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Lyapunov quasi-stable trajectories

by

Changming Ding (Xiamen)

Abstract. We introduce the notions of Lyapunov quasi-stability and Zhukovskĭı
quasi-stability of a trajectory in an impulsive semidynamical system defined in a met-
ric space, which are counterparts of corresponding stabilities in the theory of dynamical
systems. We initiate the study of fundamental properties of those quasi-stable trajectories,
in particular, the structures of their positive limit sets. In fact, we prove that if a trajectory
is asymptotically Lyapunov quasi-stable, then its limit set consists of rest points, and if a
trajectory in a locally compact space is uniformly asymptotically Zhukovskĭı quasi-stable,
then its limit set is a rest point or a periodic orbit. Also, we present examples to show the
differences between variant quasi-stabilities. Further, some sufficient conditions are given
to guarantee the quasi-stabilities of a prescribed trajectory.

1. Introduction. The theory of impulsive differential equations now
becomes an important area of investigation, since it is a lot richer than the
corresponding theory of differential equations. Moreover, such equations rep-
resent a natural framework for mathematical modeling of many real world
phenomena. For the elementary results in this field, we refer to the books
[1, 14, 18, 21]. The research of impulsive semidynamical systems in a metric
space was started by Kaul [15, 16, 17] and Rozhko [23, 24]. In particu-
lar, Kaul associated to a given impulsive semidynamical system a discrete
semidynamical system defined on the range of the impulsive set under an
impulsive function; thus he established many important results about the
limit sets, recursive properties of orbits and stabilities of closed subsets in
an impulsive semidynamical system. Later, Ciesielski [8, 9] proved several
fundamental results for this theory, in fact he applied his section theory of
semidynamical systems (see [7]) to obtain the continuity of some impor-
tant functions associated with impulsive semidynamical systems. Recently,
Bonotto, Federson and their collaborators also published a series of impor-
tant papers on this subject (see [4, 5] and references therein); they developed
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a list of results on impulsive semidynamical systems, which are counterparts
of basic properties of dynamical systems.

In an impulsive system, the stability of closed sets has been well stud-
ied in [4, 5, 9, 17]. However, to our knowledge, the stability of a motion or
a trajectory in impulsive dynamical systems defined in metric spaces has
remained untouched so far. Indeed, no notions of stability for a prescribed
trajectory with an infinite number of impulses have been available. Fortu-
nately, for an impulsive differential equation, Lakshmikantham and Liu [19]
introduced the notion of quasi-stability relative to a given solution of the
impulsive system. Since it deals with variant (or state-dependent) impul-
sive times, such a stability leads to a more complicated mechanism, and the
classical notions are modified in [19] to suit the present circumstances.

Our goal in this paper is to establish the corresponding counterparts of
quasi-stabilities in an impulsive semidynamical system defined in a metric
space. Actually, we introduce the concepts of Lyapunov quasi-stability and
Zhukovskĭı quasi-stability, and present examples to show their differences.
Several sufficient conditions are given to guarantee those quasi-stabilities
of a prescribed trajectory. Next, we investigate the structure of a positive
limit set for a trajectory with some quasi-stability. In particular, we prove
that if a trajectory is asymptotically Lyapunov quasi-stable, then its limit
set consists of rest points, and if a trajectory in a locally compact space is
uniformly asymptotically Zhukovskĭı quasi-stable, then its limit set is a rest
point or a periodic orbit.

2. Definitions and notations. Throughout the paper, let X = (X, d)
be a metric space with metric d. ForA ⊂ X,A and ∂A denote the closure and
boundary of A, respectively. Let B(x, δ) = {y ∈ X : d(x, y) < δ} be the open
ball with center x and radius δ > 0, and B̄(x, δ) = {y ∈ X : d(x, y) ≤ δ}
the closed ball. In addition, for A ⊂ X and r > 0, the r-neighborhood of A
is denoted by N(A, r) = {z ∈ X : d(z,A) < r}, where d(z,A) = inf{d(z, p) :
p ∈ A}. With no confusion, we also use d for the distance between a point
and a set. Let R+ and Z+ be the sets of nonnegative real numbers and
nonnegative integers, respectively.

A semidynamical system (or semiflow) on X is a triple (X,π,R+), where
π is a continuous mapping from X × R+ onto X satisfying the following
axioms:

(1) π(x, 0) = x for each x ∈ X,
(2) π(π(x, t), s) = π(x, t+ s) for each x ∈ X and t, s ∈ R+.

Replacing R+ by R, we get the definition of a dynamical system (or flow).
In this paper, we sometimes denote a semidynamical system (X,π,R+) by
(X,π). For brevity, we write x · t = π(x, t), and also let A · J = {x · t :
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x ∈ A, t ∈ J} for A ⊂ X and J ⊂ R+. If either A or J is a singleton, i.e.,
A = {x} or J = {t}, then we simply write x · J and A · t for {x} · J and
A · {t}, respectively. For any x ∈ X, the function πx : R+ → X defined by
πx(t) = π(x, t) is clearly continuous, and we call it the trajectory (or motion)
through x. The set x ·R+ is said to be the positive orbit of x, and sometimes
denoted by C+(x). The closure of C+(x) in X is denoted by K+(x). For the
elementary properties of dynamical systems and semidynamical systems, we
refer to [2, 3, 22].

Let M be a nonempty closed subset in X and Ω = X\M . Let I : M → Ω
be a continuous function and I(M) = N . If x ∈ M , we shall denote I(x)
by x+ and say that x jumps to x+. Moreover, I and M are said to be an
impulsive function and an impulsive set, respectively. For each x ∈ Ω, by
M+(x) we mean the set x · R+ ∩M . We can define a function φ : Ω →
R+ ∪ {+∞} (the space of extended positive reals) by

φ(x) =

{
s if x · s ∈M and x · t 6∈M for t ∈ [0, s),

+∞ if M+(x) = ∅.
Generally, φ is not continuous. However, its continuity on Ω is crucial for
the analysis of dynamics. Fortunately, some easy conditions given by Ciesiel-
ski [8] guarantee the continuity of φ.

Assumption I. Throughout the paper, φ is a continuous function on Ω.

