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The union of two D-spaces need not be D

by

Dániel T. Soukup and Paul J. Szeptycki (Toronto)

Abstract. We construct from ♦ a T2 example of a hereditarily Lindelöf space X
that is not a D-space but is the union of two subspaces both of which are D-spaces. This
answers a question of Arhangel’skii.

A T1 space X is said to be a D-space if for each open neighborhood
assignment {Ux : x ∈ X} there is a closed and discrete subset D ⊆ X
such that {Ux : x ∈ D} covers the space. The notion is due to van Douwen
and was first studied in [2]. The main open question regarding D-spaces
is whether every regular Lindelöf space is a D-space. Recently in [4] the
construction of a consistent T2 counterexample to the van Douwen question
was presented. In the present note we use the same technique to construct
an example of a T2 space that is not a D-space but is the union of two
subspaces that are both D-spaces. This answers a question of Arhangel’skii
from [1].

A topology on ω1 is defined by constructing a sequence U={Uα : α<ω1}
of subsets of ω1 such that α ∈ Uα. The example will be obtained by taking
the family U ∪ {ω1 \H : H ∈ [ω1]

<ω} as a subbasis. Then sets of the form
UF \ H, where F,H ⊆ ω1 are finite and UF =

⋂
α∈F Uα, form a basis for

the topology. Any such topology is T1 and there is a natural way to make
it T2 by identifying ω1 in an appropriate way with some other T2 space and
taking the common refinement of the two topologies.

We also partition ω1 into a union of two stationary sets S0 ∪ S1. We
will construct the Uα’s in such a way that α ∈ Uα is the neighborhood as-
signment witnessing the space is not D but both subspaces S0 and S1 are
D-spaces. Whether the union of two D-spaces is always a D-space was asked
in [1].

The following lemma shows how the subspaces will be made to be D.
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Lemma 1. Suppose that τ is a topology on ω1 obtained by taking a family
{Uα : α ∈ ω1} ∪ {ω1 \F : F ∈ [ω1]

<ω} as a subbasis. Suppose that S ⊆ ω1 is
an uncountable subspace. Suppose also that for any uncountable T ⊆ S and
any neighborhood assignment {Vα : α ∈ T} such that each Vα = UFα and
the family {Fα : α ∈ T} is pairwise disjoint, there is a D ⊆ T countable and
closed discrete in S such that {UFα : α ∈ D} covers a tail of S. Then the
subspace S is hereditarily a D-space.

Proof. Fix an arbitrary neighborhood assignment V = {Vα : α ∈ S′}
with S′ ⊆ S. Without loss of generality we may assume Vα = UFα \Gα for
some finite Fα and Gα. Let M be a countable elementary submodel of some
H(κ) for κ sufficiently large so that

{Vα, Fα, Gα : α ∈ S′} ∈M.

Enumerate as {dn : n ∈ ω} the finite subsets of S′ ∩M . Also enumerate
S′ ∩M = {βn : n ∈ ω}. We define a sequence {En : n ∈ ω} as follows. First
consider d0.

If there is a γ ∈ S′ such that Fγ = d0 by elementarity we may fix
γ0 ∈ S′ ∩M such that Fγ0 = d0.

If there is an uncountable T0 such that {Fα : α ∈ T0} is an uncountable
∆-system with root d0, fix such a T0 and consider the family{UFα\d0 :α∈T0}.
By assumption there is a D0 ⊆ T0 countable and closed discrete in S such
that {UFα\d0 : α ∈ D0} covers a tail of S. By elementarity we may assume
that D0 ∈M and that

S \M ⊆
⋃
α∈D0

UFα\d0 .

If there is no such T0 just let D0 = ∅.
Finally let k0 be minimal such that βk0 6∈

⋃
{UFα \Gα : α ∈ D0 ∪ {γ0}}.

Now let E0 = {γ0} ∪D0 ∪ {βk0}.
Suppose n > 0 and we have constructed E0 ⊆ · · · ⊆ En−1 and Ei ∈ M

are countable and closed and discrete in S for each i < n. Let

Sn = S′ \
⋃

α∈En−1

(UFα \Gα),

and consider dn.

If there is a γ ∈ Sn such that Fβ = dn then by elementarity we may fix
γn ∈ Sn ∩M with Fγn = dn.

