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Lyapunov quasi-stable trajectories
by

Changming Ding (Xiamen)

Abstract. We introduce the notions of Lyapunov quasi-stability and Zhukovskii
quasi-stability of a trajectory in an impulsive semidynamical system defined in a met-
ric space, which are counterparts of corresponding stabilities in the theory of dynamical
systems. We initiate the study of fundamental properties of those quasi-stable trajectories,
in particular, the structures of their positive limit sets. In fact, we prove that if a trajectory
is asymptotically Lyapunov quasi-stable, then its limit set consists of rest points, and if a
trajectory in a locally compact space is uniformly asymptotically Zhukovskii quasi-stable,
then its limit set is a rest point or a periodic orbit. Also, we present examples to show the
differences between variant quasi-stabilities. Further, some sufficient conditions are given
to guarantee the quasi-stabilities of a prescribed trajectory.

1. Introduction. The theory of impulsive differential equations now
becomes an important area of investigation, since it is a lot richer than the
corresponding theory of differential equations. Moreover, such equations rep-
resent a natural framework for mathematical modeling of many real world
phenomena. For the elementary results in this field, we refer to the books
[1} 14, [18], 21]. The research of impulsive semidynamical systems in a metric
space was started by Kaul [I5], 16 17] and Rozhko [23] 24]. In particu-
lar, Kaul associated to a given impulsive semidynamical system a discrete
semidynamical system defined on the range of the impulsive set under an
impulsive function; thus he established many important results about the
limit sets, recursive properties of orbits and stabilities of closed subsets in
an impulsive semidynamical system. Later, Ciesielski [8, [] proved several
fundamental results for this theory, in fact he applied his section theory of
semidynamical systems (see [7]) to obtain the continuity of some impor-
tant functions associated with impulsive semidynamical systems. Recently,
Bonotto, Federson and their collaborators also published a series of impor-
tant papers on this subject (see [4, [5] and references therein); they developed
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a list of results on impulsive semidynamical systems, which are counterparts
of basic properties of dynamical systems.

In an impulsive system, the stability of closed sets has been well stud-
ied in [4, Bl @, [I7]. However, to our knowledge, the stability of a motion or
a trajectory in impulsive dynamical systems defined in metric spaces has
remained untouched so far. Indeed, no notions of stability for a prescribed
trajectory with an infinite number of impulses have been available. Fortu-
nately, for an impulsive differential equation, Lakshmikantham and Liu [19]
introduced the notion of quasi-stability relative to a given solution of the
impulsive system. Since it deals with variant (or state-dependent) impul-
sive times, such a stability leads to a more complicated mechanism, and the
classical notions are modified in [19] to suit the present circumstances.

Our goal in this paper is to establish the corresponding counterparts of
quasi-stabilities in an impulsive semidynamical system defined in a metric
space. Actually, we introduce the concepts of Lyapunov quasi-stability and
Zhukovskii quasi-stability, and present examples to show their differences.
Several sufficient conditions are given to guarantee those quasi-stabilities
of a prescribed trajectory. Next, we investigate the structure of a positive
limit set for a trajectory with some quasi-stability. In particular, we prove
that if a trajectory is asymptotically Lyapunov quasi-stable, then its limit
set consists of rest points, and if a trajectory in a locally compact space is
uniformly asymptotically Zhukovskil quasi-stable, then its limit set is a rest
point or a periodic orbit.

2. Definitions and notations. Throughout the paper, let X = (X, d)
be a metric space with metric d. For A C X, A and OA denote the closure and
boundary of A, respectively. Let B(z,0) = {y € X : d(z,y) < §} be the open
ball with center z and radius 6 > 0, and B(z,8) = {y € X : d(z,y) < 0}
the closed ball. In addition, for A C X and r > 0, the r-neighborhood of A
is denoted by N(A,r) ={z € X : d(z, A) < r}, where d(z, A) = inf{d(z,p) :
p € A}. With no confusion, we also use d for the distance between a point
and a set. Let RT™ and Z™ be the sets of nonnegative real numbers and
nonnegative integers, respectively.

A semidynamical system (or semiflow) on X is a triple (X, 7, R™"), where
7 is a continuous mapping from X x RT onto X satisfying the following
axioms:

(1) w(x,0) = z for each z € X,
(2) n(m(z,t),s) = m(x,t + ) for each z € X and t, s € RT.
Replacing R by R, we get the definition of a dynamical system (or flow).

In this paper, we sometimes denote a semidynamical system (X, 7, R*") by
(X, m). For brevity, we write x -t = w(x,t), and also let A-J = {z -t :
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r€ A te J}for AC X and J C R*. If either A or J is a singleton, i.e.,
A = {z} or J = {t}, then we simply write x - J and A -t for {z} - J and
A - {t}, respectively. For any = € X, the function 7, : RT™ — X defined by
7, (t) = w(x, t) is clearly continuous, and we call it the trajectory (or motion)
through . The set z-R™ is said to be the positive orbit of z, and sometimes
denoted by C*(z). The closure of C*(x) in X is denoted by K+ (z). For the
elementary properties of dynamical systems and semidynamical systems, we
refer to [2] 3] 22].

