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Abstract. Let K be a class of finite relational structures. We define EK to be the
class of finite relational structures A such that A/E ∈ K, where E is an equivalence
relation defined on the structure A. Adding arbitrary linear orderings to structures from
EK, we get the class OEK. If we add linear orderings to structures from EK such that each
E-equivalence class is an interval then we get the class CE [K∗]. We provide a list of Fräıssé
classes among EK, OEK and CE [K∗]. In addition, we classify OEK and CE [K∗] according to
the Ramsey property. We also conduct the same analysis after adding additional structure
to each equivalence class. As an application, we give a topological interpretation using the
technique introduced in Kechris, Pestov and Todorčević. In particular, we extend the lists
of known extremely amenable groups and universal minimal flows.

1. Introduction. A standard mathematical approach is to take a struc-
ture A with an equivalence relation E and define its quotient structure A/E.
In this paper, we present the opposite approach. We start with a relational
structure B and consider a relational structure A with relation E such that
A/E = B. Roughly speaking, we replace points by finite equivalence classes.
It turns out that we get a class of structures suitable for application of the
technique developed by Kechris–Pestov–Todorčević (KPT) (see [11]).

We start with a class K of finite relational structures in a given signature
L = {Ri}i∈I . We then define the class EK of finite relational structures in
the signature L ∪ {E}, E /∈ L, such that for all A ∈ EK we have A/E ∈ K.
The structure A/E will be defined in Definition 2.1. We continue by adding
linear orderings to structures from EK. Adding arbitrary linear orderings to
structures from EK, we get the class OEK. We say that a linear ordering ≤
defined on the structure A ∈ EK, which has the equivalence relation E, is
convex if each E-equivalence class is an interval with respect to ≤. Let K∗
be obtained by adding linear orderings to structures from K in some way.
The class K∗ is a subclass of the class of all finite order expansions of K.
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We define the class CE [K∗] ⊆ OEK to consist of structures A such that
A/E ∈ K∗.

Let L be a class of finite relational structures in a given signature L′ =
{Rj}j∈J such that L ∩ L′ = ∅. We define a class LEK of finite relational
structures in the signature L ∪ L′. Structures from LEK are obtained by
putting a structure from L on each equivalence class of a structure from EK.
On distinct equivalence classes we may put different structures from L.
If we add arbitrary linear orderings to structures from LEK, we obtain
the class OLEK. Let K∗ and L∗ be the classes obtained by adding linear
orderings to structures from K and L respectively. Using K∗ and L∗, we
define the class C[L∗]E [K∗], which is obtained from LEK by adding linear
orderings to structures from LEK. If A ∈ OLEK then by dropping relations
which interpret symbols from L′ we obtain a structure A∗ from OEK. If
A∗ ∈ CE [K∗], and the ordered structures defined on each equivalence class
with respect to L′ belongs to L∗, then A∗ belong to the class C[L∗]E [K∗].

Fräıssé classes and structures are extensively studied in model theory
(see [6] and [10]). Fräıssé classes of graphs have been classified in [12]. The
class of hypergraphs of a given type is also a Fräıssé class (see [11]). The list
of known Fräıssé classes includes finite vector spaces over a given finite field
(see [30]), finite boolean algebras (see [11]), finite metric spaces with rational
distances (see [19]), and finite ultrametric spaces (see [18]). In particular,
we are interested in extending the list of known Fräıssé classes. In Section 3,
we extend this list with the following results.

Theorem 1.1. If K and K∗ are Fräıssé classes then EK, OEK and
CE [K∗] are Fräıssé classes.

We denote by EK, OEK and CE[K∗] the Fräıssé limits of EK, OEK
and CE [K∗] respectively.

Theorem 1.2. If K, L, K∗ and L∗ are Fräıssé classes then LEK and
C[L∗]E [K∗] are Fräıssé classes.

Theorems 1.1 and 1.2 are proved in Section 3 (see discussion after Lemma
3.8). Note that OLEK is not always a Fräıssé class (see Section 3). If LEK,
OLEK and C[L∗]E [K∗] are Fräıssé classes then we denote their Fräıssé limits
by LEK, OLEK and C[L∗]E[K∗] respectively.

Let C and B be given structures. If C is isomorphic to B, we write
C ∼= B, but if C is a substructure of B we write C ≤ B. Also, we use the
notation (

B
A

)
= {C : C ≤ B, C ∼= A}.

A class of structures K has the Ramsey property (RP) if for every natural
number r and every A,B ∈ K there is C ∈ K such that for every coloring

c :
(
C
A

)
→ {1, . . . , r},
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there is B′ ∈
(
C
B

)
satisfying

c�
(
B′

A

)
= const.

We then use the arrow notation

C→ (B)Ar .

Section 4 is devoted to the analysis of the Ramsey property for the classes
OEK and CE [K∗]. The list of Ramsey classes includes the class of linearly
ordered graphs (see [1] and [16]), the class of linearly ordered finite metric
spaces (see [13]), and the class of finite convexly ordered ultrametric spaces
(see [18]). The following results are generalizations of a result from [14] in
the sense that we examine general relational structures instead of partial
orderings.

Theorem 1.3. If K∗ is a Ramsey class, then CE [K∗] is a Ramsey class.

Theorem 1.4. If K∗ and L∗ are Ramsey classes, then C[L∗]E [K∗] is a
Ramsey class.

We say that a structure A is rigid if its group of automorphisms Aut(A)
is trivial. Ramsey classes of rigid structures are of particular interest.

Theorem 1.5. If K is a Ramsey class of rigid structures, then OEK is
a Ramsey class.

We obtain a similar result for the class OLEK under additional require-
ments on the class L (see Section 4). Theorems 1.3, 1.4 and 1.5 are proved
as Theorems 4.5, 4.4 and 4.9 respectively.