Following Kaul [17], we now define an impulsive semidynamical system
(Ω, π,R+;M, I) by portraying the trajectory of each point in Ω. The im-
pulsive trajectory of x ∈ Ω is an Ω-valued function π̃x defined on a subset
of R+. If M+(x) = ∅, then φ(x) = +∞, and we set π̃x(t) = x · t for all
t ∈ R+. If M+(x) 6= ∅, it is easy to see that there is a positive number t0
such that x · t0 = x1 ∈ M and x · t 6∈ M for 0 ≤ t < t0. Thus, we define π̃x
on [0, t0] by

π̃x(t) =

{
x · t, 0 ≤ t < t0,

x+1 , t = t0.

where φ(x) = t0 and x+1 = I(x1) ∈ Ω.
Since t0 < +∞, we continue the process by starting with x+1 . Similarly,

if M+(x+1 ) = ∅, i.e., φ(x+1 ) = +∞, we define π̃x(t) = x+1 · (t − t0) for
t0 < t < +∞. Otherwise, let φ(x+1 ) = t1 and x+1 · t1 = x2 ∈ M ; then we
define π̃x(t) on [t0, t0 + t1] by

π̃x(t) =

{
x+1 · (t− t0), t0 ≤ t < t0 + t1,

x+2 , t = t0 + t1,

where x+2 = I(x2).
Thus, continuing inductively, the process above either ends after a finite

number of steps, whenever M+(x+n ) = ∅ for some n, or it continues indef-
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initely, if M+(x+n ) 6= ∅ for n = 1, 2, . . . , and π̃x is defined on the interval
[0, T (x)), where T (x) =

∑∞
i=0 ti. We call {ti} the impulsive intervals of π̃x,

and call {tn =
∑n

i=0 ti : n = 0, 1, 2, . . . } the impulsive times of π̃x. Obviously,
this gives rise to either a finite or an infinite number of jumps at points {xn}
for the trajectory π̃x. Having the trajectory π̃x for every point x in Ω, we
let π̃(x, t) = π̃x(t) for x ∈ Ω and t ∈ [0, T (x)), and obtain a discontinuous
system (Ω, π,R+;M, I), or (Ω, π̃), with the following properties:

(i) π̃(x, 0) = x for x ∈ Ω,
(ii) π̃(π̃(x, t), s) = π̃(x, t + s) for x ∈ Ω and t, s ∈ [0, T (x)) such that

t+ s ∈ [0, T (x)).

We call (Ω, π,R+;M, I), or (Ω, π̃) with π̃ as defined above, the impulsive
semidynamical system associated with (X,π). For simplicity of exposition,
in the remainder of this paper we denote the trajectory π̃(x, t) by x ∗ t.
Thus, (ii) reads (x ∗ t) ∗ s = x ∗ (t + s). Given x ∈ Ω, if M+(x) = ∅, the
trajectory π̃x is continuous; otherwise, it has discontinuities at a finite or an
infinite number of its impulsive points {x+n }. At any such point, however, π̃x
is continuous from the right.

From the point of view of impulsive semidynamical systems, the trajec-
tories of interest are those with an infinite number of discontinuities and
with [0,+∞) as the interval of definition (see [15, 18]). We call them infinite
trajectories. In this paper, we do not deal with the Zeno orbits, i.e. orbits
that involve infinitely many resettings in finite time (see [14, Chap. 2]).
Hence, from now on we assume T (x) = +∞ for each x ∈ Ω. Under a suit-
able condition about M (see [8, 15]), we can similarly define an impulsive
semidynamical system (X, π̃) on X, which admits (Ω, π̃) as a subsystem.
With a mild modification, our results on (Ω, π̃) can be applied to (X, π̃).

Now, we introduce some concepts that will be used in what follows; they
were defined by Kaul in [15, 17].

Definition 2.1 ([17]). A subset S of Ω is said to be positively invariant
if x ∗ R+ ⊂ S for any x ∈ S, and it is said to be invariant if it is positively
invariant and furthermore, given x ∈ S and t ∈ R+, there exists a y ∈ S
such that y ∗ t = x.

Definition 2.2 ([15]). A point x in Ω is a rest point if x ∗ t = x for
every t ∈ R+. An orbit x ∗ R+ is said to be periodic of period τ and order
k if x ∗ R+ has k components and τ is the least positive number such that
x ∗ τ = x.

Clearly, a periodic orbit of (Ω, π̃) is an invariant closed set in Ω, and it
is not connected as long as k 6= 1. A point x ∈ Ω is a rest point of (Ω, π̃)
if and only if it is a rest point of (X,π). If a point x is not a rest point, we
call it a regular point.
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Definition 2.3. A nonempty set S is positively minimal provided S
is a closed, positively invariant set and whenever Z is a closed, nonempty,
positively invariant subset of S, then Z = S.

Definition 2.4. Let x ∈ Ω. The omega (or positive) limit set ω̃(x) of x
in (Ω, π̃) is defined by ω̃(x) = {y ∈ Ω : x ∗ tn → y for some tn → +∞}.

Equivalently, ω̃(x) = lim supn→+∞{x+n · [0, φ(x+n ))}. Thus, it is easy to
see that ω̃(x) is closed and positively invariant. Of course, it may not be
invariant.

Definition 2.5. Let x ∈ Ω. The (positive) prolongational limit set J̃(x)
of x in (Ω, π̃) is defined by J̃(x) = {y ∈ Ω : xn ∗ tn → y for some xn → x
and tn → +∞}.

Let Ω0 = {x∈Ω : φ(x)<+∞}. Then there exists a function ϕ : Ω0 → N ,
defined by ϕ(x) = x ∗φ(x) for any x ∈ Ω0. Since φ is continuous on Ω, so is
ϕ on Ω0. Let N̂ = {x ∈ N : π̃x is an infinite impulsive trajectory}; clearly
N̂ ⊂ Ω0 ∩ N . Now, given any x ∈ N̂ and x1 = x · φ(x) ∈ M , we define
g : N̂ → N̂ by g(x) = ϕ(x) = I(x1) = x+1 ; consequently, g is continuous

on N̂ . As usual, we set g0 = identity, g1 = g and define gn inductively for
n > 1. Thus, we obtain a discrete semidynamical system (N̂ , g,Z+), where
g(x, n) = gn(x) = x+n . (N̂ , g,Z+) or simply (N̂ , g) is called the discrete
semidynamical system associated with the given impulsive system (Ω, π̃).
For a point x ∈ N̂ , the dynamics of {gn(x)} in (N̂ , g) is closely related to
that of π̃x in (Ω, π̃) (see [15, 16, 17]).