Let M be a nonempty closed subset in X and 2 = X\M. Let I : M — {2
be a continuous function and I(M) = N. If x € M, we shall denote I(x)
by T and say that x jumps to ™. Moreover, I and M are said to be an
impulsive function and an impulsive set, respectively. For each = € (2, by
M™(x) we mean the set x - Rt N M. We can define a function ¢ : 2 —
R* U {400} (the space of extended positive reals) by

o(2) s ifrx-seMandz-t¢ M forte|0,s),
xTr) =
+oo if MT(z) =0.

Generally, ¢ is not continuous. However, its continuity on {2 is crucial for

the analysis of dynamics. Fortunately, some easy conditions given by Ciesiel-
ski [8] guarantee the continuity of ¢.

ASSUMPTION 1. Throughout the paper, ¢ is a continuous function on 2.

Following Kaul [17], we now define an impulsive semidynamical system
(2, 7,R"; M, I) by portraying the trajectory of each point in 2. The im-
pulsive trajectory of x € (2 is an (2-valued function 7, defined on a subset
of RY. If M*(z) = 0, then ¢(x) = +oo, and we set 7,(t) = x -t for all
t € RY.If M (x) # 0, it is easy to see that there is a positive number ¢
such that - tg =21 € M and z -t € M for 0 <t < ty. Thus, we define 7,
on [0,to] by

z-t, 01t <tg,
i =]

v, t=to.
where ¢(x) = tg and z{ = I(x1) € (2.

Since ty < 400, we continue the process by starting with xf Similarly,
it MY (z]) = 0, ie., ¢(x]) = +oo, we define 7,(t) = xf - (t — to) for
to < t < 4+o0o. Otherwise, let gZ)(xf) = t; and xf -t1 = 29 € M; then we
define 7, (t) on [tg,to + t1] by

5 i (t—to), to<t<to+t,
T(t) =9
Lo, t=to+1,
where x§ = I(z2).
Thus, continuing inductively, the process above either ends after a finite
number of steps, whenever M (z;7) = () for some n, or it continues indef-
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initely, if Mt (z}) # 0 for n = 1,2,..., and 7, is defined on the interval
[0, T(x)), where T'(x) = >_;2ti. We call {t;} the impulsive intervals of 7,
and call {t" =>"" jt; :n=0,1,2,...} the impulsive times of . Obviously,
this gives rise to either a finite or an infinite number of jumps at points {xz,}
for the trajectory 7. Having the trajectory 7, for every point = in {2, we
let 7(x,t) = T,(t) for x € 2 and t € [0,T(z)), and obtain a discontinuous
system (2, m,R*; M, I), or (2,7), with the following properties:

(i) 7(z,0) =z for z € 12,
(i) 7(7(z,t),s) = w(x,t +s) for x € 2 and ¢, s € [0,T(x)) such that
t+s € [0,T(x).

We call (2,7, RT; M, I), or (2, %) with 7 as defined above, the impulsive
semidynamical system associated with (X, 7). For simplicity of exposition,
in the remainder of this paper we denote the trajectory 7 (z,t) by x * t.
Thus, (i) reads (z xt) x s = z % (t + s). Given z € 2, if M+ (z) = 0, the
trajectory 7, is continuous; otherwise, it has discontinuities at a finite or an
infinite number of its impulsive points {7 }. At any such point, however, 7,
is continuous from the right.

From the point of view of impulsive semidynamical systems, the trajec-
tories of interest are those with an infinite number of discontinuities and
with [0, +00) as the interval of definition (see [15} [18]). We call them infinite
trajectories. In this paper, we do not deal with the Zeno orbits, i.e. orbits
that involve infinitely many resettings in finite time (see [14, Chap. 2]).
Hence, from now on we assume T'(x) = +oo for each x € 2. Under a suit-
able condition about M (see [8, [15]), we can similarly define an impulsive
semidynamical system (X,7) on X, which admits ({2,7) as a subsystem.
With a mild modification, our results on (§2,7) can be applied to (X, 7).

Now, we introduce some concepts that will be used in what follows; they
were defined by Kaul in [15] [17].

DEFINITION 2.1 ([I7]). A subset S of (2 is said to be positively invariant
if x« RT C S for any x € S, and it is said to be invariant if it is positively
invariant and furthermore, given x € S and t € RT, there exists a y € S
such that y xt = .

DEFINITION 2.2 ([I5]). A point = in {2 is a rest point if © xt = x for
every t € RT. An orbit x * R is said to be periodic of period 7 and order
k if z * RT has k components and 7 is the least positive number such that
T*T =1

Clearly, a periodic orbit of (£2,7) is an invariant closed set in {2, and it
is not connected as long as k # 1. A point = € {2 is a rest point of (2,7)
if and only if it is a rest point of (X, ). If a point z is not a rest point, we
call it a regular point.
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DEFINITION 2.3. A nonempty set S is positively minimal provided S
is a closed, positively invariant set and whenever Z is a closed, nonempty,
positively invariant subset of S, then Z = S.

DEFINITION 2.4. Let & € 2. The omega (or positive) limit set &(x) of x
in (£2,7) is defined by @(z) ={y € 2 : x xt,, — y for some t,, - +o0}.