In Section 6 we present a topological application of our results. Let G
be a topological group. A G-flow X is a continuous action G × X → X
on a compact Hausdorff space X. A G-flow X is called minimal if each
of its orbits is dense, i.e. X = G · x for all x ∈ X. Among all minimal
G-flows there is a largest one called the universal minimal G-flow (see [2]).
If every G-flow X has a fixed point x ∈ X, gx = x for all g ∈ G, then we
say that G is an extremely amenable group. The list of extremely amenable
groups includes the group of increasing homeomorphisms of the unit interval
(see [21]), the unitary group of infinite-dimensional separable Hilbert space
(see [8]), the group of isometries of Urysohn space (see [22]), the pathological
groups (see [9]), and the group of automorphisms of the rationals (see [21]).
The technique from [11] helps us to extend this list and to calculate some
universal minimal flows. In Section 6 we present the calculation of the uni-
versal minimal flow for the group Aut(EK), as well as the following; in the
following theorems we assume that K, L, K∗ and L∗ are Fräıssé classes.

Theorem 1.6. If K∗ is a Ramsey class obtained by adding linear orderings
to structures from K, then Aut(CE[K∗]) is an extremely amenable group.
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Theorem 1.7. If K∗ and L∗ are Ramsey classes, then Aut(C[L∗]E[K∗])
is an extremely amenable group.

Theorems 1.6 and 1.7 are proved as Theorems 6.4(ii) and 6.5(ii) respec-
tively.

Section 7 is devoted to applications of our results to the case where K
is the class of finite posets. Then EK is the class of finite quasi ordered
sets. We use the connection between the class of finite topological spaces
and the class of finite quasi ordered sets, so our results can be viewed as
results about linearly ordered finite topological spaces. Section 8 is dedicated
to the application of our results to the case where K is the class of finite
metric spaces with rational distances, so EK represents the class of finite
pseudometric spaces with rational distances. In Sections 9 and 10 we give
applications to the class of ultrametric spaces, the class of graphs and the
class of chains respectively.

2. Preliminaries. A relational signature is a collection of distinct re-
lational symbols, L = {Ri}i∈I . Each relational symbol Ri has an assigned
non-zero natural number ni, called its arity.

A structure in a relational signature L = {Ri}i∈I with arity {ni}i∈I is a
set A together with relations {RA

i }i∈I on A such that RA
i ⊆ Ani for all i ∈ I.

RA
i is called the interpretation of the relational symbol Ri in the structure

A = (A, {RA
i }i∈I).

Let B = (B, {RB
i }i∈I) be a structure in the signature L. The map f :

A→ B is called a morphism if for all i ∈ I and all x1, . . . , xni ∈ A,

RA
i (x1, . . . , xni) ⇔ RB

i (f(x1), . . . , f(xni)).

In this case we write f : A → B. An injective morphism is called an em-
bedding, while a bijective morphism is called an isomorphism. If there is an
embedding of the structure A into the structure B, we write A ↪→ B, while
isomorphic structures are denoted by A ∼= B. A structure A is a substructure
of B, in symbols A ≤ B, if A ⊆ B, and for all i ∈ I, RA

i = RB
i ∩Ani .

In this paper we consider only classes of finite structures closed under
isomorphisms.

A class of finite structures K has the:

(1) hereditary property (HP) if for A ∈ K and B ≤ A we have B ∈ K;
(2) joint embedding property (JEP) if for all structures A,B ∈ K there

is C ∈ K such that A ↪→ C and B ↪→ C;
(3) amalgamation property (AP) if for all structures A,B,C ∈ K and

all embeddings iB : A → B, iC : A → C there are D ∈ K and
embeddings jB : B→ D, jC : C→ D such that jB ◦ iB = jC ◦ iC ;
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(4) strong joint embedding property (SJEP) if for all structures A, B ∈ K
defined on sets A and B respectively, there are C ∈ K and embed-
dings iA : A→ C, iB : B→ C such that iA(A) ∩ iB(B) = ∅;

(5) strong amalgamation property (SAP) if for all structures A,B,C
∈ K defined on sets A,B,C respectively, and all embeddings iB :
A→ B, iC : A→ C there are D ∈ K and embeddings jB : B→ D,
jC : C→ D such that jB(B) ∩ jC(C) = jB ◦ iB(A) = jC ◦ iC(A).

It should be clear that SJEP and SAP imply JEP and AP respectively.
For our analysis the properties HP, JEP and AP are of main importance,
and the properties SJEP and SAP appear naturally.

Consider two relational signatures LI = {Ri}i∈I and LJ = {Ri}i∈J
such that I ⊆ J . Assume that the structures AI = (A, {RAI

i }i∈I) in the

signature LI , and AJ = (A, {RAJ
i }i∈J) in the signature J , are given on

the same set A. If RAI
i = RAJ

i for all i ∈ I then we say that AJ is an
expansion of AI or that AI is a reduct of AJ . We write AI = AJ |LI and

AJ = (AI , {RAJ
i }i∈J\I). For a class KJ of structures in the signature LJ ,

we denote the class of their reducts by KJ |LI = {A|LI : A ∈ K} = KI , and
we say that KJ is an expansion of KI or that KI is a reduct of KJ .

Let LJ = LI ∪ {<} be a signature such that < is a binary relational
symbol satisfying < /∈ LI . Assume that KI and KJ are classes of finite
structures in the signatures LI and LJ respectively such that the symbol <
is interpreted as a linear ordering in each structure from KJ . If KJ |LI = KI

then:

(1) We say that KJ is an ordered class.
(2) If for all AI ,BI ∈KI , every linear ordering <AI satisfying (AI , <

AI)
∈KJ , and every embeddingπ : AI → BI , there is a linear ordering<BI

such that (BI , <
BI ) ∈ KJ and π is also an embedding from (AI , <

AI )
into (BJ , <

BJ ), then we say that KJ is a reasonable expansion of KI .
(3) If for all AI ,BI ∈ KI satisfying AI ↪→ BI , and all linear orderings

<AI and <BI satisfying (AI , <
AI ) ∈ KJ and (BI , <

BI ) ∈ KJ , we
have (AI , <

AI ) ↪→ (BI , <
BI ), then we say that KJ has the ordering

property (OP) with respect to KI .

