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A dimensional property of Cartesian product

by

Michael Levin (Be’er Sheva)

Abstract. We show that the Cartesian product of three hereditarily infinite-dimen-
sional compact metric spaces is never hereditarily infinite-dimensional. It is quite surpris-
ing that the proof of this fact (and this is the only proof known to the author) essentially
relies on algebraic topology.

1. Introduction. Throughout this paper we assume that maps are con-
tinuous and spaces are separable metrizable. We recall that a compactum
means a compact metric space. By the dimension dimX of a space X we
mean the covering dimension.

An infinite-dimensional compactum X is said to be hereditarily infinite-
dimensional if every (non-empty) closed subset of X is either 0-dimensional
or infinite-dimensional. Hereditarily infinite-dimensional compacta were first
constructed by Henderson [9]; for related results and simplified constructions
see [17], [18], [15], [11], [12]. The main result of this paper is:

Theorem 1.1. Let n > 0 be an integer and Xi, 1 ≤ i ≤ n+2, hereditarily
infinite-dimensional compacta. Then the product Z =

∏n+2
i=1 Xi contains an

n-dimensional closed subset. In particular, the product of three hereditarily
infinite-dimensional compacta is never hereditarily infinite-dimensional.

Let us note that in general the compactum Z in Theorem 1.1 does not
contain finite-dimensional subspaces of arbitrarily large dimension. Indeed,
consider the Dydak–Walsh compactum X [7] having the following proper-
ties: dimX = ∞, dimZX = 2 and dimZX

n = n + 1 for every positive
integer n.

We recall that for an abelian group G the cohomological dimension
dimGX of a space X is the smallest integer n such that the Čech coho-
mology Hn+1(X,A;G) vanishes for every closed subset A of X. Clearly
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dimGX ≤ dimX for every abelian group G. By the classical result of
Alexandroff, dimX = dimZX if X is finite-dimensional. Alexandroff’s re-
sult was extended by Ancel [1] who showed that dimX = dimZX if X is a
compact C-space. We recall that a space X is a C-space if for any infinite
sequence Ui of open covers X there is an open cover V of X such that V
splits into the union V =

⋃
i Vi of families Vi of disjoint sets such that Vi

refines Ui.
Thus the Dydak–Walsh compactum X is not a C-space. R. Pol [16]

(see also [12]) showed that a compactum which is not a C-space contains
a hereditarily infinite-dimensional closed subset. Hence, replacing X by its
hereditarily infinite-dimensional closed subset, we may assume that X is
hereditarily infinite-dimensional. Since dimZX

n+2 = n+ 3, we deduce from
Alexandroff’s theorem that Xn+2 does not contain finite dimensional subsets
of dimension > n + 3. Moreover, Xn+2 does not contain compact subsets
of dimension n + 3. Indeed, if F is a finite dimensional closed subset of
Xn+2 then, since X is hereditarily infinite-dimensional, the projection p :
F → Xn+1 is 0-dimensional. By a result of Dranishnikov and Uspenskij [5]
a 0-dimensional map of compacta cannot lower cohomological dimensions
and hence dimF = dimZ F ≤ dimZX

n+1 = n+ 2.

This example together with Theorem 1.1 suggest

Problem 1.2. Does the compactum Z in Theorem 1.1 always contain a
closed subset of dimension n+1? of dimension n+2? a subset of dimension
n+ 1? of dimensionn+ 2? of dimension n+ 3?

Note that Theorem 1.1 implies that there are two hereditarily infinite-
dimensional compacta whose product is not hereditarily infinite-dimen-
sional. Indeed, let X1, X2 and X3 be hereditarily infinite-dimensional com-
pacta. If X1×X2 is hereditarily infinite-dimensional then, by Theorem 1.1,
(X1 × X2) × X3 is not hereditarily infinite dimensional. This observation
motivates

Problem 1.3. Do there exist two hereditarily infinite-dimensional com-
pacta whose product is also hereditarily infinite-dimensional? Does there ex-
ist a hereditarily infinite-dimensional compactum whose square is hereditar-
ily infinite-dimensional?

