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A model-theoretic Baire category theorem for
simple theories and its applications

by

Ziv Shami (Ariel)

Abstract. We prove a model-theoretic Baire category theorem for τ̃flow -sets in a
countable simple theory in which the extension property is first-order and show some
of its applications. We also prove a trichotomy for minimal types in countable nfcp theo-
ries: either every type that is internal in a minimal type is essentially 1-based by means of
the forking topologies, or T interprets an infinite definable 1-based group of finite D-rank
or T interprets a strongly minimal formula.

1. Introduction. The goal of this paper is to generalize a result from
[S1] and to give some applications. In [S1] the first step for proving supersim-
plicity of countable unidimensional simple theories eliminating hyperimagi-
naries is to show the existence of an unbounded type-definable forking-open
set (a set defined in terms of forking by formulas, see Definition 2.1) of
bounded finite SUse-rank (for definition see Section 4).

In this paper we develop a general framework for this kind of result. It is
a new idea of a model-theoretic Baire category theorem, namely, one deals
with certain “uniformly definable” family of generalized closed sets (in com-
plicated “logic”); roughly speaking, given a partition of a complicated open
set into countably many sets, each of which is the intersection of a “uniformly
definable” family of generalized closed sets, one can find a forking-open set
that is contained in some generalized closed set in one of these families.
So, the main point is that we obtain a very nice set (forking-open), but we
can only require that it be a subset of some generalized closed set in one
of these families and not in its intersection. In particular, it is not just the
usual Baire category theorem for a complicated topological space. The proof
is quite similar to the proof in [S1] and has some important consequences,
e.g. in a countable wnfcp theory if for every non-algebraic element a (even in

some fixed non-empty τ̃ flow -set) there is a′ ∈ acl(a)\acl(∅) of finite SU -rank,
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then there exists a weakly minimal formula. We also prove a trichotomy for
countable nfcp theories as indicated in the abstract.

We assume basic knowledge of simple theories. A good textbook on sim-
ple theories is [W]. The notations follow usual conventions. T will denote a
complete first-order theory with no finite models in some language L. We
will work in some large saturated model C of T (not necessarily with elim-
ination of imaginaries, unless stated otherwise). Ordinals will be denoted
by α, β, γ, . . . . Sets A,B,C, . . . will be small subsets of C, i.e. of cardinality
strictly less than the cardinality of C. The letters a, b, c, . . . denote finite
tuples from C, and x, y, z, . . . denote finite tuples of variables, unless stated
otherwise. We use p, q, r, . . . to denote types (possibly partial) over some set.
For an invariant set V (over some small set) and n, we denote by V n the
set of n-tuples of realizations of V .

2. Preliminaries. The forking topology is introduced in [S0] and is a
variant of Hrushovski’s and Pillay’s topologies from [H0] and [P0], respec-
tively. In this section T is assumed to be simple and we work in a large
saturated model C of T .

Definition 2.1. Let A ⊆ C and let x be a finite tuple of variables.

(1) An invariant set U over A is said to be a basic τ f -open set over A if
there is φ(x, y) ∈ L(A) such that

U = {a | φ(a, y) forks over A}.
Note that the family of basic τ f -open sets over A is closed under finite
intersections, thus forms a basis for a unique topology on Sx(A). An open
set in this topology is called a τ f -open set over A or a forking-open set
over A.

(2) An invariant set U over A is said to be a basic τ f∞-open set over A

if U is a type-definable τ f -open set over A. The family of basic τ f∞-open
sets over A is a basis for a unique topology on Sx(A). An open set in this

topology is called a τ f∞-open set over A.

Recall that a formula φ(x, y) ∈ L is low in x if there exists k < ω such
that for every ∅-indiscernible sequence (bi | i < ω), the set {φ(x, bi) | i < ω}
is inconsistent iff every subset of it of size k is inconsistent. T is low if every
φ(x, y) is low in x.

Remark 2.2. Assume φ(x, t) ∈ L is low in t and ψ(y, v) ∈ L is low in v
(x ∩ y, t ∩ v may not be ∅). Then θ(xy, tv) ≡ φ(x, t) ∨ ψ(y, v) is low in tv.

Proof. Let k1 < ω be a witness that φ(x, t) is low in t and let k2 < ω
be a witness that ψ(y, v) is low in v. Let k = k1 + k2 − 1. By adding
dummy variables we may assume x = y and t = v (as tuples of variables).



A model-theoretic Baire category theorem 193

Let (ai | i < ω) be indiscernible such that {φ(ai, t) ∨ ψ(ai, t) | i < ω} is
inconsistent. Thus, every subset of {φ(ai, t) | i < ω} of size k1 is inconsistent,
and every subset of {ψ(ai, t) | i < ω} of size k2 is inconsistent. Thus every
subset of size k of {φ(ai, t) ∨ ψ(ai, t) | i < ω} is inconsistent.

Here we state some basic facts about the τ f -topology.

Remark 2.3. (1) The τ f -topology on Sx(A) refines the Stone topology
of Sx(A) for all x,A.

(2) A basic τ f -open set in a low theory is type-definable and every Stone-
closed subset of (Sx(A), τ f ) is a Baire topological space (i.e. the intersection
of countably many dense open sets in it is dense) [S1, Remark 7.6].