3. Quasi-stabilities. In the theory of dynamical systems, continuous
dependence on initial conditions is a fundamental property (see [22, p. 327]).
This is also true for t ≥ 0 in semidynamical systems. Consider a semidynam-
ical system (X,π). For a point x in X, given a positive number T and an
ε > 0, there is a δ = δ(x, ε, T ) > 0 such that if d(x, y) < δ, then d(x·t, y·t) < ε
for all t ∈ [0, T ]. Clearly, this is an immediate consequence of the continuity
of π. In this paper, we call it the CD property of a semidynamical system, for
brevity. If δ(x, ε, T ) > 0 can be chosen independent of T , then the CD prop-
erty implies the classical Lyapunov stability of the trajectory πx for t ≥ 0.
Hence, Lyapunov stability of a trajectory can be interpreted as continuous
dependence of trajectories uniformly in t for all t ≥ 0. Of course, the CD
property does not hold for our impulsive semidynamical system (Ω, π̃). To
remedy this, for impulsive semidynamical systems in Rn, in [6] the authors
presented a notion of quasi-continuous dependence: For every x0 ∈ D ⊂ Rn,
there exists Jx0 ⊂ [0,+∞) such that [0,+∞) \ Jx0 is (finite or infinite)
countable and for every ε > 0, t ∈ Jx0 , there exists δ(ε, x0, t) > 0 such that
if ‖x0 − y‖ < δ(ε, x0, t), y ∈ D, then ‖x0 ∗ t − y ∗ t‖ < ε. Similarly, if the
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quasi-continuous dependence holds uniformly in t for all t ≥ 0 and not in
any η-neighborhood of [0,+∞) \ Jx0 , then it also leads to a quasi-stability.
Such a quasi-stability was established in [18, p. 103] for impulsive differential
equations.

Now, we define the quasi-stability for an impulsive semidynamical system
defined in a metric space.

Definition 3.1. For an impulsive semidynamical system (Ω, π̃), the
trajectory π̃x (or orbit x ∗ R+) of a point x ∈ Ω is Lyapunov quasi-stable
provided that given any ε > 0 and η > 0, there is a δ = δ(x, ε, η) > 0 such
that if d(x, y) < δ, then d(x ∗ t, y ∗ t) < ε for all t ≥ 0 and |t − tk| > η,
where {tk : k = 0, 1, 2, . . . } are impulsive times of π̃x. The trajectory π̃x (or
orbit x∗R+) is asymptotically Lyapunov quasi-stable provided it is Lyapunov
quasi-stable and for any η > 0, there exists a λ > 0 such that if d(x, y) < λ,
then d(x ∗ t, y ∗ t) (t 6∈

⋃+∞
k=0[t

k − η, tk + η]) goes to zero as t goes to infinity.

Clearly, the notion defined above is a generalization of the classical Lya-
punov stability. Since the impulsive times of an orbit differ from those of
near orbits, the isochronous correspondence between orbits does not hold in
an impulsive semidynamical system. So, for a Lyapunov quasi-stable orbit,
the times involved and the impulsive times are at a distance at least η apart.

In the mathematical and physical literature, Zhukovskĭı stability (see
[10, 11, 20]) is also an important concept in the theory of stability, which
permits a time lag. Hence, it may be more suitable for impulsive semidy-
namical systems. To introduce this concept, we first recall the notion of time
reparametrization.

Definition 3.2. A time reparametrization is a homeomorphism h from
R+ onto R+ with h(0) = 0. Further, for a σ > 0, by a time σ-reparametriza-
tion we mean a homeomorphism τ from R+ to R+ with τ(0) = 0 such that
|τ(t)− t| < σ for all t ≥ 0.

Quasi-continuous Dependence. For an impulsive semidynamical
system (Ω, π̃), let x ∈ Ω. Given ε > 0, σ > 0, and a positive number
T , there exists a δ = δ(x, ε, σ, T ) > 0 such that if d(x, y) < δ, then one can
find a σ-reparametrization τy such that d(x∗t, y∗τy(t)) < ε for all t ∈ [0, T ].

It is easy to see that quasi-continuous dependence is a generalization of
the standard continuous dependence from semidynamical systems to impul-
sive semidynamical systems. Actually, by letting σ = 0, the quasi-continuous
dependence specializes to the classical continuous dependence on initial con-
ditions. In what follows, we sometimes abbreviate quasi-continuous depen-
dence to the QCD property. In [12], it is proved that the QCD property
is equivalent to the continuity of φ. Similarly, in the QCD property, if
δ(x, ε, σ, T ) > 0 can be chosen independent of T , then the QCD property
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implies a certain stability of a trajectory π̃x in the system (Ω, π̃), which is
defined as follows.

Definition 3.3. The trajectory π̃x (or orbit x∗R+) of a point x in Ω is
Zhukovskĭı quasi-stable provided that given any ε > 0, there is a δ = δ(x, ε)
> 0 such that if d(x, y) < δ, then one can find a time reparametrization
τy such that d(x ∗ t, y ∗ τy(t)) < ε for all t ≥ 0. Moreover, if there exists a
λ > 0 such that if d(x, y) < λ, then d(x ∗ t, p ∗ τy(t))→ 0 as t→ +∞, then
the trajectory π̃x (or orbit x ∗ R+) is said to be asymptotically Zhukovskĭı
quasi-stable.

In Definition 3.3, let t̄ = τy(t) and h(t̄) = τ−1y (t̄) = t; then it follows that
d(x ∗ t, y ∗ τy(t)) = d(x ∗ h(t̄), y ∗ t̄). Thus, we get an equivalent formulation:
a trajectory π̃x is Zhukovskĭı quasi-stable provided that given any ε > 0,
there is a δ = δ(x, ε) > 0 such that if d(x, y) < δ, then one can find a time
reparametrization τy such that d(x ∗ τy(t), y ∗ t) < ε for all t ≥ 0.

