Normal restrictions of the noncofinal ideal on $P_{\kappa}(\lambda)$

by

Pierre Matet (Caen)

Abstract. We discuss the problem of whether there exists a restriction of the noncofinal ideal on $P_{\kappa}(\lambda)$ that is normal.

0. Introduction. Let κ be a regular uncountable cardinal, and $\lambda > \kappa$ be a cardinal.

 $I_{\kappa,\lambda}$ (respectively, $NS_{\kappa,\lambda}$) denotes the noncofinal (respectively, nonstationary) ideal on $P_{\kappa}(\lambda)$. Johnson and Baumgartner (see [8]) showed that there may exist a stationary subset A of $P_{\kappa}(\lambda)$ such that $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$. Shelah [20] later established that it is even possible to have $NS_{\kappa,\lambda} = I_{\kappa,\lambda}|B$ for some B. In fact the following holds:

PROPOSITION 0.1 ([20], [14]). The following are equivalent:

- (i) $NS_{\kappa,\lambda} = I_{\kappa,\lambda} | B$ for some B.
- (ii) $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}) = \lambda.$
- (iii) $\operatorname{cf}(\lambda) < \kappa$, and $\overline{\operatorname{cof}}(NS_{\kappa,\tau}) \leq \lambda$ for every cardinal τ with $\kappa \leq \tau < \lambda$.

So the problem of whether there is B with $NS_{\kappa,\lambda} = I_{\kappa,\lambda}|B$ is pretty much solved. This paper is concerned with the more general problem of the existence of A such that $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$. The existence of such an A may seem like a local property, but actually it has consequences for the entire nonstationary ideal $NS_{\kappa,\lambda}$:

Proposition 0.2.

- (i) ([15]) Suppose $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$ for some A. Then $cof(NS_{\kappa,\lambda}) = u(\kappa,\lambda)$.
- (ii) ([17]) If $\operatorname{cof}(NS_{\kappa,\lambda}) = u(\kappa,\lambda)$, then $NS_{\kappa,\lambda}$ is nowhere precipitous.

If SSH holds and $\operatorname{cof}(NS_{\kappa,\lambda}) = u(\kappa,\lambda)$, then clearly $\operatorname{cf}(\lambda) < \kappa$. Hence the following holds:

²⁰¹⁰ Mathematics Subject Classification: Primary 03E05.

Key words and phrases: $P_{\kappa}(\lambda)$, noncofinal ideal, nonstationary ideal, scale.

PROPOSITION 0.3. Assuming GCH, the following are equivalent:

- (i) $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$ for some A.
- (ii) $NS_{\kappa,\lambda} = I_{\kappa,\lambda}|B$ for some B.
- (iii) $\operatorname{cf}(\lambda) < \kappa$.

In case SSH fails, the picture may be quite different, and we will see that " λ is regular and $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$ for some A" and " $\kappa \leq cf(\lambda) < \lambda$ and $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$ for some A" are both consistent relative to a large cardinal.

The following was already known:

PROPOSITION 0.4 ([14]). Let $\theta < \kappa$ be a cardinal for which there exists a $[\lambda]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$, and J be an ideal on $P_{\kappa}(\lambda)$ such that $J \subseteq NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}$ and $\overline{\operatorname{cof}}(J) \leq \lambda^{<\theta}$. Then $J|A = I_{\kappa,\lambda}|A$ for some $A \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^*$.

This result raises two issues that we will address in this paper. Suppose that $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}) > \lambda$ and we want to apply Proposition 0.4 to get an A such that $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$. Then (a) we will have to use a θ that is uncountable, so we will need that $\nu^{\aleph_0} < \kappa$ for every cardinal $\nu < \kappa$, and (b) our A will be everywhere of uncountable cofinality since for $\theta > \omega$, the set of all $a \in P_{\kappa}(\lambda)$ such that $\operatorname{cf}(\sup(a \cap \eta)) = \omega$ for some limit ordinal η with $\kappa \leq \eta \leq \lambda$ and $\operatorname{cf}(\eta) \geq \omega_1$ lies in $NS_{\kappa,\lambda}^{[\lambda] \leq \theta}$.

Now suppose to be definite that $cf(\lambda) < \kappa$ and $cof(NS_{\kappa,\lambda}) = \lambda^+$ (which can be arranged by adding λ^+ Cohen subsets of κ to V, assuming that Vsatisfies GCH). Note that by our assumptions $cof(NS_{\kappa,\lambda}) = u(\kappa, \lambda)$. We will show that if $(cf(\lambda))^+ < \kappa$ and the principle $\mathcal{A}_{\kappa,\lambda}((cf(\lambda))^+, \lambda^+)$ holds, then there is A such that $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$.

It is not clear how large this A is going to be, but this approach has the advantage that there are many pairs (κ, λ) for which the principle holds (e.g. all pairs (κ, λ) with $\omega_4 \leq \kappa < \omega_{\omega}$ and $\lambda = \omega_{\omega}$).

A second principle, $\mathcal{B}_{\kappa,\lambda}(\kappa,\lambda^+)$, will imply the existence of A with $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$ such that $\{\sup(a \cap \kappa) : a \in A\} \in NS^*_{\kappa}$. The question of the strength of $\mathcal{B}_{\kappa,\lambda}(\kappa,\lambda^+)$ is given special attention in the paper.

A third principle, $C_{\kappa,\lambda}(\kappa, \lambda^+)$, will give A with $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$ such that $\{a \cap \nu : a \in A\} \in NS^*_{\kappa,\nu}$ for every cardinal ν with $\kappa \leq \nu < \lambda$.

Finally, in the case when $cf(\lambda) \neq \omega$, a fourth principle, $\mathcal{D}_{\kappa,\lambda}^J((cf(\lambda))^+, \lambda^+)$, where J denotes the noncofinal ideal on $cf(\lambda)$, will yield an A with $NS_{\kappa,\lambda}|A$ $= I_{\kappa,\lambda}|A$ that is large in the sense that it lies in the filter dual to the game ideal $NG_{\kappa,\lambda}$.

All four principles follow from the Almost Disjoint Sets principle ADS_{λ} , and so they will hold unless there are inner models with (fairly) large cardinals. For a simple situation where our results apply, suppose that V = Land $cf(\lambda) < \kappa$, and consider the generic extension $(V^{\mathbb{Q}})^{\mathbb{P}}$, where \mathbb{Q} adds λ^+ Cohen subsets of κ and \mathbb{P} adds κ Cohen reals. We will see that in M, (a) for any uncountable cardinal $\theta < \kappa$, there is no $[\lambda]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$, and (b) there is no B such that $NS_{\kappa,\lambda} = I_{\kappa,\lambda}|B$, but (c) $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$ for some A such that $\{a \cap \nu : a \in A\} \in NS^*_{\kappa,\nu}$ for every regular cardinal ν with $\kappa \leq \nu < \lambda$.

The paper is organized as follows. Section 1 reviews basic material concerning $P_{\kappa}(\lambda)$ and its ideals. In Section 2 we generalize Proposition 0.4. Section 3 is concerned with the principle $\mathcal{A}_{\kappa,\lambda}(\tau,\pi)$. In Section 4 we deal with the special case when there exists a $[\lambda]^{\leq\theta}$ -normal ideal on $P_{\kappa}(\lambda)$. Sections 5–8 are respectively devoted to $\mathcal{B}_{\kappa,\lambda}(\tau,\pi)$, $\mathcal{C}_{\kappa,\lambda}(\tau,\pi)$, $\mathcal{D}^{J}_{\kappa,\lambda}(\nu^{+},\pi)$ and ADS $_{\lambda}$. Finally in Section 9 we investigate the situation obtained by adding λ^{+} Cohen subsets of κ to L.

1. Basic material. For a set A and a cardinal ρ , set $P_{\rho}(A) = \{a \subseteq A : |a| < \rho\}$.

 NS_{κ} denotes the nonstationary ideal on κ .

For a regular infinite cardinal $\tau < \kappa$, E_{τ}^{κ} denotes the set of all $\delta < \kappa$ with $cf(\delta) = \tau$.

Let $\mu \geq \kappa$ be a cardinal. $I_{\kappa,\mu}$ denotes the set of all $A \subseteq P_{\kappa}(\mu)$ such that $\{a \in A : b \subseteq a\} = \emptyset$ for some $b \in P_{\kappa}(\mu)$. By an *ideal* on $P_{\kappa}(\mu)$ we mean a collection J of subsets of $P_{\kappa}(\mu)$ such that (i) $I_{\kappa,\mu} \subseteq J$ and $P_{\kappa}(\mu) \notin J$, (ii) $P(A) \subseteq J$ for all $A \in J$, and (iii) $\bigcup x \in J$ for every $x \in P_{\kappa}(J)$.

Let J be an ideal on $P_{\kappa}(\mu)$. Set $J^+ = \{A \subseteq P_{\kappa}(\mu) : A \notin J\}$ and $J^* = \{P_{\kappa}(\mu) \setminus A : A \in J\}$. Put $J|A = \{B \subseteq P_{\kappa}(\mu) : B \cap A \in J\}$ for every $A \in J^+$.

 $\operatorname{cof}(J)$ (respectively, $\operatorname{cof}(J)$) denotes the least cardinality of any $X \subseteq J$ with the property that for any $A \in J$, there is x in $P_2(X)$ (respectively, $P_{\kappa}(X)$) with $A \subseteq \bigcup x$.

Given two infinite cardinals σ and ρ , J is (σ, ρ) -regular if there is $C_{\alpha} \in J^*$ for $\alpha < \rho$ such that $\bigcap_{\alpha \in z} C_{\alpha} = \emptyset$ for any $z \subseteq \rho$ with $|z| = \sigma$.

Given a cardinal $\pi \geq \kappa$ and $f: P_{\kappa}(\mu) \to P_{\kappa}(\pi)$, set $f(J) = \{X \subseteq P_{\kappa}(\pi) : f^{-1}(X) \in J\}.$

Given $\delta \leq \mu$ and a cardinal $\theta \leq \kappa$, J is $[\delta]^{<\theta}$ -normal if for any $A \in J^+$, and any $f: A \to P_{\theta}(\delta)$ with the property that $f(a) \in P_{|a \cap \theta|}(a)$ for all $a \in A$, there is $B \in J^+ \cap P(A)$ such that f is constant on B.

LEMMA 1.1 ([15]).

(i) Suppose that $\theta < \kappa$. Then there exists a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\mu)$ if and only if $|P_{\theta}(\nu)| < \kappa$ for every cardinal $\nu < \kappa \cap (\delta + 1)$.

(ii) Suppose that κ is a limit cardinal and $\delta \geq \theta = \kappa$. Then there exists a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\mu)$ if and only if κ is Mahlo.

If there exists a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\mu)$, then $NS_{\kappa,\mu}^{[\delta]^{<\theta}}$ denotes the smallest such ideal.

LEMMA 1.2 ([15]). Suppose that σ is a cardinal with $\kappa \leq \sigma < \mu$, and $\kappa \leq \delta \leq \sigma$. Then $NS_{\kappa,\sigma}^{[\delta]^{\leq \theta}} = p(NS_{\kappa,\mu}^{[\delta]^{\leq \theta}})$, where $p: P_{\kappa}(\mu) \to P_{\kappa}(\sigma)$ is defined by $p(x) = x \cap \sigma$.

For $f: P_{\theta}(\delta) \to P_{\kappa}(\mu), C_{f}^{\kappa,\mu}$ denotes the set of all $a \in P_{\kappa}(\mu)$ such that $a \cap \theta \neq \emptyset$, and $f(e) \subseteq a$ for every $e \in P_{|a \cap \theta|}(a \cap \delta)$.

LEMMA 1.3 ([15]). Suppose that $\kappa \leq \delta$ and $2 \leq \theta$, and let $B \subseteq P_{\kappa}(\mu)$. Then $B \in NS_{\kappa,\mu}^{[\delta]^{\leq \theta}}$ if and only if $B \cap C_f^{\kappa,\mu} = \emptyset$ for some $f: P_{3\cup\theta}(\delta) \to P_{\kappa}(\mu)$.

LEMMA 1.4 ([14]). Suppose that $\kappa \leq \delta$, $2 \leq \theta$ and J is $[\delta]^{<\theta}$ -normal. Then either $\operatorname{cf}(\overline{\operatorname{cof}}(J)) < \kappa$, or $\operatorname{cf}(\overline{\operatorname{cof}}(J)) > |\delta|^{<\overline{\theta}}$, where $\overline{\theta} = \theta$ if $\theta < \kappa$, or $\theta = \kappa$ and κ is a limit cardinal, and $\overline{\theta} = \nu$ if $\theta = \kappa = \nu^+$.

It is simple to see that if J is $[\delta]^{<2}$ -normal, then it is $[\delta]^{<\omega}$ -normal. Set $NS^{\delta}_{\kappa,\mu} = NS^{[\delta]^{<2}}_{\kappa,\mu}$.