Definition 2.1. Let K be a class of finite relational structures in the
signature L = {Ri}i∈I , and let E be a binary relational symbol such that
E /∈ L. Then EK is the class of relational structures of the form A =
(A, {RA

i }i∈I , EA) in the signature L ∪ {E} such that:

(1) EA is an equivalence relation on the set A.
(2) For all i ∈ I and all x1, . . . , xni , y1, . . . , yni ∈ A with xjE

Ayj , 1 ≤
j ≤ ni, we have

RA
i (x1, . . . , xni) ⇔ RA

i (y1, . . . , yni).
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(3) A/E = (A/E, {RA/E
i }i∈I) ∈ K, where A/E = {[a]EA : a ∈ A} is the

set of equivalence classes of the form [a]EA = {x ∈ A : aEAx}, where

the relations {RA/E
i }i∈I are well-defined on the set A/EA according

to condition (2) with

R
A/E
i ([a1]EA , . . . , [ani ]EA) ⇔ RA

i (x1, . . . , xni),

where ajE
Axj for all j.

Note that each element of K can be treated as an element of EK, where
each equivalence class has exactly one element. Let A = (A, {RA

i }i∈I , EA)
and B = (B, {RB

i }i∈I , EB) be two structures from EK, and let f : A→ B
be a morphism. Then for all x, y ∈ A we have xEAy ⇔ f(x)EBf(y). Con-
sequently, each morphism of structures from EK produces an injective map
from the set A/E into B/E, and moreover this induces an embedding of
structures from the class K. We denote by fE : A/E → B/E the map in
the class K induced by f .

The approach from [11] needs examination of ordered classes. Naturally,
we add linear orderings to structures from EK.

Definition 2.2. Let K be a class of finite relational structures in a
signature L = {Ri}i∈I . Let E and ≤ be binary relational symbols such
that E /∈ L and ≤ /∈ L. Then OEK is the class of structures of the form
(A, {RA

i }i∈I , EA,≤A) such that (A, {RA
i }i∈I , EA) ∈ EK and ≤A is a linear

ordering on A.

Let A = (A, {RA
i }i∈I , EA) be a structure from EK. A linear ordering ≤A

on the set A which satisfies for all x, y, z ∈ A:

x ≤A y ≤A z, xEAz ⇒ xEAyEAz,

is called convex with respect to EA.
Let K∗ be an order expansion of the class K. Structures from K∗ have the

form (A, {Ri}i∈I ,≺) such that (A, {Ri}i∈I) ∈ K and ≺ is a linear ordering
on the set A, and ≺ 6= Ri for i ∈ I.

Definition 2.3. Let K be a class of finite relational structures in a sig-
nature L = {Ri}i∈I . Let E, ≤ and � be binary relational symbols such that
E /∈ L, ≤ /∈ L and � /∈ L. Let K∗ be a class of finite relational structures in a
signature L∪ {�} such that K∗ is an ordered expansion of K and K∗|L = K.
Then CE [K∗] is the class of structures A = (A, {RA

i }i∈I , EA,≤A) ∈ OEK
such that:

(1) ≤A is convex with respect to EA.

(2) A/E = (A/E, {RA/E
i }i∈I ,≤A/E) ∈ K∗, where the linear ordering

≤A/E on A/E is well-defined according to (1) with, for all a, b ∈ A,

[a]EA ≤A/E [b]EA ⇔ ([a]EA = [b]EA or ([a]EA 6= [b]EA , a ≤A b)).
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For the rest of this section we fix the relational signatures LI = {Ri}i∈I
and LJ = {Ri}i∈J with arities {ni}i∈I and {nj}j∈J respectively such that
LI ∩ LJ = ∅. We also assume that E and ≤ are binary symbols which do
not belong to LI ∪LJ . Let K be a class of finite relational structures in LI ,
and let L be a class of finite relational structures in LJ .

Definition 2.4. LEK is the class of relational structures of the form
A = (A, {RA

i }i∈I , EA, {RA
j }j∈J) in the signature LI ∪ {E} ∪ LJ such that:

(1) (A, {RA
i }i∈I , EA) ∈ EK.

(2) For all j ∈ J and all x1, . . . , xnj ∈ A we have

RA
j (x1, . . . , xnj ) ⇒ [x1]EA = · · · = [xnj ]EA .

(3) For all a ∈ A we have

([a]EA , {RA
j ∩ ([a]EA)nj}i∈J) ∈ L.

We will represent the structures from the class LEK in abbreviated no-
tation. Let C be the structure in the class K with underlying set C such

that C = (A/E, {RA/E
i }i∈I). Let Dc be the structure from L such that

Dc = (c, {RA
j ∩ (cnj}j∈J). Then we denote the structure A from the previ-

ous definition by 〈C, (Dc)c∈C〉.
Note that each element of LEK is obtained by transforming the points

of some structure from K into equivalence classes which have their own
structure from L. We recall that each element of K can be treated as an
element of EK, where each equivalence class has exactly one element. This
is not the case for the class LEK in general since points may carry additional
structure.

Let A=(A, {RA
i }i∈I , EA, {RA

j }i∈J) and B = (B, {RB
i }i∈I , EB, {RB

j }i∈J)
be two structures from LEK, and let f : A→ B be a morphism. Then we
have the induced morphism of reducts, which we also denote by f , f :
A|(LI ∪ {E})→ B|(LI ∪ {E}), and a sequence of morphisms {fa}a∈A of
structures in L. Each fa is a morphism from the substructure of A induced
on [a]EA into the substructure of B induced on [f(a)]EB . As in the case
of the class EK, the map f produces an injective map from A/E into the
set B/E, and an embedding of structures from K, which we denote by
fE : A/E → B/E.

If we add arbitrary linear orderings to structures from LEK, we obtain
the following class.

Definition 2.5. OLEK is the class of structures of the form

(A, {RA
i }i∈I , EA, {RA

j }i∈J ,≤A)

such that A = (A, {RA
i }i∈I , EA, {RA

j }i∈J) ∈ LEK and ≤A is a linear order-
ing on A.
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If in the previous definition we denote the structure A by 〈C, (Dc)c∈C〉,
then the structure obtained by adding the linear ordering ≤A is denoted by
〈C, (Dc)c∈C ,≤A〉.