Since we are just interested in infinite trajectories, in order to avoid
singularities, we only deal with infinite trajectories whose close trajectories
are also infinite trajectories. Clearly, a boundary point of N̂ in N is not
Lyapunov quasi-stable or Zhukovskĭı quasi-stable. Thus, to ensure that close
trajectories of an infinite trajectory are also infinite, we need a suitable
topological position of N in Ω. Fortunately, a simple and useful condition is
presented in [8, 15], which is called the (TC) condition (see [8]) or that N is
well placed in Ω (see [15]). Instead of introducing that condition, we apply
a concrete assumption. Actually, in the remainder of this paper, we always
suppose the following:

Assumption II. For an interior point p of N̂ in the subspace N , there
exists a small ball B(p, δ) (δ > 0) in Ω such that if q ∈ B(p, δ), then q ·t ∈ N̂
for a t = t(q) > 0 or there exists a point z ∈ N̂ such that q = z · τ for a
τ = τ(q) > 0.

Let Int N̂ be the interior of N̂ in N . It is easy to see that under As-
sumption II, for a point x ∈ IntN̂ , stabilities of π̃x defined as above are
equivalent to restricted stabilities on N̂ , e.g., π̃x is Zhukovskĭı quasi-stable
if and only if given any ε > 0, there is a δ = δ(x, ε) > 0 such that if
y ∈ B(x, δ) ∩ N̂ , then d(x ∗ t, y ∗ τy(t)) < ε for all t ≥ 0, where τy(t) is a
time reparametrization. Similarly, one can define the restricted Lyapunov
quasi-stability on N̂ . Thus, in the following, we only consider the restricted
quasi-stabilities on N̂ . Of course, if x ∈ N̂ is a boundary point of N̂ in N ,
then π̃x is not Lyapunov quasi-stable or Zhukovskĭı quasi-stable, since in
every neighborhood of it there exists a trajectory with no impulses or only
a finite number of impulses.
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Clearly, Lyapunov quasi-stability is more restrictive, since it is an almost
isochronous correspondence of orbits. However, Zhukovskĭı quasi-stability
implies that close orbits should also be close in the phase space and trace
each other with a time lag. Of course, this is a kind of phase stability. In a
semidynamical system, Lyapunov stability implies Zhukovskĭı stability (see
[10, 20]). However, for (Ω, π̃), we present two examples to show that neither
of the quasi-stabilities implies the other.

Example 1. We give an example with a Lyapunov quasi-stable orbit
which is not Zhukovskĭı quasi-stable. Let X = {(x, y) ∈ R2 : y > 0} with a
dynamical system (X,π) defined by the differential equation

ẋ =
x2 + 1

y + 1
, ẏ = 0. (3.1)

Let

M =

{
(x, y) ∈ R2 : x > 0, y =

π

2 arctanx
−1

}
, N = {(0, y) ∈ R2 : y > 0}.

For Ω = X \M , we define I : M → N ⊂ Ω by I(x, y) = (0, y/2) ∈ N for
(x, y)∈M . Thus, we get an impulsive semidynamical system (Ω, π,R+;M, I).
It is easy to see that N = N̂ , i.e., each trajectory through a point in N is
infinite. We assert that the trajectory π̃p through p = (0, 1) is Lyapunov
quasi-stable, but not Zhukovskĭı quasi-stable. By a simple computation,
it is easy to see φ|N = π/2, i.e., for each point in N it takes the time
π/2 to reach M . So, all the points in N go isochronously to the impul-
sive set M , and simultaneously jump back to N . Given an η > 0, since
π/2− (y + 1) arctanx < π/2− arctanx for y > 0, there exists a K = K(η)
such that for x ≥ K, π/2−(y+1) arctanx < η. Clearly, there exists a positive
integer n0 such that for n ≥ n0, each p+n reaches M at pn+1 = (xn+1, 2

−n)
with xn+1 > K. Note that the impulsive times of π̃p are {πi/2 : i ≥ 1}. For
large t, |t − ti| > η implies that p ∗ t lies in the region {(x, y) ∈ Ω : 0 ≤ x
≤ K}, where ti is an impulsive time of π̃p. Thus, by the QCD property of π̃,
it is easy to see that π̃p is Lyapunov quasi-stable.

Now, let q = (0, 1 + δ) be a point close to p; then qn+1 = (x′n+1,
2−n(1 + δ)). It is not difficult to see that

xn+1 − x′n+1 = tan
π

2

2n

2n + 1
− tan

π

2

2n

2n + 1 + δ

= tan
π

2

2nδ

(2n + 1)(1 + δ + 2n)
×
(

1 + tan
π

2

2n

2n + 1
× tan

π

2

2n

2n + 1 + δ

)
∼ 2δ

π(1 + δ)
× 2n → +∞ (n→ +∞).

So, we have d(pn+1, qn+1) → +∞ as n → +∞. It follows that π̃p is not
Zhukovskĭı quasi-stable.
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Example 2. Consider the planar differential system

ẋ = 0, ẏ = −x, (3.2)

which defines a dynamical system in X = {(x, y) ∈ R2 : x > 0}. Let
M = {(x, 0) : x > 0} and N = {(x, 1) : x > 0}; then define I : M → Ω by
I(x, 0) = (x/2, 1) ∈ N for (x, 0) ∈ M , where Ω = X \M . Thus, we get an
impulsive semidynamical system (Ω, π,R+;M, I). Clearly, each trajectory
through a point in N = N̂ is infinite. Let p = (1, 1). It is easy to see that π̃p
is Zhukovskĭı quasi-stable, since a time reparametrization τq (q close to p)
can be obtained so that τq maps the impulsive times of π̃p to the impulsive
times of π̃q.