J is normal if it is $[\mu]^{<2}$ -normal. We put $NS_{\kappa,\mu} = NS_{\kappa,\mu}^{\mu}$.

Given four cardinals π, σ, τ and χ with $\pi \geq \sigma \geq \tau \geq \omega$ and $\tau \geq \chi \geq 2$, $\operatorname{cov}(\pi, \sigma, \tau, \chi)$ denotes the least cardinality of any $A \subseteq P_{\sigma}(\pi)$ with the property that for any $b \in P_{\tau}(\pi)$, there is $z \in P_{\chi}(A)$ with $b \subseteq \bigcup z$.

In case $\sigma = \tau$ and $\chi = 2$, we let $cov(\pi, \sigma, \tau, \chi) = u(\sigma, \pi)$.

Shelah's Strong Hypothesis (SSH) asserts that given two uncountable cardinals ν and χ with $cf(\nu) = \nu \leq \chi$, $u(\nu, \chi)$ equals χ if $cf(\chi) \geq \nu$, and χ^+ otherwise.

LEMMA 1.5 ([10]). Given a cardinal σ with $\kappa \leq \sigma < \mu$, the following are equivalent:

- (i) $NS^{\sigma}_{\kappa,\mu}|A = I_{\kappa,\mu}|A$ for some $A \in NS^*_{\kappa,\mu}$.
- (ii) $\overline{\operatorname{cof}}(NS_{\kappa,\sigma}) \le \mu = \operatorname{cov}(\mu, \sigma^+, \sigma^+, \kappa).$

 $\overline{\partial}_{\kappa}$ denotes the smallest cardinality of any $F \subseteq {}^{\kappa}\kappa$ with the property that for any $g \in {}^{\kappa}\kappa$, there is $z \in P_{\kappa}(F)$ such that $g(\alpha) < \bigcup_{f \in z} f(\alpha)$ for every $\alpha \in \kappa$.

LEMMA 1.6 ([16]). $\overline{\partial}_{\kappa} = \overline{\mathrm{cof}}(NS_{\kappa,\kappa}).$

For $B \subseteq P_{\kappa}(\mu)$, the two-player game $H_{\kappa,\mu}(B)$ is defined as follows. The game lasts ω moves, with player I making the first move. I and II alternately pick members of $P_{\kappa}(\mu)$, thus building a sequence $\langle a_n : n < \omega \rangle$. II wins the game whenever $\bigcup_{n < \omega} a_n \in B$.

 $NG_{\kappa,\mu}$ denotes the collection of all $A \subseteq P_{\kappa}(\mu)$ such that player II has a winning strategy in the game $H_{\kappa,\mu}(P_{\kappa}(\mu) \setminus A)$.

Lemma 1.7 ([11]).

- (i) $NG_{\kappa,\mu}$ is a normal ideal on $P_{\kappa}(\mu)$.
- (ii) There is $A \in NG^*_{\kappa,\mu}$ such that $cf(sup(a \cap \eta)) = \omega$ whenever $a \in A$ and η is a limit ordinal with $\kappa \leq \eta \leq \mu$ and $cf(\eta) \geq \kappa$.
- (iii) Let σ be a cardinal with $\kappa \leq \sigma < \mu$. Then $NG_{\kappa,\sigma} = p(NG_{\kappa,\mu})$, where $p: P_{\kappa}(\mu) \to P_{\kappa}(\sigma)$ is defined by $p(x) = x \cap \sigma$.

 κ is mildly μ -ineffable if given $t_a : a \to 2$ for $a \in P_{\kappa}(\mu)$, there is $g : \mu \to 2$ with the property that for any $a \in P_{\kappa}(\mu)$, there is $b \in P_{\kappa}(\mu)$ such that $a \subseteq b$ and $g \upharpoonright a = t_b \upharpoonright a$.

LEMMA 1.8 ([22]). Suppose that κ is mildly μ -ineffable and $cf(\mu) \geq \kappa$. Then $\mu^{<\kappa} = \mu$.

Suppose that

- σ is a cardinal with $cf(\mu) \leq \sigma < \mu$.
- $\langle \mu_i : i < \sigma \rangle$ is a one-to-one sequence of regular cardinals less than μ such that $\sigma < \mu_0$ and $\sup(\{\mu_i : i < \sigma\}) = \mu$.
- *I* is a proper ideal on σ such that for any cardinal $\chi < \mu$, $\{i \in \sigma : \mu_i \leq \chi\} \in I$.
- π is a cardinal greater than μ .
- $\vec{f} = \langle f_{\alpha} : \alpha < \pi \rangle$ is an increasing, cofinal sequence in $(\prod_{i < \sigma} \mu_i, <_I)$, where $g <_I h$ whenever $\{i < \sigma : g(i) < h(i)\} \in I^*$.

Then \vec{f} is a scale of length π for μ .

Let $\delta < \pi$ be an infinite limit ordinal. Then δ is a good (respectively, remarkably good) point for \vec{f} if we may find a cofinal (respectively, closed unbounded) subset $X \subseteq \delta$, and $Z_{\xi} \in I$ for $\xi \in X$, such that $f_{\beta}(i) < f_{\xi}(i)$ whenever $\beta < \xi$ are in X and $i \in \sigma \setminus (Z_{\beta} \cup Z_{\xi})$. Further, δ is a better point for \vec{f} if we may find a closed unbounded subset X of δ , and $Z_{\xi} \in I$ for $\xi \in X$, such that $f_{\beta}(i) < f_{\xi}(i)$ whenever $\beta < \xi$ are in X and $i \in \sigma \setminus Z_{\xi}$. Finally, δ is a very good point for \vec{f} if there is a closed unbounded subset X of δ , and $Z_{\xi} \in I$, such that $f_{\beta}(i) < f_{\xi}(i)$ whenever $\beta < \xi$ are in X and $i \in \sigma \setminus Z_{\xi}$. Finally, δ is a very good point for \vec{f} if there is a closed unbounded subset X of δ , and $Z \in I$, such that $f_{\beta}(i) < f_{\xi}(i)$ whenever $\beta < \xi$ are in X and $i \in \sigma \setminus Z$.

Note that

very good \Rightarrow better \Rightarrow remarkably good \Rightarrow good.

It is easy to see that points of small cofinality are better:

LEMMA 1.9 ([3]). Let $\delta < \pi$ be an infinite limit ordinal such that I is cf(δ)-complete. Then δ is a better point for \vec{f} .

Proof. Select a closed unbounded subset X of δ with $o.t.(X) = cf(\delta)$. For $\beta < \xi$ in X pick $Z_{\beta\xi} \in I$ so that $f_{\beta}(i) < f_{\xi}(i)$ whenever $i \in \mu \setminus Z_{\beta\xi}$. Now given $\xi \in X$, put $Z_{\xi} = \bigcup_{\beta \in X \cap \xi} Z_{\beta\xi}$. Then clearly $Z_{\xi} \in I$. Moreover, $f_{\beta}(i) < f_{\xi}(i)$ whenever $\beta \in X \cap \xi$ and $i \in \sigma \setminus Z_{\xi}$.

It immediately follows that every infinite limit ordinal $\delta < \pi$ such that *I* is $(cf(\delta))^+$ -complete is a very good point for \vec{f} .

Let us also mention the following, which is readily checked.

LEMMA 1.10. Let $\delta < \pi$ be an infinite limit ordinal such that $cf(\delta)$ is a weakly compact cardinal greater than σ . Then δ is a good point for \vec{f} .

The scale \vec{f} is good (respectively, remarkably good, better, very good) if there is a closed unbounded subset C of π with the property that every limit ordinal δ in C such that $cf(\delta) < \mu$ and I is not $cf(\delta)$ -complete is a good (respectively, remarkably good, better, very good) point for \vec{f} .

We refer to other sources for the definitions of other notions of pcf theory. The definitions of $pp(\mu)$, $pp^+(\mu)$ and $pp_{\Gamma(\kappa,\omega_1)}(\mu)$ can be found in [19, pp. 39 and 41]. See [3, Definitions 2.3, 3.8 and 6.3] for the definition of the three principles \Box^*_{μ} , VGS $_{\mu}$ and AP $_{\mu}$.

2. A sufficient condition for $K|A = I_{\kappa,\lambda}|A$. Throughout the remainder of the paper τ will denote an infinite cardinal less than or equal to κ , and π a cardinal greater than λ .

DEFINITION. A (τ, λ, π) -sequence is a one-to-one sequence $\vec{y} = \langle y_{\alpha} : \alpha < \pi \rangle$ of elements of $P_{\tau}(\lambda)$ with $y_{\alpha} = \{\alpha\}$ for every $\alpha < \lambda$.

DEFINITION. For a (κ, λ, π) -sequence $\vec{y} = \langle y_{\alpha} : \alpha < \pi \rangle$, $A(\vec{y})$ denotes the set of all $x \in P_{\kappa}(\pi)$ such that $\{\alpha < \pi : y_{\alpha} \subseteq x\} \subseteq x$.

Let J be a normal ideal on $P_{\kappa}(\pi)$, and let $p: P_{\kappa}(\pi) \to P_{\kappa}(\lambda)$ be defined by $p(x) = x \cap \lambda$.

LEMMA 2.1. Let $\vec{y} = \langle y_{\alpha} : \alpha < \pi \rangle$ be a (κ, λ, π) -sequence. Suppose that $C_{\alpha} \in (p(J))^*$ for $\alpha < \pi$. Then there is $D \in J^*$ such that $x \cap \lambda \in C_{\alpha}$ for every $x \in D \cap A(\vec{y})$, and every $\alpha < \pi$ such that $y_{\alpha} \subseteq x$.

Proof. Let $D = \{x \in P_{\kappa}(\pi) : \forall \alpha \in x \ (x \cap \lambda \in C_{\alpha})\}.$

PROPOSITION 2.2. Let $\vec{y} = \langle y_{\alpha} : \alpha < \pi \rangle$ be a (κ, λ, π) -sequence. Suppose that $A(\vec{y}) \in J^+$, and $K \subseteq p(J)$ is an ideal on $P_{\kappa}(\lambda)$ with $\overline{\operatorname{cof}}(K) \leq \pi$. Then there is $D \in J^*$ such that $K|A = I_{\kappa,\lambda}|A$, where $A = p^{(\prime)}(D \cap A(\vec{y}))$.

Proof. Select $C_{\alpha} \in K^*$ for $\alpha < \pi$ so that for any $C \in K^*$, there is $z \in P_{\kappa}(\pi) \setminus \{\emptyset\}$ with $\bigcap_{\alpha \in z} C_{\alpha} \subseteq C$. By Lemma 2.1, there is $D \in J^*$ such that $x \cap \lambda \in C_{\alpha}$ whenever $x \in D \cap A(\vec{y})$ and $y_{\alpha} \subseteq x$. Now fix $B \in I^+_{\kappa,\lambda}$ with $B \subseteq \{x \cap \lambda : x \in D \cap A(\vec{y})\}$. Let us show that $B \in K^+$. Thus let $C \in K^*$. Pick $z \in P_{\kappa}(\pi) \setminus \{\emptyset\}$ with $\bigcap_{\alpha \in z} C_{\alpha} \subseteq C$, and set $b = \bigcup_{\alpha \in z} y_{\alpha}$. Then clearly $\{a \in B : b \subseteq a\} \subseteq C$.

COROLLARY 2.3. Suppose that there exists a (κ, λ, π) -sequence \vec{y} such that $A(\vec{y}) \in NS^+_{\kappa,\pi}$, and let $K \subseteq NS_{\kappa,\lambda}$ be an ideal on $P_{\kappa}(\lambda)$ with $\overline{\mathrm{cof}}(K) \leq \pi$. Then $K|A = I_{\kappa,\lambda}|A$ for some $A \in NS^+_{\kappa,\lambda}$.

3. $\mathcal{A}_{\kappa,\lambda}(\tau,\pi)$. In this section we start our search for (κ,λ,π) -sequences \vec{y} such that $A(\vec{y}) \in NS^+_{\kappa,\pi}$.

DEFINITION. An $\mathcal{A}_{\kappa,\lambda}(\tau,\pi)$ -sequence is a (τ,λ,π) -sequence $\vec{y} = \langle y_{\alpha} : \alpha < \pi \rangle$ with $|\{\alpha < \pi : y_{\alpha} \subseteq a\}| < \kappa$ for every $a \in P_{\kappa}(\lambda)$.

The following is readily checked.

PROPOSITION 3.1. Let \vec{y} be a (κ, λ, π) -sequence. Then \vec{y} is an $\mathcal{A}_{\kappa,\lambda}(\kappa, \pi)$ sequence whenever $A(\vec{y}) \in I^+_{\kappa,\pi}$.

DEFINITION. $\mathcal{A}_{\kappa,\lambda}(\tau,\pi)$ asserts the existence of an $\mathcal{A}_{\kappa,\lambda}(\tau,\pi)$ -sequence. If $\mathcal{A}_{\kappa,\lambda}(\tau,\pi)$ holds, then by a result of [12], $\pi \leq \operatorname{cov}(\lambda,\kappa,\tau,2)$. In particular, $\mathcal{A}_{\kappa,\lambda}(\kappa,\pi)$ implies that $\pi \leq u(\kappa,\lambda)$.