It is quite surprising that the proof of Theorem 1.1 essentially relies on
algebraic topology. It would be interesting to find an elementary direct proof
of Theorem 1.1.

2. Proof of Theorem 1.1. Let us recall basic definitions and results
in Extension Theory and Cohomological Dimension that will be used in the
proof.
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The extension dimension of a space X is said to be dominated by a CW-
complex K, written e-dimX ≤ K, if every map f : A → K from a closed
subset A of X extends over X. Note that the property e-dimX ≤ K depends
only on the homotopy type ofK. The covering and cohomological dimensions
can be characterized by the following extension properties: dimX ≤ n if
and only if the extension dimension of X is dominated by the n-dimensional
sphere Sn and dimGX ≤ n if and only if the extension dimension of X
is dominated by the Eilenberg–Mac Lane complex K(G,n). The extension
dimension shares many properties of covering dimension. For example: if
e-dimX ≤ K then for every A ⊂ X we have e-dimA ≤ K, and if X is a
countable union of closed subsets whose extension dimension is dominated
by K then e-dimX ≤ K. In the proof of Theorem 1.1 we will also use the
following facts.

Theorem 2.1 ([14]). Let K be a countable CW-complex and A a sub-
space of a compactum X such that e-dimA ≤ K. Then there is a Gδ-set
A′ ⊂ X such that A ⊂ A′ and e-dimA′ ≤ K.

Theorem 2.2 ([3]). Let K and L be countable CW-complexes and X a
compactum such that e-dimX ≤ K ∗ L. Then X decomposes into subspaces
X = A ∪B such that e-dimA ≤ K and e-dimB ≤ L.

Theorem 2.3 ([13]). Let f : X → Y be a map of compacta and let K and
L be countable CW-complexes such that e-dimY ≤ K and e-dim f−1(y) ≤ L
for every y ∈ Y . Then e-dimX ≤ K ∗ L. In particular, if for a compactum
Z we have e-dimZ ≤ L then e-dimY × Z ≤ K ∗ L.

Theorem 2.4 ([2], [4]). Assume that for a compactum X and a CW-
complex K we have e-dimX ≤ K. Then dimHn(K)X ≤ n for every n ≥ 1.

By Zp we denote the p-cyclic group and by Zp∞ = dirlimZpk the p-adic
circle.

Theorem 2.5 ([10], [4]). Let p be a prime and X and Y compacta. Then
dimZp X × Y = dimZp X + dimZp Y .

Theorem 2.6 ([6]). Let p be a prime and X = A ∪ B a decomposition
of a compactum X. Then dimZp X ≤ dimZp A+ dimZp B + 1.

For an abelian group G we always assume that a Moore space M(G,n)
of type (G,n) is a CW-complex and M(G,n) is simply connected if n > 1.
Note that M(G,n) is defined uniquely (up to homotopy equivalence) for
n > 1 [8]. Recall that for CW-complexes K and L the join K∗L is homotopy
equivalent to the suspension Σ(K ∧ L) = S0 ∗ (K ∧ L) and K ∗ L is simply
connected if at least one of the complexes K and L is connected. Then it
follows from the Künneth formula that for distinct primes p and q:
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(i) M(Zp, 1) ∗M(Zq, 1) is contractible;
(ii) M(Zp∞ , 1) ∗M(Zq, 1) is contractible;

(iii) M(Zp∞ , 1) ∗M(Zq∞ , 1) is contractible;
(iv) ΣnM(Zp, 1) = Sn−1 ∗M(Zp, 1) is a Moore space M(Zp, n+ 1);
(v) M(Zp∞ , 1) ∗M(Zp, n) is a Moore space M(Zp, n+ 3).

We say that a compactum X is reducible at a prime p if there is a non-zero-
dimensional closed subset F of X with

e-dimF ≤M(Zp, 1) and e-dimF ≤M(Zp∞ , 1),

and we say that X is irreducible at p otherwise.

