A model-theoretic Baire category theorem for simple theories and its applications

by

Ziv Shami (Ariel)

Abstract. We prove a model-theoretic Baire category theorem for $\tilde{\tau}_{low}^{f}$ -sets in a countable simple theory in which the extension property is first-order and show some of its applications. We also prove a trichotomy for minimal types in countable nfcp theories: either every type that is internal in a minimal type is essentially 1-based by means of the forking topologies, or T interprets an infinite definable 1-based group of finite D-rank or T interprets a strongly minimal formula.

1. Introduction. The goal of this paper is to generalize a result from [S1] and to give some applications. In [S1] the first step for proving supersimplicity of countable unidimensional simple theories eliminating hyperimaginaries is to show the existence of an unbounded type-definable forking-open set (a set defined in terms of forking by formulas, see Definition 2.1) of bounded finite SU_{se} -rank (for definition see Section 4).

In this paper we develop a general framework for this kind of result. It is a new idea of a model-theoretic Baire category theorem, namely, one deals with certain "uniformly definable" family of generalized closed sets (in complicated "logic"); roughly speaking, given a partition of a complicated open set into countably many sets, each of which is the intersection of a "uniformly definable" family of generalized closed sets, one can find a forking-open set that is contained in some generalized closed set in one of these families. So, the main point is that we obtain a very nice set (forking-open), but we can only require that it be a subset of some generalized closed set in one of these families and not in its intersection. In particular, it is not just the usual Baire category theorem for a complicated topological space. The proof is quite similar to the proof in [S1] and has some important consequences, e.g. in a countable wnfcp theory if for every non-algebraic element a (even in some fixed non-empty $\tilde{\tau}_{low}^f$ -set) there is $a' \in \operatorname{acl}(a) \setminus \operatorname{acl}(\emptyset)$ of finite SU-rank,

²⁰¹⁰ Mathematics Subject Classification: Primary 03C45.

Key words and phrases: forking topology, wnfcp, $\tilde{\tau}^{f}$ -set, essentially 1-based type, SU-rank.

then there exists a weakly minimal formula. We also prove a trichotomy for countable nfcp theories as indicated in the abstract.

We assume basic knowledge of simple theories. A good textbook on simple theories is [W]. The notations follow usual conventions. T will denote a complete first-order theory with no finite models in some language L. We will work in some large saturated model C of T (not necessarily with elimination of imaginaries, unless stated otherwise). Ordinals will be denoted by $\alpha, \beta, \gamma, \ldots$ Sets A, B, C, \ldots will be small subsets of C, i.e. of cardinality strictly less than the cardinality of C. The letters a, b, c, \ldots denote finite tuples from C, and x, y, z, \ldots denote finite tuples of variables, unless stated otherwise. We use p, q, r, \ldots to denote types (possibly partial) over some set. For an invariant set V (over some small set) and n, we denote by V^n the set of n-tuples of realizations of V.

2. Preliminaries. The forking topology is introduced in [S0] and is a variant of Hrushovski's and Pillay's topologies from [H0] and [P0], respectively. In this section T is assumed to be simple and we work in a large saturated model C of T.

DEFINITION 2.1. Let $A \subseteq \mathcal{C}$ and let x be a finite tuple of variables.

(1) An invariant set \mathcal{U} over A is said to be a basic τ^f -open set over A if there is $\phi(x, y) \in L(A)$ such that

 $\mathcal{U} = \{ a \mid \phi(a, y) \text{ forks over } A \}.$

Note that the family of basic τ^{f} -open sets over A is closed under finite intersections, thus forms a basis for a unique topology on $S_{x}(A)$. An open set in this topology is called a τ^{f} -open set over A or a forking-open set over A.

(2) An invariant set \mathcal{U} over A is said to be a basic τ_{∞}^{f} -open set over A if \mathcal{U} is a type-definable τ^{f} -open set over A. The family of basic τ_{∞}^{f} -open sets over A is a basis for a unique topology on $S_{x}(A)$. An open set in this topology is called a τ_{∞}^{f} -open set over A.

Recall that a formula $\phi(x, y) \in L$ is low in x if there exists $k < \omega$ such that for every \emptyset -indiscernible sequence $(b_i \mid i < \omega)$, the set $\{\phi(x, b_i) \mid i < \omega\}$ is inconsistent iff every subset of it of size k is inconsistent. T is low if every $\phi(x, y)$ is low in x.

REMARK 2.2. Assume $\phi(x,t) \in L$ is low in t and $\psi(y,v) \in L$ is low in v $(x \cap y, t \cap v \text{ may not be } \emptyset)$. Then $\theta(xy,tv) \equiv \phi(x,t) \lor \psi(y,v)$ is low in tv.

Proof. Let $k_1 < \omega$ be a witness that $\phi(x, t)$ is low in t and let $k_2 < \omega$ be a witness that $\psi(y, v)$ is low in v. Let $k = k_1 + k_2 - 1$. By adding dummy variables we may assume x = y and t = v (as tuples of variables).

Let $(a_i | i < \omega)$ be indiscernible such that $\{\phi(a_i, t) \lor \psi(a_i, t) | i < \omega\}$ is inconsistent. Thus, every subset of $\{\phi(a_i, t) | i < \omega\}$ of size k_1 is inconsistent, and every subset of $\{\psi(a_i, t) | i < \omega\}$ of size k_2 is inconsistent. Thus every subset of size k of $\{\phi(a_i, t) \lor \psi(a_i, t) | i < \omega\}$ is inconsistent.

Here we state some basic facts about the τ^{f} -topology.

REMARK 2.3. (1) The τ^{f} -topology on $S_{x}(A)$ refines the Stone topology of $S_{x}(A)$ for all x, A.

(2) A basic τ^f -open set in a low theory is type-definable and every Stoneclosed subset of $(S_x(A), \tau^f)$ is a Baire topological space (i.e. the intersection of countably many dense open sets in it is dense) [S1, Remark 7.6].

(3) Let A be a small set. Let F(x, y) be a type-definable relation over A and let f(x) be an A-definable function. Let $\Gamma_{F,f}(x) = \exists y \ (F(x, y) \land y \downarrow f(x))$. Then $\Gamma_{F,f}(x)$ is τ^f -closed over A ([S0, Claim 2.5] is slightly dif-

ferent, but the proof is the same).

Recall the following definition from [S0] whose roots are in [H0].

DEFINITION 2.4. We say that the τ^f -topologies over A are closed under projections (or T is PCFT over A) if for every τ^f -open set $\mathcal{U}(x, y)$ over Athe set $\exists y \ \mathcal{U}(x, y)$ is τ^f -open over A. We say that the τ^f -topologies are closed under projections (or T is PCFT) if they are such over every set A.

In [BPV, Proposition 4.5] the authors proved the following equivalence which, for convenience, we will use as a definition (their definition involves extension with respect to pairs of models of T).