Let K∗ and L∗ be order expansions of K and L respectively. Structures
from K∗ and L∗ have the form (A, {Ri}i∈I ,≺A) and (B, {Rj}j∈J ,≺B) such
that (A, {Ri}i∈I) ∈ K, (B, {Rj}j∈J) ∈ L and≺A and≺B are linear orderings
on the sets A and B respectively. We assume that ≺ /∈ LI∪LJ ∪Ri∪{E,≤}.

Definition 2.6. C[L∗]E [K∗] is the class of structures

A = (A, {RA
i }i∈I , EA, {RA

j }i∈J ,≤A) ∈ OLEK
such that:

(1) (A, {RA
i }i∈I , EA,≤A) ∈ CE [K∗].

(2) ([a]EA , {RA
j ∩ ([a]EA)nj}i∈J ,≤A ∩ ([a]EA)2) ∈ L∗ for every a ∈ A.

Suppose that the structure (A, {RA
i }i∈I , EA, {RA

j }i∈J) in the previous

definition is denoted by 〈C, (Dc)c∈C〉. The linear ordering≤A induces a linear
ordering ≤C on C and linear orderings ≤Dc for each structure Dc, c ∈ C,
such that (C,≤C) ∈ K∗ and (Dc,≤Dc) ∈ L∗ for all c ∈ C. Then we denote
the structure A from the previous definition by 〈(C,≤C), ((Dc,≤Dc))c∈C〉.

Note that in the class C[L∗]E [K∗], the linear ordering restricted to an
equivalence class can depend on the structure, but in the class CE [K∗] this
is not the case.

3. Fräıssé classes. A structure A is called ultrahomogeneous if every
isomorphism between finite substructures S and T of A can be extended
to an automorphism of A. A countable infinite structure which is ultraho-
mogeneous and has the property that every finitely generated substructure
is finite is called a Fräıssé structure. Note that every relational structure
has the property that every finitely generated substructure is finite. We
say that a class of finite structures is countable if the maximal set of its
non-isomorphic structures is countable. Given a signature L, a Fräıssé class
in L is a countable class of finite structures in L which contains structures
of arbitrarily large finite cardinality and has HP, JEP, and AP. The age of a
structure A is the class Age(A) of all finitely generated substructures that
can be embedded into A.

The following two results establish a connection between Fräıssé classes
and Fräıssé structures (see [11, 6, 10]).

Theorem 3.1. If A is a Fräıssé structure, then Age(A) is a Fräıssé class.

Theorem 3.2. Let K be a Fräıssé class. Then there is a unique, up to
isomorphism, countable structure A such that A is a Fräıssé structure and
K = Age(A).
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The structure from Theorem 3.2 is called the Fräıssé limit of K, written
A = Flim(K).

We examine the classes EK, CE [K∗] and OEK in order to recognize
Fräıssé classes among them. We avoid tedious and easy proofs, and we men-
tion only some of the properties.

Lemma 3.3. Let K and L be classes of finite relational structures in
signatures L = {Ri}i∈I and LJ = {Rj}j∈J respectively. Let EK and LEK be
as in Definitions 2.1 and 2.4. Then if K is a Fräıssé class then so is EK. If
K and L are Fräıssé classes then so is LEK.

Note that the class EK always has SAP if K has AP, but LEK will not
always have SAP. A similar conclusion holds for SJEP. The following result
will help us to examine JEP and AP for the classes OEK and OLEK.

Lemma 3.4 (see [11]). Let L be a relational signature and let < /∈ L be
a binary relational symbol. Let K be a class of structures in L and let

OK = {(A, <) : A ∈ K and < is a linear ordering

on the underlying set of A}.

(i) OK has SJEP⇔ K has SJEP.
(ii) OK has SAP⇔ OK has AP ⇔ K has SAP.

The previous two lemmas give the following results.

Lemma 3.5. Let K be a class of finite relational structures in a signa-
ture L. Let EK and OEK be as in Definitions 2.1 and 2.2. Then if K has
AP then OEK has SAP.

Lemma 3.6. Let K and L be classes of finite relational structures in sig-
natures LI = {Ri}i∈I and LJ = {Rj}j∈J respectively. Let LEK and OLEK
be as in Definitions 2.4 and 2.5. Then if K has AP and L has SAP then
OLEK has SAP.

Lemma 3.7. Let K be a class of finite relational structures in a signature
L = {Ri}i∈I . Let � be a binary relational symbol such that � /∈ L and let
K∗ be a class of finite relational structures in the signature L ∪ {�} such
that K∗ is an ordered expansion of K and K∗|L = K. Let CE [K∗] be as in
Definition 2.3. Then if K∗ has AP then CE [K∗] has SAP.

The following lemma is proved by arguments similar to Lemma 3.7.

Lemma 3.8. Let K and L be classes of finite relational structures in sig-
natures LI = {Ri}i∈I and LJ = {Rj}j∈J respectively. Let K∗ and L∗ be
ordered expansions of K and L respectively. Let C[L∗]E [K∗] be as in Defini-
tion 2.6. Then if K∗ has AP and L∗ has SAP then C[L∗]E [K∗] has SAP.
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Let I be a countable index set, and let K be a class of finite relational
structures in the signature L = {Ri}i∈I . If K∗ is an order expansion of K,
then K∗ is also countable. Moreover the classes EK, OEK, and CE [K∗] are
also countable. Therefore, for Fräıssé classes K and K∗ with K = K∗|L, we
have a list of Fräıssé classes

EK, OEK, CE [K∗],
and their Fräıssé limits

EK = Flim(EK), OEK = Flim(OEK), CE[K∗] = Flim(CE [K∗]).
It is straightforward to see that OEK is a reasonable expansion of EK, and
that CE [K∗] is a reasonable expansion of EK if K∗ is a reasonable expansion
of K.