(3) Let A be a small set. Let F (x, y) be a type-definable relation over
A and let f(x) be an A-definable function. Let ΓF,f (x) = ∃y (F (x, y) ∧
y |̂
A

f(x)). Then ΓF,f (x) is τ f -closed over A ([S0, Claim 2.5] is slightly dif-

ferent, but the proof is the same).

Recall the following definition from [S0] whose roots are in [H0].

Definition 2.4. We say that the τ f -topologies over A are closed under
projections (or T is PCFT over A) if for every τ f -open set U(x, y) over A
the set ∃y U(x, y) is τ f -open over A. We say that the τ f -topologies are closed
under projections (or T is PCFT ) if they are such over every set A.

In [BPV, Proposition 4.5] the authors proved the following equivalence
which, for convenience, we will use as a definition (their definition involves
extension with respect to pairs of models of T ).

Definition 2.5. We say that the extension property is first-order in T
iff for any formulas φ(x, y), ψ(y, z) ∈ L the relation Qφ,ψ defined by

Qφ,ψ(a) iff φ(x, b) does not fork over a for every b |= ψ(y, a)

is type-definable (here a can be an infinite tuple from C whose sorts are
fixed). We say that T has wnfcp if T is low and the extension property is
first-order in T .

Remark 2.6. Recall that T has nfcp (non-finite cover property) iff for
every formula φ(x, y) ∈ L there exists k < ω such that every set {φ(x, ai) |
i ∈ I} of instances of φ(x, y) is consistent iff every subset of it of size k
is consistent. By a theorem of Shelah, T has nfcp iff T is stable and T eq

eliminates the quantifier ∃∞ [Sh, Chapter 2, Theorems 4.2, 4.4]. Moreover,
if T is stable then T has nfcp iff T has wnfcp [BPV].

Fact 2.7 ([S1, Corollary 3.13]). Suppose the extension property is first-
order in T . Then T is PCFT.
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We say that an A-invariant set U has finite SU -rank if SU(a/A) < ω
for all a ∈ U , and has bounded finite SU -rank if there exists n < ω such
that SU(a/A) ≤ n for all a ∈ U . The existence of a τ f -open set of bounded
finite SU -rank implies the existence of an SU -rank 1 formula (i.e. a weakly
minimal formula):

Fact 2.8 ([S0, Proposition 2.13]). Let U be an unbounded τ f -open set
over some set A. Assume U has bounded finite SU -rank. Then there exist
a set B ⊇ A with |B \ A| < ω and θ(x) ∈ L(B) of SU -rank 1 such that
θC ⊆ U ∪ acl(B).

In [S1] the class of τ̃ f -sets and its subclass of τ̃ fst-sets were introduced.
The class of τ̃ f -sets is much wider than the class of basic τ f -open sets. Here
we look at the intermediate class of τ̃ flow -sets.

Definition 2.9. A relation V (x, z1, . . . , zl) is said to be a pre-τ̃ f -set
relation over ∅ if there are θ(x̃, x, z1, . . . , zl) ∈ L and φi(x̃, yi) ∈ L for 0 ≤
i ≤ l such that for all a, d1, . . . , dl from C we have

V (a, d1, . . . , dl) iff ∃ã
[
θ(ã, a, d1, . . . , dl) ∧

l∧
i=0

(φi(ã, yi) forks over d1 . . . di)
]

(for i = 0 the sequence d1 . . . di is interpreted as ∅). If each φi(x̃, yi) is

assumed to be low in yi, V (x, z1, . . . , zl) is said to be a pre-τ̃ flow -set relation.

Definition 2.10. (1) A τ̃ f -set over ∅ is a set of the form

U = {a | ∃d1, . . . , dl V (a, d1, . . . , dl)}
for some pre-τ̃ f -set relation V (x, z1, . . . , zl).

(2) A τ̃ flow -set over ∅ is a set of the form

U = {a | ∃d1, . . . , dl V (a, d1, . . . , dl)}

for some pre-τ̃ flow -set relation V (x, z1, . . . , zl).

Remark 2.11. Every τ̃ flow -set is type-definable.

Proof. Let φ(x, y) ∈ L be low in x. Let Γφ(y, z) be the invariant relation
defined by Γφ(a, c) iff φ(x, a) divides over c. Then Γφ(y, z) is type-definable,
so the claim follows by compactness.

3. The Theorem. In this section T is assumed to be a simple theory
and we work in C (so, T not necessarily eliminates imaginaries).

Definition 3.1. Let Θ = {θi(xi, x)}i∈I be a set of L-formulas such that
∀x ∃<∞xi θi(xi, x) for all i ∈ I. Let s be the sort of x. For A ⊆ Cs, let
aclΘ(A) = {b | θi(b, a) for some θi ∈ Θ and a ∈ A}.
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Definition 3.2. An invariant set U(x, y1, . . . , yr) is said to be a gen-

eralized uniform family of τ̃ flow -sets if there is a formula ρ(x̃, x, y1, . . . , yr,
z1, . . . , zk) ∈ L and there are formulas ψi(x̃, vi), µj(x̃, wj) ∈ L for 0 ≤ i ≤ r
and 1 ≤ j ≤ k that are low in vi and low in wj , respectively, such that for
all a, d1, . . . , dr we have U(a, d1, . . . , dr) iff ∃ã ∃e1, . . . , ek

ρ(ã, a, d1, . . . , dr, e1, . . . , ek) ∧
[ r∧
i=0

(ψi(ã, vi) forks over d1 . . . di)
]

∧
[ k∧
j=1

(µj(ã, wj) forks over d1 . . . dre1 . . . ej)
]
.