Proposition 2.7. Let X be a hereditarily infinite-dimensional com-
pactum. Then X is irreducible at at most one prime.

Proof. Aiming at a contradiction assume X is irreducible at two distinct
primes p and q. By (i) we have e-dimX ≤M(Zp, 1)∗M(Zq, 1) and hence, by
Theorem 2.2, the compactum X decomposes as X = A∪B with e-dimA ≤
M(Zp, 1) and e-dimB ≤ M(Zq, 1) and, by Theorem 2.1, we may assume
that B is Gδ and A is σ-compact.

If dimA > 0 then A contains a non-zero-dimensional compactum F ⊂ A
and clearly F is hereditarily infinite-dimensional and e-dimF ≤M(Zp, 1).

If dimA ≤ 0 then replacing A by a bigger 0-dimensional Gδ-subset of X
we may assume that B is σ-compact. Since X is infinite-dimensional we have
dimB > 0 and hence B contains a non-zero-dimensional compactum F ⊂ B.
Clearly F is hereditarily infinite-dimensional and e-dimF ≤M(Zq, 1).

Thus without loss of generality we may assume that X contains a hered-
itarily infinite-dimensional compactum F with e-dimF ≤M(Zp, 1). By (iii)
we have e-dimF ≤M(Zp∞ , 1) ∗M(Zq∞ , 1). Then using the above reasoning
we can replace F by a hereditarily infinite-dimensional closed subset of F
and assume, in addition, that the extension dimension of F is dominated by
at least one the complexes M(Zp∞ , 1) or M(Zq∞ , 1).

If e-dimF ≤ M(Zp∞ , 1) then X is reducible at p and we are done. If
e-dimF ≤M(Zq∞ , 1) then, by (ii), we have e-dimF ≤M(Zp∞ , 1)∗M(Zq, 1)
and once again by the reasoning described above one can replace F by its
closed hereditarily infinite-dimensional subset with the extension dimension
dominated by at least one of the complexes M(Zp∞ , 1) or M(Zq, 1). This
implies that X is reducible at at least one of the primes p and q, and the
proposition follows.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 2.7 there is a prime p such that
every Xi is reducible at p. Hence for every i there is a hereditarily infinite-
dimensional compactum Fi⊂Xi such that e-dimFi ≤M(Zp, 1) and e-dimFi
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≤ M(Zp∞ , 1). Then, by Theorem 2.4, dimZp Fi ≤ 1 and since Fi is not 0-
dimensional, we have dimZp Fi = 1 and hence, by Theorem 2.5, dimZp F =
n+ 2 for F = F1 × · · · × Fn+2.

On the other hand, by Theorem 2.3,

e-dimF ≤ K = M(Zp∞ , 1) ∗ · · · ∗M(Zp∞ , 1) ∗M(Zp, 1)

(the join of M(Zp, 1) and n + 1 copies of M(Zp∞ , 1)). By (v) and (iv) we
have K = M(Zp, 3n+4) = S3n+2∗M(Zp, 1). Then, by Theorem 2.2, F splits
into F = A ∪ B such that e-dimA ≤ M(Zp, 1) and B is finite-dimensional.
In addition, we may assume by Theorem 2.1 that B is Gδ and A is σ-
compact. Then, by Theorem 2.4, the property e-dimA ≤ M(Zp, 1) implies
dimZp A ≤ 1. Again by Theorem 2.1, we can replace A by a bigger Gδ
subset of F and assume that dimZp A ≤ 1 and B is finite-dimensional and
σ-compact.

Then, by Theorem 2.6, we have

n+ 2 = dimZp F ≤ dimZp A+ dimZp B + 1 ≤ dimZp B + 2

and hence dimZp B ≥ n. Thus dimB ≥ n and, since B is finite dimensional
and σ-compact, B contains an n-dimensional compact subset. The theorem
is proved.
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