The following is immediate.

PROPOSITION 3.2. The following are equivalent:

- (i) $\mathcal{A}_{\kappa,\lambda}(\kappa,\pi)$ holds.
- (ii) $I_{\kappa,\lambda}$ is (κ,π) -regular.
- (iii) There is $B \in I^+_{\kappa,\lambda}$ such that $I_{\kappa,\lambda}|B$ is (κ,π) -regular.

PROPOSITION 3.3 ([13]). Let $\vec{y} = \langle y_{\alpha} : \alpha < \pi \rangle$ be an $\mathcal{A}_{\kappa,\lambda}(\kappa, \pi)$ -sequence. Then $\overline{\operatorname{cof}}(I_{\kappa,\pi}|A(\vec{y})) \leq \lambda$.

Proof. Fix $c \in P_{\kappa}(\pi)$, and set $d = \bigcup_{\alpha \in c} y_{\alpha}$. Then

 $A(\vec{y}) \cap \{x \in P_{\kappa}(\pi) : d \subseteq x\} \subseteq \{z \in P_{\kappa}(\pi) : c \subseteq z\}. \blacksquare$

Conversely, if $\overline{\operatorname{cof}}(J) \leq \lambda$ for some ideal J on $P_{\kappa}(\pi)$, then by [14, Proposition 5.7], $\mathcal{A}_{\kappa,\lambda}(\kappa,\pi)$ holds.

By Proposition 3.3, $\mathcal{A}_{\kappa,\lambda}(\kappa,\pi)$ implies that $\operatorname{cof}(I_{\kappa,\pi}) = \operatorname{cof}(I_{\kappa,\lambda})$. This can be generalized as follows.

PROPOSITION 3.4 ([16]). Suppose that \vec{y} is an $\mathcal{A}_{\kappa,\lambda}(\kappa,\pi)$ -sequence. Then for some $D \in NS^*_{\kappa,\pi}$, there is an isomorphism f from $(P_{\kappa}(\lambda), \subset)$ onto $(D \cap A(\vec{y}), \subset)$ with the following property: for any $\delta \leq \lambda$, and any cardinal $\theta \leq \kappa$ for which there exists a $[\delta]^{<\theta}$ -normal ideal on $P_{\kappa}(\pi)$, $f(NS^{[\delta]^{<\theta}}_{\kappa,\lambda}) =$ $NS^{[\delta]^{<\theta}}_{\kappa,\pi}|(D \cap A(\vec{y}))$ (and hence $\overline{\operatorname{cof}}(NS^{[\delta]^{<\theta}}_{\kappa,\pi}|(D \cap A(\vec{y}))) \leq \overline{\operatorname{cof}}(NS^{[\delta]^{<\theta}}_{\kappa,\lambda})$ and $\operatorname{cof}(NS^{[\delta]^{<\theta}}_{\kappa,\pi}) = \operatorname{cof}(NS^{[\delta]^{<\theta}}_{\kappa,\lambda})).$

PROPOSITION 3.5. Suppose that \vec{y} is an $\mathcal{A}_{\kappa,\lambda}(\tau,\pi)$ -sequence, where $\tau = cf(\tau) < \kappa$. Then the following hold:

- (i) For any regular cardinal χ with $\tau \leq \chi < \kappa$, we have $\{x \in A(\vec{y}) : cf(sup(x \cap \kappa)) = \chi\} \in NS^+_{\kappa,\pi}$.
- (ii) Let $\theta \leq \kappa$ be an infinite cardinal such that there exists a $[\pi]^{\leq \theta}$ -normal ideal on $P_{\kappa}(\pi)$. Then $A(\vec{y}) \in (NS_{\kappa,\pi}^{[\pi]^{\leq \theta}})^+$.

Proof. By the proof of [14, Proposition 5.6(ii)].

COROLLARY 3.6. Suppose that $\mathcal{A}_{\kappa,\lambda}(\tau,\pi)$ holds, where $\tau = \mathrm{cf}(\tau) < \kappa$, and let $K \subseteq NS_{\kappa,\lambda}$ be an ideal on $P_{\kappa}(\lambda)$ with $\overline{\mathrm{cof}}(K) \leq \pi$. Then there is A such that (a) $\{a \in A : \mathrm{cf}(\sup(a \cap \kappa)) = \chi\} \in NS^+_{\kappa,\lambda}$ for every regular cardinal χ with $\tau \leq \chi < \kappa$, and (b) $K|A = I_{\kappa,\lambda}|A$.

Proof. By Propositions 2.2 and 3.5.

For example, suppose that in V, GCH holds, σ is a strong cardinal, and $\pi = \operatorname{cf}(\pi) > \sigma$. Then by work of Gitik and Magidor [6], there is a notion of forcing \mathbb{P} such that in $V^{\mathbb{P}}$, (a) all cardinals are preserved, (b) $\operatorname{cf}(\sigma) = \omega$, (c) $2^{\chi} = \chi^+$ for any infinite cardinal $\chi < \sigma$, and (c) $2^{\sigma} = \pi$ and in fact (as was kindly pointed out to the author by Moti Gitik) $2^{\nu} = \pi$ for any cardinal ν with $\sigma \leq \nu < \pi$. Working in $V^{\mathbb{P}}$, suppose that $\kappa < \sigma \leq \lambda < \pi$ and κ is not the successor of a cardinal of cofinality ω . Then by Proposition 0.4, there is $A \in (NS_{\kappa,\lambda}^{[\lambda]^{\leq \omega_1}})^*$ such that $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$.

Set $W = V^{\mathbb{P}}$. In W, let \mathbb{Q} be the notion of forcing to add \aleph_4 Cohen reals. Then clearly in $W^{\mathbb{Q}}$, $2^{\aleph_j} = \aleph_4$ for every j < 4, and $(2^{\nu})^{W^{\mathbb{Q}}} = (2^{\nu})^W$ for every cardinal $\nu \ge \omega_4$. Working in $W^{\mathbb{Q}}$, suppose that $\kappa = \omega_4$ and $\sigma \le \lambda < \pi$. Proposition 0.4 no longer applies, since now there does not exist any $[\lambda]^{<\omega_1}$ -normal ideal on $P_{\kappa}(\lambda)$. So we take another route. By a result of Shelah [7, p. 369], pp⁺(σ) > cov($\sigma, \sigma, \omega_1, 2$) = π , so by [12, Proposition 4.6(i)], $\mathcal{A}_{\kappa,\lambda}(\omega_1, \pi)$ holds. Hence by Corollary 3.6, $NS_{\kappa,\lambda}|_A = I_{\kappa,\lambda}|_A$ for some A.

Note that if $\operatorname{cf}(\lambda) \geq \kappa$ and $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$, then clearly $\operatorname{cof}(NS_{\kappa,\lambda}|A) \leq \lambda$, and in fact $\operatorname{cof}(NS_{\kappa,\lambda}|A) < \lambda$ since by Lemma 1.4, $\operatorname{cf}(\operatorname{cof}(NS_{\kappa,\lambda}|A)) < \kappa$.

Next we consider some situations when it can be deduced from $\mathcal{A}_{\kappa,\lambda}(\kappa,\pi)$ that $\mathcal{A}_{\kappa,\lambda}(\tau,\pi)$ holds for some regular $\tau < \kappa$.

PROPOSITION 3.7. Suppose that $\mathcal{A}_{\kappa,\lambda}(\kappa,\pi)$ holds, $\operatorname{cf}(\lambda) < \tau = \operatorname{cf}(\tau) < \kappa$, and $\operatorname{cov}(\lambda',\kappa,\kappa,\tau) \leq \lambda$ for every cardinal λ' with $\kappa \leq \lambda' < \lambda$. Then $\mathcal{A}_{\kappa,\lambda}(\tau,\pi)$ holds.

Proof. The proof is an easy modification of that of [12, Corollary 2.13].

PROPOSITION 3.8 ([12]). Suppose that $\mathcal{A}_{\kappa,\lambda}(\kappa,\pi)$ holds, κ is a limit cardinal, and $\operatorname{cf}(\pi) \neq \kappa$. Then $\mathcal{A}_{\kappa,\lambda}(\tau,\pi)$ holds for some regular $\tau < \kappa$. LEMMA 3.9 (see [4, Theorem 7.12, p. 48]). Let μ be an infinite cardinal. Then μ^{ν} assumes only finitely many values for ν with $2^{\nu} < \mu$.

PROPOSITION 3.10. Suppose that κ is inaccessible and $\lambda^{<\kappa} > \lambda$. Then $\mathcal{A}_{\kappa,\lambda}(\tau, \lambda^{<\kappa})$ holds for some regular $\tau < \kappa$.

Proof. By Lemma 3.9, there is a regular infinite cardinal $\tau < \kappa$ such that $\lambda^{<\kappa} = \lambda^{<\tau}$. Then clearly $|P_{\tau}(\lambda) \cap P(a)| < \kappa$ for every $a \in P_{\kappa}(\lambda)$.

PROPOSITION 3.11. Suppose that $\mathcal{A}_{\kappa,\lambda}(\tau,\pi)$ holds, κ' is a regular cardinal with $\kappa < \kappa' < \lambda$, and $\operatorname{cov}(\nu,\kappa,\tau,2) < \kappa'$ for every cardinal ν with $\kappa \leq \nu < \kappa'$. Then $\mathcal{A}_{\kappa',\lambda}(\tau,\pi)$ holds.

Proof. The proof is a straightforward modification of that of [14, Proposition 5.5].

PROPOSITION 3.12 ([12]). Let ρ be the largest limit cardinal less than or equal to κ . Assume that $cf(\lambda) < \kappa$ and one of the following conditions is satisfied:

- (a) $\rho = \kappa$.
- (b) $\operatorname{cf}(\lambda) < \rho$ and $\operatorname{cf}(\lambda) \neq \operatorname{cf}(\rho)$.
- (c) $\operatorname{cf}(\lambda) = \operatorname{cf}(\rho) < \rho \text{ and } \min(\operatorname{pp}(\rho), \rho^{+3}) < \kappa.$
- (d) $\operatorname{cf}(\lambda) \ge \rho$ and $\min(2^{\operatorname{cf}(\lambda)}, (\operatorname{cf}(\lambda))^{+3}) < \kappa$.
- (e) For some regular cardinal σ with $\max(\rho, \operatorname{cf}(\lambda)) < \sigma \leq \kappa$, λ carries a scale of length λ^+ for which almost all (in the sense of the nonstationary ideal) points with cofinality σ are good.

Then $\mathcal{A}_{\kappa,\lambda}((\mathrm{cf}(\lambda))^+,\lambda^+)$ holds.

By a result of Todorcevic, it is consistent relative to a 2-huge cardinal that $\mathcal{A}_{\omega_1,\omega_\omega}(\omega_1,\omega_{\omega+1})$ fails (see [12, Propositions 3.18 and 3.19]).

Magidor (see [2, Theorem 17.1]) proved that under MM, there is no scale for ω_{ω} which is good at every point of cofinality ω_1 .

QUESTION. Is it consistent relative to some large cardinal that "MM and $\mathcal{A}_{\omega_1,\omega_\omega}(\omega_1,\omega_{\omega+1})$ both hold"?

QUESTION. Is it consistent relative to some large cardinal that " $\overline{\operatorname{cof}}(NS_{\omega_1,\omega_\omega}) = \aleph_{\omega+1}$ but there is no A such that $NS_{\omega_1,\omega_\omega}|A = I_{\omega_1,\omega_\omega}|A"$?

Another problem which is worth mentioning is whether there is a converse to Corollary 3.6.

QUESTION. Suppose $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}) > \lambda$ and $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$. Does then $\mathcal{A}_{\kappa,\lambda}(\kappa, \overline{\operatorname{cof}}(NS_{\kappa,\lambda}))$ hold?

4. $NS_{\kappa,\lambda<\theta}^{[\lambda<\theta]<\theta}$. Abe [1] proved that if κ is Mahlo and $\lambda^{<\kappa} > \lambda$, then we may find $B \in (NS_{\kappa,\lambda<\kappa}^{[\lambda<\kappa]<\kappa})^*$, and an isomorphism f from $(P_{\kappa}(\lambda), \subset)$

onto (B, \subset) such that $f(NS_{\kappa,\lambda}^{[\lambda]<\kappa}) = NS_{\kappa,\lambda<\kappa}^{[\lambda<\kappa]<\kappa}$. In this section we prove the corresponding result for $NS_{\kappa,\lambda<\theta}^{[\lambda<\theta]<\theta}$ with $\theta < \kappa$.

Suppose $\theta < \kappa$ is a regular cardinal such that $\lambda^{<\theta} > \lambda$. Suppose further that there exists a $[\lambda]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$.