If there is an uncountable Tn ⊆ Sn such that {Fα : α ∈ Tn} is a ∆-system
with root dn, fix such a Tn. Proceed now as above, finding a countable subset
Dn ∈ M of Tn closed discrete in S such that {UFα\dn : α ∈ Dn} covers
S \M . If there is no such uncountable Tn just let Dn = ∅. Moreover let kn
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be minimal such that

βkn 6∈
⋃
{UFα \Gα : α ∈ En−1 ∪Dn ∪ {γn}}.

Finally let En = En−1 ∪Dn ∪ {γn, βkn}.
Now, let

D =
⋃
n∈ω

En.

Claim 2. S′ ⊆
⋃
{UFα \Gα : α ∈ D}.

Proof. Clearly by choice of the βkn it must be the case that S′ ∩M is
covered. So fix γ ∈ S′ \M .

First consider the possibility that Fγ ⊆ M . If so, then by elementarity,
there is a β ∈ S′ ∩M such that Fβ = Fγ . Fix n such that dn = Fγ and
consider stage n of the construction. If γ 6∈

⋃
α∈En−1

UFα \ Gα, then at
this stage we fixed γn with Fγn = dn and we put γn ∈ En ⊆ D. Then
since γ ∈ UFγ it follows that γ ∈ UFγn . And since γn ∈ M it follows that
Gγn ⊆M . Therefore γ ∈ UFγn \Gγn as required since γn ∈ D.

Next, consider the possibility that Fγ \M 6= ∅. Then there is an n such
that dn = Fγ∩M . By the elementary submodel proof of the ∆-system lemma
(see [3] or for an explicit proof see [4]) it follows that there is an uncountable
∆-system of the form {Fα : α ∈ Tn} with root dn where Tn ⊆ Sn. By choice
of Dn we may fix α ∈ Dn such that γ ∈ UFα\dn . And since γ ∈ Udn it follows
that γ ∈ UFα . Finally since α ∈M it follows that Gα ⊆M so γ ∈ UFα \Gα
as required since α ∈ Dn ⊆ D.

Claim 3. D is closed discrete in S′.

Proof. This follows directly from the following observation: Suppose that
X is a space, {Vx : x ∈ X} a neighborhood assignment and {Bn : n ∈ ω} a
family of closed discrete subsets such that

1. X =
⋃
{Vx : x ∈

⋃
k<ω Bk}, and

2. Bn ⊆ X \
⋃
{Vx : x ∈

⋃
k<nBk}.

Then
⋃
nBn is closed discrete.

This completes the proof of Lemma 1.

Remark. If the family of sets {Uα : α ∈ ω1} generates a Hausdorff
topology, then the lemma still applies and the proof is in fact simplified since
the extra parameter of the complement of the finite sets can be removed.

Now let us proceed with the construction of the example. The topology
will be a common refinement of the topology generated by a sequence of
subsets Uα ⊆ ω1 and by identifying ω1 with a subset of [R]<ω and using
Euclidean open subsets to define a topology. In particular:
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Definition 4. Define a topology on [R]<ω as follows. Let Q ⊆ R be a
Euclidean open set and let Q∗ = {H ∈ [R]<ω : H ⊆ Q}. Sets of the form Q∗

define a topology ρ on [R]<ω.

The proof of the following claim is straightforward.

Claim 5.

1. ([R]<ω, ρ) is of countable weight.
2. Any family X ⊆ [R]<ω of pairwise disjoint nonempty sets forms a

Hausdorff subspace of ([R]<ω, ρ).

Let us fix a countable base W for ([R]<ω, ρ).
To proceed with the rest of the construction we assume ♦ and fix two

sequences:

• {Cα : α ∈ ω1}, an enumeration of [ω1]
ω such that Cα ⊆ α for each α;

• {aα : α ∈ ω1}, a special ♦ sequence that captures functions on S0
stationarily often on S1 and vice versa in the following sense:

(a) for each uncountable partial function f : S0 → [ω1]
<ω the set of

α ∈ S1 such that f�(dom(f) ∩ α) = aα is stationary, and
(b) for each uncountable partial function f : S1 → [ω1]

<ω the set of
α ∈ S0 such that f�(dom(f) ∩ α) = aα is stationary.

The existence of such a partition of ω1 and corresponding ♦ sequence
is a consequence of ♦. Indeed, if {aα : α ∈ ω1} is a ♦ sequence, then
S0 = {α : 0 ∈ aα} and S1 = {α : 1 ∈ aα} are both stationary, disjoint and
{aα \ {i} : α ∈ Si} is a ♦Si sequence on ω1 \ {i} for each i < 2. Now, by
putting together a ♦S0 sequence and a ♦S1 sequence one obtains the desired
special ♦ sequence (1).