Now, we prove that π̃p is not Lyapunov quasi-stable. By a simple compu-
tation, the impulsive times of π̃p are tn =

∑n
i=0 2i (n = 0, 1, 2, . . . ). Similarly,

for a point q = (x, 1) close to p, the infinite trajectory π̃q has impulsive
times τn =

∑n
i=0 2i/x (n = 0, 1, 2, . . . ). Thus, although |x − 1| is small,

tn − τn = (2n+1 − 1)(x− 1)/x is unbounded as n → +∞. That is, the dif-
ference of the nth impulsive times for those two trajectories is unbounded.
Hence, an almost isochronous correspondence of orbits is impossible, i.e., π̃p
is not Lyapunov quasi-stable.

According to the above examples, in order to get the quasi-stabilities, it
is reasonable to assume that the impulsive function I is nonexpansive and
the flow π restricted on N is nonexpansive. Further, for Lyapunov quasi-
stability, the difference of impulsive times should be bounded for close orbits.
Therefore, we introduce the following hypotheses.

(H1) For any points p, q in M we have d(p+, q+) ≤ λ1d(p, q), where λ1
is a positive constant.

(H2) For any points p, q in N we have d(p1, q1) ≤ λ2d(p, q), where λ2 is
a positive constant.

(H3) For any points p, q in N we have |φ(p+1 )−φ(q+1 )| ≤ λ3|φ(p)−φ(q)|,
where λ3 ∈ (0, 1) is a constant.

Theorem 3.4. Assume that H1 and H2 hold with λ1λ2 ≤ 1. If N̂ is
compact, then for each x ∈ Int N̂ the infinite trajectory π̃x is Zhukovskĭı
quasi-stable.

Proof. Since N̂ is compact, φ is bounded on N̂ , say φ(x) ∈ [m−,m+] for
all x ∈ N̂ , where m− and m+ are positive real numbers. Fix ε > 0. Notice
that π is uniformly continuous on N̂ × [0,m+]; it follows that there exists a
positive number η = η(ε) such that for any p, q in N̂ and t1, t2 ∈ [0,m+], if
max{d(p, q), |t1−t2|} < η, then d(p ·t1, q ·t2) < ε. Clearly, φ is also uniformly
continuous on N̂ : there is a δ ∈ (0, η) such that for p, q in N̂ , if d(p, q) < δ,
then |φ(p)− φ(q)| < η.
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Now, for each x ∈ Int N̂ , if y ∈ N̂ and d(x, y) < δ, then |φ(x)−φ(y)| < η.
By (H1), (H2) and λ1λ2≤1, we obtain d(x+1 , y

+
1 )<δ. Thus, |φ(x+1 )−φ(y+1 )|

< η. By induction, we have d(x+i , y
+
i ) < δ and |φ(x+i ) − φ(y+i )| < η for

i = 1, 2, . . . . Let {ti : i = 0, 1, . . . } and {τi : i = 0, 1, . . . } be the impulsive
intervals of π̃x and π̃y, respectively. For n ≥ 0, we denote their impulsive
times by tn =

∑n
i=0 ti and τn =

∑n
i=0 τi. A time reparametrization τy :

[0,+∞) → [0,+∞) can be defined as follows. First, let τy(0) = 0 and for
n ≥ 0, let τy(t

n) = τn. Next, for n ≥ 0 and t ∈ (tn−1, tn), define

τy(t) = τn−1 +
τn
tn

(t− tn−1),

where t−1 = τ−1 = 0. Clearly, τy is a homeomorphism from [0,+∞) to
[0,+∞) with τy(0) = 0, i.e., it is a time reparametrization.

Now, we assert that d(x∗ t, y∗τy(t)) < ε for t ≥ 0. In fact, if t ∈ [tn−1, tn]
(n ≥ 1), we have

d(x ∗ t, y ∗ τy(t)) = d

(
x+n · (t− tn−1), y+n ·

τn
tn

(t− tn−1)
)
.

Since d(x+n , y
+
n ) < δ and∣∣∣∣t− tn−1 − τn

tn
(t− tn−1)

∣∣∣∣ ≤ |tn − τn| = |φ(x+n )− φ(y+n )| < η,

we have d(x ∗ t, y ∗ τy(t)) < ε. Hence, π̃x is Zhukovskĭı quasi-stable.

Theorem 3.5. Assume that (H1)–(H3) are all true, and λ1λ2 ≤ 1. If N̂
is compact, then for each x ∈ Int N̂ the infinite trajectory π̃x is Lyapunov
quasi-stable.

Proof. Let m+ = max{φ(x) : x ∈ N̂}. Let ε > 0 and η > 0 be given.
Since π is uniformly continuous on N̂×[0,m+], there exists a positive number
δ1 such that for any p, q in N̂ and t1, t2 ∈ [0,m+], if max{d(p, q), |t1 − t2|}
< δ1, then d(p · t1, q · t2) < ε. Now, for each x ∈ Int N̂ , there is a δ ∈ (0, δ1)
such that if y ∈ N̂ and d(x, y) < δ, then |φ(x)−φ(y)| < (1−λ3) min{η, δ1}.
By induction, it follows from (H1) and (H2) that d(x+i , y

+
i ) < δ for i ≥ 1.

Let {ti : i = 0, 1, . . . } and {τi : i = 0, 1, . . . } be the impulsive intervals of π̃x
and π̃y, respectively. For n ≥ 0, we denote tn =

∑n
i=0 ti and τn =

∑n
i=0 τi,

which are impulsive times of π̃x and π̃y. Then, by (H3), we have

|tn − τn| =
∣∣∣ n∑
i=0

(ti − τi)
∣∣∣ ≤ n∑

i=0

λi3|φ(x)− φ(y)| ≤ 1

1− λ3
|φ(x)− φ(y)|

< min{η, δ1}.

Thus, for each t ∈ R+, if |t − tn| > η, i.e., t ∈ [tk−1 + η, tk − η] for some
k ≥ 0, then t ∈ (τk−1, τk).
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Now, we assert that d(x ∗ t, y ∗ t) < ε for |t − tn| > η. In fact, if t ∈
[tk−1 + η, tk − η] for some k ≥ 0, then x ∗ t = x+k · (t − tk−1), and also
y ∗ t = y+k · (t− τ

k−1). Since d(x+k , y
+
k ) < δ < δ1 and |t− tk−1− (t− τk−1)| ≤

|tk−1 − τk−1| < δ1, it follows that

d(x ∗ t, y ∗ t) = d(x+k · (t− t
k−1), y+k · (t− τ

k−1)) < ε.