Let $\vec{y} = \langle y_{\alpha} : \alpha < \lambda^{<\theta} \rangle$ be a one-to-one enumeration of the elements of $P_{\theta}(\lambda)$ such that $y_{\alpha} = \{\alpha\}$ for every $\alpha < \lambda$.

The following is immediate:

PROPOSITION 4.1. $A(\vec{y}) \in (NS_{\kappa,\lambda^{\leq \theta}}^{[\lambda]^{\leq \theta}})^*.$

PROPOSITION 4.2. There is $D \in NS^*_{\kappa,\lambda<\theta}$, and an isomorphism f from $(P_{\kappa}(\lambda), \subset)$ onto $(D \cap A(\vec{y}), \subset)$ such that

$$f(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}) = NS_{\kappa,\lambda^{<\theta}}^{[\lambda^{<\theta}]^{<\theta}} = NS_{\kappa,\lambda^{<\theta}}^{[\lambda]^{<\theta}} | (D \cap A(\vec{y}))|$$

Proof. Set $\pi = \lambda^{<\theta}$ and $D = \{x \in P_{\kappa}(\pi) : \forall \alpha \in x \ (y_{\alpha} \subseteq x)\}$. It is immediate that $D \in NS_{\kappa,\pi}^*$. Define $f : P_{\kappa}(\lambda) \to P_{\kappa}(\pi)$ by setting $f(a) = \{\alpha < \pi : y_{\alpha} \subseteq a\}$. Note that $f(a) \cap \lambda = a$. Put $B = \operatorname{ran}(f)$. Then clearly $B = D \cap A(\vec{y})$, and moreover $B \in (NS_{\kappa,\pi}^{[\pi]^{<\theta}})^*$. It is simple to see that f is an isomorphism from $(P_{\kappa}(\lambda), \subset)$ onto (B, \subset) . Furthermore, $f^{-1}(X) \in I_{\kappa,\lambda}$ for every $X \in I_{\kappa,\pi}$. Set $J = NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}$. Then clearly f(J) is an ideal on $P_{\kappa}(\pi)$. Note that $B \in (f(J))^*$.

CLAIM 1. f(J) is $[\pi]^{<\theta}$ -normal.

Proof of Claim 1. Fix $X \in (f(J))^+$ with $X \subseteq B \cap \{x \in P_{\kappa}(\pi) : \theta \subseteq x\}$, and $h: X \to P_{\theta}(\pi)$ with $h(x) \subseteq x$ for every $x \in X$. Define $k: f^{-1}(X) \to P_{\theta}(\lambda)$ by $k(a) = \bigcup_{\alpha \in h(f(a))} y_{\alpha}$. There are $A \in J^+ \cap P(f^{-1}(X))$ and $e \in P_{\theta}(\lambda)$ such that k takes the constant value e on A. Put $z = \{\alpha < \pi : y_{\alpha} \subseteq e\}$ and $T = f^{*}A$. Then clearly $T \in (f(J))^+ \cap P(X)$, and moreover $h(x) \subseteq z$ for every $x \in T$. Since $|P_{\theta}(z)| < \kappa$, there must be $W \in (f(J))^+ \cap P(T)$ and $d \in P_{\theta}(z)$ such that h(x) = d for all $x \in W$, which completes the proof of Claim 1.

CLAIM 2. $f(J) \subseteq NS_{\kappa,\pi}^{[\lambda]^{<\theta}}|B.$

Proof of Claim 2. Fix $Z \in f(J)$. Set $Q = Z \cap B \cap \{x \in P_{\kappa}(\pi) : \theta \subseteq x\}$. Since $f^{-1}(Q) \in J$, we may find $g : P_{\theta}(\lambda) \to P_{\kappa}(\lambda)$ such that $f^{-1}(Q) \cap C_{g}^{\kappa,\lambda} = \emptyset$. Then clearly $Q \cap C_{g}^{\kappa,\pi} = \emptyset$, and hence $Z \cap B \in NS_{\kappa,\pi}^{[\lambda]^{\leq \theta}}$. This completes the proof of Claim 2.

By Claims 1 and 2,

$$NS_{\kappa,\pi}^{[\pi]^{<\theta}} \subseteq f(J) \subseteq NS_{\kappa,\pi}^{[\lambda]^{<\theta}} | B \subseteq NS_{\kappa,\pi}^{[\pi]^{<\theta}},$$

so $f(J) = NS_{\kappa,\pi}^{[\pi]^{<\theta}} = NS_{\kappa,\pi}^{[\lambda]^{<\theta}}|B.$

5. $\mathcal{B}_{\kappa,\lambda}(\tau,\pi)$

DEFINITION. A $\mathcal{B}_{\kappa,\lambda}(\tau,\pi)$ -sequence is a (τ,λ,π) -sequence $\vec{y} = \langle y_{\alpha} : \alpha < \pi \rangle$ with the property that for each nonempty e in $P_{\kappa^+}(\pi)$, there is a $\langle \kappa$ -to-one $g \in \prod_{\alpha \in e} y_{\alpha}$.

DEFINITION. $\mathcal{B}_{\kappa,\lambda}(\tau,\pi)$ asserts the existence of a $\mathcal{B}_{\kappa,\lambda}(\tau,\pi)$ -sequence.

PROPOSITION 5.1. Let $\vec{y} = \langle y_{\alpha} : \alpha < \pi \rangle$ be a (τ, λ, π) -sequence. Then the following are equivalent:

- (i) \vec{y} is a $\mathcal{B}_{\kappa,\lambda}(\tau,\pi)$ -sequence.
- (ii) For any $D \in NS^*_{\kappa,\pi}$, there is $x_\beta \in D \cap A(\vec{y})$ for $\beta < \kappa$ such that
 - (1) $x_{\gamma} \subset x_{\beta}$ and $\sup(x_{\gamma} \cap \kappa) < \sup(x_{\beta} \cap \kappa)$ for all $\gamma < \beta$, and
 - (2) $x_{\beta} = \bigcup_{\gamma < \beta} x_{\gamma}$ in case β is a nonzero limit ordinal.

Proof. (i) \rightarrow (ii): By the proof of [14, Proposition 5.11].

(ii) \rightarrow (i): Suppose that (ii) holds, and fix $e \subseteq \pi$ with $|e| = \kappa$. Let $\langle \alpha_i : i < \kappa \rangle$ be a one-to-one enumeration of the elements of e. Now let D be the set of all $x \in P_{\kappa}(\pi)$ such that (a) for any $i \in x \cap \kappa$, $y_{\alpha_i} \subseteq x$, (b) for any $i \in \kappa$ such that $\alpha_i \in x$, $i \in x \cap \kappa$, and (c) $x \cap \kappa$ is an infinite limit ordinal. Note that for any $x \in D \cap A(\vec{y})$, $x \cap \kappa = \{i \in \kappa : y_{\alpha_i} \subseteq x\}$. Since $D \in NS^*_{\kappa,\pi}$, we may find $x_\beta \in D \cap A(\vec{y})$ for $\beta < \kappa$ such that (1) $x_\gamma \subset x_\beta$ and $x_\gamma \cap \kappa < x_\beta \cap \kappa$ for all $\gamma < \beta$, and (2) $x_\beta = \bigcup_{\gamma < \beta} x_\gamma$ in case β is a nonzero limit ordinal. Define $k \in \prod_{i \in x_0 \cap \kappa} y_{\alpha_i}$ by k(i) = the least element of y_{α_i} , and $h_\beta \in \prod_{i \in (x_{\beta+1} \cap \kappa) \setminus x_\beta} y_{\alpha_i}$ for $\beta < \kappa$ by $h_\beta(i)$ = the least element of $y_{\alpha_i} \setminus x_\beta$. Set $h = k \cup \bigcup_{\beta < \kappa} h_\beta$. Then clearly, $h \in \prod_{i \in \kappa} y_{\alpha_i}$. Moreover, h is $<\kappa$ -to-one.

PROPOSITION 5.2. Let \vec{y} be a $\mathcal{B}_{\kappa,\lambda}(\tau,\pi)$ -sequence. Then the following hold:

(i) For any $D \in NS^*_{\kappa,\pi}$,

 $\{\sup(x\cap\kappa): x\in D\cap A(\vec{y})\}\in NS^*_\kappa.$

(ii) Let $\theta \leq \kappa$ be an infinite cardinal such that there exists a $[\pi]^{\leq \theta}$ -normal ideal on $P_{\kappa}(\pi)$. Then $A(\vec{y}) \in (NS_{\kappa,\pi}^{[\pi]^{\leq \theta}})^+$.

Proof. (i) By Proposition 5.1.

(ii) By the proof of Proposition 5.11 in [14]. \blacksquare

COROLLARY 5.3. Suppose that $\mathcal{B}_{\kappa,\lambda}(\kappa,\pi)$ holds, and let $K \subseteq NS_{\kappa,\lambda}$ be an ideal with $\overline{\operatorname{cof}}(K) \leq \pi$. Then there is $A \in NS^+_{\kappa,\lambda}$ such that (a) $\{\sup(a \cap \kappa) : a \in A\} \in NS^*_{\kappa}$, and (b) $K|A = I_{\kappa,\lambda}|A$.

Proof. By Propositions 2.2 and 5.2.

Let us now show that we may find A as above with the additional property that $A \in NG_{\kappa,\lambda}^+$:

PROPOSITION 5.4. Let $\vec{y} = \langle y_{\alpha} : \alpha < \pi \rangle$ be a $\mathcal{B}_{\kappa,\lambda}(\kappa, \pi)$ -sequence. Then $A(\vec{y}) \in NG^+_{\kappa,\pi}$.

Proof. Fix $X \in NG_{\kappa,\pi}^*$, and let σ be a winning strategy for II in $H_{\kappa,\pi}(X)$. Given $\beta < \kappa$ and $n \in \omega \cap (\beta + 1)$, let $K_{n\beta}$ denote the set of all increasing functions $k: n+1 \to \beta + 1$. Now define $e_{\beta} \in P_{\kappa}(\pi)$ for $\beta < \kappa$ by

- $e_0 = \emptyset$.
- $e_{\beta} = \bigcup_{\gamma < \beta} e_{\gamma}$ if β is an infinite limit ordinal.
- $e_{\beta+1} = \beta \cup e_{\beta} \cup \sigma(\emptyset) \cup \{\alpha < \pi : y_{\alpha} \subseteq e_{\beta}\} \cup (\bigcup_{\alpha \in e_{\beta}} y_{\alpha}) \cup (\bigcup \{z_k : k \in \bigcup_{n \in \omega \cap (\beta+1)} K_{n\beta}\})$, where $z_k = \sigma(e_{k(0)}, \ldots, e_{k(n)})$ if $n \in \omega \cap (\beta+1)$ and $k \in K_{n\beta}$.

Set $e = \bigcup_{\beta < \kappa} e_{\beta}$, and select a $<\kappa$ -to-one $g \in \prod_{\alpha \in e} y_{\alpha}$. Let D be the set of all $\beta < \kappa$ such that $\bigcup \{g^{-1}(\{\xi\}) : \xi \in e_{\eta} \cap \operatorname{ran}(g)\} \subseteq e_{\beta}$ for every $\eta < \beta$. Then $D \in NS_{\kappa}^{*}$, since for any $\eta < \kappa$, $\bigcup \{g^{-1}(\{\xi\}) : \xi \in e_{\eta} \cap \operatorname{ran}(g)\} \in P_{\kappa}(e) = \bigcup_{\beta < \kappa} P(e_{\beta})$. Pick $\beta \in D \cap E_{\omega}^{\kappa}$, and let $\langle \beta_{i} : i < \omega \rangle$ be an increasing sequence of ordinals cofinal in β . Put $x = \bigcup_{i < \omega} e_{\beta_{i}}$. Then $x \in X$, since for any $i < \omega$, $\sigma(e_{\beta_{0}}, \ldots, e_{\beta_{i}}) \subseteq e_{\beta_{i+1}} \subseteq e_{\beta_{i+1}}$. Let us show that $x \in A(\vec{y})$. Thus let $\alpha < \pi$ be such that $y_{\alpha} \subseteq x$. Then obviously $y_{\alpha} \subseteq e_{\gamma}$ for some $\gamma < \kappa$, so $\alpha \in e$. There must be $\ell < \omega$ such that $g(\alpha) \in e_{\beta_{\ell}}$. Then $\alpha \in g^{-1}(\{g(\alpha)\}) \subseteq e_{\beta} = \bigcup_{i < \omega} e_{\beta_{i}}$, and consequently $\alpha \in x$.

We will now see that $\mathcal{B}_{\kappa,\lambda}(\kappa,\pi)$ follows from the existence of certain scales.

Suppose that μ is a cardinal with $cf(\lambda) \leq \mu < \kappa$, and $\langle \lambda_i : i < \mu \rangle$ is a oneto-one sequence of regular infinite cardinals less than λ with supremum λ . Suppose further that I is a proper ideal on μ such that for any cardinal $\sigma < \lambda$, $\{i < \mu : \lambda_i \leq \sigma\} \in I$. Suppose finally that $\vec{f} = \langle f_\alpha : \alpha < \pi \rangle$ is a $<_I$ -increasing, cofinal sequence of elements of $(\prod_{i < \mu} \lambda_i, <_I)$.