Definition 3.3. An invariant set F(x, y1, . . . , yr) is said to be a gener-

alized uniform family of τ̃ flow -closed sets if

F(x, y1, . . . , yr) =
⋂
i

¬Ui(x, y1, . . . , yr),

where each Ui(x, y1, . . . , yr) is a generalized uniform family of τ̃ flow -sets.

The following fact [S1, Theorem 8.7] is the key ingredient of our main
theorem.

Fact 3.4. Assume the extension property is first-order in T . Let U be
an unbounded τ̃ f -set over ∅. Then there exists an unbounded τ f -open set
U∗ over some finite set A∗ such that U∗ ⊆ U . In fact, if V (x, z1, . . . , zl) is
a pre-τ̃ f -set relation such that U = {a | ∃d1, . . . , dl V (a, d1, . . . , dl)}, and
d̄∗ = (d∗1, . . . , d

∗
m) is any maximal sequence (with respect to extension) such

that U∗
d̄∗

= ∃dm+1, . . . , dl V (C, d∗1, . . . , d∗m, dm+1, . . . , dl) is unbounded, then

U∗
d̄∗

is a τ f -open set over d̄∗.

Theorem 3.5. Let T be a countable simple theory in which the extension
property is first-order. Assume:

(1) Θ={θi(x′i, x)}i<ω is a set of L-formulas such that ∀x ∃<∞x′i θi(x′i, x)
for all i < ω.

(2) U0(x) is a non-empty τ̃ flow -set over ∅.
(3) {Fn(xn)}n<ω is a family of ∅-invariant sets such that Fn(C)∩ acl(∅)

= ∅ for all n < ω.
(4) For every n < ω and any variables ȳ = y1, . . . , yr, let F ȳn(xn, ȳ) be

a generalized uniform family of τ̃ flow -closed sets such that Fn(C) ⊆
F ȳn(C, d̄) for all d̄.

Now, assume that for all a ∈ U0 there exist b ∈ aclΘ(a) and n < ω such that

b ∈ Fn(C). Then there is an unbounded τ f∞-open set U∗ over a finite tuple
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d̄∗ and variables ȳ∗ of the sort of d̄∗, and n∗ < ω such that

U∗ ⊆ F ȳ
∗

n∗ (C, d̄∗) ∩ aclΘ(U0).

Proof. First, we may assume Θ is downwards closed (i.e. if θ ∈ Θ and
θ′ ` θ then θ′ ∈ Θ; note that since L is countable the closure of Θ in this
sense remains countable). Assume the conclusion of the theorem is false. To
get a contradiction, it will be sufficient to show the following.

Subclaim 3.6. For every non-empty τ̃ flow -set U ⊆ U0 over ∅, every

θ ∈ Θ, and every n < ω there exists a non-empty τ̃ flow -set U∗ ⊆ U over
∅ such that either ¬∃x′ θ(x′, a) for all a ∈ U∗, or for all a ∈ U∗ there exists
b |= θ(x′, a) with b 6∈ Fn(C).

First, we show this is sufficient. Construct a decreasing sequence (Um |
m < ω) of non-empty τ̃ flow -sets that begins at U0, and for every m < ω the
set Um+1 is obtained from Um by applying Subclaim 3.6 for an appropriate
pair (θ, n) (that corresponds to m by a fixed bijection of Θ × ω with ω).
By Remark 2.11 and compactness,

⋂
Um 6= ∅, so there exists a∗ ∈ U0 such

that for all θ ∈ Θ either ¬∃x′ θ(x′, a∗), or for every n < ω there exists
bn,θ |= θ(x′, a∗) such that bn,θ 6∈ Fn(C). Now, by the assumption of the
theorem there exist θ(x′, x) ∈ Θ, b∗ and n∗ < ω such that θ(b∗, a∗) and
b∗ ∈ Fn∗(C). As Θ is downwards closed, there exists θ∗(x′, x) ∈ Θ such that
θ∗(x′, x) ` θ(x′, x) and θ∗(x′, a∗) isolates tp(b∗/a∗) (as it is algebraic). By
the above property of a∗, there exists b∗∗ |= θ∗(x′, a∗) with b∗∗ 6∈ Fn∗(C),
contradicting the fact that θ∗(x′, a∗) isolates tp(b∗/a∗) and the assumption
that Fn∗(C) is ∅-invariant.