Equivalently, @(z) = limsup,_,  {z; - [0,¢(z;))}. Thus, it is easy to
see that @(z) is closed and positively invariant. Of course, it may not be
invariant.

DEFINITION 2.5. Let x € (2. The (positive) prolongational limit set J(x)
of z in (£2,7) is defined by J(z) = {y € 2 : z, * t, — y for some x,, — =
and t, — +oo}.

Let 20 = {zx €2 : ¢(x) <+o0}. Then there exists a function ¢ : 25 — N,
defined by p(z) = z * ¢(z) for any z € (2. Since ¢ is continuous on (2, so is
@ on §2. Let N = {z € N : 7, is an infinite impulsive trajectory}; clearly
N C {2 N N. Now, given any z € N and 2, = z - ¢(z) € M, we define
g: N = N by g(z) = ¢(x) = I(z1) = «; consequently, g is continuous
on N. As usual, we set ¢° = identity, ¢g* = ¢ and define g" inductively for
n > 1. Thus, we obtain a discrete semidynamical system (N ,9,Z7"), where
glz,n) = g"x) = x. (N,g,Z") or simply (N,g) is called the discrete
semidynamical system assoczated with the given impulsive system (£2,7).
For a point # € N, the dynamics of {g"(x)} in (N,g) is closely related to
that of 7, in (Q,fr) (see [15] [16] 17]).

3. Quasi-stabilities. In the theory of dynamical systems, continuous
dependence on initial conditions is a fundamental property (see [22] p. 327]).
This is also true for ¢ > 0 in semidynamical systems. Consider a semidynam-
ical system (X, 7). For a point x in X, given a positive number 7" and an
€ > 0, thereisa d = d(x, €, T) > 0such that if d(z,y) < J, then d(z-t,y-t) < €
for all t € [0,T7]. Clearly, this is an immediate consequence of the continuity
of . In this paper, we call it the CD property of a semidynamical system, for
brevity. If §(z,€,T) > 0 can be chosen independent of T', then the CD prop-
erty implies the classical Lyapunov stability of the trajectory m, for ¢ > 0.
Hence, Lyapunov stability of a trajectory can be interpreted as continuous
dependence of trajectories uniformly in ¢ for all ¢ > 0. Of course, the CD
property does not hold for our impulsive semidynamical system ({2, 7). To
remedy this, for impulsive semidynamical systems in R", in [6] the authors
presented a notion of quasi-continuous dependence: For every xg € ® C R",
there exists J,, C [0,400) such that [0,400) \ J, is (finite or infinite)
countable and for every € > 0, t € J,,, there exists d(e, zp,t) > 0 such that
if ||xo — yl| < d(e,x0,1), y € D, then ||zg*t — y * t|| < e. Similarly, if the
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quasi-continuous dependence holds uniformly in ¢ for all ¢ > 0 and not in
any n-neighborhood of [0, 400) \ Jz,, then it also leads to a quasi-stability.
Such a quasi-stability was established in [I8] p. 103] for impulsive differential
equations.

Now, we define the quasi-stability for an impulsive semidynamical system
defined in a metric space.

DEFINITION 3.1. For an impulsive semidynamical system ({2,7), the
trajectory 7, (or orbit x * RT) of a point & € 2 is Lyapunov quasi-stable
provided that given any € > 0 and 7 > 0, there is a § = d(x,€,17) > 0 such
that if d(z,y) < 0, then d(z xt,y xt) < € for all t > 0 and |t — t*| > n,
where {t* : kK =0,1,2,...} are impulsive times of 7,. The trajectory 7, (or
orbit zxR™) is asymptotically Lyapunov quasi-stable provided it is Lyapunov
quasi-stable and for any 1 > 0, there exists a A > 0 such that if d(z,y) < A,
then d(z xt,y*t) (t & ULS[tF —n,t* +n)) goes to zero as t goes to infinity.

Clearly, the notion defined above is a generalization of the classical Lya-
punov stability. Since the impulsive times of an orbit differ from those of
near orbits, the isochronous correspondence between orbits does not hold in
an impulsive semidynamical system. So, for a Lyapunov quasi-stable orbit,
the times involved and the impulsive times are at a distance at least 7 apart.

In the mathematical and physical literature, Zhukovskii stability (see
[10, 1], 20]) is also an important concept in the theory of stability, which
permits a time lag. Hence, it may be more suitable for impulsive semidy-
namical systems. To introduce this concept, we first recall the notion of time
reparametrization.

DEFINITION 3.2. A time reparametrization is a homeomorphism h from
R* onto RT with ~(0) = 0. Further, for a o > 0, by a time o-reparametriza-
tion we mean a homeomorphism 7 from R to R* with 7(0) = 0 such that
|7(t) —t| < o for all t > 0.

QUASI-CONTINUOUS DEPENDENCE. For an impulsive semidynamical
system (£2,7), let x € §2. Given ¢ > 0, 0 > 0, and a positive number
T, there exists a 6 = 0(x,€e,0,7T) > 0 such that if d(z,y) < 6, then one can
find a o-reparametrization T, such that d(zxt,y*7,(t)) < € for allt € [0,T].

