4) It suffices to prove that under the same hypotheses, we have tr(β, γ) =
tr(α, γ)�ρ2(β, γ), and tr(α, γ)(ρ2(β, γ)) = β. Clearly, tr(α, γ)(0) = γ =
tr(β, γ)(0). Next, if i < ρ2(β, γ) and tr(α, γ)(i) = tr(β, γ)(i), then by

β > α > max(L(β, γ)) ≥ sup(Ctr(β,γ)(i) ∩ β),

we get

min(Ctr◦(α,γ)(i) \ α) = min(Ctr◦(β,γ)(i) \ α) = min(Ctr◦(β,γ)(i) \ β),

and hence tr(α, γ)(i+ 1) = tr(β, γ)(i+ 1).
(5) By α ≥ min(L(α, β)) > max(L(β, γ)), we deduce from the previous

item that tr◦(α, γ) = tr◦(β, γ)_tr◦(α, β), and hence

L(α, γ) = L(β, γ)⊕ U,
for U := L(α, β) \ (max(L(β, γ)) + 1). Recalling that min(L(α, β)) >
max(L(β, γ)), we conclude that L(α, γ) = L(β, γ)⊕ L(α, β).

Lemma 3.1. For every subset A ⊆ λ+, let Â denote the set of all γ < λ+

such that for all

• α ∈ A \ γ,
• U ∈ [λ+ \ γ]<ω,
• L ∈ [γ]<ω,
• θ < λ,
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there exists some α′ ∈ A such that

(1) α′ > max(U);
(2) ρ1α′(ξ) > θ for all ξ ∈ U ;
(3) ρ1α′(ξ) = ρ1α(ξ) for all ξ ∈ L.

If A is cofinal in λ+, then so is Â.

Proof. Suppose that A is a cofinal subset of λ+. Fix a large enough
regular cardinal θ, and an elementary submodel M ≺ Hθ of size λ with

cf(M ∩ λ+) = λ such that A,
−→
C ∈M . Denote δ := M ∩ λ+. As Â ∈M and

|M | = λ, we see that |Â| < λ+ iff Â ⊆M . In particular, if δ ∈ Â, then Â is
cofinal in λ+. Thus, let us prove that δ ∈ Â.

Suppose that α ∈ A \ δ, U ∈ [λ+ \ δ]<ω, L ∈ [δ]<ω and θ < λ are given.
By cf(δ) = λ, and Fact 2.3(1), we may fix a large enough η < δ such that
ρ1α(ξ) > θ whenever η < ξ < δ. Next, put e := ρ1α�L, and let

D := {ν < λ+ | ∃β ∈ A \ ν (ρ1β�L = e & ρ1β(ξ) > θ whenever η < ξ < ν)}.

Then D ∈ M , and if sup(D) < λ+, then sup(M) < δ. Since δ ∈ D (as
witnessed by α), we infer that D is cofinal in λ+. In particular, we may pick
a large enough ν ∈ D above max(U), together with a witness α′ ∈ A \ ν.

It follows that ρ1α′�L = e = ρ1α�L, and since η < δ ≤ min(U) ≤
max(U) < ν, we get ρ1α′(ξ) > θ for all ξ ∈ U .

Lemma 3.2. Suppose θ is a large enough regular cardinal, and M ≺ Hθ

is an elementary submodel with M∩λ+ ∈ Eλ+λ . Denote δ := M∩λ+. Suppose
further that we are given A,B, S, α, β, l such that:

• A,B,
−→
C , S ∈M ;

• A,B are cofinal subsets of λ+;
• S is a stationary subset of Eλ

+

λ ;
• δ ∈ α ∈ A;
• δ ∈ β ∈ B;
• l ≤ ρ2(δ, β), and tr(δ, β)(l) ∈ S.

Then there exist α′, α′′ ∈ A, β′ ∈ B, and U ⊆ δ for which all of the following
hold:

(1) tr◦(δ, β′)(l) ∈ S;
(2) β′ > δ and ρ1β′�L(δ, β) = ρ1β�L(δ, β);
(3) α′ > δ and ρ1α′�L(δ, β) = ρ1α�L(δ, β);
(4) α′′ > δ and ρ1α′′�L(δ, β) = ρ1α�L(δ, β);
(5) ρ1α′(ξ) = ρ1β′(ξ) for all ξ ∈ U ;
(6) ρ1α′′(ξ) > ρ1β′(ξ) for all ξ ∈ U ;
(7) L(δ, β′) = L(δ, β)⊕ U .
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Proof. Consider the set Â as defined in Lemma 3.1. Then Â ∈ M is a
cofinal subset of λ+, and so by Fact 2.3(2), we may pick a large enough
γ ∈ Â ∩M for which ρ1α(ξ) = ρ1β(ξ) whenever γ ≤ ξ < δ. By cf(δ) = λ,
and Fact 2.3(3), we deduce that max(L(δ, β)) ∈ δ ⊆ M , and so we may
moreover require that γ > max(L(δ, β)).