Note that if κ is mildly λ^+ -ineffable, then by Lemma 1.8 the length of \tilde{f} (i.e. π) must be equal to λ^+ .

PROPOSITION 5.5. Suppose that there is a closed unbounded subset C of π such that every δ in $C \cap E_{\kappa}^{\pi}$ is a remarkably good point for \vec{f} . Then $\mathcal{B}_{\kappa,\lambda}(\mu^+,\pi)$ holds.

Proof. Pick a bijection $h: \mu \times \lambda \to \lambda$. For $\alpha \in C$, set $y_{\alpha}^{B} = \{h(i, f_{\alpha}(i)): i \in \mu \setminus B\}$ for every $B \in I$, and put $y_{\alpha} = y_{\alpha}^{\emptyset}$. For $\eta < \pi, \Phi(\eta)$ asserts that for any order-type η subset z of C, and any $\varphi : z \to I$, there is a $<\kappa$ -to-one function g in $\prod_{\alpha \in z} y_{\alpha}^{\varphi(\alpha)}$. Let us show by induction that $\Phi(\eta)$ holds for every $\eta < \kappa^{+}$. It is immediate that $\Phi(\eta)$ holds for every $\eta < \kappa$, and that $\Phi(\eta)$ implies $\Phi(\eta + 1)$.

Next suppose that $\eta < \kappa^+$ is an infinite limit ordinal of cofinality less than κ with the property that $\Phi(\gamma)$ holds for every $\gamma < \eta$. Select an increasing continuous sequence $\langle \eta_{\delta} : \delta < \operatorname{cf}(\eta) \rangle$ of ordinals with supremum η . Let z be an order-type η subset of C, and let $\varphi : z \to I$. Let $\langle \zeta_{\beta} : \beta < \eta \rangle$ be the increasing enumeration of the elements of z. For $\delta < \operatorname{cf}(\eta)$, pick a $<\kappa$ -to-one g_{δ} in $\prod_{\alpha \in z_{\delta}} y_{\alpha}^{\varphi(\alpha)}$, where $z_{\delta} = \{\alpha : \zeta_{\eta_{\delta}} \leq \alpha < \zeta_{\eta_{\delta+1}}\}$. Then clearly, $\bigcup_{\delta < \operatorname{cf}(\eta)} g_{\delta}$ is a $<\kappa$ -to-one function in $\prod_{\alpha \in z} y_{\alpha}^{\varphi(\alpha)}$.

Finally, suppose that η is a limit ordinal of cofinality κ such that $\Phi(\gamma)$ holds for every $\gamma < \eta$. Let v be an order-type η subset of C, and let $\psi : v \to I$. Put $\delta = \sup(v)$. Then there is a closed unbounded subset X of δ with o.t. $(X) = \kappa$, and $Z_{\xi} \in I$ for $\xi \in X$ such that $f_{\beta}(i) < f_{\xi}(i)$ whenever $\beta < \xi$ are in X and $i \in \mu \setminus (Z_{\beta} \cup Z_{\xi})$. We can assume that $0 \in X$. Let $\langle \xi_{\sigma} : \sigma < \kappa \rangle$ be the increasing enumeration of the elements of X. For $\sigma < \kappa$, set $v_{\sigma} = \{\alpha \in v : \xi_{\sigma} \leq \alpha < \xi_{\sigma+1}\}$. Define $\psi_{\sigma} : v_{\sigma} \to I$ as follows. Given $\alpha \in v_{\sigma}$, pick $W \in I$ so that $f_{\xi_{\sigma}}(i) \leq f_{\alpha}(i) < f_{\xi_{\sigma+1}}(i)$ for every $i \in \mu \setminus W$, and set

$$\psi_{\sigma}(\alpha) = Z_{\xi_{\sigma}} \cup Z_{\xi_{\sigma+1}} \cup W \cup \psi(\alpha).$$

There must be $a < \kappa$ -to-one function g_{σ} in $\prod_{\alpha \in v_{\sigma}} y_{\alpha}^{\psi_{\sigma}(\alpha)}$. Set $g = \bigcup_{\sigma < \kappa} g_{\sigma}$. Note that $g \in \prod_{\alpha \in v} y_{\alpha}^{\psi(\alpha)}$. That g is $<\kappa$ -to-one is easily derived from the following.

CLAIM. Let $\alpha \in v_{\sigma}$ and $\beta \in v_{\chi}$, where $\sigma < \chi < \kappa$. Then $g(\alpha) \neq g(\beta)$.

Proof of the Claim. Suppose otherwise. Then there is $i \in \mu \setminus (\psi_{\sigma}(\alpha) \cup \psi_{\chi}(\beta))$ such that $f_{\alpha}(i) = f_{\beta}(i)$. But clearly,

$$f_{\alpha}(i) < f_{\xi_{\sigma+1}}(i) \le f_{\xi_{\chi}}(i) \le f_{\beta}(i).$$

This contradiction completes the proof of the Claim.

If κ is λ -Shelah, then by a result of [13], \vec{f} cannot be good. We will now show that if κ is mildly λ^+ -ineffable, then \vec{f} cannot be remarkably good.

LEMMA 5.6. Let C be a closed unbounded subset of π , and ν be a cardinal with $0 < \nu < \kappa$. Suppose that for any regular infinite cardinal ρ with $\nu < \rho < \kappa$, and any $\delta \in C \cap E_{\rho}^{\pi}$, δ is a remarkably good point for \vec{f} . Then we may find $z_{\beta} \in P_{\mu^{+}}(\lambda)$ for $\beta < \pi$ with the property that for any $a \in P_{\kappa}(\pi) \setminus \{\emptyset\}$, there is $a \leq \nu$ -to-one g in $\prod_{\beta \in a} z_{\beta}$.

Proof. Pick a bijection $h: \mu \times \lambda \to \lambda$. For $\beta \in C$, put $z_{\beta} = \{h(i, f_{\beta}(i)): i < \mu\}$. For $a \in P_{\kappa}(C) \setminus \{\emptyset\}$ and $k: a \to \mu$, define $\psi_k^a: a \to \lambda$ by $\psi_k^a(\beta) = h(k(\beta), f_{\beta}(k(\beta)))$. Now for $\eta \in \kappa \setminus \{0\}$, let $\Phi(\eta)$ assert that for any order-type η subset a of C, there is $F_a: a \to I$ with the property that ψ_k^a is $\leq \nu$ -to-one for every $k \in \prod_{\beta \in a} (\mu \setminus F_a(\beta))$.

CLAIM. $\Phi(\eta)$ holds for every $\eta \in \kappa \setminus \{0\}$.

Proof of the Claim. We proceed by induction. Obviously, $\Phi(\eta)$ holds whenever $0 < \eta < \nu^+$. It is also immediate that for any $\eta \in \kappa \setminus \{0\}$, $\Phi(\eta)$ implies $\Phi(\eta + 1)$. Now let $\eta \in \kappa \setminus \nu^+$ be a limit ordinal such that $\Phi(\zeta)$ holds for every $\zeta \in \eta \setminus \{0\}$. Fix $a \subseteq C$ with o.t. $(a) = \eta$.

First suppose $\operatorname{cf}(\eta) \leq \nu$. Set $a = \bigcup_{j < \operatorname{cf}(\eta)} a_j$, where $0 < \operatorname{o.t.}(a_j) < \eta$ for each $j < \operatorname{cf}(\eta)$, and $a_{\ell} \cap a_j = \emptyset$ whenever $\ell < j < \operatorname{cf}(\eta)$. Now put $F_a = \bigcup_{j < \operatorname{cf}(\eta)} F_{a_j}$.

Next suppose that $\operatorname{cf}(\eta) > \nu$. Set $\delta = \sup(a)$. Since δ is a remarkably good point for \vec{f} , we may find a closed unbounded subset X of δ with o.t. $(X) = \operatorname{cf}(\eta)$, and $Z_{\xi} \in I$ for $\xi \in X$ such that $f_{\beta}(i) < f_{\xi}(i)$ whenever $\beta < \xi$ are in X and $i \in \mu \setminus (Z_{\beta} \cup Z_{\xi})$. Let $\langle x_j : j < \operatorname{cf}(\eta) \rangle$ be the increasing enumeration of X. For $j < \operatorname{cf}(\eta)$, set $v_j = \{\beta \in a : x_j \leq \beta < x_{j+1}\}$. For $j < \operatorname{cf}(\eta)$ and $\beta \in v_j$, select $w_{\beta} \in I$ so that $f_{x_j}(i) \leq f_{\beta}(i) < f_{x_{j+1}}(i)$ whenever $i \in \mu \setminus w_{\beta}$. We now define F_a as follows. Given $j < \operatorname{cf}(\eta)$ and $\beta \in v_j$, we let $F_a(\beta) = F_{v_j}(\beta) \cup w_{\beta} \cup Z_{x_j} \cup Z_{x_{j+1}}$. Note that if $\gamma \in v_{\ell}$ and $\beta \in v_j$, where $\ell < j < \operatorname{cf}(\eta)$, then $f_{\gamma}(i) < f_{\beta}(i)$ for every $i \in \mu \setminus (F_a(\gamma) \cup F_a(\beta))$. This completes the proof of the claim.

Now fix $a \in P_{\kappa}(C) \setminus \{\emptyset\}$. Let $k \in \prod_{\beta \in a} (\mu \setminus F_a(\beta))$. Then clearly, $\psi_k^a \in \prod_{\beta \in a} z_{\beta}$. Moreover, ψ_k^a is $\leq \nu$ -to-one.

LEMMA 5.7. Let ν be a cardinal with $0 < \nu < \kappa$, and $z_{\beta} \in P_{\kappa}(\lambda)$ for $\beta < \lambda^{+}$ be such that for any $a \in P_{\kappa}(\lambda^{+}) \setminus \{\emptyset\}$, there is a $\leq \nu$ -to-one g_{a} in $\prod_{\beta \in a} z_{\beta}$. Then κ is not mildly λ^{+} -ineffable.

Proof. Suppose otherwise. Pick a bijection $h : \lambda^+ \times \kappa \to \lambda^+$. For $\beta < \lambda^+$, let $\langle \zeta^{\beta}(j) : j < |z_{\beta}| \rangle$ be a one-to-one enumeration of z_{β} . For $a \in P_{\kappa}(\lambda^+) \setminus \{\emptyset\}$, define $\ell_a \in \prod_{\beta \in a} |z_{\beta}|$ by $g_a(\beta) = \zeta^{\beta}(\ell_a(\beta))$, and $f_a : a \to 2$ by $f_a(\xi) = 1$ if and only if we may find $\beta \in a$ and $j < |z_{\beta}|$ such that $\xi = h(\beta, j)$ and $\ell_a(\beta) = j$. There must be $F : \lambda^+ \to 2$ with the property that for any $e \in P_{\kappa}(\lambda^+) \setminus \{\emptyset\}$,

$$\{a \in P_{\kappa}(\lambda^+) : e \subseteq a \text{ and } f_a \upharpoonright e = F \upharpoonright e\} \in I^+_{\kappa,\lambda^+}.$$

For $\beta < \lambda^+$, put $e_{\beta} = \{h(\beta, j) : j < |z_{\beta}|\} \cup \{\beta\}$ and pick $a_{\beta} \in P_{\kappa}(\lambda^+)$ so that $e_{\beta} \subseteq a_{\beta}$ and $f_{a_{\beta}} \upharpoonright e_{\beta} = F \upharpoonright e_{\beta}$. Now define $G \in \prod_{\beta < \lambda^+} z_{\beta}$ by $G(\beta) = \zeta^{\beta}(\ell_{a_{\beta}}(\beta))$.

Suppose toward a contradiction that we may find $\gamma < \lambda$ and $d \subseteq \lambda^+$ with $|d| = \nu^+$ such that $d \subseteq G^{-1}(\{\gamma\})$. Set $e = \bigcup_{\beta \in d} e_\beta$ and select $a \in P_\kappa(\lambda^+)$ so that $e \subseteq a$ and $f_a \upharpoonright e = F \upharpoonright e$. Then for each $\beta \in d$, $\ell_{a_\beta}(\beta) = \ell_a(\beta)$ since $f_{a_\beta} \upharpoonright e_\beta = f_a \upharpoonright e_\beta$, and consequently $g_a(\beta) = G(\beta) = \gamma$. Hence $|g_a^{-1}(\{\gamma\})| > \nu$, which yields the desired contradiction.

Thus G is a $\leq \nu$ -to-one function from λ^+ to λ , a contradiction.

PROPOSITION 5.8. Suppose that κ is mildly λ^+ -ineffable. Then the set of all $\delta \in E_{\rho}^{\lambda^+}$ such that δ is not a remarkably good point for \vec{f} is stationary in λ^+ for cofinally many regular infinite cardinals $\rho < \kappa$.