Hence, π̃x is Lyapunov quasi-stable.

4. Limit sets. In this section, our goal is to investigate the structure
of the limit sets for infinite trajectories. Let x ∈ Ω, and suppose π̃x is an
infinite trajectory. We prove that the limit set ω̃(x) of an asymptotically
Lyapunov quasi-stable orbit x ∗ R+ consists of rest points. Further, if Ω is
locally compact, then the limit set of a uniformly asymptotically Zhukovskĭı
quasi-stable orbit (see Definition 4.3) is a rest point or a periodic orbit.

Theorem 4.1. If a trajectory π̃x (x ∈ Ω) is asymptotically Lyapunov
quasi-stable and its omega limit set ω̃(x) is nonempty, then ω̃(x) consists of
rest points.

Proof. Let q ∈ ω̃(x). For q ∈ Ω, we have φ(q) > 0, so denote p =
q · (2s), where s > 0 and 4s < φ(q). Clearly, q is a rest point if and only
if for each small positive s, p is a rest point. Since the boundary of Ω
lies in M , analogously to the proof of Lemma 2.6 in [17] it is easy to see
that ω̃(x) is positively invariant, and it follows that p ∈ ω̃(x). Thus, there
exists a sequence {tn} in R+, tn → +∞, such that x ∗ tn → p. Since π̃x
is asymptotically Lyapunov quasi-stable, there exists a δ > 0 such that if
d(x, y) < δ, then for t 6∈

⋃+∞
k=0[τk − s, τk + s], d(x ∗ t, y ∗ t)→ 0 as t→ +∞,

where {τk : k = 0, 1, . . . } are the impulsive times of π̃x.
Moreover, assume that δ is so small that B(x, δ) ⊂ Ω. By the continuity

of π, choose a λ ∈ (0, s) such that for any τ ∈ [0, λ], we have x∗τ = x ·τ ∈ Ω
and d(x, x · τ) < δ. Note that x ∗ tn → p and φ(p) > 2s. From the continuity
of φ it follows that for large n, we have |tn − τk| ≥ s (k = 0, 1, . . . ). Then
d(x ∗ tn, (x · τ) ∗ tn) → 0 as tn → +∞. Letting xn = x ∗ tn, also from the
continuity of π, it follows that xn · τ → p · τ , i.e., x ∗ (tn + τ)→ p · τ . Thus,

d(p, p · τ) ≤ d(p, x ∗ tn) + d(x ∗ tn, x ∗ (tn + τ)) + d(x ∗ (tn + τ), p · τ)→ 0

as tn → +∞. We have p = p · τ for any τ ∈ [0, λ], which of course implies
that p is a rest point (see the proof of [3, Ch. 2, Th. 2.2]); hence q is also a
rest point.

Theorem 4.2. If a trajectory π̃x (x ∈ Ω) is Zhukovskĭı quasi-stable,
then ω̃(x) = J̃(x).

Proof. Clearly, ω̃(x) ⊂ J̃(x). It is sufficient to show J̃(x) ⊂ ω̃(x). Let
y ∈ J̃(x) ⊂ Ω. Then there exist a sequence {tn}∞n=1 in R+ and a sequence
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{xn}∞n=1 in Ω such that xn → x, tn → +∞ and xn ∗ tn → y. Now, given
any ε > 0, there exists a δ = δ(x, ε) > 0 such that for each p ∈ B(x, δ),
one can find a time reparametrization τp satisfying d(x ∗ τp(t), p ∗ t) < ε
for t ≥ 0. We select a K > 0 such that if n ≥ K, then d(x, xn) < δ and
d(xn ∗ tn, y) < ε. Further, it follows that d(x ∗ τxn(t), xn ∗ t) < ε for n ≥ K
and t ≥ 0, where the time reparametrizations τxn are defined similarly to τp.
Thus, we obtain

d(x ∗ τxn(tn), y) ≤ d(x ∗ τxn(tn), xn ∗ tn) + d(xn ∗ tn, y) < 2ε for n ≥ K,

where τxn(tn)→ +∞ as tn → +∞. This implies that y ∈ ω̃(x).

Definition 4.3. The trajectory π̃x (or orbit x ∗ R+) of a point x in Ω
is uniformly asymptotically Zhukovskĭı quasi-stable provided that given any
ε > 0, there exists a δ > 0 such that for each s ≥ 0 and y ∈ B(x ∗ s, δ) ∩Ω,
one can find a time reparametrization τy such that d(x∗ (s+ t), y ∗τy(t)) < ε
for all t ≥ 0, and also d(x ∗ (s+ t), y ∗ τy(t))→ 0 as t→ +∞.

Geometrically, the orbit y ∗R+ will stay in the tubes whose center lines
are segments of x∗R+ with different time scales, and these tubes are getting
thinner and thinner as time tends to infinity.

Lemma 4.4. If the trajectory π̃x of a point x ∈ Ω is uniformly asymp-
totically Zhukovskĭı quasi-stable with ω̃ 6= ∅, then its omega limit set ω̃(x) is
positively minimal.

Proof. Otherwise, ω̃(x) has a proper closed positively invariant subset
A ⊂ ω̃(x) with A 6= ∅. Choose p ∈ ω̃(x)\A; then λ = d(p,A) > 0. Now for a
sufficiently large s, we can find q ∈ A satisfying d(x ∗ s, q) < δ, where δ is as
in Definition 4.3. Also, there exists a sequence ti ≥ s such that ti → +∞ and
x∗ti → p. Since A is positively invariant, so q∗R+ ⊂ A. However, for large ti
we have d(x∗ ti, p) < λ/2, so d(x∗ ti, q ∗R+) ≥ d(p,A)−d(x∗ ti, p) ≥ λ/2 for
large ti. This is a contradiction, since d(x ∗ s, q) < δ and by Definition 4.3,
d(x∗ (s+ t), q ∗ τq(t))→ 0 as t→ +∞, where τq is a time reparametrization.
Thus, ω̃(x) is positively minimal.