DEFINITION 2.5. We say that the extension property is first-order in T iff for any formulas $\phi(x, y), \psi(y, z) \in L$ the relation $Q_{\phi, \psi}$ defined by

 $Q_{\phi,\psi}(a)$ iff $\phi(x,b)$ does not fork over a for every $b \models \psi(y,a)$

is type-definable (here a can be an infinite tuple from C whose sorts are fixed). We say that T has wnfcp if T is low and the extension property is first-order in T.

REMARK 2.6. Recall that T has nfcp (non-finite cover property) iff for every formula $\phi(x, y) \in L$ there exists $k < \omega$ such that every set $\{\phi(x, a_i) \mid i \in I\}$ of instances of $\phi(x, y)$ is consistent iff every subset of it of size kis consistent. By a theorem of Shelah, T has nfcp iff T is stable and T^{eq} eliminates the quantifier \exists^{∞} [Sh, Chapter 2, Theorems 4.2, 4.4]. Moreover, if T is stable then T has nfcp iff T has wnfcp [BPV].

FACT 2.7 ([S1, Corollary 3.13]). Suppose the extension property is first-order in T. Then T is PCFT.

Z. Shami

We say that an A-invariant set \mathcal{U} has finite SU-rank if $SU(a/A) < \omega$ for all $a \in \mathcal{U}$, and has bounded finite SU-rank if there exists $n < \omega$ such that $SU(a/A) \leq n$ for all $a \in \mathcal{U}$. The existence of a τ^f -open set of bounded finite SU-rank implies the existence of an SU-rank 1 formula (i.e. a weakly minimal formula):

FACT 2.8 ([S0, Proposition 2.13]). Let \mathcal{U} be an unbounded τ^f -open set over some set A. Assume \mathcal{U} has bounded finite SU-rank. Then there exist a set $B \supseteq A$ with $|B \setminus A| < \omega$ and $\theta(x) \in L(B)$ of SU-rank 1 such that $\theta^{\mathcal{C}} \subseteq \mathcal{U} \cup \operatorname{acl}(B)$.

In [S1] the class of $\tilde{\tau}^f$ -sets and its subclass of $\tilde{\tau}^f_{st}$ -sets were introduced. The class of $\tilde{\tau}^f$ -sets is much wider than the class of basic τ^f -open sets. Here we look at the intermediate class of $\tilde{\tau}^f_{low}$ -sets.

DEFINITION 2.9. A relation $V(x, z_1, \ldots, z_l)$ is said to be a $pre-\tilde{\tau}^f$ -set relation over \emptyset if there are $\theta(\tilde{x}, x, z_1, \ldots, z_l) \in L$ and $\phi_i(\tilde{x}, y_i) \in L$ for $0 \leq i \leq l$ such that for all a, d_1, \ldots, d_l from \mathcal{C} we have

$$V(a, d_1, \dots, d_l) \text{ iff } \exists \tilde{a} \left[\theta(\tilde{a}, a, d_1, \dots, d_l) \land \bigwedge_{i=0}^{l} (\phi_i(\tilde{a}, y_i) \text{ forks over } d_1 \dots d_i) \right]$$

(for i = 0 the sequence $d_1 \dots d_i$ is interpreted as \emptyset). If each $\phi_i(\tilde{x}, y_i)$ is assumed to be low in y_i , $V(x, z_1, \dots, z_l)$ is said to be a *pre*- $\tilde{\tau}_{low}^f$ -set relation.

DEFINITION 2.10. (1) A $\tilde{\tau}^{f}$ -set over \emptyset is a set of the form

 $\mathcal{U} = \{a \mid \exists d_1, \dots, d_l \ V(a, d_1, \dots, d_l)\}$

for some pre- $\tilde{\tau}^f$ -set relation $V(x, z_1, \ldots, z_l)$.

(2) A $\tilde{\tau}_{low}^{f}$ -set over \emptyset is a set of the form

 $\mathcal{U} = \{a \mid \exists d_1, \dots, d_l \ V(a, d_1, \dots, d_l)\}$

for some pre- $\tilde{\tau}_{low}^f$ -set relation $V(x, z_1, \ldots, z_l)$.

REMARK 2.11. Every $\tilde{\tau}_{low}^{f}$ -set is type-definable.

Proof. Let $\phi(x, y) \in L$ be low in x. Let $\Gamma_{\phi}(y, z)$ be the invariant relation defined by $\Gamma_{\phi}(a, c)$ iff $\phi(x, a)$ divides over c. Then $\Gamma_{\phi}(y, z)$ is type-definable, so the claim follows by compactness.

3. The Theorem. In this section T is assumed to be a simple theory and we work in C (so, T not necessarily eliminates imaginaries).

DEFINITION 3.1. Let $\Theta = \{\theta_i(x_i, x)\}_{i \in I}$ be a set of *L*-formulas such that $\forall x \exists^{<\infty} x_i \ \theta_i(x_i, x)$ for all $i \in I$. Let *s* be the sort of *x*. For $A \subseteq \mathcal{C}^s$, let $\operatorname{acl}_{\Theta}(A) = \{b \mid \theta_i(b, a) \text{ for some } \theta_i \in \Theta \text{ and } a \in A\}.$

DEFINITION 3.2. An invariant set $\mathcal{U}(x, y_1, \ldots, y_r)$ is said to be a generalized uniform family of $\tilde{\tau}_{low}^f$ -sets if there is a formula $\rho(\tilde{x}, x, y_1, \ldots, y_r, z_1, \ldots, z_k) \in L$ and there are formulas $\psi_i(\tilde{x}, v_i), \mu_j(\tilde{x}, w_j) \in L$ for $0 \leq i \leq r$ and $1 \leq j \leq k$ that are low in v_i and low in w_j , respectively, such that for all a, d_1, \ldots, d_r we have $\mathcal{U}(a, d_1, \ldots, d_r)$ iff $\exists \tilde{a} \exists e_1, \ldots, e_k$

$$\rho(\tilde{a}, a, d_1, \dots, d_r, e_1, \dots, e_k) \wedge \Big[\bigwedge_{i=0}^r (\psi_i(\tilde{a}, v_i) \text{ forks over } d_1 \dots d_i)\Big]$$
$$\wedge \Big[\bigwedge_{j=1}^k (\mu_j(\tilde{a}, w_j) \text{ forks over } d_1 \dots d_r e_1 \dots e_j)\Big].$$

DEFINITION 3.3. An invariant set $\mathcal{F}(x, y_1, \ldots, y_r)$ is said to be a generalized uniform family of $\tilde{\tau}_{low}^f$ -closed sets if

$$\mathcal{F}(x, y_1, \dots, y_r) = \bigcap_i \neg \mathcal{U}_i(x, y_1, \dots, y_r),$$

where each $\mathcal{U}_i(x, y_1, \ldots, y_r)$ is a generalized uniform family of $\tilde{\tau}_{low}^f$ -sets.

The following fact [S1, Theorem 8.7] is the key ingredient of our main theorem.