Proof of Subclaim 3.6. Let U , θ and n < ω be given. Let V (x, z1, . . . , zl)

be a pre-τ̃ flow -set relation such that

U = {a | ∃d1, . . . , dl V (a, d1, . . . , dl)},
where V is defined by:

V (a, d1, . . . , dl) iff ∃ã
[
σ(ã, a, d1, . . . , dl) ∧

l∧
i=0

(φi(ã, ti) forks over d1 . . . di)
]

for some σ(x̃, x, z1, . . . , zl) ∈ L and φi(x̃, ti) ∈ L which are low in ti for
0 ≤ i ≤ l. Let Vθ be defined by: for all b, d1, . . . , dl ∈ C,

Vθ(b, d1, . . . , dl) iff ∃a (θ(b, a) ∧ V (a, d1, . . . , dl)),

and let

Uθ = {b | ∃d1, . . . , dl Vθ(b, d1, . . . , dl)}.
Since by the assumption Fn(C)∩ acl(∅) = ∅, we may assume Uθ ∩ acl(∅) = ∅
and Uθ is non-empty. Now, let d̄∗ = (d∗1, . . . , d

∗
m) be a maximal sequence,
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with respect to extension (0 ≤ m ≤ l), such that

Ṽθ(x
′) ≡ ∃dm+1, . . . , dl Vθ(x

′, d∗1, . . . , d
∗
m, dm+1, . . . , dl)

is non-algebraic. We may assume m < l (by choosing V appropriately).

By Fact 3.4, Ṽθ(C) is an unbounded basic τ f∞-open set over d̄∗. Since we

assume the conclusion of the theorem is false, Ṽθ(C) 6⊆ F ȳ
∗

n (C, d̄∗) where
ȳ∗ = y∗1, . . . , y

∗
m has the same sort as d̄∗. Now, let each Us,n(xn, ȳ

∗) for

s < α be a generalized uniform family of τ̃ flow -sets such that Fn(xn, ȳ
∗) =⋂

s<α ¬Us,n(xn, ȳ
∗). Let b∗ ∈ Ṽθ(C) \ F ȳ

∗
n (C, d̄∗). So, there exists s∗ < α

such that b∗ ∈ Us∗,n(C, d̄∗). Let ρ(x̃′, xn, y
∗
1, . . . , y

∗
m, z

′
1, . . . , z

′
k) ∈ L and let

ψi(x̃
′, vi), µj(x̃

′, wj) ∈ L for 0 ≤ i ≤ m and 1 ≤ j ≤ k be low in vi and low
in wj respectively, such that for all b, d1, . . . , dm we have Us∗,n(b, d1, . . . , dm)

iff ∃b̃ ∃e1, . . . , ek

ρ(b̃, b, d1, . . . , dm, e1, . . . , ek) ∧
[ m∧
i=0

(ψi(b̃, vi) forks over d1 . . . di)
]

∧
[ k∧
j=1

(µj(b̃, wj) forks over d1 . . . dme1 . . . ej)
]
.

Now, let d∗m+1, . . . , d
∗
l and a∗, ã∗ and E∗ = (e∗1, . . . , e

∗
k) and b̃∗ be such that

θ(b∗, a∗) ∧ σ(ã∗, a∗, d∗1, . . . , d
∗
l ) ∧

l∧
i=0

(φi(ã
∗, yi) forks over d∗1 . . . d

∗
i ),(∗1)

ρ(b̃∗, b∗, d∗1, . . . , d
∗
m, e

∗
1, . . . , e

∗
k),(∗2) [ m∧

i=0

(ψi(b̃
∗, vi) forks over d∗1 . . . d

∗
i )
]

(∗3)

∧
[ k∧
j=1

(µj(b̃
∗, wj) forks over d∗1 . . . d

∗
me
∗
1 . . . e

∗
j )
]
.

By maximality of d̄∗, we know b∗ ∈ acl(d̄∗d∗m+1). Thus, by taking a non-

forking extension of tp(b̃∗E∗/acl(d̄∗d∗m+1)) over acl(d∗1 . . . d
∗
l a
∗ã∗) we may

assume E∗ is independent of d∗1 . . . d
∗
l a
∗ã∗ over d̄∗d∗m+1 and (∗1)–(∗3) still

hold. We conclude that

l∧
i=m+1

(φi(ã
∗, ti) forks over d∗1 . . . d

∗
iE
∗).

Now, we define the τ̃ flow -set U∗. First, define a relation V ∗ by:

V ∗(a, d1, . . . , dm, e1, . . . , ek, dm+1, . . . , dl) iff ∃ã, b, b̃ (θ∗ ∧ V ∗0 ∧ V ∗1 ∧ V ∗2 ),
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where θ∗ is defined by: θ∗(ã, b, b̃, a, d1, . . . , dm, e1, . . . , ek, dm+1, . . . , dl) iff

θ(b, a) ∧ σ(ã, a, d1, . . . , dl) ∧ ρ(b̃, b, d1, . . . , dm, e1, . . . , ek),

V ∗0 is defined by: V ∗0 (ã, b̃, d1, . . . , dm) iff
m∧
i=0

(φi(ã, ti) ∨ ψi(b̃, vi) forks over d1 . . . di),

V ∗1 is defined by: V1(b̃, d1, . . . , dm, e1, . . . , ek) iff

k∧
j=1

(µj(b̃, wj) forks over d1 . . . dme1 . . . ej),

and V ∗2 is defined by: V2(ã, d1, . . . , dm, e1, . . . , ek, dm+1, . . . , dl) iff

l∧
i=m+1

(φi(ã, ti) forks over d1 . . . die1 . . . ek).