Corollary 4.5. Assume that π̃x is uniformly asymptotically Zhukovskĭı
quasi-stable. If there exists a rest point p in ω̃(x), then ω̃(x) = {p}. Also, if
there is a periodic orbit γ in ω̃(x), then ω̃(x) = γ.

Proof. Since both a rest point and a periodic orbit are positively invari-
ant closed sets, the results follow from Lemma 4.4.

For two subsets A, B in X and δ > 0, A is said to be δ-apart from B
if d(A,B) = inf{d(a, b) : a ∈ A and b ∈ B} ≥ δ. From the proof of Lemma
4.4, it is easy to deduce:
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Corollary 4.6. Any nonempty positively invariant closed set A must
be δ-apart from a uniformly asymptotically Zhukovskĭı quasi-stable orbit
x ∗ R+ if A ∩ ω̃(x) = ∅, where δ is as in Definition 4.3.

In order to get our next result, we recall the notion of a section in a
semidynamical system, introduced by Ciesielski [7]. Consider a semidynam-
ical system (X,π). For x ∈ X, t ≥ 0, we define F (x, t) = {y : y · t = x} and
for A ⊂ X, J ⊂ R+, let F (A, J) =

⋃
{F (x, t) : x ∈ A and t ∈ J}. A closed

set S containing a point x is called a section or a λ-section through x, with
λ > 0, if there exists a closed set L in X such that

(a) F (L, λ) = S;
(b) F (L, [0, 2λ]) is a neighborhood of x;
(c) F (L, µ) ∩ F (L, ν) = ∅ for 0 ≤ µ < ν ≤ 2λ.

The set F (L, [0, 2λ]) is called a tube or a λ-tube, and the set L is called
a bar. In [7], Ciesielski proved the following tubular theorem, which is a
fundamental result in semidynamical systems with many applications.

Lemma 4.7. If x ∈ Ω is a regular point, then there exists a section
through x.

Note that if S is a λ-section through x with a bar L and 0 ≤ µ ≤ λ, then
S is also a µ-section with the bar F (L, λ−µ) (see [7, Lemma 1.9]). Further,
we have the following result.

Lemma 4.8. Let F (L, [0, 2λ]) be a tube with a bar L. Then, for each
point p in the tube, there exists a unique t = t(p) ∈ [0, 2λ] such that p · t(p)
belongs to L. Further, if L is compact, the function p 7→ t(p) is continuous
on the tube F (L, [0, 2λ]).

Proof. Let p ∈ F (L, t)⊂F (L, [0, 2λ]) for a t= t(p) ∈ [0, 2λ], i.e., p · t∈L.
The uniqueness of t = t(p) ∈ [0, 2λ] follows immediately from condition (c)
in the definition of section. Now, let L be compact and suppose a sequence
{pn} in F (L, [0, 2λ]) tends to a point p in this tube. Since {pn · t(pn)} lies
in the compact set L, we can assume that pn · t(pn) is convergent to q ∈ L.
Also, for t(pn) ∈ [0, 2λ], we suppose that t(pn)→ τ ∈ [0, 2λ]. Hence, by the
continuity of π, we have q = p · τ . From the uniqueness of t(q), it follows
that t(p) = τ , i.e., t(pn) → t(p). Thus, the function p 7→ t(p) is continuous
on the tube.

Finally, we also need the following fixed point theorem.

Lemma 4.9 ([13, p. 414]). Let X be a Hausdorff topological space and
H : X → X be continuous. If for each open covering {Wα} of X there is at
least one x ∈ X such that both x and H(x) belong to a common Wα, then
H has a fixed point.
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Theorem 4.10. Assume that Ω is locally compact. If an orbit x ∗R+ is
uniformly asymptotically Zhukovskĭı quasi-stable with ω̃ 6= ∅, then ω̃(x) is a
rest point or a periodic orbit.

Proof. Clearly, if ω̃(x) is a singleton, then it is a rest point. Assume
that ω̃(x) is not a singleton; we shall show that ω̃(x) is a periodic orbit.
Choose a point q ∈ ω̃(x); it is a regular point by Corollary 4.5. We take an
s ∈ (0, φ(q)/2) with q · [0, 2s] ⊂ Ω, and let p = q · s ∈ ω̃(x). Since ω̃(x) is
positively minimal, q ∗ R+ is a periodic orbit of (Ω, π̃) if and only if p ∗ R+

is a periodic orbit.
Now, let a sequence {ti}∞i=1 ⊂ R+ be such that ti → +∞ and x ∗ ti → p.

Pick δ as in Definition 4.3 such that B(p, 2δ) ⊂ Ω. Thus, there is a positive
σ (σ < δ) such that B̄(p, σ) ⊂ B(x ∗ tk, δ) for some tk ∈ {ti}∞i=1. From the
local compactness of Ω, we may also suppose that B̄(p, σ) is compact. Since
p is a regular point, by Lemma 4.7, there is a tube F (L, [0, 2λ]) ⊂ B̄(p, σ)
with a section S = F (L, λ) through p and a bar L. Since F (L, [0, 2λ]) is a
neighborhood of p, there exists a ρ > 0 such that B(p, 2ρ) ⊂ F (L, [0, 2λ]).
Also, note that L is compact, because it is closed. Then, from Lemma 4.8,
it follows that for each y ∈ F (L, [0, 2λ]), the positive orbit of y reaches L in
the tube at a unique t = ψ(y), where the function y 7→ ψ(y) is continuous
on F (L, [0, 2λ]). As L ⊂ B(x ∗ tk, δ), it follows from Definition 4.3 that for
each y ∈ L there is a T (y) > 0 such that d(x ∗ (t + tk), y ∗ τy(t)) < ρ for
t ≥ T (y), where τy(t) is a time reparametrization. We will show that, by
using the compactness of L and quasi-continuous dependence of π̃, one can
find a positive real number T < +∞ such that

d(x ∗ (t+ tk), y ∗ τy(t)) < ρ for all y ∈ L and t ≥ T.
In fact, for ρ > 0, according to Definition 4.3 there exists a δ′ > 0 such
that if s ≥ tk and y ∈ B(x ∗ s, δ′) ∩ Ω, then d(x ∗ (s + t), y ∗ τy(t)) < ρ
for all t ≥ 0, where τy is a time reparametrization. Since for each y ∈ L
we have d(x ∗ (t + tk), y ∗ τy(t)) → 0, there exists an sy ≥ tk such that
d(x ∗ sy, y ∗ (τy(sy − tk))) < δ′. Thus, by the QCD property of π̃, there
is a neighborhood Vy of y in L such that d(x ∗ sy, y′ ∗ (τy′(sy − tk))) < δ′

for y′ ∈ Vy. Since L is compact, let {Vy1 , . . . , Vyj} cover L. Define T =
max{sy1 , . . . , syj} < +∞; thus d(x ∗ (t + tk), y ∗ τy(t)) < ρ for each y ∈ L
and t ≥ T .