FACT 3.4. Assume the extension property is first-order in T. Let \mathcal{U} be an unbounded $\tilde{\tau}^f$ -set over \emptyset . Then there exists an unbounded τ^f -open set \mathcal{U}^* over some finite set A^* such that $\mathcal{U}^* \subseteq \mathcal{U}$. In fact, if $V(x, z_1, \ldots, z_l)$ is a pre- $\tilde{\tau}^f$ -set relation such that $\mathcal{U} = \{a \mid \exists d_1, \ldots, d_l \; V(a, d_1, \ldots, d_l)\}$, and $\bar{d}^* = (d_1^*, \ldots, d_m^*)$ is any maximal sequence (with respect to extension) such that $\mathcal{U}_{\bar{d}^*}^* = \exists d_{m+1}, \ldots, d_l \; V(\mathcal{C}, d_1^*, \ldots, d_m^*, d_{m+1}, \ldots, d_l)$ is unbounded, then $\mathcal{U}_{\bar{d}^*}^*$ is a τ^f -open set over \bar{d}^* .

THEOREM 3.5. Let T be a countable simple theory in which the extension property is first-order. Assume:

- (1) $\Theta = \{\theta_i(x'_i, x)\}_{i < \omega}$ is a set of L-formulas such that $\forall x \exists^{<\infty} x'_i \theta_i(x'_i, x)$ for all $i < \omega$.
- (2) $\mathcal{U}_0(x)$ is a non-empty $\tilde{\tau}^f_{low}$ -set over \emptyset .
- (3) $\{F_n(x_n)\}_{n < \omega}$ is a family of \emptyset -invariant sets such that $F_n(\mathcal{C}) \cap \operatorname{acl}(\emptyset) = \emptyset$ for all $n < \omega$.
- (4) For every $n < \omega$ and any variables $\bar{y} = y_1, \ldots, y_r$, let $\mathcal{F}_n^{\bar{y}}(x_n, \bar{y})$ be a generalized uniform family of $\tilde{\tau}_{low}^f$ -closed sets such that $F_n(\mathcal{C}) \subseteq \mathcal{F}_n^{\bar{y}}(\mathcal{C}, \bar{d})$ for all \bar{d} .

Now, assume that for all $a \in \mathcal{U}_0$ there exist $b \in \operatorname{acl}_{\Theta}(a)$ and $n < \omega$ such that $b \in F_n(\mathcal{C})$. Then there is an unbounded τ_{∞}^f -open set \mathcal{U}^* over a finite tuple

$$\overline{d}^*$$
 and variables \overline{y}^* of the sort of \overline{d}^* , and $n^* < \omega$ such that
 $\mathcal{U}^* \subseteq \mathcal{F}_{n^*}^{\overline{y}^*}(\mathcal{C}, \overline{d}^*) \cap \operatorname{acl}_{\Theta}(\mathcal{U}_0).$

Proof. First, we may assume Θ is downwards closed (i.e. if $\theta \in \Theta$ and $\theta' \vdash \theta$ then $\theta' \in \Theta$; note that since L is countable the closure of Θ in this sense remains countable). Assume the conclusion of the theorem is false. To get a contradiction, it will be sufficient to show the following.

SUBCLAIM 3.6. For every non-empty $\tilde{\tau}_{low}^f$ -set $\mathcal{U} \subseteq \mathcal{U}_0$ over \emptyset , every $\theta \in \Theta$, and every $n < \omega$ there exists a non-empty $\tilde{\tau}_{low}^f$ -set $\mathcal{U}^* \subseteq \mathcal{U}$ over \emptyset such that either $\neg \exists x' \ \theta(x', a)$ for all $a \in \mathcal{U}^*$, or for all $a \in \mathcal{U}^*$ there exists $b \models \theta(x', a)$ with $b \notin F_n(\mathcal{C})$.

First, we show this is sufficient. Construct a decreasing sequence $(\mathcal{U}_m \mid m < \omega)$ of non-empty $\tilde{\tau}_{low}^f$ -sets that begins at \mathcal{U}_0 , and for every $m < \omega$ the set \mathcal{U}_{m+1} is obtained from \mathcal{U}_m by applying Subclaim 3.6 for an appropriate pair (θ, n) (that corresponds to m by a fixed bijection of $\Theta \times \omega$ with ω). By Remark 2.11 and compactness, $\bigcap \mathcal{U}_m \neq \emptyset$, so there exists $a^* \in \mathcal{U}_0$ such that for all $\theta \in \Theta$ either $\neg \exists x' \ \theta(x', a^*)$, or for every $n < \omega$ there exists $b_{n,\theta} \models \theta(x', a^*)$ such that $b_{n,\theta} \notin F_n(\mathcal{C})$. Now, by the assumption of the theorem there exist $\theta(x', x) \in \Theta$, b^* and $n^* < \omega$ such that $\theta(b^*, a^*)$ and $b^* \in F_{n^*}(\mathcal{C})$. As Θ is downwards closed, there exists $\theta^*(x', x) \in \Theta$ such that $\theta^*(x', x) \vdash \theta(x', x)$ and $\theta^*(x', a^*)$ isolates $\operatorname{tp}(b^*/a^*)$ (as it is algebraic). By the above property of a^* , there exists $b^{**} \models \theta^*(x', a^*)$ with $b^{**} \notin F_{n^*}(\mathcal{C})$, contradicting the fact that $\theta^*(x', a^*)$ isolates $\operatorname{tp}(b^*/a^*)$ and the assumption that $F_{n^*}(\mathcal{C})$ is \emptyset -invariant.

Proof of Subclaim 3.6. Let \mathcal{U}, θ and $n < \omega$ be given. Let $V(x, z_1, \ldots, z_l)$ be a pre- $\tilde{\tau}_{low}^f$ -set relation such that

$$\mathcal{U} = \{a \mid \exists d_1, \ldots, d_l \ V(a, d_1, \ldots, d_l)\},\$$

where V is defined by:

$$V(a, d_1, \dots, d_l) \text{ iff } \exists \tilde{a} \left[\sigma(\tilde{a}, a, d_1, \dots, d_l) \land \bigwedge_{i=0}^{l} (\phi_i(\tilde{a}, t_i) \text{ forks over } d_1 \dots d_i) \right]$$

for some $\sigma(\tilde{x}, x, z_1, \ldots, z_l) \in L$ and $\phi_i(\tilde{x}, t_i) \in L$ which are low in t_i for $0 \leq i \leq l$. Let V_{θ} be defined by: for all $b, d_1, \ldots, d_l \in C$,

$$V_{\theta}(b, d_1, \dots, d_l)$$
 iff $\exists a \ (\theta(b, a) \land V(a, d_1, \dots, d_l)),$

and let

 $\mathcal{U}_{\theta} = \{ b \mid \exists d_1, \dots, d_l \ V_{\theta}(b, d_1, \dots, d_l) \}.$