We want to construct the sets Uα so that a few things happen.

(1) For every α, if Cα is closed discrete then α 6∈ Uξ for any ξ ∈ Cα.
(Since we will make sure that closed discrete sets are countable this ensures
that X is not a D-space.)

(2) For each i < 2 and each uncountable T ⊆ Si and each function
f : T → [ω1]

<ω such that the range is pairwise disjoint, there is an α ∈ S1−i
such that f�(T ∩ α) = aα and there is a Dα ⊆ T ∩ α that converges to α
such that {Uf(β) : β ∈ Dα} covers Si \ α.

Note that if our space is constructed to be T2, then (2) implies that D
will be closed discrete in Si, so if we can do (2) then by the previous lemma
we will know that both S0 and S1 are D-spaces.

So suppose that we are at stage α of the construction and we have
constructed {Uβ ∩ α : β < α}. We need to decide whether or not to add α

(1) Thanks to Arnie Miller for pointing this out.
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to Uβ for each β < α. Let τα be the topology on α generated by the Uβ∩α’s.
Suppose, without loss of generality, that α ∈ S0. Let {βn : n ∈ ω} be the
set of β ∈ S1 ∩ α for which we have fixed a Dβ ⊆ S0 ∩ β where Dβ is closed
discrete in S0 ∩ α with respect to the subspace topology determined by τα
and {Uaβ(ξ) : ξ ∈ Dβ} is a cover of S0 ∩ (β, α). So we need to ensure that α
is covered by some set from {Uaβ(ξ) : ξ ∈ Dβ}.

We also need to consider aα : S1 ∩ α → [α]<ω coding a neighborhood
assignment and find Dα ⊆ S1 ∩ α in conjunction with our choice for the
neighborhoods for α so that Dα converges to α and so that we will be able
to ensure that {Uaα(ξ) : ξ ∈ Dα} will cover a tail of the space. Recall that Dα

converging to α ensures not only that Dα will be closed discrete in S1 with
respect to the subspace topology generated by τα, but that it will remain
closed discrete regardless of how we extend the topology (as long as the final
topology is T2). We begin by proving:

Theorem 6. There exist {Uαγ }γ≤α and φα : α + 1 → [R]<ω for α < ω1

with the following properties:

IH(1) Uαγ ⊆ α+ 1 and Uαα = α+ 1 for every γ ≤ α < ω1, and the range
of φα is pairwise disjoint for every α < ω1.

IH(2) Uαγ = Uα0
γ ∩ (α+ 1) and φα = φα0�(α+ 1) for all γ ≤ α ≤ α0.

Let τα denote the topology generated by the sets

{Uαγ : γ ≤ α} ∪ {φ−1α (W ) : W ∈ W}

as a subbase. Let UαF =
⋂
{Uαγ : γ ∈ F} for F ∈ [α+ 1]<ω.

IH(3) If Cα is τα closed discrete then
⋃
{Uαγ : γ ∈ Cα} 6= α+ 1.

IH(4) Let Tα = {β ≤ α : there is a countable elementary submodel
M ≺ H(ϑ) for some sufficiently large ϑ such that (i)–(v) all hold},
where:

(i) M ∩ ω1 = β.
(ii) (aη : η ∈ ω1), S0, S1, (Cη : η ∈ ω1) ∈M .
(iii) There is a function φ ∈M such that φ�β = φβ�β.
(iv) If β ∈ Si then there is an uncountable f ∈M coding a neigh-

borhood assignment to an uncountable subset of S1−i captured
by our ♦ sequence at α. That is, f is such that dom(f) ⊆ S1−i
and f : dom(f)→ [ω1]

<ω with f�(dom(f)∩β) = aβ. Further-
more, ξ ∈ Uf(ξ) for all ξ ∈ dom(f).

(v) There is a {Vγ}γ<ω1 ∈ M such that Vγ ∩ β = Uβγ ∩ β for all
γ < β.

Then for each i < 2 and each β ∈ Tα ∩ Si there is a Dβ ⊆ dom(aβ) (inde-
pendent of α) such that
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(a) if β ∈ Tα then both Dβ and {aβ(ξ) : ξ ∈ Dβ} converge to β in τα
(i.e., for each neighborhood V of β, {ξ ∈ Dβ : ξ 6∈ V } is finite and
{ξ ∈ Dβ : aβ(ξ) 6⊆ V } is finite), and

(b) if β ∈ Tα ∩ α then for every V ∈ τα with β ∈ V the family

{Uαaβ(ξ) : ξ ∈ Dβ, aβ(ξ) ⊆ V }

is an ω-cover of (β, α] ∩ S1−i.
Let us first show that the theorem implies that the resulting space is

hereditarily Lindelöf, not a D-space, but each of the subspaces S0 and S1 is
a D-space. It clearly follows from IH(1) and IH(2) that the resulting space
is a refinement of a T2 topology, hence it is T2.