Fix a tl > tk and tl − tk ≥ T with d(x ∗ tl, p) < ρ. Now, we define a
Poincaré map H : L → L as follows. For y ∈ L, we have d(x ∗ (t + tk),
y ∗ τy(t)) < ρ for t ≥ T , which implies

d(p, y ∗ τy(tl − tk)) ≤ d(p, x ∗ tl) + d(x ∗ tl, y ∗ τy(tl − tk)) < ρ+ ρ = 2ρ.

Clearly, this means that y ∗ τy(tl − tk) ∈ B(p, 2ρ) ⊂ F (L, [0, 2λ]), so we
obtain y ∗ (τy(tl− tk) +ψ(y)) ∈ L for some ψ(y) ∈ [0, 2λ]. We define H(y) =
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y ∗ (τy(tl − tk) + ψ(y)). The continuity of H comes from the continuity of
τy, ψ and the quasi-continuous dependence of π̃. It is easy to see that H
may not be the first return map.

Next, if {Wα} is an open covering of L for its subspace topology from Ω,
let z = p · ψ(p) ∈ Wβ = L ∩ U ∈ {Wα}, where U is an open set in Ω. Let
µ > 0 be so small that B(z, 2µ) ⊂ U . By the continuity of π, we can choose
an r ∈ (0, ρ) such that y ·ψ(y) lies in L∩B(z, µ) ⊂Wβ for each y ∈ B(p, r).
Clearly, there exists a T1 > tl such that x ∗ ti ∈ B(p, r) for every ti ≥ T1.
Then, by Definition 4.3, we assert that d(Hn(z), (x ∗ ti) ∗ ψ(x ∗ ti)) < µ for
n ≥ K and some ti ≥ T2 ≥ T1, where Hn(z) is the nth iterate of z. Hence,

d(HK(z), z) ≤ d(HK(z), (x ∗ tm) ∗ ψ(x ∗ tm)) + d((x ∗ tm) ∗ ψ(x ∗ tm), z)

< µ+ µ = 2µ

for some tm ≥ T2, and similarly

d(HK+1(z), z) ≤ d(HK+1(z), (x ∗ tn) ∗ ψ(x ∗ tn)) + d((x ∗ tn) ∗ ψ(x ∗ tn), z)

< µ+ µ = 2µ

for some tn ≥ T2. It follows that both HK+1(z) and HK(z) lie in B(z, 2µ).
So, H(HK(z)) and HK(z) belong to Wβ. By Lemma 4.9, H : L → L has
a fixed point w in L. Obviously, w ∗ R+ is a periodic orbit. Then, from
Corollaries 4.5 and 4.6, we immediately obtain ω̃(p) = w ∗ R+, which is
just ω̃(x).
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[11] C. Ding, Near periodicity and Zhukovskĭı stability, Publ. Math. Debrecen 73 (2008),
253–263.

[12] C. Ding, Limit sets in impulsive semidynamical systems, preprint.
[13] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
[14] W. M. Haddad, V. Chellaboina and S. G. Nersesov, Impulsive and Hybrid Dynamical

Systems: Stability, Dissipativity, and Control, Princeton Univ. Press, Princeton, NJ,
2006.

[15] S. K. Kaul, On impulsive semidynamical systems, J. Math. Anal. Appl. 150 (1990),
120–128.

[16] S. K. Kaul, On impulsive semidynamical systems II. Recursive properties, Nonlinear
Anal. 61 (1991), 635–645.

[17] S. K. Kaul, Stability and asymptotic stability in impulsive semidynamical systems,
J. Appl. Math. Stoch. Anal. 7 (1994), 509–523.

[18] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Dif-
ferential Equations, World Sci., Singapore, 1989.

[19] V. Lakshmikantham and X. Liu, On quasi stability for impulsive differential systems,
Nonlinear Anal. 13 (1989), 819–828.

[20] G. A. Leonov, D. V. Ponomarenko and V. B. Smirnova, Local instability and lo-
calization of attractors. From stochastic generator to Chua’s systems, Acta Appl.
Math. 40 (1995), 179–243.

[21] A. N. Michel, L. Hou and D. Liu, Stability of Dynamical Systems: Continuous,
Discontinuous and Discrete Systems, Birkhäuser, Boston, 2008.

[22] V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations,
Princeton Univ. Press, 1966.

[23] V. F. Rozhko, A class of almost periodic motions in pulsed systems, Differentsial’nye
Uravneniya 8 (1972), 2012–2022 (in Russian).

[24] V. F. Rozhko, Lyapunov stability in discontinuous dynamical systems, Differen-
tsial’nye Uravneniya 11 (1975), 1005–1012 (in Russian).

Changming Ding
School of Mathematical Sciences
Xiamen University
Xiamen, Fujian 361005, P.R. China
E-mail: cding@mail.hz.zj.cn

Received 24 April 2012;
in revised form 21 November 2012

http://dx.doi.org/10.4064/ba52-1-9
http://dx.doi.org/10.1016/0022-247X(90)90199-P
http://dx.doi.org/10.1155/S1048953394000390
http://dx.doi.org/10.1016/0362-546X(89)90074-6
http://dx.doi.org/10.1007/BF00992721

	Introduction
	Definitions and notations
	Quasi-stabilities
	Limit sets