Since by the assumption $F_n(\mathcal{C}) \cap \operatorname{acl}(\emptyset) = \emptyset$, we may assume $\mathcal{U}_{\theta} \cap \operatorname{acl}(\emptyset) = \emptyset$ and \mathcal{U}_{θ} is non-empty. Now, let $\bar{d}^* = (d_1^*, \ldots, d_m^*)$ be a maximal sequence, with respect to extension $(0 \le m \le l)$, such that

$$\tilde{V}_{\theta}(x') \equiv \exists d_{m+1}, \dots, d_l \ V_{\theta}(x', d_1^*, \dots, d_m^*, d_{m+1}, \dots, d_l)$$

is non-algebraic. We may assume m < l (by choosing V appropriately). By Fact 3.4, $\tilde{V}_{\theta}(\mathcal{C})$ is an unbounded basic τ_{∞}^{f} -open set over \bar{d}^{*} . Since we assume the conclusion of the theorem is false, $\tilde{V}_{\theta}(\mathcal{C}) \not\subseteq \mathcal{F}_{n}^{\bar{y}^{*}}(\mathcal{C}, \bar{d}^{*})$ where $\bar{y}^{*} = y_{1}^{*}, \ldots, y_{m}^{*}$ has the same sort as \bar{d}^{*} . Now, let each $\mathcal{U}_{s,n}(x_{n}, \bar{y}^{*})$ for $s < \alpha$ be a generalized uniform family of $\tilde{\tau}_{low}^{f}$ -sets such that $\mathcal{F}_{n}(x_{n}, \bar{y}^{*}) = \bigcap_{s < \alpha} \neg \mathcal{U}_{s,n}(x_{n}, \bar{y}^{*})$. Let $b^{*} \in \tilde{V}_{\theta}(\mathcal{C}) \setminus \mathcal{F}_{n}^{\bar{y}^{*}}(\mathcal{C}, \bar{d}^{*})$. So, there exists $s^{*} < \alpha$ such that $b^{*} \in \mathcal{U}_{s^{*},n}(\mathcal{C}, \bar{d}^{*})$. Let $\rho(\tilde{x}', x_{n}, y_{1}^{*}, \ldots, y_{m}^{*}, z_{1}', \ldots, z_{k}') \in L$ and let $\psi_{i}(\tilde{x}', v_{i}), \mu_{j}(\tilde{x}', w_{j}) \in L$ for $0 \leq i \leq m$ and $1 \leq j \leq k$ be low in v_{i} and low in w_{j} respectively, such that for all b, d_{1}, \ldots, d_{m} we have $\mathcal{U}_{s^{*},n}(b, d_{1}, \ldots, d_{m})$ iff $\exists \tilde{b} \exists e_{1}, \ldots, e_{k}$

$$\rho(\tilde{b}, b, d_1, \dots, d_m, e_1, \dots, e_k) \wedge \Big[\bigwedge_{i=0}^m (\psi_i(\tilde{b}, v_i) \text{ forks over } d_1 \dots d_i)\Big]$$
$$\wedge \Big[\bigwedge_{j=1}^k (\mu_j(\tilde{b}, w_j) \text{ forks over } d_1 \dots d_m e_1 \dots e_j)\Big].$$

Now, let d_{m+1}^*, \ldots, d_l^* and a^*, \tilde{a}^* and $E^* = (e_1^*, \ldots, e_k^*)$ and \tilde{b}^* be such that

$$(*1) \quad \theta(b^*, a^*) \wedge \sigma(\tilde{a}^*, a^*, d_1^*, \dots, d_l^*) \wedge \bigwedge_{i=0}^{\circ} (\phi_i(\tilde{a}^*, y_i) \text{ forks over } d_1^* \dots d_i^*),$$

$$\begin{aligned} (*2) \quad \rho(\tilde{b}^*, b^*, d_1^*, \dots, d_m^*, e_1^*, \dots, e_k^*), \\ (*3) \quad \left[\bigwedge_{i=0}^m (\psi_i(\tilde{b}^*, v_i) \text{ forks over } d_1^* \dots d_i^*)\right] \\ & \wedge \left[\bigwedge_{j=1}^k (\mu_j(\tilde{b}^*, w_j) \text{ forks over } d_1^* \dots d_m^* e_1^* \dots e_j^*)\right]. \end{aligned}$$

By maximality of \bar{d}^* , we know $b^* \in \operatorname{acl}(\bar{d}^*d_{m+1}^*)$. Thus, by taking a nonforking extension of $\operatorname{tp}(\tilde{b}^*E^*/\operatorname{acl}(\bar{d}^*d_{m+1}^*))$ over $\operatorname{acl}(d_1^*\ldots d_l^*a^*\tilde{a}^*)$ we may assume E^* is independent of $d_1^*\ldots d_l^*a^*\tilde{a}^*$ over $\bar{d}^*d_{m+1}^*$ and (*1)–(*3) still hold. We conclude that

$$\bigwedge_{i=m+1}^{l} (\phi_i(\tilde{a}^*, t_i) \text{ forks over } d_1^* \dots d_i^* E^*).$$

Now, we define the $\tilde{\tau}_{low}^f$ -set \mathcal{U}^* . First, define a relation V^* by: $V^*(a, d_1, \ldots, d_m, e_1, \ldots, e_k, d_{m+1}, \ldots, d_l)$ iff $\exists \tilde{a}, b, \tilde{b} \ (\theta^* \wedge V_0^* \wedge V_1^* \wedge V_2^*),$ where θ^* is defined by: $\theta^*(\tilde{a}, b, \tilde{b}, a, d_1, \dots, d_m, e_1, \dots, e_k, d_{m+1}, \dots, d_l)$ iff $\theta(b, a) \wedge \sigma(\tilde{a}, a, d_1, \dots, d_l) \wedge \rho(\tilde{b}, b, d_1, \dots, d_m, e_1, \dots, e_k),$

 V_0^* is defined by: $V_0^*(\tilde{a}, \tilde{b}, d_1, \dots, d_m)$ iff

$$\bigwedge_{i=0}^{m} (\phi_i(\tilde{a}, t_i) \lor \psi_i(\tilde{b}, v_i) \text{ forks over } d_1 \dots d_i),$$

 V_1^* is defined by: $V_1(\tilde{b}, d_1, \dots, d_m, e_1, \dots, e_k)$ iff

$$\bigwedge_{j=1}^{\kappa} (\mu_j(\tilde{b}, w_j) \text{ forks over } d_1 \dots d_m e_1 \dots e_j),$$

and V_2^* is defined by: $V_2(\tilde{a}, d_1, \dots, d_m, e_1, \dots, e_k, d_{m+1}, \dots, d_l)$ iff

$$\bigwedge_{i=m+1} (\phi_i(\tilde{a}, t_i) \text{ forks over } d_1 \dots d_i e_1 \dots e_k).$$

Note that V^* is a pre- $\tilde{\tau}^f_{low}$ -set. Let

$$\mathcal{U}^* = \{ a \mid \exists d_1, \dots, d_m, e_1, \dots, e_k, d_{m+1}, \dots, d_l \\ V^*(a, d_1, \dots, d_m, e_1, \dots, e_k, d_{m+1}, \dots, d_l) \}.$$

By the definition of \mathcal{U}^* , we have $\mathcal{U}^* \subseteq \mathcal{U}$. Moreover \mathcal{U}^* is a $\tilde{\tau}_{low}^f$ -set by Remark 2.2. By construction, $\mathcal{U}^* \neq \emptyset$. Now, let $a \in \mathcal{U}^*$. By the definition of \mathcal{U}^* , there are $\tilde{b}, b, d_1, \ldots, d_m, e_1, \ldots, e_k$ such that $\theta(b, a), \rho(\tilde{b}, b, d_1, \ldots, d_m, e_1, \ldots, e_k)$, and

$$\bigwedge_{i=0}^{m} (\psi_i(\tilde{b}, v_i) \text{ forks over } d_1 \dots d_i),$$
$$\bigwedge_{j=1}^{k} (\mu_j(\tilde{b}, w_j) \text{ forks over } d_1 \dots d_m e_1 \dots e_j)$$

Thus $\mathcal{U}_{s^*,n}(b, d_1 \dots d_m)$ and therefore $\neg \mathcal{F}_n^{\bar{y}^*}(b, d_1 \dots d_m)$. Hence $b \notin F_n$ as required.