It is easy to see that quasi-continuous dependence is a generalization of
the standard continuous dependence from semidynamical systems to impul-
sive semidynamical systems. Actually, by letting o = 0, the quasi-continuous
dependence specializes to the classical continuous dependence on initial con-
ditions. In what follows, we sometimes abbreviate quasi-continuous depen-
dence to the QCD property. In [12], it is proved that the QCD property
is equivalent to the continuity of ¢. Similarly, in the QCD property, if
0(x,e,0,T) > 0 can be chosen independent of 7, then the QCD property
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implies a certain stability of a trajectory 7, in the system ({2, 7), which is
defined as follows.

DEFINITION 3.3. The trajectory 7, (or orbit z*R™) of a point x in §2 is
Zhukouvskii quasi-stable provided that given any € > 0, there is a 6 = §(x, €)
> 0 such that if d(z,y) < ¢, then one can find a time reparametrization
7y such that d(x * ¢,y * 7,(t)) < € for all ¢ > 0. Moreover, if there exists a
A > 0 such that if d(z,y) < A, then d(z *t,p * 7,(t)) — 0 as t — 400, then
the trajectory 7, (or orbit x * RT) is said to be asymptotically Zhukovskii
quasi-stable.

In Definition 3.3, let £ = 7,(t) and h(f) = 7, ' (£) = t; then it follows that
d(x*t,y*7y(t)) = d(z = h(t),y*t). Thus, we get an equivalent formulation:
a trajectory 7, is Zhukovskii quasi-stable provided that given any € > 0,
there is a 0 = 0(z,€) > 0 such that if d(z,y) < 6, then one can find a time
reparametrization 7, such that d(x 7, (t),y *t) < e for all t > 0.

Since we are just interested in infinite trajectories, in order to avoid
singularities, we only deal with infinite trajectories whose close trajectories
are also infinite trajectories. Clearly, a boundary point of N in N is not
Lyapunov quasi-stable or Zhukovskii quasi-stable. Thus, to ensure that close
trajectories of an infinite trajectory are also infinite, we need a suitable
topological position of N in (2. Fortunately, a simple and useful condition is
presented in [8, [I5], which is called the (T'C) condition (see [§]) or that N is
well placed in 2 (see [15]). Instead of introducing that condition, we apply
a concrete assumption. Actually, in the remainder of this paper, we always
suppose the following:

ASSUMPTION II. For an interior point p ofN in the subspace N, there
exists a small ball B(p,0) (& > 0) in 2 such that if ¢ € B(p,9), thenq-t € N
for a t = t(q) > 0 or there exists a point z € N such that q=z-T fora
T=1(q) > 0.

Let Int N be the interior of N in N. It is easy to see that under As-
sumption II, for a point = € IntN, stabilities of 7, defined as above are
equivalent to restricted stabilities on N , e.g., T is Zhukovskii quasi-stable
if and only if given any e > 0, there is a 6 = d(x,e) > 0 such that if
y € B(x,6) NN, then d(z * t,y * Ty(t)) < € for all ¢ > 0, where 7,(t) is a
time reparametrization. Similarly, one can define the restricted Lyapunov
quasi-stability on N. Thus, in the following, we only consider the restricted
quasi-stabilities on N. Of course, if x € N is a boundary point of N in N,
then 7, is not Lyapunov quasi-stable or Zhukovskii quasi-stable, since in
every neighborhood of it there exists a trajectory with no impulses or only
a finite number of impulses.



146 C. M. Ding

Clearly, Lyapunov quasi-stability is more restrictive, since it is an almost
isochronous correspondence of orbits. However, Zhukovskii quasi-stability
implies that close orbits should also be close in the phase space and trace
each other with a time lag. Of course, this is a kind of phase stability. In a
semidynamical system, Lyapunov stability implies Zhukovskii stability (see
[10, 20]). However, for (§2,7), we present two examples to show that neither
of the quasi-stabilities implies the other.

ExAMPLE 1. We give an example with a Lyapunov quasi-stable orbit
which is not Zhukovskii quasi-stable. Let X = {(x,y) € R? : y > 0} with a
dynamical system (X, 7) defined by the differential equation

2+ 1
P = ., y=0. 3.1
! y+1 Y (3.1)
Let
M = R? : 0,y=———1 N ={(0 R?: 0}.
{enertiosoy- 21}, N-(0neRiy>0)

For 2 = X\ M, we define I : M — N C {2 by I(z,y) = (0,y/2) € N for
(x,y) € M. Thus, we get an impulsive semidynamical system (§2, 7, R™; M, I).
It is easy to see that N = N, i.e., each trajectory through a point in N is
infinite. We assert that the trajectory 7, through p = (0,1) is Lyapunov
quasi-stable, but not Zhukovskii quasi-stable. By a simple computation,
it is easy to see ¢|y = m/2, i.e., for each point in N it takes the time
/2 to reach M. So, all the points in N go isochronously to the impul-
sive set M, and simultaneously jump back to N. Given an n > 0, since
/2 — (y+ 1)arctanz < 7/2 — arctanx for y > 0, there exists a K = K(n)
such that for x > K, w/2—(y+1) arctan x < 7. Clearly, there exists a positive
integer ng such that for n > ngy, each p;‘l‘ reaches M at pp11 = (Tp41,27")
with 2,41 > K. Note that the impulsive times of 7, are {mi/2 :i > 1}. For
large t, |t — t'| > n implies that p * ¢ lies in the region {(x,y) € 2:0 < x
< K}, where t* is an impulsive time of 7p- Thus, by the QCD property of 7,
it is easy to see that 7, is Lyapunov quasi-stable.