Let K and L be classes of finite relational structures in signatures LI =
{Ri}i∈I and LJ = {Rj}j∈J respectively. We assume that LI ∩ LJ = ∅. Let
K∗ and L∗ be ordered expansions of K and L respectively. If K and L are
countable then K∗ and L∗ are countable, as also are the classes LEK, OLEK,
and C[L∗]E [K∗]. Therefore, for Fräıssé classes K and L, the class LEK is also
Fräıssé with limit

LEK = Flim(LEK).

If K and L are Fräıssé classes such that one of them has SJEP and L has
SAP then OLEK is a Fräıssé class with limit

OLEK = Flim(OLEK).

If K∗ and L∗ are Fräıssé classes then C[L∗]E [K∗] is a Fräıssé class with limit

C[L∗]E[K∗] = Flim(C[L∗]E [K∗]).
It is straightforward to see that OLEK is a reasonable expansion of LEK and
that C[L∗]E [K∗] is a reasonable expansions of EK if K∗ and L∗ are reasonable
expansions of K and L respectively.

4. Ramsey property. A structure is rigid if the group of its automor-
phisms is trivial.

Lemma 4.1 ([11]). Let K be a class of finite rigid structures. If K has
HP, JEP, and RP then K has AP.

The following is the well-known product Ramsey theorem (see [7]).

Theorem 4.2 ([7]). Let l and r be natural numbers, and let (ai)
l
i=1 and

(bi)
l
i=1 be sequences of natural numbers satisfying ai ≤ bi for all i ≤ l. There

is a natural number c such that for all sequences (Ci)
l
i=1 of sets with |Ci| ≥ c

and any coloring

p : {A1 × · · · ×Al : (∀i ≤ l)[Ai ⊆ Ci, |Ai| = ai]} → {1, . . . , r},
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there is a sequence (Bi)
l
i=1 of sets satisfying Bi ⊆ Ci, |Bi| = bi for all i ≤ l

and

p�{A1 × · · · ×Al : (∀i ≤ l)[Ai ⊆ Bi, |Ai| = ai]} = const.

Using the Erdős–Rado arrow notation, we then write

c→ (b1, . . . , bl)
(a1,...,al)
r .

Note that Theorem 4.2 is the special case of Theorem 4.3 below when we
take the sequence (Ki)

l
i=1 such that the structures from these classes have

no relations on themselves.

Theorem 4.3 ([26]). Let l and r be natural numbers, and let (Ki)
l
i=1 be

a sequence of Ramsey classes of finite structures. Let (Ai)
l
i=1 and (Bi)

l
i=1

be sequences of structures such that Ai ∈ Ki and Bi ∈ Ki for all i ≤ l. Then
there is a sequence (Ci)

l
i=1 of structures such that Ci ∈ Ki for all i ≤ l and

for any coloring

p :
{

(A′1, . . . ,A
′
l) : (∀i ≤ l)

[
A′i ∈

(
Ci
A

)]}
→ {1, . . . , r},

there is a sequence (B′i)
l
i=1 of structures satisfying B′i ∈

(
Ci
Bi

)
⊆ Ci for all

i ≤ l and

p�
{

(A′1, . . . ,A
′
l) : (∀i ≤ l)

[
A′i ∈

(B′i
A

)]}
= const.

Using the Erdős–Rado arrow notation, we write

(C1, . . . ,Cl)→ (B1, . . . ,Bl)
(A1,...,Al)
r .

We point out that the proof of the following result is a simplified version
of the Nešetřil–Rödl partite construction.

Theorem 4.4. Let K and L be classes of finite relational structures in
signature LI = {Ri}i∈I and LJ = {Rj}j∈J respectively. Let K∗ and L∗
be ordered expansions of K and L respectively such that L∗ has JEP. Let
C[L∗]E [K∗] be as in Definition 2.6. Then K∗ and L∗ have RP iff C[L∗]E [K∗]
has RP.

Proof. (⇒) We suppose that K∗ and L∗ have RP, and will verify it for
C[L∗]E [K∗]. Let A = (A, {RA

i }i∈I , EA, {RA
j }i∈J ,≤A) and B = (B, {RB

i }i∈I ,
EB, {RB

j }i∈J ,≤B) be two structures from C[L∗]E [K∗] such that
(
B
A

)
6= ∅, and

let r be a fixed natural number. The structures A/E = (A/E, {RA/E
i }i∈I ,

≤A/E) and B/E = (B/E, {RB/E
i }i∈I ,≤B/E) belong to the Ramsey class K∗,

so there is a structure C = (C, {RC
i }i∈I ,≤C) ∈ K∗ such that

C→ (B/E)A/E
r .

We define the structure D = (D, {RD
i }i∈I , ED, {RD

j }i∈J ,≤D) ∈ C[L∗]E [K∗]
such that D/E = (D/E, {RD/E

i }i∈I ,≤D/E) = C. Each point of C will be
replaced with one ED-equivalence class which carries a structure from L∗.
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The relations {RD
i }i∈I are defined by setting for all i ∈ I, j ≤ ni, [xj ]ED

= cj ,

RD
i (x1, . . . , xni) ⇔ RC

i (c1, . . . , cni).

The linear ordering ≤D is defined so that each ED-equivalence class is an
interval with respect to ≤D, and for all [y1]ED = c1, [y2]ED = c2, c1 6= c2,

y1 ≤D y2 ⇔ c1 ≤C c2.

In order to define each ED-equivalence class and relations {RD
j }i∈J we define

a sequence {Ds}as=0 of structures from C[L∗]E [K∗]. Finally, we take D = Da.
We list all embeddings A/E ↪→ C as {Al}al=1, and we list all embeddings

B/E ↪→ C as {Bl}bl=1. Therefore a and b are the sizes of the sets
(

C
A/E

)
and(

C
B/E

)
respectively.