Note that V ∗ is a pre-τ̃ flow -set. Let

U∗ = {a | ∃d1, . . . , dm, e1, . . . , ek, dm+1, . . . , dl

V ∗(a, d1, . . . , dm, e1, . . . , ek, dm+1, . . . , dl)}.

By the definition of U∗, we have U∗ ⊆ U . Moreover U∗ is a τ̃ flow -set by
Remark 2.2. By construction, U∗ 6= ∅. Now, let a ∈ U∗. By the definition
of U∗, there are b̃, b, d1, . . . , dm, e1, . . . , ek such that θ(b, a), ρ(b̃, b, d1, . . . , dm,
e1, . . . , ek), and

m∧
i=0

(ψi(b̃, vi) forks over d1 . . . di),

k∧
j=1

(µj(b̃, wj) forks over d1 . . . dme1 . . . ej).

Thus Us∗,n(b, d1 . . . dm) and therefore ¬F ȳ
∗

n (b, d1 . . . dm). Hence b 6∈ Fn as
required.

4. Applications. In this section we give some applications of Theorem
3.5. In fact, we will show several instances of this theorem that are appar-
ently new even for stable theories. In this section T is assumed to be a simple
theory and we work in C.

We start by pointing out that Theorem 3.5 generalizes [S1, Theorem
9.4] that is one of the essential steps towards the proof of supersimplicity
of countable simple unidimensional theories with elimination of hyperimagi-
naries. First recall the following definitions from [S1] of stable independence
and SUse-rank.
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Definition 4.1. For a ∈ C, A,B ⊆ C, a -̂ s
A

B if for some stable φ(x, y)

∈ L, there are b ⊆ A ∪ B and a′ ∈ φ(C, b) ∩ dcl(Aa) such that φ(x, b) forks
over A.

Definition 4.2. The SUse-rank of tp(a/A) is defined by induction on
α: if α = β + 1, then SUse(a/A) ≥ α if there exist B1 ⊇ B0 ⊇ A such that
a -̂ s
B0

B1 and SUse(a/B1) ≥ β. For limit α, SUse(a/A) ≥ α if SUse(a/A) ≥ β

for all β < α.

Remark 4.3. In [S1, Lemma 6.8] it is proved that in a simple theory,
in which Lstp = stp over sets, |̂s is symmetric. In fact, |̂s is symmetric in
any simple theory. Thus for any simple theory, if s0 and s1 are finite tuples
of sorts and n < ω then the set Fs0,s1n defined by

Fs0,s1n = {(a,A) ∈ Cs0 × Cs1 | SUse(a/A) < n}

is a generalized uniform family of τ̃ flow -closed sets.

Proof. To prove that |̂s is symmetric, first recall [S1, Claim 6.5]:

Fact 4.4. Let T be simple. Let φ(x, y) ∈ L be stable. Assume a |̂
A

b and

a′ |̂
A

b and Lstp(a/A) = Lstp(a′/A). Then φ(a, b) iff φ(a′, b).

By the proof of symmetry of stable independence [S3, Lemma 6.8] it
will be sufficient to prove Fact 4.4 with the weaker assumption stp(a) =
stp(a′) instead of the assumption Lstp(a) = Lstp(a′) (we may clearly assume
A = ∅). Indeed, assume stp(a) = stp(a′). Now, for every complete type
q ∈ S(∅) let Eq be the equivalence relation defined by: Eq(a, a

′) iff “for
every b |= q that is independent of aa′ we have [φ(a, b) iff φ(a′, b)]”. Then
Eq is Stone-open. By Fact 4.4, equality of the Lascar strong type refines Eq.
Thus Eq is a ∅-definable finite equivalence relation (as a bounded Stone-open
equivalence relation is definable [S3, Lemma 7]). Now, by the assumption
that stp(a) = stp(a′), Eq(a, a

′) for all complete q. Thus, by extension we
infer that for every b, if each of a and a′ is independent of b, then φ(a, b) iff
φ(a′, b).

We now explain the last phrase. We need to show that ¬Fs0,s1n is a
disjunction of invariant sets, each of which is a generalized uniform fam-
ily of τ̃ flow -sets for all s0, s1 and n as above. Indeed, by symmetry of -̂ s,
¬Fs0,s1n (a,A) iff there are b1, c1, . . . , bn, cn such that ci -̂ s

Ab1c1...bi−1ci−1bi

a for all

1 ≤ i ≤ n. By the definition of -̂ s, this can be easily seen to be equivalent
to a disjunction of the required form (since any stable φ(x, y) ∈ L is low in
both x and y).
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For an A-invariant set V , we set acl1(V ) = {a′ | a′ ∈ acl(a) for some
a ∈ V 1}. The following corollary generalizes [S1, Theorem 9.4].

Corollary 4.5. Let T be a countable simple theory in which the ex-

tension property is first-order. Let U0 be a non-empty τ̃ flow -set. Assume for
every a ∈ U0 there exists a′ ∈ acl(a) \ acl(∅) such that SUse(a

′) < ω. Then

there exists an unbounded τ f∞-open set U ⊆ acl1(U0) over a finite set such
that U has bounded finite SUse-rank.

Proof. Let x be the variable of U0, so U0 = U0(x). Let

Θ = {θ(x′, x) | ∃<∞x′ θ(x′, x), x′ any variable}.