4. Applications. In this section we give some applications of Theorem 3.5. In fact, we will show several instances of this theorem that are apparently new even for stable theories. In this section T is assumed to be a simple theory and we work in C.

We start by pointing out that Theorem 3.5 generalizes [S1, Theorem 9.4] that is one of the essential steps towards the proof of supersimplicity of countable simple unidimensional theories with elimination of hyperimaginaries. First recall the following definitions from [S1] of stable independence and SU_{se} -rank.

DEFINITION 4.1. For $a \in \mathcal{C}$, $A, B \subseteq \mathcal{C}$, $a \underset{A}{\downarrow^s} B$ if for some stable $\phi(x, y) \in L$, there are $b \subseteq A \cup B$ and $a' \in \phi(\mathcal{C}, b) \cap \operatorname{dcl}(Aa)$ such that $\phi(x, b)$ forks over A.

DEFINITION 4.2. The SU_{se} -rank of tp(a/A) is defined by induction on α : if $\alpha = \beta + 1$, then $SU_{se}(a/A) \ge \alpha$ if there exist $B_1 \supseteq B_0 \supseteq A$ such that $a \underset{B_0}{\downarrow^s} B_1$ and $SU_{se}(a/B_1) \ge \beta$. For limit α , $SU_{se}(a/A) \ge \alpha$ if $SU_{se}(a/A) \ge \beta$ for all $\beta < \alpha$.

REMARK 4.3. In [S1, Lemma 6.8] it is proved that in a simple theory, in which Lstp = stp over sets, \perp^s is symmetric. In fact, \perp^s is symmetric in any simple theory. Thus for any simple theory, if s_0 and s_1 are finite tuples of sorts and $n < \omega$ then the set $\mathcal{F}_n^{s_0,s_1}$ defined by

$$\mathcal{F}_n^{s_0,s_1} = \{(a,A) \in \mathcal{C}^{s_0} \times \mathcal{C}^{s_1} \mid SU_{se}(a/A) < n\}$$

is a generalized uniform family of $\tilde{\tau}_{low}^{f}$ -closed sets.

Proof. To prove that \bigcup^{s} is symmetric, first recall [S1, Claim 6.5]:

FACT 4.4. Let T be simple. Let $\phi(x, y) \in L$ be stable. Assume $a \underset{A}{\downarrow} b$ and $a' \underset{A}{\downarrow} b$ and Lstp(a/A) = Lstp(a'/A). Then $\phi(a, b)$ iff $\phi(a', b)$.

By the proof of symmetry of stable independence [S3, Lemma 6.8] it will be sufficient to prove Fact 4.4 with the weaker assumption stp(a) = stp(a') instead of the assumption Lstp(a) = Lstp(a') (we may clearly assume $A = \emptyset$). Indeed, assume stp(a) = stp(a'). Now, for every complete type $q \in S(\emptyset)$ let E_q be the equivalence relation defined by: $E_q(a, a')$ iff "for every $b \models q$ that is independent of aa' we have $[\phi(a, b) \text{ iff } \phi(a', b)]$ ". Then E_q is Stone-open. By Fact 4.4, equality of the Lascar strong type refines E_q . Thus E_q is a \emptyset -definable finite equivalence relation (as a bounded Stone-open equivalence relation is definable [S3, Lemma 7]). Now, by the assumption that stp(a) = stp(a'), $E_q(a, a')$ for all complete q. Thus, by extension we infer that for every b, if each of a and a' is independent of b, then $\phi(a, b)$ iff $\phi(a', b)$.

We now explain the last phrase. We need to show that $\neg \mathcal{F}_n^{s_0,s_1}$ is a disjunction of invariant sets, each of which is a generalized uniform family of $\tilde{\tau}_{low}^f$ -sets for all s_0, s_1 and n as above. Indeed, by symmetry of \downarrow^s , $\neg \mathcal{F}_n^{s_0,s_1}(a, A)$ iff there are $b_1, c_1, \ldots, b_n, c_n$ such that $c_i \qquad \downarrow^s \qquad a$ for all $Ab_1c_1...b_{i-1}c_{i-1}b_i$

 $1 \leq i \leq n$. By the definition of \downarrow^s , this can be easily seen to be equivalent to a disjunction of the required form (since any stable $\phi(x, y) \in L$ is low in both x and y).

For an A-invariant set V, we set $\operatorname{acl}_1(V) = \{a' \mid a' \in \operatorname{acl}(a) \text{ for some } a \in V^1\}$. The following corollary generalizes [S1, Theorem 9.4].

COROLLARY 4.5. Let T be a countable simple theory in which the extension property is first-order. Let \mathcal{U}_0 be a non-empty $\tilde{\tau}^f_{low}$ -set. Assume for every $a \in \mathcal{U}_0$ there exists $a' \in \operatorname{acl}(a) \setminus \operatorname{acl}(\emptyset)$ such that $SU_{se}(a') < \omega$. Then there exists an unbounded τ^f_{∞} -open set $\mathcal{U} \subseteq \operatorname{acl}_1(\mathcal{U}_0)$ over a finite set such that \mathcal{U} has bounded finite SU_{se} -rank.

Proof. Let x be the variable of \mathcal{U}_0 , so $\mathcal{U}_0 = \mathcal{U}_0(x)$. Let

 $\Theta = \{ \theta(x', x) \mid \exists^{<\infty} x' \ \theta(x', x), x' \text{ any variable} \}.$

Let S be the set of sorts. Let $I: \omega \to S \times \omega$ be a bijection, and I_1, I_2 the projections of I to the first and second coordinate, respectively. Now, for each $n < \omega$ let $F_n = \{a \in C^{I_1(n)} \setminus \operatorname{acl}(\emptyset) \mid SU_{se}(a) < I_2(n)\}$. Now, for every finite tuple of variables Y and $n < \omega$ let s(Y) be the finite sequence of sorts of Y and let

$$\mathcal{F}_n^Y = \{(a, A) \in \mathcal{C}^{I_1(n)} \times \mathcal{C}^{s(Y)} \mid SU_{se}(a/A) < I_2(n)\}.$$

By the definition of the SU_{se} -rank, $F_n(\mathcal{C}) \subseteq \mathcal{F}_n^Y(\mathcal{C}, A)$ for every $n < \omega$ and all Y, A. By Remark 4.3, \mathcal{F}_n^Y is a generalized uniform family of $\tilde{\tau}_{low}^f$ -closed sets for all Y, n. By our assumptions, we see that the assumptions of Theorem 3.5 hold for $\mathcal{U}_0(x)$, Θ , $\{F_n\}_n$ and $\{\mathcal{F}_n^Y\}_{Y,n}$, and thus by its conclusion we are done.