Now, let ¢ = (0,1 + ¢) be a point close to p; then g, 1 = (27,4,
27"(146)). It is not difficult to see that

x x! = tan — 2" tanﬁi
nAL T Al T Y Y on gy 22+ 146
; T 2§ w (14t T 2" t T A
=tan — an — an — —————
2 (2" +1)(1+0+27) 22" +1 22"+ 146
20
~— x 2" — — :
77(1+5)X +oo  (n— +00)

So, we have d(pn+1,@n+1) — +00 as n — +oo. It follows that 7, is not
Zhukovskii quasi-stable.
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ExaMpLE 2. Consider the planar differential system
=0, y=—=x, (3.2)

which defines a dynamical system in X = {(z,y) € R? : o > 0}. Let
M = {(z,0) : > 0} and N = {(z,1) : © > 0}; then define I : M — 2 by
I(z,0) = (z/2,1) € N for (z,0) € M, where {2 = X \ M. Thus, we get an
impulsive semidynamical system (2,7, R"; M, I). Clearly, each trajectory
through a point in N = N is infinite. Let p = (1,1). It is easy to see that 7,
is Zhukovskil quasi-stable, since a time reparametrization 7, (¢ close to p)
can be obtained so that 7, maps the impulsive times of 7, to the impulsive
times of 7.

Now, we prove that 7, is not Lyapunov quasi-stable. By a simple compu-
tation, the impulsive times of 7, are t™ = > 20 (n=0,1,2,...). Similarly,
for a point ¢ = (z,1) close to p, the infinite trajectory 7, has impulsive
times 7" = Y. ,2'/z (n = 0,1,2,...). Thus, although |z — 1| is small,
t" — 1" = (2"*! — 1)(z — 1)/z is unbounded as n — +oo. That is, the dif-
ference of the nth impulsive times for those two trajectories is unbounded.
Hence, an almost isochronous correspondence of orbits is impossible, i.e., 7,
is not Lyapunov quasi-stable.

According to the above examples, in order to get the quasi-stabilities, it
is reasonable to assume that the impulsive function I is nonexpansive and
the flow 7 restricted on N is nonexpansive. Further, for Lyapunov quasi-
stability, the difference of impulsive times should be bounded for close orbits.
Therefore, we introduce the following hypotheses.

(Hy) For any points p, q in M we have d(p™,q") < Md(p,q), where X\
1S a positive constant.

(Hz2) For any points p, q in N we have d(p1,q1) < Aad(p, q), where A2 is
a positive constant.

(Hs3) For any points p, q in N we have |¢(p] ) —¢(q1)| < Aslo(p) —o(q)],
where Az € (0,1) is a constant.

THEOREM 3.4. Assume that Hy and Hz hold with MA2 < 1. IfN 18
compact, then for each x € Int N the infinite trajectory 7, is Zhukovskii
quasi-stable.

Proof. Since N is compact, ¢ is bounded on N, say ¢(z) € [m~,m™] for
all z € N, where m~ and m™" are positive real numbers. Fix e > 0. Notice
that 7 is uniformly continuous on N x [0, m*]; it follows that there exists a
positive number 1 = 7(e) such that for any p, ¢ in N and ¢, 5 € [0, mT], if
max{d(p, q), [t1 —ta|} <, then d(p-t1,q-t2) < e. Clearly, ¢ is also uniformly
continuous on N: there is a § € (0,7) such that for p, ¢ in N, if d(p,q) <9,

then [¢(p) — d(q)] <.
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Now, for each z € Int N, if y € N and d(z,y) < 0, then |p(x)—d(y)| < .
By (Hi), (H2) and A\; A2 <1, we obtain d(z],y;") <d. Thus, |¢(z]) — ¢ (y])|
< 7. By induction, we have d(z},y;) < § and |¢(x]) — é(y;")| < n for
i=1,2,....Let {t; :i=0,1,...} and {7; : i = 0,1,...} be the impulsive
intervals of 7, and 7, respectively. For n > 0, we denote their impulsive
times by t" = Y (t; and 7" = Y ' (7;. A time reparametrization 7, :
[0, +00) — [0,+00) can be defined as follows. First, let 7,(0) = 0 and for
n >0, let 7, (t") = 7. Next, for n > 0 and t € (t"~1,¢"), define
Tn n—1
!
where t~! = 771 = 0. Clearly, 7, is a homeomorphism from [0,+00) to
[0, +00) with 7,(0) = 0, i.e., it is a time reparametrization.