Let S be the set of sorts. Let I : ω → S × ω be a bijection, and I1, I2 the
projections of I to the first and second coordinate, respectively. Now, for
each n < ω let Fn = {a ∈ CI1(n) \ acl(∅) | SUse(a) < I2(n)}. Now, for every
finite tuple of variables Y and n < ω let s(Y ) be the finite sequence of sorts
of Y and let

FYn = {(a,A) ∈ CI1(n) × Cs(Y ) | SUse(a/A) < I2(n)}.

By the definition of the SUse-rank, Fn(C) ⊆ FYn (C, A) for every n < ω and

all Y,A. By Remark 4.3, FYn is a generalized uniform family of τ̃ flow -closed
sets for all Y, n. By our assumptions, we see that the assumptions of Theorem
3.5 hold for U0(x), Θ, {Fn}n and {FYn }Y,n, and thus by its conclusion we
are done.

Corollary 4.6. Let T be a countable theory with wnfcp. Let U0 be an
unbounded τ̃ f -set over ∅ of finite SU -rank. Then there exists a finite set A
and an SU -rank 1 formula θ ∈ L(A) such that θC ⊆ U0 ∪ acl(A).

Proof. First, by modifying U0, we may assume U0 ∩ acl(∅) = ∅. Let
Θ = {x′ = x}, U0(x) = U0. Let s(x) be the sort of x. Now, for each n < ω let

Fn = {a ∈ Cs(x) \ acl(∅) | SU(a) < n}.

For every finite tuple of variables Y and n < ω let s(Y ) be the finite sequence
of sorts of Y and let

FYn = {(a,A) ∈ Cs(x) × Cs(Y ) | SU(a/A) < n}.

By symmetry of forking and the assumption that T is low, each FYn is a

generalized uniform family of τ̃ flow -closed sets. Clearly, Fn(C) ⊆ FYn (C, A)
for all n < ω and Y,A. By our assumption, the assumptions of Theorem 3.5
are satisfied for U0, Θ, {Fn}n and {FYn }Y,n and thus by its conclusion there

exists an unbounded τ f∞-open set U∗ ⊆ U0 over a finite set A0 and U∗ has
bounded finite SU -rank. By Fact 2.8, there exists a finite set A ⊇ A0 and
there exists an SU -rank 1 formula θ ∈ L(A) such that θC ⊆ U∗ ∪ acl(A).
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Corollary 4.7. Let T be a countable theory with wnfcp. Let U0 be a
non-empty τ̃ f -set over ∅. Assume that for every a ∈ U0 there exists a′ in
acl(a) \ acl(∅) such that SU(a′) < ω. Then there exists a finite set A and an
SU -rank 1 formula θ ∈ L(A) such that θC ⊆ acl1(U0) ∪ acl(A).

Proof. Just like the proof of Corollary 4.6.

5. Dichotomies for countable theories with wnfcp. In this section
we show that the dichotomy [S1, Theorem 5.5] implies a strong dichotomy
between essential 1-basedness and supersimplicity in the case T is a count-
able wnfcp theory that eliminates hyperimaginaries. Before we state the
above dichotomy for the special case of the τ f -topologies (simplified ver-
sion), let us recall the basic definitions. In this section T is assumed to be
simple and we work in C = Ceq.

First, let us fix some notations and terminology. Let V,W be invariant
sets. We say that V is generated over W by a small set B if V ⊆ dcl(W ∪B).
We say that V is generated over W if it is generated over W by some small
set. If V is A-invariant, we say that V is (almost) W -internal over A if
for every a ∈ V there exists B ⊇ A, over which W is invariant, that is
independent of a over A and there exists a tuple c̄ of realizations of W such
that a ∈ dcl(B, c̄) (a ∈ acl(B, c̄), respectively). If we say that V isW -internal
(without specifying over what set) then we mean that V is W -internal over
the set that V comes with (e.g. in case it is a partial type, we consider it
with its specified parameters). Note that if both V and W are A-invariant
then for all B,C ⊇ A, V is (almost) W -internal over B iff V is (respectively,
almost) W -internal over C.

Definition 5.1. A type p ∈ S(A) is said to be essentially 1-based by
means of the τ f -topologies if for every finite tuple c̄ from p and for every
type-definable τ f -open set U over Ac̄, the set {a ∈ U | Cb(a/Ac̄) 6∈ bdd(aA)}
is nowhere dense in the Stone topology of U .

We now state [S1, Theorem 5.5] for the τ f -topologies (in fact, it is a
special case of it when working over constants). Also, as indicated at the
end of the proof of this fact, the finite SU -rank τ f -open set we obtained is
almost p0-internal.

Fact 5.2. Let T be a countable simple theory with PCFT that eliminates
hyperimaginaries. Let p0 be a partial type over ∅ of SU -rank 1. Then either
there exists an unbounded τ f -open set over some countable set that is almost
internal to p0 (in particular, has finite SU -rank) or every type p ∈ S(A),
with A countable, that is internal in p0 is essentially 1-based by means of
the τ f -topologies.
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Theorem 5.3. Let T be a countable theory with wnfcp that eliminates
hyperimaginaries. Let p be a partial type over ∅ of SU -rank 1. Then either

(1) every type q ∈ S(A), with A countable, that is internal in p is essen-
tially 1-based by means of the τ f -topologies, or

(2) there exists a weakly minimal definable set (in L(C)) that is generated
over p(C).