COROLLARY 4.6. Let T be a countable theory with wnfcp. Let \mathcal{U}_0 be an unbounded $\tilde{\tau}^f$ -set over \emptyset of finite SU-rank. Then there exists a finite set A and an SU-rank 1 formula $\theta \in L(A)$ such that $\theta^{\mathcal{C}} \subseteq \mathcal{U}_0 \cup \operatorname{acl}(A)$.

Proof. First, by modifying \mathcal{U}_0 , we may assume $\mathcal{U}_0 \cap \operatorname{acl}(\emptyset) = \emptyset$. Let $\Theta = \{x' = x\}, \mathcal{U}_0(x) = \mathcal{U}_0$. Let s(x) be the sort of x. Now, for each $n < \omega$ let

$$F_n = \{ a \in \mathcal{C}^{s(x)} \setminus \operatorname{acl}(\emptyset) \mid SU(a) < n \}.$$

For every finite tuple of variables Y and $n < \omega$ let s(Y) be the finite sequence of sorts of Y and let

$$\mathcal{F}_n^Y = \{ (a, A) \in \mathcal{C}^{s(x)} \times \mathcal{C}^{s(Y)} \mid SU(a/A) < n \}.$$

By symmetry of forking and the assumption that T is low, each \mathcal{F}_n^Y is a generalized uniform family of $\tilde{\tau}_{low}^f$ -closed sets. Clearly, $F_n(\mathcal{C}) \subseteq \mathcal{F}_n^Y(\mathcal{C}, A)$ for all $n < \omega$ and Y, A. By our assumption, the assumptions of Theorem 3.5 are satisfied for $\mathcal{U}_0, \Theta, \{F_n\}_n$ and $\{\mathcal{F}_n^Y\}_{Y,n}$ and thus by its conclusion there exists an unbounded τ_∞^f -open set $\mathcal{U}^* \subseteq \mathcal{U}_0$ over a finite set A_0 and \mathcal{U}^* has bounded finite SU-rank. By Fact 2.8, there exists a finite set $A \supseteq A_0$ and there exists an SU-rank 1 formula $\theta \in L(A)$ such that $\theta^{\mathcal{C}} \subseteq \mathcal{U}^* \cup \operatorname{acl}(A)$.

COROLLARY 4.7. Let T be a countable theory with wnfcp. Let \mathcal{U}_0 be a non-empty $\tilde{\tau}^f$ -set over \emptyset . Assume that for every $a \in \mathcal{U}_0$ there exists a' in $\operatorname{acl}(a) \setminus \operatorname{acl}(\emptyset)$ such that $SU(a') < \omega$. Then there exists a finite set A and an SU-rank 1 formula $\theta \in L(A)$ such that $\theta^{\mathcal{C}} \subseteq \operatorname{acl}_1(\mathcal{U}_0) \cup \operatorname{acl}(A)$.

Proof. Just like the proof of Corollary 4.6.

5. Dichotomies for countable theories with wnfcp. In this section we show that the dichotomy [S1, Theorem 5.5] implies a strong dichotomy between essential 1-basedness and supersimplicity in the case T is a countable wnfcp theory that eliminates hyperimaginaries. Before we state the above dichotomy for the special case of the τ^{f} -topologies (simplified version), let us recall the basic definitions. In this section T is assumed to be simple and we work in $\mathcal{C} = \mathcal{C}^{eq}$.

First, let us fix some notations and terminology. Let V, W be invariant sets. We say that V is generated over W by a small set B if $V \subseteq dcl(W \cup B)$. We say that V is generated over W if it is generated over W by some small set. If V is A-invariant, we say that V is (almost) W-internal over A if for every $a \in V$ there exists $B \supseteq A$, over which W is invariant, that is independent of a over A and there exists a tuple \bar{c} of realizations of W such that $a \in dcl(B, \bar{c})$ ($a \in acl(B, \bar{c})$, respectively). If we say that V is W-internal (without specifying over what set) then we mean that V is W-internal over the set that V comes with (e.g. in case it is a partial type, we consider it with its specified parameters). Note that if both V and W are A-invariant then for all $B, C \supseteq A, V$ is (almost) W-internal over B iff V is (respectively, almost) W-internal over C.

DEFINITION 5.1. A type $p \in S(A)$ is said to be essentially 1-based by means of the τ^f -topologies if for every finite tuple \bar{c} from p and for every type-definable τ^f -open set \mathcal{U} over $A\bar{c}$, the set $\{a \in \mathcal{U} \mid \operatorname{Cb}(a/A\bar{c}) \notin \operatorname{bdd}(aA)\}$ is nowhere dense in the Stone topology of \mathcal{U} .

We now state [S1, Theorem 5.5] for the τ^f -topologies (in fact, it is a special case of it when working over constants). Also, as indicated at the end of the proof of this fact, the finite *SU*-rank τ^f -open set we obtained is almost p_0 -internal.

FACT 5.2. Let T be a countable simple theory with PCFT that eliminates hyperimaginaries. Let p_0 be a partial type over \emptyset of SU-rank 1. Then either there exists an unbounded τ^f -open set over some countable set that is almost internal to p_0 (in particular, has finite SU-rank) or every type $p \in S(A)$, with A countable, that is internal in p_0 is essentially 1-based by means of the τ^f -topologies.

Z. Shami

THEOREM 5.3. Let T be a countable theory with wnfcp that eliminates hyperimaginaries. Let p be a partial type over \emptyset of SU-rank 1. Then either

- (1) every type $q \in S(A)$, with A countable, that is internal in p is essentially 1-based by means of the τ^{f} -topologies, or
- (2) there exists a weakly minimal definable set (in L(C)) that is generated over p(C).

Proof. Assume (1) is false. By Fact 5.2, there exists an unbounded typedefinable τ^f -open set \mathcal{U} over some countable set A such that $\operatorname{tp}(a/A)$ is almost p-internal for every $a \in \mathcal{U}$.

SUBCLAIM 5.4. There exists an unbounded type-definable τ^{f} -open set \mathcal{U}^{*} over A that is generated over $p(\mathcal{C})$.