To see why each subspace Si is a D-space, without loss of generality,
let us just consider S0. By Lemma 1, it suffices to consider a neighborhood
assignment of the form {Uf(ξ) : ξ ∈ T} where T ⊆ S0 is uncountable and
f : T → [ω1]

<ω is such that the family {f(ξ) : ξ ∈ T} is pairwise disjoint.
And it suffices to find a subset of T closed discrete in S0 whose neighborhoods
cover a tail of S0. So fix such an f and fix a countable elementary submodel
containing everything relevant including f and such that M ∩ ω1 = β and
f�(dom(f) ∩ β) = aβ. Therefore β ∈ Tα for all α ≥ β. The set Dβ given by
the theorem converges to β, and since Dβ ⊆ dom(f) ⊆ S0 and β ∈ S1, it
follows, as our topology is T2, that Dβ is closed discrete in S0. Finally, note
that IH(4)(b) implies that {Uf(ξ) : ξ ∈ Dβ} covers S0 \ β, so by Lemma 1,
S0 is a D-space.

Note that this shows that both S0 and S1 are hereditarily D-spaces, and
indeed since the closed discrete sets witnessing D for neighborhood assign-
ments are always countable, it follows that both S0 and S1 are hereditarily
Lindelöf, so X is hereditarily Lindelöf.

Furthermore, closed discrete subsets of X are countable so IH(3) implies
that X is itself not a D-space.

It remains to prove Theorem 6. We construct the sets {Uβ : β < ω1} by
constructing Uαβ for all β < α < ω1 by recursion on α. Suppose we are at

some stage α and {Uγβ : β < γ < α} has been constructed so that for γ < α
the inductive hypotheses have been preserved. Consider α a limit ordinal.
For each β < α, let

Ũαβ =
⋃

β<γ<α

Uγβ .

And let τα be the topology generated on α as described in the hypotheses
of the theorem.

We let Uαα = α+ 1 and we need to decide for each β < α whether

• Uαβ = Ũαβ , or

• Uαβ = Ũαβ ∪ {α}.
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Let Tα be as in the inductive hypotheses. Assume that Tα ∩ α 6= ∅ (if it
is empty, then the construction is simpler and we leave it to the reader to
check this case). Enumerate as

{(Gn, βn) : n ∈ ω}
all pairs (G, β) where β ∈ Tα ∩ α and G ∈ [α \ β]<ω. For each β < α
let {Vn(β) : n ∈ ω} be a decreasing local neighborhood base at β in the
τα topology. Since each β < α appears infinitely often in the enumeration
{βn : n ∈ ω}, the family {Vn(βn) : βn = β} is a local neighborhood base

at β. Also fix an enumeration {αn : n ∈ ω} of α and let φ̃ denote the function⋃
β<α φβ.

What we do at stage α splits into cases.

Case 1: α ∈ Tα and Cα is closed discrete in the τα topology on α. Fix
M witnessing this and fix f ∈ M such that f�(dom(f) ∩M) = aα. Since
the domain of f is uncountable, it includes an uncountable subset E ∈ M
such that if we let g(η) = f(η)∪ {η} for all η ∈ dom(f) then {g(η) : η ∈ E}
is pairwise disjoint and

• |g(η)| = m for all η ∈ E (for some fixed m ∈ ω), and

• for each η ∈ E, if g(η) = {ξ(η, i) : i < m} then |φ̃(ξ(η, i))| = ki (for
some fixed sequence (ki)i∈m).

Let N = k0 + · · ·+km−1 and let Hξ denote the N -element set
⋃
{φ̃(ξ(η, i)) :

i < m}.
We now construct a sequence {Fn : n ∈ ω} of finite sets as follows.

Consider (G0, β0). Since Cα is closed discrete, let W0 ⊆ V0(β0) be such that
W0 ∩ Cα ⊆ {β0}. Consider now the set {aβ0(ξ) ⊆ W0 : ξ ∈ Dβ0}. By our
IH(4), we know this codes an ω-cover of (β0, α). And M knows this set is
countable. Therefore there is a ξ0 ∈ Dβ0 such that

• G0 ⊆ Ũαaβ0 (ξ0), and

• E′ = {η ∈ E : g(η) ⊆ Ũαaβ0 (ξ0)} is uncountable.