Now, we assert that d(z*t,y*7,(t)) < € for t > 0. In fact, if ¢ € [t"~1,¢"]
(n > 1), we have

d(z*t,y*x7y(t)) = d(:pj{ =Yyt %n(t _ tn—1)>'

Ty(t) = A

Since d(z;},y;") < & and

n

gl Z—”(t _ g1

n

< tn = Tl = (@) — &(yn)| <,

we have d(z *t,y * 7,(t)) < €. Hence, 7, is Zhukovskii quasi-stable. m

THEOREM 3.5. Assume that (Hy)-(Hs) are all true, and Ay < 1. IfN
is compact, then for each x € Int N the infinite trajectory 7, is Lyapunov
quasi-stable.

Proof. Let m* = max{¢(z) : = € N}. Let ¢ > 0 and 5 > 0 be given.
Since 7 is uniformly continuous on N x [0, mt], there exists a positive number
61 such that for any p, ¢ in N and ¢, ts € [0, m™], if max{d(p,q), [t1 — ta|}
< 01, then d(p - t1,q - t2) < €. Now, for each = € Int N, thereis a d € (0,41)
such that if y € N and d(z,y) < 8, then |¢(z) — ¢(y)| < (1 — A3) min{n, &; }.
By induction, it follows from (H;) and (Hs) that d(x],y;") < 6 for i > 1.
Let {t;:i=0,1,...}and {r; : ¢ =0,1,...} be the impulsive intervals of 7
and T, respectively. For n > 0, we denote t" = """ (t; and 7" = > 1" | 7,
which are impulsive times of 7, and 7,. Then, by (Hgs), we have

n
o= = - )
=0

< min{n, d }.

< Y- Nlo0) — 60)] < 15 160) — 6|
=0

Thus, for each t € RT, if [t — | > n, ie., t € [tF1 4+ n,t¥ — y] for some
k>0, then t € (7F=1,7F).
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Now, we assert that d(x xt,y xt) < € for [t —t"| > n. In fact, if ¢ €
[tF=1 + n,tF — ] for some k > 0, then z ¢ = z;} - (t — t*71), and also
yxt =yl - (t—7F1). Since d(z},y) <6 < & and [t —tF~1 — (t—7F71)| <
[th=1 — 7k=1| < 41, it follows that

Aoty ) = d(af - (= 170,y (=771 < e

Hence, 7, is Lyapunov quasi-stable. u

4. Limit sets. In this section, our goal is to investigate the structure
of the limit sets for infinite trajectories. Let z € (2, and suppose 7, is an
infinite trajectory. We prove that the limit set @(x) of an asymptotically
Lyapunov quasi-stable orbit x * R™ consists of rest points. Further, if {2 is
locally compact, then the limit set of a uniformly asymptotically Zhukovskii
quasi-stable orbit (see Definition 4.3) is a rest point or a periodic orbit.

THEOREM 4.1. If a trajectory 7, (z € £2) is asymptotically Lyapunov
quasi-stable and its omega limit set &(x) is nonempty, then w(x) consists of
rest points.

Proof. Let ¢ € w(x). For ¢ € 2, we have ¢(q) > 0, so denote p =
q - (2s), where s > 0 and 4s < ¢(q). Clearly, ¢ is a rest point if and only
if for each small positive s, p is a rest point. Since the boundary of (2
lies in M, analogously to the proof of Lemma 2.6 in [I7] it is easy to see
that w(z) is positively invariant, and it follows that p € @(x). Thus, there
exists a sequence {t,} in R", ¢, — +o0, such that = x ¢, — p. Since 7,
is asymptotically Lyapunov quasi-stable, there exists a 6 > 0 such that if
d(z,y) < d, then for t & U,jif)[m — 8,7+ 8|, d(x xt,yxt) — 0 as t — 400,
where {7 : kK =0,1,...} are the impulsive times of 7.

Moreover, assume that 0 is so small that B(z,d) C (2. By the continuity
of 7, choose a A € (0, s) such that for any 7 € [0, A], we have xx7 = x-7 € 2
and d(z,z-7) < J. Note that x xt, — p and ¢(p) > 2s. From the continuity
of ¢ it follows that for large n, we have |t, — 7| > s (k = 0,1,...). Then
d(x * ty, (x - 7)*ty,) = 0 as t, — +oo. Letting =, = = * t,,, also from the
continuity of , it follows that z,, -7 — p -7, i.e.,, x % (t, + 7) = p- 7. Thus,

dip,p-7) <d(p,x*ty) +d(xxty,x*(ty,+7))+dx*(ty,+7),p-7) =0

as t, — +00. We have p = p - 7 for any 7 € [0, A], which of course implies
that p is a rest point (see the proof of [3| Ch. 2, Th. 2.2]); hence ¢ is also a
rest point. =

THEOREM 4.2. If a trajectory 7, (x € {2) is Zhukovskii quasi-stable,
then @(z) = J(x).