Proof. By Lemmas 5.6 and 5.7. \blacksquare

We now concentrate on the case when $cf(\lambda) < \kappa = \omega_1$.

DEFINITION. Given a cardinal $\nu \geq \omega_1$, Refl^{*}($P_{\omega_1}(\nu)$) means that for any stationary subset S of $P_{\omega_1}(\nu)$, there is a size \aleph_1 subset Y of ν such that $cf(o.t.(Y)) = \omega_1 \subseteq Y$, and $S \cap P_{\omega_1}(Y)$ is stationary in $P_{\omega_1}(Y)$.

PROPOSITION 5.9. Suppose that $\kappa = \omega_1$, $cf(\lambda) = \omega$, and $\mathcal{B}_{\kappa,\lambda}(\kappa, \lambda^+)$ holds. Then Refl^{*}($P_{\omega_1}(\lambda^+)$) fails.

Proof. Suppose otherwise. Fix a $\mathcal{B}_{\kappa,\lambda}(\kappa, \lambda^+)$ -sequence $\langle y_\alpha : \alpha < \lambda^+ \rangle$. Set $S = \{x \in P_{\omega_1}(\lambda^+) : y_{\sup(x)} \subseteq x\}$. It is not difficult to see that $S \in NS^+_{\omega_1,\lambda^+}$. Hence we may find a size \aleph_1 subset Y of λ^+ such that cf(o.t.(Y)) = $\omega_1 \subseteq Y$ and $S \cap P_{\omega_1}(Y)$ is stationary in $P_{\omega_1}(Y)$. Pick a $\langle \omega_1$ -to-one function $g \in \prod_{\alpha \in Y} y_\alpha$, and define $h : S \cap P_{\omega_1}(Y) \to Y$ by $h(x) = g(\sup(x))$. We may find $T \subseteq S \cap P_{\omega_1}(Y)$ and $\gamma \in Y$ such that T is stationary in $P_{\omega_1}(Y)$ and h takes the constant value γ on T. Then clearly $\sup(x) \in g^{-1}(\{\gamma\})$ for every $x \in T$. Since $|g^{-1}(\{\gamma\})| \leq \aleph_0$, there must be $\delta \in Y$ such that $g^{-1}(\{\gamma\}) \subseteq \delta$, a contradiction. ■

Foreman, Magidor and Shelah [5] established that (a) under MM, Refl*($P_{\omega_1}(\rho)$) holds for every regular cardinal $\rho \geq \omega_2$, and (b) if ν is a supercompact cardinal, then in $V^{\text{Coll}(\omega_1, <\nu)}$, Refl*($P_{\omega_1}(\rho)$) holds for every regular cardinal $\rho \geq \omega_2$. Thus it is consistent relative to a supercompact cardinal that " $\mathcal{B}_{\omega_1,\sigma}(\omega_1, \sigma^+)$ fails for every singular cardinal σ of cofinality ω ".

By a result of Magidor [9] (see also [3, Remark 6.3]), it is consistent relative to infinitely many supercompact cardinals that "AP_{ω_{ω}} and Refl*($P_{\omega_1}(\omega_{\omega+1})$) both hold". Hence it is consistent (relative to the assumption above) that "there is a good scale for ω_{ω} (and in fact every scale for ω_{ω} is good), so that $\mathcal{A}_{\omega_1,\omega_{\omega}}(\omega_1,\omega_{\omega+1})$ holds, but $\mathcal{B}_{\omega_1,\omega_{\omega}}(\omega_1,\omega_{\omega+1})$ fails". (Note that according to [21, Claim 6.9. 6)a)], if $E_{\omega_1}^{\omega_{\omega+1}} \in I[\omega_{\omega+1}]$, then $\mathcal{B}_{\omega_1,\omega_{\omega}}(\omega_1,\omega_{\omega+1})$ holds and in fact there is an $(\omega_1,\omega_{\omega},\omega_{\omega+1})$ -sequence $\vec{y} = \langle y_{\alpha} : \alpha < \omega_{\omega+1} \rangle$ with the property that for each nonempty e in $P_{\omega_2}(\omega_{\omega+1})$, there is a one-to-one g in $\prod_{\alpha \in e} y_{\alpha}$. This contradicts the consistency of "AP_{ω_{ω}} holds but $\mathcal{B}_{\omega_1,\omega_{\omega}}(\omega_1,\omega_{\omega+1})$ fails".)

On the other hand, Gitik and Sharon [7] proved that it is consistent relative to a supercompact cardinal that " λ is a strong limit cardinal of cofinality $\omega + 2^{\lambda} > \lambda^{+} + AP_{\lambda}$ fails (and in fact, as observed by Cummings and Foreman, there is a scale for λ that is not good) + VGS_{λ} + λ carries a very good scale of length λ^{++} (and hence $\mathcal{B}_{\omega_1,\lambda}(\omega_1, \lambda^{++})$ holds)". **6.** $\mathcal{C}_{\kappa,\lambda}(\tau,\pi)$

DEFINITION. A $C_{\kappa,\lambda}(\tau,\pi)$ -sequence is a (τ,λ,π) -sequence $\vec{y} = \langle y_{\alpha} : \alpha < \pi \rangle$ with the property that for each nonempty e in $P_{\lambda}(\pi)$, there is a $<\kappa$ -to-one $g \in \prod_{\alpha \in e} y_{\alpha}$.

Note that every $\mathcal{C}_{\kappa,\lambda}(\tau,\pi)$ -sequence is a $\mathcal{B}_{\kappa,\lambda}(\tau,\pi)$ -sequence.

The following is readily checked.

PROPOSITION 6.1. Suppose that $cf(\lambda) < \kappa$ and $\vec{y} = \langle y_{\alpha} : \alpha < \pi \rangle$ is a $\mathcal{C}_{\kappa,\lambda}(\tau,\pi)$ -sequence. Then for any nonempty e in $P_{\lambda^+}(\pi)$, there is a $<\kappa$ -to-one $g \in \prod_{\alpha \in e} y_{\alpha}$.

DEFINITION. $C_{\kappa,\lambda}(\tau,\pi)$ asserts the existence of a $C_{\kappa,\lambda}(\tau,\pi)$ -sequence.

PROPOSITION 6.2. Suppose that $\vec{y} = \langle y_{\alpha} : \alpha < \pi \rangle$ is a $C_{\kappa,\lambda}(\kappa,\pi)$ -sequence, $D \in NS^*_{\kappa,\pi}$, and ν is a regular cardinal with $\kappa \leq \nu < \lambda$. Then $\{x \cap \nu : x \in D \cap A(\vec{y})\} \in NS^*_{\kappa,\nu}$.

Proof. Fix $S \in NS^+_{\kappa,\nu}$. Then $T = \{x \in P_{\kappa}(\pi) : x \cap \nu \in S\}$ lies in $NS^+_{\kappa,\pi}$. Pick $F : P_{\omega}(\pi) \to P_{\kappa}(\pi)$ with $C_F^{\kappa,\pi} \subseteq D$. Define $e_{\beta} \in P_{\nu^+}(\pi)$ for $\beta < \nu$ by

- $e_0 = \nu$.
- $e_{\beta+1} = e_{\beta} \cup \{\alpha < \pi : y_{\alpha} \subseteq e_{\beta}\} \cup \bigcup F "P_{\omega}(e_{\beta}).$
- $e_{\beta} = \bigcup_{\gamma < \beta} e_{\gamma}$ in case β is an infinite limit ordinal.

Put $e = \bigcup_{\beta < \nu} e_{\beta}$. Note that $\nu \subseteq e$, $|e| = \nu$, $\{\alpha < \pi : y_{\alpha} \subseteq e\} \subseteq e$ and $F^{"}P_{\omega}(e) \subseteq P(e)$. Select a $<\kappa$ -to-one $h \in \prod_{\alpha \in e} y_{\alpha}$, and let H be the set of all $z \in P_{\kappa}(\pi)$ such that $h^{-1}(\{\xi\}) \subseteq z$ for every $\xi \in z \cap \operatorname{ran}(h)$. Clearly $H \in (NS^{\lambda}_{\kappa,\pi})^{*}$, so we may find z such that $z \in H \cap T \cap C_{F}^{\kappa,\pi}$. It is easy to see that $z \cap e \in C_{F}^{\kappa,\pi} \cap A(\vec{y})$. Moreover, $(z \cap e) \cap \nu \in S$.

COROLLARY 6.3. Suppose that $C_{\kappa,\lambda}(\kappa,\pi)$ holds and $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}) \leq \pi$. Then $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$ for some A with the property that $\{a \cap \nu : a \in A\}$ $\in NS_{\kappa,\nu}^*$ for every regular cardinal ν with $\kappa \leq \nu < \lambda$.

Proof. By Propositions 2.2, 5.2 and 6.2. \blacksquare

Let us now discuss the validity of $\mathcal{C}_{\kappa,\lambda}(\kappa,\pi)$. First, the positive side:

PROPOSITION 6.4. Suppose that $\operatorname{cf}(\lambda) < \kappa$ and $u(\lambda^+, \pi) < \operatorname{cov}(\lambda, \lambda, \kappa, 2)$. Then $\mathcal{C}_{\kappa,\lambda}(\kappa, \pi)$ holds, and in fact we may find a (κ, λ, π) -sequence $\vec{y} = \langle y_{\alpha} : \alpha < \pi \rangle$ with the property that for any nonempty e in $P_{\lambda^+}(\pi)$, there is a $<(\operatorname{cf}(\lambda))^+$ -to-one $g \in \prod_{\alpha \in e} y_{\alpha}$.

Proof. By the proof of [14, Proposition 6.2].

PROPOSITION 6.5. Suppose that $\pi = \lambda^+$ and there is a closed unbounded subset C of π such that for any regular cardinal θ with $\kappa \leq \theta < \lambda$, and any $\delta \in C \cap E^{\pi}_{\theta}$, δ is a remarkably good point for \vec{f} . Then $\mathcal{C}_{\kappa,\lambda}(\kappa,\pi)$ holds, and in fact we may find a (μ^+, λ, π) -sequence $\vec{y} = \langle y_\alpha : \alpha < \pi \rangle$ with the property that for any nonempty e in $P_{\pi}(\pi)$, there is a $\langle \kappa$ -to-one g in $\prod_{\alpha \in e} y_{\alpha}$.

Proof. Proceed as in the proof of Proposition 5.5, showing this time that $\Phi(\eta)$ holds for every $\eta < \pi$.

Now for the negative side:

PROPOSITION 6.6. Suppose that there is a mildly λ^+ -ineffable cardinal κ' with $\kappa < \kappa' < \lambda$. Then $\mathcal{C}_{\kappa,\lambda}(\kappa,\lambda^+)$ does not hold.

Proof. By Lemma 5.7. ■

7. $\mathcal{D}^J_{\kappa,\lambda}(\nu^+,\pi)$. Fix a bijection $j_{\lambda}: \kappa \times \lambda \to \lambda$.

DEFINITION. Let $\nu < \kappa$ be an infinite cardinal, and J be a proper ideal on ν . A $\mathcal{D}^J_{\kappa,\lambda}(\nu^+,\pi)$ -sequence is a (ν^+,λ,π) -sequence $\vec{y} = \langle y_\alpha : \alpha < \pi \rangle$ with the following property: there is $h_\alpha : \nu \to \lambda$ for $\lambda \leq \alpha < \pi$ such that (a) for any nonempty $e \in P_{\kappa^+}(\pi \setminus \lambda)$, there is $g : e \to J$ such that $h_\alpha(i) \neq h_\beta(i)$ whenever $\alpha < \beta$ are in e and $i \in \nu \setminus (g(\alpha) \cup g(\beta))$, and (b) for any $\alpha \in \pi \setminus \lambda$, $y_\alpha = \{j_\lambda(i, h_\alpha(i)) : i < \nu\}.$

It is easy to see that every $\mathcal{D}_{\kappa,\lambda}^{J}(\nu^{+},\pi)$ -sequence is a $\mathcal{B}_{\kappa,\lambda}(\nu^{+},\pi)$ -sequence.

DEFINITION. $\mathcal{D}^{J}_{\kappa,\lambda}(\nu^{+},\pi)$ asserts the existence of a $\mathcal{D}^{J}_{\kappa,\lambda}(\nu^{+},\pi)$ -sequence.

PROPOSITION 7.1. Suppose that $\vec{y} = \langle y_{\alpha} : \alpha < \pi \rangle$ is a $\mathcal{D}^{J}_{\kappa,\lambda}(\nu^{+},\pi)$ -sequence, where J is ω_{1} -complete. Then $A(\vec{y}) \in NG^{*}_{\kappa,\pi}$.

Proof. Let $\langle h_{\alpha} : \lambda \leq \alpha < \pi \rangle$ be as in the definition above. Define $k : (\pi \setminus \lambda) \times P_{\kappa}(\lambda) \to P(\nu)$ by $k(\alpha, a) = \{i \in \nu : j_{\lambda}(i, f_{\alpha}(i)) \in a\}$, and $\varphi : P_{\kappa}(\lambda) \to P(\pi \setminus \lambda)$ by $\varphi(a) = \{\alpha \in \pi \setminus \lambda : k(\alpha, a) \in J^+\}$.