Now we define D0 = (D0, {RD0
i }i∈I , ED0 , {RD0

j }i∈J ,≤D0) ∈ C[L∗]E [K∗]
such that D0/E = (D0/E, {RD0/E

i }i∈I ,≤D0/E) = C. We consider structures

B0,l = (B0,l, {R
B0,l

i }i∈I , EB0,l , {RB0,l

j }i∈J ,≤B0,l) from C[L∗]E [K∗] such that

B0,l/E = (B0,l/E, {R
B0,l/E
i }i∈I ,≤B0,l/E) = Bl. JEP for L∗ implies that we

may take D0 such that B0,l ≤ D0 for all 1 ≤ l ≤ b.
Suppose that we have Dt and we want to define Dt+1 for 0 ≤ t < a. Then

we denote by Dt�At+1 the restriction of the structure Dt to EDt-equivalence
classes given by At+1, and we denote by Dt�Ac

t+1 the restriction of Dt to

the other EDt-equivalence classes. Denote by {Dt,k}pk=1 the structures from
L∗ defined on EDt-equivalence classes. Note that in this list we may have
structures that occur more than once. Without loss of generality we may
assume that the linear ordering ≤Dt induces a linear ordering on {Dt,k}pk=1
such that Dt,1 ≤Dt · · · ≤Dt Dt,p. We consider the structure A in a similar
way. Let {Ak}pk=1 be the list of structures from L∗ defined by EA-equivalence
classes. Again, this is a list of structures that can appear more than once.
Without loss of generality, we may assume that the linear ordering ≤A

induces a linear ordering on {Ak}pk=1 such that A1 ≤A · · · ≤A Ap. By

Theorem 4.3 there is a sequence
−→
E = {Et,k}pk=1 of structures from L∗ such

that

(Et,1, . . . ,Et,p)→ (Dt,1, . . . ,Dt,p)
(A1,...,Ap)
r .

The sequence
−→
E defines a structure Et from C[L∗]E [K∗] such that Et/E =

At+1. The structures Et and Dt�Ac
t+1 define Dt+1.

We claim that D = Da is such that

Da→ (B)A
r .

To see this, consider a coloring

p :
(
D
A

)
→ {1, . . . , r}.



Relational quotients 201

Note that each embedding of the structure A into the structure D must
be placed on the collection of ED-equivalence classes given by one of the
(Al)

a
l=1. The choice of the sequence {Ds}as=0 tells us that there is some

Fa−1 such that:

(1) Fa−1 = (Fa−1, {RFa−1

i }i∈I , EFa−1 , {RFa−1

j }j∈J ,≤Fa−1) ∈ C[L∗]E [K∗],
Fa−1 ≤ Da.

(2) Fa−1/E = C & Fa−1
∼= Da−1.

(3) All embeddings of A into Fa−1 placed on the equivalence classes
given by Aa are monochromatic.

In general, there is a sequence (Fs)
a−1
s=0 of structures from C[L∗]E [K∗]

such that Fi ≤ Fi+1 for all 0 ≤ i < a, Fa−1/E = C & Fa−1
∼= Da−1, and

all embeddings of A into Fi+1 placed on the equivalence classes given with
Ai+1 are monochromatic. In particular, the color of an embedding of A into
F0 depends only on the equivalence classes given by the respective Al, so
the coloring p induces a coloring

p̄ :
(

C
A/E

)
→ {1, . . . , r}.

The choice of the structure C provides B′ ≤ C, B′ ∼= B/E such that

p̄�
(

B′

A/E

)
= const. Clearly, ED0-equivalence classes given by B′ contain B̄ ∈

C[L∗]E [K∗] such that B̄ ≤ D0 ≤ D, B̄ ∼= B and p̄�
(
B̄
A

)
= const.

(⇐) We suppose that K∗ does not have RP in order to show that the
class C[L∗]E [K∗] does not satisfy RP. Since K∗ is not a Ramsey class there
is a natural number r and structures A,B ∈ K∗ such that

(
B
A

)
6= ∅ and

(∗) For all C ∈ K∗ satisfying
(
C
B

)
6= ∅, there is a coloring p :

(
C
A

)
→

{1, . . . , r} such that for every B′ ∈
(
C
B

)
we have p�

(
C
A

)
6= const.

The structures A and B can be treated as members of the class C[L∗]E [K∗]
in which each equivalence class has exactly one element and each one point
equivalence class carries the same structure from L∗. Let D be a given
structure such that D = (D, {RD

i }i∈I , ED, {RD
j }j∈J ,≤D) ∈ C[L∗]E [K∗] and(D/E

B

)
6= ∅. We consider the coloring p :

(D/E
A

)
→ {1, . . . , r} that satisfies

statement (∗) for K∗, and we define the coloring

p̄ :
(
D
A

)
→ {1, . . . , r}, p̄(A′) = p(A′/E),

where we consider A′/E as a substructure of D/E given by the ED-equiv-
alence classes on which A′ is placed. Since the p̄-color of A′ depends only
on the ED-equivalence classes incident with A′, it is straightforward to see
that for all B′ ∈

(
D
B

)
we have p�

(
B′

A

)
6= const.

Since L∗ can be seen as a subclass of C[L∗]E [K∗] when we consider only
structures with one equivalence class, it follows that RP for C[L∗]E [K∗] im-
plies RP for L∗.
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If we take the class L in Theorem 4.4 to be the class of finite sets in the
empty signature then we obtain the following result.

Theorem 4.5. Let K be a class of finite relational structures in a sig-
nature L = {Ri}i∈I . Let � be a binary relational symbol such that � /∈ L,
and let K∗ be a class of finite relational structures in the signature L ∪ {�}
such that K∗ is an ordered expansion of K and K∗|L = K. Let CE [K∗] be as
in Definition 2.3. Then K∗ has RP iff CE [K∗] has RP.

Remark 4.6. We point out that in Theorems 4.5 and 4.4 we do not
assume that the classes K and L are Fräıssé classes. Therefore we cannot
talk about Fräıssé limits and their automorphism groups. If K and L are
Fräıssé classes we may obtain the conclusions of the previous two theorems
by noticing that the automorphism group of the corresponding limit is a
semidirect product of two extremely amenable groups (see [11]).

In contrast with the second part of the proof of Theorem 4.5, we are not
able to use a similar argument for the class OEK.