Denote γ+ := min(Cδ \ γ + 1), L := L(δ, β), eα := ρ1α�L, and eβ :=

ρ1β�L. Next, let T denote the set of all δ′ ∈ Eλ
+

λ for which there exists
(α′, β′) ∈ A×B such that:

(a) tr(δ′, β′)(l) ∈ S;
(b) β′ > δ′ and ρ1β′�L = eβ;
(c) α′ > δ′ and ρ1α′�L = eα;
(d) L(δ′, β′) = L;
(e) min(L(ν, δ′)) ≥ γ whenever γ+ < ν < δ′;
(f) ρ1α′(ξ) = ρ1β′(ξ) whenever γ ≤ ξ < δ′.

As {l, L, eα, eβ, γ, γ+, A,B,
−→
C , S} ⊆ M , we get T ∈ M . Since δ ∈ T \M as

witnessed by the pair (α, β), we conclude that |T | = λ+. Thus, let us pick
some δ′ ∈ T above δ, and a pair (α′, β′) ∈ A × B that witnesses the fact
that δ′ ∈ T . Then min{α′, β′} > δ′ > δ, and items (2), (3) are immediate
consequences of items (b), (c), respectively.

Claim 3.2.1. We have:

• L(δ, β′) = L(δ, β)⊕ L(δ, δ′);
• tr◦(δ, β′) = tr◦(δ′, β′)_tr◦(δ, δ′).

In particular, items (1) and (7) are valid.

Proof. By item (d) and the choice of γ, we see that γ > max(L(δ′, β′)).
Since γ+ < δ < δ′, we see from item (e) that min(L(δ, δ′)) ≥ γ >
max(L(δ′, β′)). So, by δ < δ′ < β′ and Fact 2.3(5), we infer that L(δ, β′) =
L(δ′, β′)⊕L(δ, δ′). Then, by item (d), we conclude that L(δ, β′) = L(δ, β)⊕
L(δ, δ′). Note that by Fact 2.3(3), U := L(δ, δ′) is indeed a subset of δ.

By Fact 2.3(3) and item (d), we have δ > max(L(δ, β)) = max(L(δ′, β′)).
Then, by Fact 2.3(4), we find that tr◦(δ, β′) = tr◦(δ′, β′)_tr◦(δ, δ′), and
hence item (a) entails tr◦(δ, β′)(l) = tr(δ′, β′)(l) ∈ S.

As γ+ < δ < δ′, we deduce from item (e) that ξ ≥ γ for all ξ ∈ L(δ, δ′).
So, by item (f) and the preceding claim, we infer that ρ1α′(ξ) = ρ1β′(ξ) for
all ξ ∈ L(δ, δ′) = L(δ, β′) \ L(δ, β), thus establishing item (5).

Let U := (L(δ, δ′) ∪ {δ}). By item (e), we have U ∈ [λ+ \ γ]<ω. By
γ > max(L(δ, β)), we have L ∈ [γ]<ω. Put θ := max{ρ1β′(ξ) | ξ ∈ L(δ, δ′)}.
Recalling that γ was chosen as an element of Â, we infer the existence of an
ordinal α′′ ∈ A such that:

• α′′ > max(U) = δ;
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• ρ1α′′(ξ) > θ for all ξ ∈ U ; in particular, item (6) holds;
• ρ1α′′(ξ) = ρ1α(ξ) for all ξ ∈ L; in particular, item (4) holds.

This completes the proof of Lemma 3.2.

Corollary 3.3. Suppose that θ is a large enough regular cardinal, and
M ≺ Hθ is an elementary submodel with M∩λ+ ∈ Eλ+λ . Denote δ := M∩λ+.
Suppose further that we are given A,B, S, α, β, l such that:

• A,B,
−→
C , S ∈M ;

• A,B are cofinal subsets of λ+;
• S is a stationary subset of Eλ

+

λ ;
• δ ∈ α ∈ A;
• δ ∈ β ∈ B;
• l ≤ ρ2(δ, β) and tr(δ, β)(l) ∈ S.

Then there exist α∗ ∈ A and β∗ ∈ B for which all of the following hold:

(1) L(δ, β∗) = L(δ, β)⊕ E ⊕G for some finite subsets E,G of δ;
(2) ρ1β�L(δ, β) = ρ1β∗�L(δ, β);
(3) ρ1α�L(δ, β) = ρ1α∗�L(δ, β);
(4) ρ1α∗(ξ) = ρ1β∗(ξ) for all ξ ∈ E;
(5) ρ1α∗(ξ) > ρ1β∗(ξ) for all ξ ∈ G;
(6) tr◦(δ, β∗)(l) ∈ S;
(7) min{α∗, β∗} > δ.