CLAIM. $|\varphi(a)| < \kappa$ for all $a \in P_{\kappa}(\lambda)$.

Proof of the Claim. Suppose otherwise, and fix $a \in P_{\kappa}(\lambda)$ with $|\varphi(a)| \geq \kappa$. Pick $e \subseteq \varphi(a)$ with $|e| = \kappa$. There must be $g : e \to J$ such that $h_{\alpha}(i) \neq h_{\beta}(i)$ whenever α and β are two distinct elements of e and $i \in \nu \setminus (g(\alpha) \cup g(\beta))$. Pick $q \in \prod_{\alpha \in e} (k(\alpha, a) \setminus g(\alpha))$, and define $\psi : e \to a$ by $\psi(\alpha) = j_{\lambda}(q(\alpha), h_{\alpha}(q(\alpha)))$. Note that if $\alpha, \beta \in e$ are such that $\psi(\alpha) = \psi(\beta)$, then for $i = q(\alpha) = q(\beta)$, $i \in \nu \setminus (g(\alpha) \cup g(\beta))$ and $h_{\alpha}(i) = h_{\beta}(i)$, and therefore $\alpha = \beta$. Thus ψ is one-to-one. This contradiction completes the proof of the Claim.

We need to find a winning strategy σ for II in $H_{\kappa,\lambda}(A(\vec{y}))$. Consider a run of the game where I's successive moves are s_0, s_1, \ldots . We let $\varphi(s_0) = t_0 \cup \varphi(t_0 \cap \lambda)$, where $t_0 = s_0$, and $\varphi(s_0, \ldots, s_{n+1}) = t_{n+1} \cup \varphi(t_{n+1} \cap \lambda)$, where $t_{n+1} = s_{n+1} \cup \sigma(s_0, \ldots, s_n)$. Let us check that $x \in A(\vec{y})$, where $x = \bigcup_{n < \omega} (s_n \cup \sigma(s_0, \ldots, s_n)) = \bigcup_{n < \omega} t_n$. Thus fix $\alpha \in \pi \setminus \lambda$ with $y_\alpha \subseteq x$. Then clearly $\nu = \bigcup_{n < \omega} k(\alpha, t_n \cap \lambda)$, so we may find $m < \omega$ such that $k(\alpha, t_m \cap \lambda) \in J^+$. Then $\alpha \in \varphi(t_m \cap \lambda) \subseteq \varphi(s_0, \ldots, s_m)$, and hence $\alpha \in x$.

COROLLARY 7.2. Suppose that $\mathcal{D}^{J}_{\kappa,\lambda}(\nu^{+},\pi)$ holds, where J is ω_{1} -complete, and let $K \subseteq NS_{\kappa,\lambda}$ be an ideal on $P_{\kappa}(\lambda)$ with $\overline{\operatorname{cof}}(K) \leq \pi$. Then there is $A \in NG^{*}_{\kappa,\lambda}$ such that $K|A = I_{\kappa,\lambda}|A$.

Proof. By Lemma 1.7 and Propositions 2.2 and 7.1.

Let us next consider some situations when $\mathcal{D}^{J}_{\kappa,\lambda}(\nu^{+},\pi)$ holds.

PROPOSITION 7.3 ([19, Claim 1.5 A and Remark 1.5 B (4), p. 51]). Suppose that $cf(\lambda) < \lambda < \pi < pp_{\Gamma(\kappa,\omega_1)}(\lambda)$. Then for some infinite cardinal $\nu < \kappa$, and some ω_1 -complete, proper ideal J on ν , $\mathcal{D}^J_{\kappa\lambda}(\nu^+,\pi)$ holds.

PROPOSITION 7.4. Let C be a closed unbounded subset of π such that for any regular infinite cardinal $\theta \leq \kappa$, and any $\delta \in C \cap E_{\theta}^{\pi}$, δ is a remarkably good point for \vec{f} . Then for any nonempty $e \in P_{\kappa^+}(C)$, there is $g : e \to I$ such that $f_{\alpha}(i) < f_{\beta}(i)$ whenever $\alpha < \beta$ are in e and $i \in \mu \setminus (g(\alpha) \cup g(\beta))$ (and hence $\mathcal{D}_{\kappa,\lambda}^{I}(\mu^+, \pi)$ holds).

Proof. For $\eta \in \pi$, let $\Phi(\eta)$ assert that for any order-type η subset z of C, there is $F_z : z \to I$ with the property that $f_{\gamma}(i) < f_{\beta}(i)$ whenever $\gamma < \beta$ are in z and $i \in \mu \setminus (F_z(\gamma) \cup F_z(\beta))$. Let us show by induction that $\Phi(\eta)$ holds for every $\eta < \kappa^+$. Obviously, $\Phi(0)$ holds. Now assuming $\Phi(\eta)$, let us prove that $\Phi(\eta + 1)$ holds. Thus let $z \subseteq C$ with o.t. $(z) = \eta + 1$. Set $z = t \cup \{\alpha\}$, where o.t. $(t) = \eta$. For $\gamma \in t$, pick $w_{\gamma} \in I$ so that $f_{\gamma}(i) < f_{\alpha}(i)$ whenever $i \in \mu \setminus w_{\gamma}$. We define $F_z : z \to I$ by $F_z(\alpha) = \emptyset$, and $F_z(\gamma) = F_t(\gamma) \cup w_{\gamma}$ for each $\gamma \in t$.

Finally, suppose that η is an infinite limit ordinal such that $\Phi(\theta)$ holds for every $\theta < \eta$. Fix $z \subseteq C$ with o.t. $(z) = \eta$. Put $\delta = \sup(z)$. Since δ is a remarkably good point for \vec{f} , we may find a closed unbounded subset X of δ with o.t. $(X) = \operatorname{cf}(\eta)$, and $Z_{\xi} \in X$ for $\xi \in X$ such that $f_{\beta}(i) < f_{\xi}(i)$ whenever $\beta < \xi$ are in X and $i \in \mu \setminus (Z_{\beta} \cup Z_{\xi})$. Let $\langle x_j : j < \operatorname{cf}(\eta) \rangle$ be the increasing enumeration of X. For $j < \operatorname{cf}(\eta)$, set $v_j = \{\alpha \in z : x_j \leq \alpha < x_{j+1}\}$. For $j < \operatorname{cf}(\eta)$ and $\zeta \in v_j$, select $w_{\zeta} \in I$ so that $f_{x_j}(i) \leq f_{\zeta}(i) < f_{x_{j+1}}(i)$ whenever $i \in \mu \setminus w_{\zeta}$. We now define $F_z : z \to I$ as follows. Given $j < \operatorname{cf}(\eta)$ and $\zeta \in v_j$, we let

$$F_z(\zeta) = F_{v_j}(\zeta) \cup w_\zeta \cup Z_{x_j} \cup Z_{x_{j+1}}. \blacksquare$$

8. ADS_{λ}

DEFINITION. ADS_{λ} asserts the existence of a sequence $\langle z_{\beta} : \beta < \lambda^+ \rangle$ such that (i) for any $\beta < \lambda^+$, z_{β} is an order-type cf(λ), cofinal subset of λ , and (ii) for any $\delta < \lambda^+$, there is a $g : \delta \to \lambda$ with the property that $(z_{\beta} \setminus g(\beta)) \cap (z_{\gamma} \setminus g(\gamma)) = \emptyset$ whenever $\beta < \gamma < \delta$.

The principle ADS_{λ} was introduced by Shelah [18, p. 440], who observed that it automatically holds in case λ is regular (as witnessed by any sequence $\langle z_{\beta} : \beta < \lambda^+ \rangle$ of almost disjoint subsets of λ of size λ). Suppose that $cf(\lambda) < \kappa$ and ADS_{λ} holds. Then clearly there exists a $C_{\kappa,\lambda}((cf(\lambda))^+, \lambda^+)$ -sequence which is also a $\mathcal{D}^J_{\kappa,\lambda}((cf(\lambda))^+, \lambda^+)$ -sequence, where J = the noncofinal ideal on $cf(\lambda)$.

LEMMA 8.1. Let C be a closed unbounded subset of π . Suppose that $\pi = \lambda^+$, and for any regular infinite cardinal $\theta < \lambda$, and any $\delta \in C \cap E_{\theta}^{\pi}$, δ is a remarkably good point for \vec{f} . Then for any $\beta < \pi$, there is $g: C \cap \beta \to I$ with the property that $f_{\gamma}(i) < f_{\delta}(i)$ whenever $\gamma < \delta$ are in $C \cap \beta$ and $i \in \mu \setminus (g(\gamma) \cup g(\delta))$.

Proof. Modify the proof of Proposition 7.4 so as to show that $\Phi(\eta)$ holds for every $\eta < \pi$.

PROPOSITION 8.2. Suppose that $\mu = cf(\lambda), I = the noncofinal ideal on$ $\mu, \pi = \lambda^+ and \vec{f}$ is remarkably good. Then ADS_{λ} holds.

Proof. Select a bijection $h : \lambda \times \mu \to \lambda$. For $\beta < \pi$, set $t_{\beta} = \{h(f_{\beta}(i), i) : i < \mu\}$.

CLAIM 1. $\{\beta \in \pi : \sup(t_\beta) < \lambda\} \in NS_{\pi}.$

Proof of Claim 1. Suppose otherwise. Then we may find a cardinal $\chi < \lambda$ and a stationary subset T of π such that $\sup(t_{\beta}) \leq \chi$ for every $\beta \in T$. Set $q = \{i \in \mu : \lambda_i \leq \chi\}$. Then clearly, $q \in I$. Moreover, $|\{\alpha \in \lambda_i : h(\alpha, i) \leq \chi\}|$ $<\lambda_i$ for $i \in \mu \setminus q$. So we may find $k \in \prod_{i < \mu} \lambda_i$ such that $\{\alpha \in \lambda_i : h(\alpha, i) \leq \chi\}$ $\subseteq k(i)$ for all $i \in \mu \setminus q$. Then clearly $f_{\beta}(i) < k(i)$ whenever $\beta \in T$ and $i \in \mu \setminus q$. Hence, $f_{\beta} <_I k$ for all $\beta \in T$. This contradiction completes the proof of Claim 1.

Let *C* be a closed unbounded subset of π such that each limit ordinal δ in *C* is a remarkably good point for \vec{f} . By Claim 1 we may find a closed unbounded subset *D* of *C* with the property that $\sup(t_{\beta}) = \lambda$ for any $\beta \in D$. For $\beta \in D$, pick $w_{\beta} \subseteq t_{\beta}$ so that $o.t.(w_{\beta}) = \mu$ and $\sup(w_{\beta}) = \lambda$. Let $\langle d_{\gamma} : \gamma < \pi \rangle$ be the increasing enumeration of *D*. For $\gamma < \pi$, put $z_{\gamma} = w_{d_{\gamma}}$ and $r_{\gamma} = \{i < \mu : h(f_{d_{\gamma}}(i), i) \in z_{\gamma}\}.$

Now fix ξ with $0 < \xi < \pi$. By Lemma 8.1, there is $\ell : \xi \to \mu$ with the property that $f_{d_{\gamma}}(i) < f_{d_{\eta}}(i)$ whenever $\gamma < \eta < \xi$ and $i \in \mu \setminus (\ell(\gamma) \cup \ell(\eta))$. Define $g : \pi \to \lambda$ so that for any $\gamma < \pi$, $\{h(f_{d_{\gamma}}(i), i) : i \in r_{\gamma} \cap \ell(\gamma)\} \subseteq g(\gamma)$.

CLAIM 2. Suppose that $\gamma < \eta < \xi$. Then $(z_{\gamma} \setminus g(\gamma)) \cap (z_{\eta} \setminus g(\eta)) = \emptyset$.

Proof of Claim 2. Suppose otherwise. Then there must be i in $(r_{\gamma} \setminus \ell(\gamma)) \cap (r_{\eta} \setminus \ell(\eta))$ such that $h(f_{d_{\gamma}}(i), i) = h(f_{d_{\eta}}(i), i)$. But for this $i, f_{d_{\gamma}}(i) < f_{d_{\eta}}(i)$. This contradiction completes the proof of Claim 2.

Thus $\langle z_{\gamma} : \gamma < \pi \rangle$ witnesses that ADS_{λ} holds.

Suppose that $cf(\lambda) < \kappa$. Cummings, Foreman and Magidor [3] proved that if \Box_{λ}^* or VGS_{λ} holds, then there is a better scale for λ (and hence ADS_{λ} holds). On the other hand, it is known [10] that ADS_{λ} fails in case there is a $cf(\lambda)$ -saturated ideal on $P_{\kappa}(\lambda)$.