Lemma 4.7. Let K be a class of finite relational structures in a signature
L = {Ri}i∈I . Let ≤ be a binary relational symbol such that ≤ /∈ L, and let
OEK be as in Definition 2.2. If there is A ∈ K such that Aut(A) is not a
one-element group, then OEK does not satisfy RP.

In order to examine RP for the class OEK when the class K from the
statement of Lemma 4.7 has rigid structures, we need to recall the definition
of α-colored sets from [1]. Let α = {1, . . . , n} where n is a given natural
number. Then the structure A = (A,<, f), where A is a non-empty set with
linear ordering < and a function f : A→ α, is called an α-colored set. The
linear ordering < is called the underlying linear ordering of the α-colored
set A. An embedding of α-colored sets (A,<A, fA) and (B,<B, fB) is a map
F : A→ B such that for all x, y ∈ A we have

F (x) = f(F (x)), x <A y ⇔ F (x) <B F (y).

An embedding which is a bijection is called an isomorphism, and we use the
symbol ∼=.

Theorem 4.8 ([1]). Let n be a given natural number. Then the class of
finite α-colored sets satisfies RP.

Theorem 4.9. Let K be a class of finite relational structures in a signa-
ture L = {Ri}i∈I . Let ≤ and E be binary relational symbols such that ≤ /∈ L,
E /∈ L. Assume that all A ∈ K are rigid, i.e. Aut(A) is a one-element group.
If the class K satisfies RP, then OEK satisfies RP.

Proof. Let A = (A, {RA
i }i∈I , EA,≤A) and B = (B, {RB

i }i∈I , EB,≤B)

be from OEK such that
(
B
A

)
6= ∅, and let r be a given natural number. Then
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A/E = (A/E, {RA/E
i }i∈I) and B/E = (B/E, {RB/E

i }i∈I) are structures

from the Ramsey class K, so there is C = (C, {RC
i }i∈I) ∈ K such that

C→ (B/E)A/E
r .

We use the structure C to obtain D = (D, {RD
i }i∈I , ED,≤D) ∈ OEK. Each

ED-equivalence class is obtained by replacing each point from C with a set.
Placing a linear ordering ≤D on D is the hardest part of the proof. The rest
is motivated by the partite construction of Nešetřil–Rödl (see [15] and [16]).

We list all substructures inside C isomorphic to A/E as (Aj)
a
j=1 and all

substructures inside C isomorphic to B/E as (Bj)
b
j=1. Recursively, we define

a sequence (Cj)
a
j=0 of structures of the form Cj = (Cj , {R

Cj

i }i∈I , ECj ,≤Cj )
∈ OEK such that for all j, j′,

(Cj/E, {R
Cj/E
i }i∈I) = (Cj′/E, {R

Cj′/E

i }i∈I).

C0 is a disjoint union: C0 =
⋃b

l=1C0,l. The set C0,l is placed on the
ED-equivalence classes given by Bl such that:

(1) EC0,l-equivalence classes are given by ED, i.e. xEC0,ly ⇔ xEDy.

(2) The relations {RC0,l

i }i∈I are inherited from {RC
i }i∈I , i.e. for i ∈ I,

(xj)
ni
j=1 ∈ C0,i, [xj ]EC0,l = cj ,

R
C0,l

i (x1, . . . , xni) ⇔ RC
i (c1, . . . , cni).

(3) The linear ordering ≤C0,l on C0,l is such that

C0,l = (C0,l, {R
C0,l

i }i∈I , EC0,l ,≤C0,l) ∼= B.

There is only one way to define relations {RC0
i }i∈I and EC0 on C0 such

that (C0/E, {RC0
i }i∈I) = C, and it comes from the relations {RC

i }i∈I and
from the fact that each point from C produces one ED-equivalence class.
The linear ordering ≤C0 is defined so that

≤C0 |C0,l = ≤C0,l for each l, C0,1 ≤C0 C0,2 ≤C0 · · · ≤C0 C0,b.

In this way we have a structure from OEK that contains copies of B placed
on b disjoint sets.

Assume that we already have the structure Ck. Then we define Ck+1 as
follows. The restriction of Ck to ECk -equivalence classes given by Ak+1 is
denoted by

Ck|Ak+1 = (Ck|Ak+1, {R
Ck|Ak+1

i }i∈I , ECk|Ak+1 ,≤Ck|Ak+1).

We denoteECk|Ak+1-equivalence classes by (es)
g
s=1 andEA-equivalence classes

by (e′s)
g
s=1. Without loss of generality, we assume that all embeddings of A into

Ck|Ak+1 send e′s into es. This follows from the fact that (A/E, {RA/E
i }i∈I)

is a rigid structure, and K is the class of rigid structures. In the following



204 M. Sokić

we consider α-colored sets with α = {1, . . . , g}. We code Ck|Ak+1 using the
α-colored set (Ck|Ak+1,≤Ck|Ak+1 , fCk|Ak+1

), so that for x ∈ Ck|Ak+1 we have

fCk|Ak+1
(x) = s ⇔ x ∈ es.

Similarly we code A with the α-colored set (A,≤A, fA) so that for y ∈ A
we have

fA(y) = s ⇔ y ∈ e′s.
By Theorem 4.8, there is an α-colored set (Fk,≤Fk , fFk

) such that

(Fk,≤Fk , fFk
)→ (Ck|Ak+1,≤Ck|Ak+1 , fCk|Ak+1

)(A,≤A,fA)
r .

The structure (Fk,≤Fk , fFk
) gives Fk = (Fk, {RFk

i }i∈I , EFk ,≤Fk) ∈ OEK
in the following way. If fFk

(x) = s for x ∈ Fk, then x is placed on the

ED-equivalence class given by es. The relations {RFk
i }i∈I are defined so

that for x1, . . . , xni ∈ Fk we have

RFk
i (x1, . . . , xni) ⇔ R

Ck|Ak+1

i (y1, . . . , yni),

where y1, . . . , yni ∈ Ck|Ak+1 and

fFk
(y1) = fCk|Ak+1

(y1), . . . , fFk
(yni) = fCk|Ak+1

(yni).