Proof. Clearly, @(x) C J(z). Tt is sufficient to show J(z) C @(z). Let
y € J(z) C 2. Then there exist a sequence {t,}°°; in RT and a sequence
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{zp}>2, in 2 such that z, — =z, t, — +oo and x, xt, — y. Now, given
any € > 0, there exists a 6 = d(x,e) > 0 such that for each p € B(z,0),
one can find a time reparametrization 7, satisfying d(z * 7,(¢),p * t) < €
for t > 0. We select a K > 0 such that if n > K, then d(x,z,) < ¢ and
d(xy, * tn,y) < e. Further, it follows that d(x * 7, (t), zn, xt) < € for n > K
and t > 0, where the time reparametrizations 7, are defined similarly to 7,.
Thus, we obtain

d(x 7y, (tn),y) < d(x* 70, (tn), Tn * tn) + d(Tp * t,y) < 2¢ forn > K,
where 7, (t,) = +00 as t, — +o00. This implies that y € ©(z). m

DEFINITION 4.3. The trajectory 7, (or orbit z * R*) of a point z in 2
is uniformly asymptotically Zhukovskii quasi-stable provided that given any
€ > 0, there exists a § > 0 such that for each s > 0 and y € B(x * s,0) N £2,
one can find a time reparametrization 7, such that d(x* (s+1t),y*7,(t)) < €
for all ¢ > 0, and also d(z * (s +t),y * 7,(t)) — 0 as t = +o0.

Geometrically, the orbit y * R* will stay in the tubes whose center lines
are segments of z*R™ with different time scales, and these tubes are getting
thinner and thinner as time tends to infinity.

LEMMA 4.4. If the trajectory T, of a point x € {2 is uniformly asymp-
totically Zhukovskii quasi-stable with @ # 0, then its omega limit set &(x) is
positively minimal.

Proof. Otherwise, w(z) has a proper closed positively invariant subset
A C &(z) with A # (). Choose p € @(z)\ 4; then A = d(p, A) > 0. Now for a
sufficiently large s, we can find g € A satisfying d(z x s, q) < 0, where § is as
in Definition 4.3. Also, there exists a sequence t; > s such that ¢; — 400 and
x*t; — p. Since A is positively invariant, so gxR* C A. However, for large ¢;
we have d(z*t;,p) < M\/2, s0 d(x*t;,qxR") > d(p, A) —d(zxt;,p) > \/2 for
large t;. This is a contradiction, since d(z * s,q) < ¢ and by Definition 4.3,
d(z*(s+1t),qx14(t)) = 0 as t — 400, where 7, is a time reparametrization.
Thus, @(z) is positively minimal. m

COROLLARY 4.5. Assume that 7, is uniformly asymptotically Zhukovskii
quasi-stable. If there exists a rest point p in &(z), then @(x) = {p}. Also, if
there is a periodic orbit v in @(x), then w(zx) = 7.

Proof. Since both a rest point and a periodic orbit are positively invari-

ant closed sets, the results follow from Lemma 4.4. u

For two subsets A, B in X and 6 > 0, A is said to be §-apart from B
if d(A, B) = inf{d(a,b) : a € A and b € B} > 6. From the proof of Lemma
4.4, it is easy to deduce:
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COROLLARY 4.6. Any nonempty positively invariant closed set A must
be d-apart from a uniformly asymptotically Zhukovskit quasi-stable orbit
zxRT if Anw(x) =0, where 6 is as in Definition 4.3.

In order to get our next result, we recall the notion of a section in a
semidynamical system, introduced by Ciesielski [7]. Consider a semidynam-
ical system (X, 7). For z € X, t > 0, we define F(z,t) ={y:y-t =z} and
for AC X, JCRT, let F(A,J) = J{F(x,t) :z € Aand t € J}. A closed
set S containing a point z is called a section or a A-section through z, with
A > 0, if there exists a closed set L in X such that

(a) F(L,A) = 5;
(b) F(L,[0,2)]) is a neighborhood of x;
(¢) F(Lyp)NF(L,v)=0for 0 < pu<v <2\

The set F(L,[0,2)]) is called a tube or a A-tube, and the set L is called
a bar. In [7], Ciesielski proved the following tubular theorem, which is a
fundamental result in semidynamical systems with many applications.

LEMMA 4.7. If x € {2 is a regular point, then there exists a section
through x.

Note that if S is a A-section through x with a bar L and 0 < g < A, then
S is also a p-section with the bar F/(L, A — p) (see [7, Lemma 1.9]). Further,
we have the following result.

LEMMA 4.8. Let F(L,[0,2\]) be a tube with a bar L. Then, for each
point p in the tube, there exists a unique t = t(p) € [0,2\] such that p - t(p)
belongs to L. Further, if L is compact, the function p — t(p) is continuous
on the tube F(L,[0,2)]).

Proof. Let p € F(L,t)C F(L,[0,2X]) for a t=t(p) € [0,2)], i.e,, p-t€ L.
The uniqueness of t = t(p) € [0, 2] follows immediately from condition (c)
in the definition of section. Now, let L be compact and suppose a sequence
{pn} in F(L,[0,2)\]) tends to a point p in this tube. Since {p, - t(pn)} lies
in the compact set L, we can assume that p,, - t(p,) is convergent to ¢ € L.
Also, for t(p,) € [0,2)], we suppose that t(p,) — 7 € [0,2)]. Hence, by the
continuity of 7, we have ¢ = p - 7. From the uniqueness of ¢(g), it follows
that t(p) = 7, i.e., t(pn) — t(p). Thus, the function p — ¢(p) is continuous
on the tube. =

Finally, we also need the following fixed point theorem.