Now we may fix an x ∈ [R]N which is a complete accumulation point of

{Hη : η ∈ E′} and which is disjoint from φ̃(α0). Finally fix a disjoint union
Q0 of N rational intervals of measure < 1 containing and separating the
points of x and disjoint from φ̃(α0) with Q∗0 ∈ W and let

E0 = {η ∈ E′ : g(η) ⊆ φ̃−1(Q∗0)}.
Since x was a complete accumulation point of {Hη : η ∈ E′}, E0 is uncount-
able, and since Q0 ∈M it follows that E0 ∈M .

Let F0 = aβ0(ξ0). Note that G0 ⊆ UF0 and F0 ∩ Cα = ∅ since F0 ⊆ W0.

And also {η : aα(η) ∪ {η} ⊆ ŨαF0
∩ φ̃−1(Q∗0)} ⊇ E0 ∩M so it is infinite.
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Proceeding in this fashion clearly shows that we can construct sequences
(ξi)i<ω, (Ei)i<ω, (Fi)i<ω and (Qi)i<ω so that for each i < ω:

• ξi ∈ Dβi and Fi = aβi(ξi).

• Gi ⊆ ŨαFi and Fi ∩ Cα = ∅.
• Ei ⊆ Ei−1 is uncountable and Ei ∈M .
• Qi is a disjoint union of N rational intervals of measure < 1/i and

Qi ⊆ Qi−1 and φ̃(αi) ∩Qi = ∅.
• Ei ⊆ {η ∈ dom(f) : g(η) ⊆ φ̃−1(Q∗i ) ∩ ŨαFi}.

Note that the intersection of the sets Qi is an N -element subset xα of
R which is disjoint from φ̃(β) for each β < α. So let φα extend φ̃ by letting
φα(α) = xα. Then the range of φα is pairwise disjoint as required in IH(1).

Now choose ηi ∈ Ei for each i and let Dα = {ηi : i ∈ ω}.
For each β ∈

⋃
n Fn let Uαβ = Ũαβ ∪ {α}, and for β ∈ α \

⋃
n Fn let

Uαβ = Ũαβ .

This completes the recursive construction and we need to verify that
the inductive hypotheses IH(1)–(4) are satisfied for α. As noted above, φα
satisfies the requirements of IH(2), and the rest of IH(1) and IH(2) follows
from the construction. IH(3) is satisfied since each Fn ∩ Cα is empty, so
α 6∈ Uαξ for all ξ ∈ Cα. To see that IH(4)(i) holds for α, note first that the
following family is a local neighborhood base at α:{

φ−1α (Q∗n) ∩
⋂
j<n

UαFj : n ∈ ω
}
.

Also note that by construction, for each n and for each i ≥ n we have
ηi ∈ En so that

{ηi} ∪ aα(ηi) ⊆ φ−1α (Q∗i ) ⊆ φ−1α (Q∗n),

and for all j < i we have Ei ⊆ Ej so for all j ≤ n < i we have {ηi}∪aα(ηi) ⊆
UαFj . So {aα(ηi) : i ∈ ω} and Dα both converge to α as required by IH(4)(i).

To verify IH(4)(ii), fix β ∈ Tα ∩ α and fix a neighborhood V of β in the
τα topology. Also, fix G ⊆ (β, α] finite. Fix now n such that Vn(β) ⊆ V and
so that (Gn, βn) = (G ∩ α, β). Then at this stage of the construction we
fixed ξn ∈ Dβn = Dβ so that Fn = aβ(ξn) ⊆ Vn(β) ⊆ V and G ∩ α ⊆ UαFn .
And α ∈ UαFn , so G ⊆ Uαaβ(ξ) for some ξ ∈ Dβ with aβ(ξ) ⊆ V as required.

Case 2: α 6∈ Tα or Cα is not closed discrete. Then the construction is
essentially the same but easier as we do not need to concern ourselves with
whether the Fn are disjoint from Cα (in the case Cα is not closed discrete),
nor do we need to construct the set Dα in the domain of aα in the case
where α 6∈ Tα.
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Remark. We do not know whether the space constructed is dually dis-
crete. A space is dually discrete if for every neighborhood assignment, one
can find a discrete subspace whose assigned neighborhoods cover the whole
space. It was asked in [5] whether every Lindelöf space is dually discrete,
and this question remains open.
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