Proof. Assume (1) is false. By Fact 5.2, there exists an unbounded type-
definable τ f -open set U over some countable set A such that tp(a/A) is
almost p-internal for every a ∈ U .

Subclaim 5.4. There exists an unbounded type-definable τ f -open set U∗
over A that is generated over p(C).

Proof. By [BW] or [S2, Corollary 4.9], for every a ∈ U \ acl(A) there
exists a′ ∈ dcl(aA) \ acl(A) such that tp(a′/A) has a fundamental system of
solutions over p(C) (i.e. tp(a′/A) is generated over p(C) by a set of realiza-
tions of tp(a′/A) together with A). In particular, there exists a (finite) set
A′ of realizations of tp(a′/A) that is independent of a′ over A and a tuple c̄
of realizations of p such that a′ ∈ dcl(A′Ac̄). For any A-definable functions
f, g let

Ff,g = {a ∈ U | f(a) = g(b̄, c̄) 6∈ acl(A) for some b̄, c̄ with f(a) |̂
A

b̄,

where c̄ is a tuple of realizations of p,

and b̄ is a tuple of realizations of tp(f(a)/A)}.

By Remark 2.3(3), each Ff,g is τ f -closed over A. Thus, by the Baire
category theorem for the τ f -topology (by Remark 2.3(2), U \ acl(A), τ f ) is
a Baire space) there are A-definable functions f∗, g∗ such that Ff∗,g∗ has
non-empty interior in the τ f -topology over A. By Fact 2.7 there exists an
unbounded type-definable τ f -open set U∗ over A such that for every a ∈ U∗
there exists a tuple b̄ of realizations of tp(a/A) that is independent of a over
A such that a = g∗(b̄, c̄) for some tuple c̄ of realizations of p. The subclaim
follows now directly from [S2, Theorem 3.7]:

Fact 5.5. Let p ∈ S(∅) and let R be ∅-invariant. Suppose the internality
of p in R is witnessed by a generic parameter whose type q is almost-R-
internal. Then p is generated over R by a set of realizations of q.

Now, as U∗ has bounded finite SU -rank (the bound is determined by g∗),
by Fact 2.8, there exists an SU -rank 1 formula θ(x, b) such that θ(C, b) ⊆
U∗ ∪ acl(Ab). Thus (2) follows.

5.1. A trichotomy for countable theories with nfcp. Here we
prove a trichotomy for countable theories with nfcp. In this subsection we
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work in a large saturated model C = Ceq of a simple theory T with elimina-
tion of hyperimaginaries unless stated otherwise.

We begin with some standard terminology and remarks. For a definable
setD over A we denote byD∗ the induced structure on D over A, namely,D∗

is the set D equipped with all A-definable relations in C that are subsets of
Dn for some n. Then clearly D∗ has elimination of quantifiers and therefore
saturated.

Definition 5.6. Let D be a type-definable set over a set A. We say that
D is 1-based if for every finite tuple ā of realizations of D and set B ⊇ A,
we have Cb(ā/B) ∈ acl(āA). A type-definable group G over A is said to be
1-based if its underlying set is.

Remark 5.7. (1) A type-definable set D over A is 1-based iff ā is inde-
pendent of ā′ over acl(Aā) ∩ acl(Aā′) for any finite tuples ā and ā′ from D.

(2) Let D be a definable set over A. Then

(i) if T is stable (simple), so is Th(D∗),
(ii) if D∗ is 1-based then D is 1-based (as a type-definable set),
(iii) if D is stably embedded (e.g. T is stable), and p is a partial

type of D∗, then RMD∗(p) = RM(pD) (where pD is just the
conjunction of p with appropriate power of D, RM is the usual
Morley rank in C, and RMD∗ is the Morley rank in D∗).

Lemma 5.8. Assume L is countable and θ(C) ⊆ acl(p(C)), where p is
any partial type over ∅ and θ(x) ∈ L is non-algebraic. Then

(1) there exists a ∅-definable θ∗(x) ` θ(x) and ∅-definable functions f, g
and n < ω such that f [θ∗(C) \ acl(∅)] ⊆ g[pn(C)] and f [θ∗(C)] is
non-algebraic, and

(2) if p is minimal then f [θ∗(C)] has ordinal Morley rank and thus con-
tains a strongly minimal formula.

Proof. For every a ∈ θ(C) \ acl(∅) there exist n < ω and c̄ ∈ pn(C) such
that a ∈ acl(c̄). Let e = Cb(c̄/a). Now, by elimination of hyperimaginaries
there exists e∗ ∈ acl(a) ∩ dcl(p(C)) \ acl(∅). Let e∗∗ = {e′ | tp(e′/a) =
tp(e∗/a)} (e∗∗ is an imaginary element). Then clearly e∗∗ is in dcl(a) ∩
dcl(p(C)) \ acl(∅). For any appropriate ∅-definable functions f, g let

Ff,g = {a ∈ θ(C) | ∃c̄ ⊆ p(C) [f(a) = g(c̄) 6∈ acl(∅)]}.
Consequently, {Ff,g}f,g is a countable family of Stone-closed sets that covers
θ(C) \ acl(∅) and thus by the Baire category theorem for the Stone topology
of θ(C)\acl(∅) we get the required formula θ∗ ∈ L and ∅-definable functions
f, g as in (1).