9. Cohen forcing. If in $V, 2^{<\kappa} = \kappa$ and \mathbb{P} is the notion of forcing that adds σ Cohen subsets of κ , where σ is a cardinal greater than $\lambda^{<\kappa}$, then by [14, Corollary 8.4], in $V^{\mathbb{P}}, NS_{\kappa,\lambda}^{\kappa}|B = I_{\kappa,\lambda}|B$ for no $B \in (NS_{\kappa,\lambda}^{\kappa})^+$ (and hence $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$ for no $A \in NS_{\kappa,\lambda}^+$). Now suppose that V = L and $cf(\lambda) < \kappa$ holds in V. We will show that if $\lambda^{<\kappa}$ Cohen subsets of κ are added to V, then in the generic extension, $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$ for some A, but $NS_{\kappa,\lambda} = I_{\kappa,\lambda}|B$ for no B.

LEMMA 9.1. Suppose that in V, $2^{<\kappa} = \kappa$, F is a function from $\lambda \times \kappa$ to κ , and \mathbb{P} is the notion of forcing that adds a Cohen subset of κ . Then in $V^{\mathbb{P}}$, there exists $g : \kappa \to \kappa$ such that for any $a \in P_{\kappa}(\lambda)$, there is $\alpha \in \kappa$ with $g(\alpha) > \bigcup_{\delta \in a} F(\delta, \alpha)$.

Proof. \mathbb{P} can be identified with the set $\bigcup_{\beta < \kappa}^{(\beta \times \beta)} 2$. For $p \in \mathbb{P}$, let $\beta_p \in \kappa$ be such that dom $(p) = \beta_p \times \beta_p$. For $a \in P_{\kappa}(\lambda)$, let D_a be, in V, the set of all $p \in \mathbb{P}$ such that (i) for any $\alpha \in \beta_p$, there is $\gamma \in \beta_p$ with $p(\alpha, \gamma) = 1$, and (ii) there is $\alpha \in \beta_p$ such that $\bigcup_{\delta \in a} F(\delta, \alpha) < \xi$, where $\xi =$ the least $\gamma \in \beta_p$ with $p(\alpha, \gamma) = 1$.

Now suppose that G is \mathbb{P} -generic over V. Then clearly $G \cap D_a \neq \emptyset$ for all $a \in P_{\kappa}(\lambda)$. In V[G], define $g: \kappa \to \kappa$ by $g(\alpha) =$ the least $\gamma < \kappa$ such that $p(\alpha, \gamma) = 1$ for some $p \in G$. It is easy to see that for any $a \in P_{\kappa}(\lambda)$, there is $\alpha < \kappa$ with $g(\alpha) > \bigcup_{\delta \in a} F(\delta, \alpha)$.

PROPOSITION 9.2. Suppose that V satisfies GCH and in V, $cf(\lambda) < \kappa$ and ADS_{λ} holds. In V, let \mathbb{Q} be the notion of forcing to add λ^+ Cohen subsets of κ . Then in $V^{\mathbb{Q}}$, (a) $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$ for some $A \in NS_{\kappa,\lambda}^+$, and (b) $NS_{\kappa,\lambda}^{\kappa}|C = I_{\kappa,\lambda}|C$ for no $C \in NS_{\kappa,\lambda}^*$ (and hence $NS_{\kappa,\lambda} = I_{\kappa,\lambda}|B$ for no $B \in NS_{\kappa,\lambda}^*$).

Proof. \mathbb{Q} can be identified with the set of all functions q such that $\operatorname{dom}(q) \in P_{\kappa}(\lambda^+ \times \kappa)$ and $\operatorname{ran}(q) \subseteq 2$. Let G be \mathbb{Q} -generic over V. Any sequence $\langle z_{\beta} : \beta < \lambda^+ \rangle$ witnessing that $\operatorname{ADS}_{\lambda}$ holds in V will witness that $\operatorname{ADS}_{\lambda}$ holds in V[G]. Hence in V[G], $\operatorname{ADS}_{\lambda}$ holds and since

 $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}) \le \operatorname{cof}(NS_{\kappa,\lambda}) \le 2^{\lambda} = \lambda^+,$

by Corollary 6.3 there is $A \in NS^+_{\kappa,\lambda}$ such that $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$.

CLAIM. In $V[G], \overline{\partial}_{\kappa} \geq \lambda^+$.

Proof of the Claim. Suppose otherwise. Then in V[G] we may find $F : \lambda \times \kappa \to \kappa$ with the property that for any $g : \kappa \to \kappa$, there is $a \in P_{\kappa}(\lambda)$ such

that $g(\alpha) \leq \bigcup_{\delta \in a} F(\delta, \alpha)$ for all $\alpha \in \kappa$. For $X \subseteq \lambda^+$, set $G_X = \{q \in G : dom(q) \subseteq X \times \kappa\}$. There must be $\xi < \lambda^+$ with $F \in V[G_{\xi}]$. But then in $V[G_{\xi}][G_{\{\xi\}}]$, by Lemma 9.1 there is $g : \kappa \to \kappa$ such that for any $a \in P_{\kappa}(\lambda)$, we may find $\alpha \in \kappa$ with $g(\alpha) > \bigcup_{\delta \in a} F(\delta, \alpha)$. This contradiction completes the proof of the Claim.

It follows from the Claim that in $V[G], \overline{\partial}_{\kappa} = \lambda^+$ and therefore by Lemmas 1.5 and 1.6, $NS^{\kappa}_{\kappa,\lambda}|C = I_{\kappa,\lambda}|C$ for no $C \in NS^{*}_{\kappa,\lambda}$.

In the generic extension of Proposition 9.2, GCH holds below κ . We now show that it is consistent that "(a) and (b) both hold but 2^{\aleph_0} is large".

PROPOSITION 9.3. Suppose that V, κ, λ and \mathbb{Q} are as in Proposition 9.2. In $V^{\mathbb{Q}}$, let ν be an infinite cardinal, and \mathbb{P} be the notion of forcing that adjoins ν Cohen reals. Then in $(V^{\mathbb{Q}})^{\mathbb{P}}$, (a) $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$ for some A, and (b) $NS_{\kappa,\lambda}^{\kappa}|C = I_{\kappa,\lambda}|C$ for no $C \in NS_{\kappa,\lambda}^{*}$.

Proof. Set $M = V^{\mathbb{Q}}$ and $W = M^{\mathbb{P}}$. Since \mathbb{P} is ω_1 -cc, by a result of [15] $(\overline{\partial}_{\kappa})^W \leq (\overline{\partial}_{\kappa})^M$ and $(\overline{\operatorname{cof}}(NS_{\kappa,\lambda}))^W \leq (\overline{\operatorname{cof}}(NS_{\kappa,\lambda}))^M$. It is easy to see that $\operatorname{ADS}_{\lambda}$ still holds in W, so by Corollary 6.3, in W, $NS_{\kappa,\lambda}|_A = I_{\kappa,\lambda}|_A$ for some A.

CLAIM. $(\overline{\partial}_{\kappa})^W = \lambda^+$.

Proof of the Claim. We already saw that $(\overline{\partial}_{\kappa})^{W} \leq \lambda^{+}$. Suppose toward a contradiction that $(\overline{\partial}_{\kappa})^{W} \leq \lambda$. Then in W, there is $h : \lambda \times \kappa \to \kappa$ with the property that for any $g : \kappa \to \kappa$, there is $e \in P_{\kappa}(\lambda)$ such that $g(\xi) \leq \bigcup_{\alpha \in e} h(\alpha, \xi)$ for all $\xi < \kappa$. There must be $H : \lambda \times \kappa \to P_{\omega_{1}}(\kappa)$ in M such that for every $\alpha < \lambda$ and every $\xi < \kappa$, $h(\alpha, \xi) \in H(\alpha, \xi)$. In M, define $k : \lambda \times \kappa \to \kappa$ by $k(\alpha, \xi) = \bigcup H(\alpha, \xi)$. Now, let $g : \kappa \to \kappa$ in M. In W, there is $e \in P_{\kappa}(\lambda)$ such that $g(\xi) \leq \bigcup_{\alpha \in e} h(\alpha, \xi)$ for every $\xi < \kappa$. We may find $d \in P_{\kappa}(\lambda)$ in M with $e \subseteq d$. Then clearly in M, $g(\xi) \leq \bigcup_{\alpha \in d} k(\alpha, \xi)$ for all $\xi < \kappa$. Hence $(\overline{\partial}_{\kappa})^{M} \leq (\overline{\partial}_{\kappa})^{W} \leq \lambda$.

This contradiction completes the proof of the Claim.

We can now appeal to Lemma 1.5 and conclude that $NS_{\kappa,\lambda}^{\kappa}|C = I_{\kappa,\lambda}|C$ for no $C \in NS_{\kappa,\lambda}^{*}$.

Returning now to Proposition 9.2, let us make the extra assumption that in $V, \lambda < \kappa^{+\omega_1}$. Then in $V^{\mathbb{Q}}$, by Proposition 5.4 and (the proof of) Proposition 9.2 we may find $A \in NG^+_{\kappa,\lambda}$ such that $NS_{\kappa,\lambda}|A = I_{\kappa,\lambda}|A$. Moreover by [11, Corollary 4.4 and Proposition 4.6], there is $D \in NG^*_{\kappa,\lambda}$ such that $NG_{\kappa,\lambda} = NS_{\kappa,\lambda}|D$. Hence $NG_{\kappa,\lambda}|T = NS_{\kappa,\lambda}|T = I_{\kappa,\lambda}|T$, where $T = A \cap D$.

Acknowledgments. Thanks to the referee for helpful suggestions.

References

- [1] Y. Abe, Saturation of fundamental ideals on $\mathcal{P}_{\kappa}\lambda$, J. Math. Soc. Japan 48 (1996), 511–524.
- [2] J. Cummings, Notes on singular cardinal combinatorics, Notre Dame J. Formal Logic 46 (2005), 251–282.
- [3] J. Cummings, M. Foreman and M. Magidor, Squares, scales and stationary reflection, J. Math. Logic 1 (2001), 35–98.
- [4] P. Erdős, A. Hajnal, A. Maté and R. Rado, Combinatorial Set Theory: Partition Relations for Cardinals, Stud. Logic Found. Math. 106, North-Holland, Amsterdam, 1984.
- [5] M. Foreman, M. Magidor and S. Shelah, Martin's Maximum, saturated ideals, and non-regular ultrafilters. Part I, Ann. of Math. 127 (1988), 1–47.
- [6] M. Gitik and M. Magidor, *The singular cardinal hypothesis revisited*, in: Set Theory of the Continuum, H. Judah et al. (eds.), Math. Sci. Res. Inst. Publ. 26, Springer, New York, 1992, 243–279.
- M. Gitik and A. Sharon, On SCH and the approachability property, Proc. Amer. Math. Soc. 136 (2008), 311–320.
- [8] C. A. Johnson, Seminormal λ -generated ideals on $P_{\kappa}(\lambda)$, J. Symbolic Logic 53 (1988), 92–102.
- [9] M. Magidor, *Reflecting stationary sets*, J. Symbolic Logic 47 (1982), 755–771.
- [10] P. Matet, Large cardinals and covering numbers, Fund. Math. 205 (2009), 45–75.
- [11] P. Matet, *Game ideals*, Ann. Pure Appl. Logic 158 (2009), 23–39.
- [12] P. Matet, Weak saturation of ideals on $P_{\kappa}(\lambda)$, Math. Logic Quart. 57 (2011), 149–165.
- [13] P. Matet, Two-cardinal diamond star, preprint.
- [14] P. Matet, C. Péan and S. Shelah, Cofinality of normal ideals on $P_{\kappa}(\lambda)$ II, Israel J. Math. 150 (2005), 253–283.
- [15] P. Matet, C. Péan and S. Shelah, Cofinality of normal ideals on $P_{\kappa}(\lambda)I$, preprint.
- [16] P. Matet and S. Shelah, The nonstationary ideal on $P_{\kappa}(\lambda)$ for λ singular, preprint.
- [17] Y. Matsubara and M. Shioya, Nowhere precipitousness of some ideals, J. Symbolic Logic 63 (1998), 1003–1006.
- [18] S. Shelah, *Proper Forcing*, Lecture Notes in Math. 940, Springer, Berlin, 1982.
- [19] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford Univ. Press, Oxford, 1994.
- [20] S. Shelah, On the existence of large subsets of [λ]^{<κ} which contain no unbounded non-stationary subsets, Arch. Math. Logic 41 (2002), 207–213.
- [21] S. Shelah, PCF and infinite free subsets in an algebra, Arch. Math. Logic 41 (2002), 321–359.
- [22] T. Usuba, Ineffability of $P_{\kappa}\lambda$ for λ with small cofinality, J. Math. Soc. Japan 60 (2008), 935–954.

Pierre Matet Université de Caen – CNRS Laboratoire de Mathématiques BP 5186 14032 Caen Cedex, France E-mail: pierre.matet@unicaen.fr

> Received 13 July 2010; in revised form 19 June 2012 and 18 February 2013