LeEmMMA 4.9 ([I3, p. 414]). Let X be a Hausdorff topological space and
H : X — X be continuous. If for each open covering {Wy} of X there is at
least one x € X such that both x and H(x) belong to a common W, then
H has a fixed point.
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THEOREM 4.10. Assume that §2 is locally compact. If an orbit x x R is
uniformly asymptotically Zhukovskii quasi-stable with & # 0, then &(z) is a
rest point or a periodic orbit.

Proof. Clearly, if @(x) is a singleton, then it is a rest point. Assume
that @(x) is not a singleton; we shall show that &(z) is a periodic orbit.
Choose a point ¢ € @(z); it is a regular point by Corollary 4.5. We take an
s € (0,¢(q)/2) with g -[0,2s] C 2, and let p = g - s € @(x). Since @(x) is
positively minimal, ¢ * RT is a periodic orbit of (£2,7) if and only if p * RT
is a periodic orbit.

Now, let a sequence {t;}?2, C RT be such that ¢t; — +oo and z xt; — p.
Pick ¢ as in Definition 4.3 such that B(p,2d) C 2. Thus, there is a positive
o (o < d) such that B(p,0) C B(x * ty,d) for some t; € {t;}2,. From the
local compactness of {2, we may also suppose that B(p, o) is compact. Since
p is a regular point, by Lemma 4.7, there is a tube F(L,[0,2\]) C B(p, o)
with a section S = F(L, \) through p and a bar L. Since F(L,[0,2)]) is a
neighborhood of p, there exists a p > 0 such that B(p,2p) C F(L,[0,2)]).
Also, note that L is compact, because it is closed. Then, from Lemma 4.8,
it follows that for each y € F(L,[0,2)]), the positive orbit of y reaches L in
the tube at a unique ¢ = 9 (y), where the function y + (y) is continuous
on F(L,[0,2)]). As L C B(x * tx, ), it follows from Definition 4.3 that for
each y € L there is a T'(y) > 0 such that d(x * (t + t),y * 7,(t)) < p for
t > T(y), where 7,(t) is a time reparametrization. We will show that, by
using the compactness of L and quasi-continuous dependence of 7, one can
find a positive real number T < 400 such that

d(z* (t+tg),y*x1y(t)) <p forallye Landt>T.

In fact, for p > 0, according to Definition 4.3 there exists a ¢’ > 0 such
that if s > t; and y € B(x % 5,0') N 2, then d(x * (s + ),y * 7y(t)) < p
for all ¢ > 0, where 7, is a time reparametrization. Since for each y € L
we have d(x * (t + t),y * 7,(t)) — 0, there exists an s, > t; such that
d(z * sy,y * (1y(sy — tr))) < ¢'. Thus, by the QCD property of 7, there
is a neighborhood Vj, of y in L such that d(z * sy,y" * (1 (sy — t))) < ¢’
for y € V. Since L is compact, let {V,,,...,V,.} cover L. Define T =
max{sy,,...,sy;} < 400; thus d(z * (t +t),y * 7,(t)) < p for each y € L
and t > T.

Fix a t; > t; and t; — tx > T with d(z * t;,p) < p. Now, we define a
Poincaré map H : L — L as follows. For y € L, we have d(z * (t + tx),
y* 1y(t)) < p for t > T, which implies

d(p,y x7y(ti — tg)) < d(p,x 1) +d(z*t,y* 7y(t — t)) < p+p=2p.

Clearly, this means that y x 7,(t; — tx) € B(p,2p) C F(L,[0,2)]), so we
obtain y* (7, (t; — tx) + ¥ (y)) € L for some 1(y) € [0,2)]. We define H(y) =
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y * (1y(t; — tx) + ¢ (y)). The continuity of H comes from the continuity of
Ty, ¥ and the quasi-continuous dependence of 7. It is easy to see that H
may not be the first return map.

Next, if {W,} is an open covering of L for its subspace topology from {2,
let z=p-¢(p) € Wg=LNU € {W,}, where U is an open set in {2. Let
> 0 be so small that B(z,2u) C U. By the continuity of 7, we can choose
an 1 € (0, p) such that y-¢(y) lies in LN B(z, n) C Wp for each y € B(p,r).
Clearly, there exists a Ty > t; such that x x t; € B(p,r) for every t; > Tj.
Then, by Definition 4.3, we assert that d(H™(z), (z * t;) * ¢¥(z x t;)) < u for
n > K and some t; > Ty > T}, where H"(z) is the nth iterate of z. Hence,

d(HE (2),2) < d(HE (2), (2 % tm) * V(@ * tm)) + d((x % t) % h(z * 1), 2)
<p4p=2u
for some t,, > T», and similarly
A(HETY(2), 2) < d(HET(2), (@ % ty) % p(z x ) + d((z * ) * (% ty), 2)
<p+p=2u

for some ¢, > Ty. It follows that both HX*1(z) and H¥ () lie in B(z,2pu).
So, H(HX (%)) and HE(2) belong to Wg. By Lemma 4.9, H : L — L has
a fixed point w in L. Obviously, w * R is a periodic orbit. Then, from
Corollaries 4.5 and 4.6, we immediately obtain @(p) = w x R*, which is
just O(x). =
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