To prove (2), assume that p is minimal. Then, by induction on n, we
easily find that for every countable set A the number of (complete) types
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of realizations of pn over A is countable. Thus by (1), for every countable
set A the number of complete types over A extending f [θ∗(C)] is countable.
Therefore f [θ∗(C)] has ordinal Morley rank.

We will be using the following two important facts. The first one is
Buechler’s dichotomy for minimal types (see [P1, Corollary 3.3]).

Fact 5.9. Let T be superstable and let p ∈ S(A) be a minimal type.
Then either p is 1-based or RM(p) = 1.

The second fact is Wagner’s result [W] on analysis in 1-based types in
simple theories (it generalizes previous results of Hrushovski and Chazi-
dakis).

Fact 5.10. Let T be any simple theory and work with hyperimaginaries.
Assume p ∈ S(A) is analyzable in an A-invariant family of 1-based types.
Then p is 1-based.

Theorem 5.11. Let T be a countable theory with nfcp. Let p ∈ S(∅) be
minimal. Then either

(1) every type q ∈ S(A), with A countable, that is internal in p is essen-
tially 1-based by means of the τ f -topologies, or

(2) there is an infinite definable 1-based group of finite D-rank that is
p-internal, or

(3) there exists a strongly minimal definable set that is p-internal.

Proof. Assume (1) is false. By Theorem 5.3, there exists a weakly min-
imal formula θ(x, b) that is p-generated and in particular p-internal (in the
stable case an invariant set is p-internal iff it is p-generated). First, assume
θ(C, b) ⊆ acl(p(C) ∪ b). Then by Lemma 5.8, there exists a strongly min-
imal formula φ ∈ L(C) that is p-internal (even generated over pC). Thus,
we may assume θ(C, b) 6⊆ acl(pC ∪ b). Let a ∈ θ(C, b) \ acl(pC ∪ b). Let
q = tp(a/acl(b)) and let Γ = Aut(qC/pC ∪ acl(b)). We will be using the
following fact [S2, Theorem 2.9], with its proof, which for simplicity we
state for a special case. In the following, for a set S, possibly large, we let
DCL(S) be the set of all elements in C that are fixed by any automorphism
that fixes S pointwise; we say that a set V is controlled by B over S, if
V ⊆ DCL(B ∪ S).

Fact 5.12. Let T be any simple theory. Let Q be a stably embedded
type-definable set over ∅ and let q ∈ S(∅). Suppose there exists a subset
B of DCL(qC ∪ Q) with tp(B) ` Lstp(B) such that qC is controlled by
B over Q. Then Γ = Aut(qC/Q) is type-definable with its action on qC

over ∅.
Remark 5.13. It is well known that in a stable theory if q is Q-internal

then there is always a set B of realizations of q such that q(C) ⊆ dcl(Q,B),
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in particular, q is controlled by B over Q; if q is stationary then B can be
taken to be a finite initial segment of a Morley sequence of q and clearly
tp(B) ` Lstp(B).

Now, Γ in Fact 5.12 can be interpreted in the following way. As Q is a
type-definable stably embedded set, there exists a partial type ΣQ(Y, Y ′) ex-
pressing that Y, Y ′ are Q-conjugate, for Y, Y ′ |=tp(B). Now, let ΓB2/Q(Y, Y ′)
be the type expressing that tp(Y ) = tp(Y ′) = tp(B) and ΣQ(Y, Y ′). Now, by
definition, σ ∈ Γ = Aut(qC/Q) iff σ is the restriction to qC of some automor-
phism of C that fixes Q pointwise. As q is controlled by B ⊆ DCL(qC ∪Q)
over Q, it is not hard to show (see proof of [S2, Theorem 2.9]) that Γ
can be interpreted as ΓB2/Q/E for a certain ∅-definable equivalence rela-
tion E.

By Remark 5.13 and the fact that q(x) ` θ(x, b), there is an infinite
type-definable group G over acl(b) that is isomorphic to Γ such that for
some acl(b)-definable equivalence relation E and some n < ω, we have
G ⊆ θ(C, b)n/E. Now, by stability of T , G is an intersection of definable
groups over acl(b) [H1, Theorem 2]. By compactness, there is an infinite
acl(b)-definable group G0 that is p-internal and has finite D-rank. By Fact
5.9 and Remark 5.7(2)(i) applied to the induced structure G∗0 on G0 over
acl(b), every minimal type r in G∗0 is either 1-based or of Morley rank 1.
Thus if (3) fails, then any such r is 1-based in G∗0 by Remark 5.7(2)(iii)
and stability of T . As G∗0 has finite SU -rank, we conclude, when working in
G∗0, that every non-algebraic type is non-orthogonal to a minimal type, and
therefore any type in G∗0 is analyzable in 1-based types. By Fact 5.10, G∗0 is
1-based. By Remark 5.7(2)(ii), G0 is 1-based.
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