Proof. By [BW] or [S2, Corollary 4.9], for every $a \in \mathcal{U} \setminus \operatorname{acl}(A)$ there exists $a' \in \operatorname{dcl}(aA) \setminus \operatorname{acl}(A)$ such that $\operatorname{tp}(a'/A)$ has a fundamental system of solutions over $p(\mathcal{C})$ (i.e. $\operatorname{tp}(a'/A)$ is generated over $p(\mathcal{C})$ by a set of realizations of $\operatorname{tp}(a'/A)$ together with A). In particular, there exists a (finite) set A' of realizations of $\operatorname{tp}(a'/A)$ that is independent of a' over A and a tuple \overline{c} of realizations of p such that $a' \in \operatorname{dcl}(A'A\overline{c})$. For any A-definable functions f, g let

$$F_{f,g} = \{a \in \mathcal{U} \mid f(a) = g(\bar{b}, \bar{c}) \notin \operatorname{acl}(A) \text{ for some } \bar{b}, \bar{c} \text{ with } f(a) \underset{A}{\bigcup} \bar{b},$$

where \bar{c} is a tuple of realizations of p ,

and \bar{b} is a tuple of realizations of tp(f(a)/A).

By Remark 2.3(3), each $F_{f,g}$ is τ^f -closed over A. Thus, by the Baire category theorem for the τ^f -topology (by Remark 2.3(2), $\mathcal{U} \setminus acl(A), \tau^f$) is a Baire space) there are A-definable functions f^*, g^* such that F_{f^*,g^*} has non-empty interior in the τ^f -topology over A. By Fact 2.7 there exists an unbounded type-definable τ^f -open set \mathcal{U}^* over A such that for every $a \in \mathcal{U}^*$ there exists a tuple \bar{b} of realizations of tp(a/A) that is independent of a over A such that $a = g^*(\bar{b}, \bar{c})$ for some tuple \bar{c} of realizations of p. The subclaim follows now directly from [S2, Theorem 3.7]:

FACT 5.5. Let $p \in S(\emptyset)$ and let \mathcal{R} be \emptyset -invariant. Suppose the internality of p in \mathcal{R} is witnessed by a generic parameter whose type q is almost- \mathcal{R} internal. Then p is generated over \mathcal{R} by a set of realizations of q.

Now, as \mathcal{U}^* has bounded finite SU-rank (the bound is determined by g^*), by Fact 2.8, there exists an SU-rank 1 formula $\theta(x, b)$ such that $\theta(\mathcal{C}, b) \subseteq \mathcal{U}^* \cup \operatorname{acl}(Ab)$. Thus (2) follows.

5.1. A trichotomy for countable theories with nfcp. Here we prove a trichotomy for countable theories with nfcp. In this subsection we

work in a large saturated model $C = C^{eq}$ of a simple theory T with elimination of hyperimaginaries unless stated otherwise.

We begin with some standard terminology and remarks. For a definable set D over A we denote by D^* the induced structure on D over A, namely, D^* is the set D equipped with all A-definable relations in C that are subsets of D^n for some n. Then clearly D^* has elimination of quantifiers and therefore saturated.

DEFINITION 5.6. Let D be a type-definable set over a set A. We say that D is 1-based if for every finite tuple \bar{a} of realizations of D and set $B \supseteq A$, we have $\operatorname{Cb}(\bar{a}/B) \in \operatorname{acl}(\bar{a}A)$. A type-definable group G over A is said to be 1-based if its underlying set is.

REMARK 5.7. (1) A type-definable set D over A is 1-based iff \bar{a} is independent of \bar{a}' over $\operatorname{acl}(A\bar{a}) \cap \operatorname{acl}(A\bar{a}')$ for any finite tuples \bar{a} and \bar{a}' from D. (2) Let D be a definable set over A. Then

- (i) if T is stable (simple), so is $Th(D^*)$,
- (ii) if D^* is 1-based then D is 1-based (as a type-definable set),
- (iii) if D is stably embedded (e.g. T is stable), and p is a partial type of D^* , then $\operatorname{RM}_{D^*}(p) = \operatorname{RM}(p_D)$ (where p_D is just the conjunction of p with appropriate power of D, RM is the usual Morley rank in \mathcal{C} , and RM_{D^*} is the Morley rank in D^*).

LEMMA 5.8. Assume L is countable and $\theta(\mathcal{C}) \subseteq \operatorname{acl}(p(\mathcal{C}))$, where p is any partial type over \emptyset and $\theta(x) \in L$ is non-algebraic. Then

- (1) there exists a \emptyset -definable $\theta^*(x) \vdash \theta(x)$ and \emptyset -definable functions f, gand $n < \omega$ such that $f[\theta^*(\mathcal{C}) \setminus \operatorname{acl}(\emptyset)] \subseteq g[p^n(\mathcal{C})]$ and $f[\theta^*(\mathcal{C})]$ is non-algebraic, and
- (2) if p is minimal then $f[\theta^*(\mathcal{C})]$ has ordinal Morley rank and thus contains a strongly minimal formula.

Proof. For every $a \in \theta(\mathcal{C}) \setminus \operatorname{acl}(\emptyset)$ there exist $n < \omega$ and $\bar{c} \in p^n(\mathcal{C})$ such that $a \in \operatorname{acl}(\bar{c})$. Let $e = \operatorname{Cb}(\bar{c}/a)$. Now, by elimination of hyperimaginaries there exists $e^* \in \operatorname{acl}(a) \cap \operatorname{dcl}(p(\mathcal{C})) \setminus \operatorname{acl}(\emptyset)$. Let $e^{**} = \{e' \mid \operatorname{tp}(e'/a) = \operatorname{tp}(e^*/a)\}$ (e^{**} is an imaginary element). Then clearly e^{**} is in $\operatorname{dcl}(a) \cap \operatorname{dcl}(p(\mathcal{C})) \setminus \operatorname{acl}(\emptyset)$. For any appropriate \emptyset -definable functions f, g let

$$F_{f,g} = \{ a \in \theta(\mathcal{C}) \mid \exists \bar{c} \subseteq p(\mathcal{C}) \ [f(a) = g(\bar{c}) \notin \operatorname{acl}(\emptyset)] \}.$$

Consequently, $\{F_{f,g}\}_{f,g}$ is a countable family of Stone-closed sets that covers $\theta(\mathcal{C}) \setminus \operatorname{acl}(\emptyset)$ and thus by the Baire category theorem for the Stone topology of $\theta(\mathcal{C}) \setminus \operatorname{acl}(\emptyset)$ we get the required formula $\theta^* \in L$ and \emptyset -definable functions f, g as in (1).

To prove (2), assume that p is minimal. Then, by induction on n, we easily find that for every countable set A the number of (complete) types

of realizations of p^n over A is countable. Thus by (1), for every countable set A the number of complete types over A extending $f[\theta^*(\mathcal{C})]$ is countable. Therefore $f[\theta^*(\mathcal{C})]$ has ordinal Morley rank.

We will be using the following two important facts. The first one is Buechler's dichotomy for minimal types (see [P1, Corollary 3.3]).

FACT 5.9. Let T be superstable and let $p \in S(A)$ be a minimal type. Then either p is 1-based or RM(p) = 1.

The second fact is Wagner's result [W] on analysis in 1-based types in simple theories (it generalizes previous results of Hrushovski and Chazidakis).