Proof. Suppose that M,A,B, S, δ, α, β, l are as in the hypothesis. By
Lemma 3.2, we may now find (α′, β′) ∈ A×B and a finite E ⊆ δ such that:

• L(δ, β′) = L(δ, β)⊕ E;
• β′ > δ and ρ1β′�L(δ, β) = ρ1β�L(δ, β);
• α′ > δ and ρ1α′�L(δ, β) = ρ1α�L(δ, β);
• ρ1α′(ξ) = ρ1β′(ξ) for all ξ ∈ E;
• tr◦(δ, β′)(l) ∈ S.

Next, appeal to Lemma 3.2 with M,A,B, S, δ, α′, β′, l to find (α∗, β∗) ∈
A×B and a finite G ⊆ δ such that:

• L(δ, β∗) = L(δ, β′)⊕G;
• β∗ > δ and ρ1β∗�L(δ, β′) = ρ1β′�L(δ, β′);
• α∗ > δ and ρ1α∗�L(δ, β′) = ρ1α′�L(δ, β′);
• ρ1α∗(ξ) > ρ1β∗(ξ) for all ξ ∈ G;
• tr◦(δ, β∗)(l) ∈ S.

Then it follows that α∗ and β∗ have all the desired properties.

Theorem 3.4 (Main Result). For every regular cardinal λ:

• o∗ witnesses λ+ 9 [λ+;λ+]2ω;
• c witnesses λ+ 9 [λ+;λ+]2λ+.
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Proof. Suppose that A,B are cofinal subsets of λ+, and ζ < λ+. We
shall find (α̂, β̂) ∈ A~B for which c(α̂, β̂) = ζ. The proof will also make it
clear that o∗[A~B] = ω.

Fix a large enough regular cardinal θ, and an elementary submodel M ≺
Hθ such that A,B,

−→
C , Sζ ∈M and M ∩λ+ ∈ Eλ+λ ∩Sζ . Denote δ := M ∩λ+,

α := min(A\δ+1), β := min(B\δ+1), and l := ρ2(δ, β). Then, by Corollary
3.3, we may find α0 ∈ A \ (δ + 1) and β0 ∈ B \ (δ + 1) such that:

• ρ1α0(max(L(δ, β0))) > ρ1β0(max(L(δ, β0)));
• tr◦(δ, β0)(l) ∈ Sζ .
Let n < ω be large enough, so that for every t < ω,

l ∈ {min{ι | pι does not divide k} | t < k < t+ n}.
Next, by an iterative application of Corollary 3.3, we may find a sequence

〈(αm+1, βm+1, Em, Gm) | m < ω〉 such that for all m < ω, the following
hold:

(1) L(δ, βm+1) = L(δ, βm)⊕ Em ⊕Gm;
(2) ρ1βm+1�L(δ, βm) = ρ1βm�L(δ, βm);
(3) ρ1αm+1�L(δ, βm) = ρ1αm�L(δ, βm);
(4) ρ1αm+1(ξ) = ρ1βm+1(ξ) for all ξ ∈ Em;
(5) ρ1αm+1(ξ) > ρ1βm+1(ξ) for all ξ ∈ Gm;
(6) tr◦(δ, βm+1)(l) ∈ Sζ .
By Fact 2.3(3), let us fix a large enough γ ∈ Cδ such that max(L(δ, βn))

< γ. By Fact 2.3(2), we may further assume that

γ > max{ξ < δ | ρ1βm(ξ) 6= ρ1βm+1(ξ) for some m ≤ n}.
Denote L := L(δ, βn), e := ρ1αn�L(δ, βn). Consider E := {α ∈ A |

(ρ1α�L) = e}. Then E ∈M , while αn ∈ E \M . In particular, sup(E) = λ+

and sup(E ∩M) = δ, so let us pick a large enough α̂ ∈ E ∩ δ above γ.

Claim 3.4.1. For every m ≤ n, we have:

(a) ρ1α̂(max(L(δ, βm))) > ρ1βm(max(L(δ, βm)));
(b) Osc(ρ1α̂, ρ1βm , L(δ, βm)) = Osc(ρ1αm , ρ1βm , L(δ, βm)).

Proof. Fix m ≤ n. Then L(δ, βm) ⊆ L(δ, βn) = L, so by α̂ ∈ E, we
conclude that ρ1α̂�L(δ, βm) = ρ1αm�L(δ, βm).

Note that item (a) of the preceding claim implies that for every m ≤ n
and every finite U ⊆ δ with min(U) > max(L(δ, βm)), we have

osc(ρ1α̂, ρ1βm , L(δ, βm) ∪ U) = osc(ρ1α̂, ρ1βm , L(δ, βm)) + osc(ρ1α̂, ρ1βm , U).

Claim 3.4.2. For all m ≤ n, we have:

(a) L(α̂, βm) = L(δ, βm)⊕ L(α̂, δ);
(b) Osc(ρ1α̂, ρ1βm+1 , L(α̂, δ)) = Osc(ρ1α̂, ρ1βm , L(α̂, δ));
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(c) Osc(ρ1α̂, ρ1βm+1 , L(δ, βm)) = Osc(ρ1α̂, ρ1βm , L(δ, βm));
(d) tr◦(α̂, βm)(l) ∈ Sζ .
Proof. Fix m ≤ n. Note that the fact that α̂ > γ ∈ Cδ implies that

min(L(α̂, δ)) = max(Cδ ∩ α̂) ≥ γ.
(a) follows from min(L(α̂, δ)) ≥ γ > max(L(δ, βm)) and from Fact 2.3(5)

for α̂ < δ ≤ βm.
(b) follows from min(L(α̂, δ)) ≥ γ > max{ξ < δ | ρ1βm(ξ) 6= ρ1βm+1(ξ)}.
(c) follows from property (2) in the choice of 〈(αm+1, βm+1, Em, Gm) |

m < ω〉.
(d) By α̂ > γ > max(L(δ, βm)), and Fact 2.3(4) for α̂ < δ ≤ βm, we

deduce that tr◦(α̂, βm) = tr◦(δ, βm)_tr◦(α̂, δ). In particular, tr◦(α̂, βm)(l) =
tr(δ, βm)(l) ∈ Sζ .

Claim 3.4.3. osc(α̂, βm+1) = osc(α̂, βm) + 1 for all m < n.

Proof. Fix m < n. By the preceding claims, we get

osc(α̂, βm+1) = Osc(ρ1α̂, ρ1βm+1 , L(α̂, βm+1))

= Osc(ρ1α̂, ρ1βm+1 , L(δ, βm+1) ∪ L(α̂, δ))

= Osc(ρ1α̂, ρ1βm+1 , L(δ, βm+1)) + Osc(ρ1α̂, ρ1βm+1 , L(α̂, δ))

= Osc(ρ1α̂, ρ1βm+1 , L(δ, βm) ∪ Em ∪Gm)

+ Osc(ρ1α̂, ρ1βm+1 , L(α̂, δ))

= Osc(ρ1α̂, ρ1βm+1 , L(δ, βm)) + Osc(ρ1α̂, ρ1βm+1 , Em ∪Gm)

+ Osc(ρ1α̂, ρ1βm+1 , L(α̂, δ))

= Osc(ρ1α̂, ρ1βm+1 , L(δ, βm)) + Osc(ρ1αm+1 , ρ1βm+1 , Em ∪Gm)

+ Osc(ρ1α̂, ρ1βm+1 , L(α̂, δ))

= Osc(ρ1α̂, ρ1βm+1 , L(δ, βm)) + 1 + Osc(ρ1α̂, ρ1βm+1 , L(α̂, δ))

= Osc(ρ1α̂, ρ1βm , L(δ, βm)) + 1 + Osc(ρ1α̂, ρ1βm , L(α̂, δ))

= Osc(ρ1α̂, ρ1βm , L(δ, βm) ∪ L(α̂, δ)) + 1

= Osc(ρ1α̂, ρ1βm , L(α̂, βm)) + 1 = osc(α̂, βm) + 1.

Let t := osc(α̂, β0). By our choice of n, there exists some m∗ < n such

that l = min{ι < ω | pι does not divide t + m∗}; thus, let β̂ := βm∗ for the
above m∗.

Claim 3.4.4. tr◦(α̂, β̂)(o∗(α̂, β̂)) ∈ Sζ .
Proof. By the preceding claim, osc(α̂, βm) = t + m for all m < n. In

particular, osc(α̂, β̂) = t + m∗. So, o∗(α̂, β̂) = l. It now follows from Claim

3.4.2(d) that tr◦(α̂, β̂)(o∗(α̂, β̂)) = tr◦(α̂, βm∗)(l) ∈ Sζ .

Recalling the definition of c, we conclude that c(α̂, β̂) = ζ. This completes
the proof of Theorem 3.4
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4. Concluding remarks. In Definition 2.5, the function o∗ is defined
as a particular projection of the oscillation function osc. We do not know
whether there are any other interesting projections for cardinals λ ≥ c. In
particular, we are interested in projections that directly yield an L-space at
the λ+ level. We should also point out a question appearing originally in [2],
asking whether there is a variation on the oscillation mapping, or perhaps a
different projection, that yields an L-space whose square is also an L-space.
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