FACT 5.10. Let T be any simple theory and work with hyperimaginaries. Assume $p \in S(A)$ is analyzable in an A-invariant family of 1-based types. Then p is 1-based.

THEOREM 5.11. Let T be a countable theory with nfcp. Let $p \in S(\emptyset)$ be minimal. Then either

- (1) every type $q \in S(A)$, with A countable, that is internal in p is essentially 1-based by means of the τ^{f} -topologies, or
- (2) there is an infinite definable 1-based group of finite D-rank that is p-internal, or
- (3) there exists a strongly minimal definable set that is p-internal.

Proof. Assume (1) is false. By Theorem 5.3, there exists a weakly minimal formula $\theta(x, b)$ that is *p*-generated and in particular *p*-internal (in the stable case an invariant set is *p*-internal iff it is *p*-generated). First, assume $\theta(\mathcal{C}, b) \subseteq \operatorname{acl}(p(\mathcal{C}) \cup b)$. Then by Lemma 5.8, there exists a strongly minimal formula $\phi \in L(\mathcal{C})$ that is *p*-internal (even generated over $p^{\mathcal{C}}$). Thus, we may assume $\theta(\mathcal{C}, b) \not\subseteq \operatorname{acl}(p^{\mathcal{C}} \cup b)$. Let $a \in \theta(\mathcal{C}, b) \setminus \operatorname{acl}(p^{\mathcal{C}} \cup b)$. Let $q = \operatorname{tp}(a/\operatorname{acl}(b))$ and let $\Gamma = \operatorname{Aut}(q^{\mathcal{C}}/p^{\mathcal{C}} \cup \operatorname{acl}(b))$. We will be using the following fact [S2, Theorem 2.9], with its proof, which for simplicity we state for a special case. In the following, for a set *S*, possibly large, we let $\operatorname{DCL}(S)$ be the set of all elements in \mathcal{C} that are fixed by any automorphism that fixes *S* pointwise; we say that a set *V* is *controlled by B over S*, if $V \subseteq \operatorname{DCL}(B \cup S)$.

FACT 5.12. Let T be any simple theory. Let Q be a stably embedded type-definable set over \emptyset and let $q \in S(\emptyset)$. Suppose there exists a subset B of $DCL(q^{\mathcal{C}} \cup Q)$ with $tp(B) \vdash Lstp(B)$ such that $q^{\mathcal{C}}$ is controlled by B over Q. Then $\Gamma = Aut(q^{\mathcal{C}}/Q)$ is type-definable with its action on $q^{\mathcal{C}}$ over \emptyset .

REMARK 5.13. It is well known that in a stable theory if q is Q-internal then there is always a set B of realizations of q such that $q(\mathcal{C}) \subseteq \operatorname{dcl}(Q, B)$, in particular, q is controlled by B over Q; if q is stationary then B can be taken to be a finite initial segment of a Morley sequence of q and clearly $tp(B) \vdash Lstp(B)$.

Now, Γ in Fact 5.12 can be interpreted in the following way. As Q is a type-definable stably embedded set, there exists a partial type $\Sigma_Q(Y,Y')$ expressing that Y, Y' are Q-conjugate, for $Y, Y' \models \operatorname{tp}(B)$. Now, let $\Gamma_{B^2/Q}(Y,Y')$ be the type expressing that $\operatorname{tp}(Y) = \operatorname{tp}(Y') = \operatorname{tp}(B)$ and $\Sigma_Q(Y,Y')$. Now, by definition, $\sigma \in \Gamma = \operatorname{Aut}(q^{\mathcal{C}}/Q)$ iff σ is the restriction to $q^{\mathcal{C}}$ of some automorphism of \mathcal{C} that fixes Q pointwise. As q is controlled by $B \subseteq \operatorname{DCL}(q^{\mathcal{C}} \cup Q)$ over Q, it is not hard to show (see proof of [S2, Theorem 2.9]) that Γ can be interpreted as $\Gamma_{B^2/Q}/E$ for a certain \emptyset -definable equivalence relation E.

By Remark 5.13 and the fact that $q(x) \vdash \theta(x, b)$, there is an infinite type-definable group G over $\operatorname{acl}(b)$ that is isomorphic to Γ such that for some $\operatorname{acl}(b)$ -definable equivalence relation E and some $n < \omega$, we have $G \subseteq \theta(\mathcal{C}, b)^n / E$. Now, by stability of T, G is an intersection of definable groups over $\operatorname{acl}(b)$ [H1, Theorem 2]. By compactness, there is an infinite $\operatorname{acl}(b)$ -definable group G_0 that is p-internal and has finite D-rank. By Fact 5.9 and Remark 5.7(2)(i) applied to the induced structure G_0^* on G_0 over $\operatorname{acl}(b)$, every minimal type r in G_0^* is either 1-based or of Morley rank 1. Thus if (3) fails, then any such r is 1-based in G_0^* by Remark 5.7(2)(iii) and stability of T. As G_0^* has finite SU-rank, we conclude, when working in G_0^* , that every non-algebraic type is non-orthogonal to a minimal type, and therefore any type in G_0^* is analyzable in 1-based. By Remark 5.7(2)(ii), G_0 is 1-based.

References

- [BPV] I. Ben-Yaacov, A. Pillay and E. Vassiliev, Lovely pairs of models, Ann. Pure Appl. Logic 122 (2003), 235–261.
- [BW] I. Ben-Yaacov and F. Wagner, On almost orthogonality in simple theories, J. Symbolic Logic 69 (2004), 398–408.
- [H0] E. Hrushovski, *Countable unidimensional stable theories are superstable*, unpublished paper.
- [H1] E. Hrushovski, Unidimensional theories are superstable, Ann. Pure Appl. Logic 50 (1990), 117–138.
- [P0] A. Pillay, On countable simple unidimensional theories, J. Symbolic Logic 68 (2003), 1377–1384.
- [P1] A. Pillay, *Geometric Stability Theory*, Clarendon Press, Oxford.
- [S0] Z. Shami, On analyzability in the forking topology for simple theories, Ann. Pure Appl. Logic 142 (2006), 115–124.
- [S1] Z. Shami, Countable hypersimple unidimensional theories, J. London Math. Soc. 83 (2011), 309–332.

Ζ.	Shami
д.	onann

- [S2] Z. Shami, Coordinatization by binding groups and unidimensionality in simple theories, J. Symbolic Logic 69 (2004), 1221–1242.
- [S3] Z. Shami, Definability in low simple theories, J. Symbolic Logic 65 (2000), 1481– 1490.
- [Sh] S. Shelah, *Classification Theory*, rev. ed., North-Holland, Amsterdam, 1990.
- [W] F. Wagner, Some remarks on one-basedness in simple theories, J. Symbolic Logic 69 (2004), 34–38.

Ziv Shami

Department of Mathematics and Computer Science Ariel University, Samaria 44873 Ariel, Israel E-mail: zivshami@gmail.com

> Received 8 December 2010; in revised form 21 January 2013

206