List all embeddings Ck|Ak+1 ↪→ Fk as (Cl
k)nk

l=1. Over each Cl
k we can amal-

gamate the structure C̄l
k isomorphic to Ck by preserving ED-equivalence

classes so that C̄l
k intersects Fk exactly over Cl

k. For a detailed explanation

of this amalgamation see [25]. Each structure C̄l
k has the underlying set C̄ l

k.

For l 6= l′ the structures C̄l
k and C̄l′

k can intersect only over points inside
the set Fk. The set Ck+1 is the union

Ck+1 = Fk ∪
nk⋃
l=1

C̄ l
k

and the relations {RCk+1

i }i∈I and ECk+1 are defined in the obvious way. The

linear orderings {≤Fk}∪{≤C̄l
k}nk

l=1 generate a partial ordering ≺k on the set
Ck+1 and for ≤Ck+1 we can take an arbitrary linear extension of ≺k, so the
structure Ck+1 is defined.

In the end we have Ca, and we claim that

Ca→ (B)A
r .

Now, we take D = Ca. So let p :
(
Ca

A

)
→ {1, . . . , r} be a given coloring. The

construction of Ca implies that there is Ĉa−1 ∈ OEK such that

Ĉa−1
∼= Ca−1, Ĉa−1 ≤ Ca

and the coloring of embeddings A ↪→ Ĉa−1 placed on the ED -equivalence
classes given by Aa is constant. Recursively, we define a sequence (Ĉj)

a−1
j=0
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of structures such that

Ĉj ∈ OEK, Ĉj
∼= Cj , Ĉj ≤ Ĉj+1

and the coloring of embeddings A ↪→ Ĉj placed on the ED -equivalence
classes given by Aj+1 is constant. In the end,

Ĉ0 ∈ OEK, Ĉ0
∼= C0, Ĉ0 ≤ Ca,

and the coloring of an embedding A ↪→ Ĉ0 depends only on the ED-equiv-
alence classes on which the embedding is placed. Therefore, we obtain an
induced coloring p̂ :

(
C
A

)
→ {1, . . . , r}. The choice of the structure C implies

the existence of a structure B′ ∼= B/E such that

p̂�
(
B′

A′

)
= const.

The equivalence classes given by B′ provide a structure B∗ ∈ OEK, B∗ ∼= B,

B∗ ≤ Ĉ0 ≤ Ca and p�
(
B∗

A

)
= const, so RP is verified for the class OEK.

Lemma 4.10. Let K be a class of finite relational structures in a signa-
ture L = {Ri}i∈I . Let ≤ and E be binary relational symbols such that � /∈ L,
E /∈ L. Assume that all A ∈ K are rigid, i.e. Aut(A) is a one-element group.
If K does not have RP then neither does OEK.

Proof. Let r be a natural number, and let A = (A, {RA
i }i∈I) and B =

(B, {RB
i }i∈I) be structures from K such that

(
B
A

)
6= ∅. We assume that

for every C ∈ K with
(
C
B

)
6= ∅ there is a coloring p :

(
C
A

)
→ {1, . . . , r}

such that for every B′ ∈
(
C
B

)
, we have p�

(
B′

A

)
6= const. The structures A

and B may be viewed as members of EK, in which each EA-equivalence
class and each EB-equivalence class has exactly one element. Let (Aj)

a
j=1

be a list of all structures Aj = (Aj , {RA
i }i∈I) ∈ K such that Aj ≤ B and

Aj
∼= A. By adding an arbitrary linear ordering ≤A to the set A, we get

a structure Ā = (A, {RA
i }i∈I , EA,≤A) ∈ OEK. We consider a structure

B̄ = (B, {RB
i }i∈I , EB,≤B) ∈ OEK such that:

(1) B =
⋃a

j=1Bj .

(2) j 6= j′ ⇒ Bj ∩Bj′ = ∅, for all j, j′ ∈ {1, . . . , a}.
(3) Each Bj is placed on the EB-equivalence classes given by Aj such

that bEBb′ for no b 6= b′ from Bj .
(4) If B̄|Bj is a substructure of B̄ given by the set Bj then B̄|Bj

∼= Ā.

Now, let C̄ = (C, {RC
i }i∈I , EC ,≤C) ∈ OEK be such that

(
C̄
B̄

)
6= ∅.

Then C/E = (C/E, {RC/E
i }i∈I) ∈ K, and there is a coloring p :

(C/E
A

)
→

{1, . . . , r} such that for every B′ ∈
(C/E

B

)
, we have p�

(
B′

A

)
6= const. Using p,

we define the coloring

p̄ :
(
C̄
Ā

)
→ {1, . . . , r}, p̄(A′) = p(Aj),
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where Aj gives the EC-classes on which the structure A′ is placed. Now, it

is straightforward to check that for all B′ ∈
(
C̄
B̄

)
, we have p̄�

(
B′

Ā

)
6= const, so

OEK does not have RP.

In order to examine the Ramsey property for the class OLEK, we need
to introduce new concepts. Let L be a class of finite relational structures in a
signature LJ = {Rj}j∈J with arity {nj}j∈J . Let n be a natural number and
let {Ii}ni=1 be a list of unary relational symbols which do not belong to LJ .
Then we denote by Ln the class of structures, in the signature LJ ∪{Ii}ni=1,
of the form (A, {IAi }ni=1, {RA

j }j∈J) such that for all 1 ≤ i, i′ ≤ n we have:

(1) A =
⋃n

i=1{a ∈ A : IAi (a)}.
(2) i 6= i′ ⇒ {a ∈ A : IAi (a)} ∩ {a ∈ A : IAi′ (a)} = ∅.
(3) If Ai = {a ∈ A : IAi (a)} then (Ai, {RA

j ∩A
nj

i }j∈J) ∈ L.

(4) For all a1, . . . , anj ∈ A with RA
j (a1, . . . , anj ) there is i such that

IAi (a1), . . . , IAi (anj ).

If we add arbitrary linear orderings to structures from Ln we obtain
the class OLn. It contains structures in the signature LJ ∪ {Ii}ni=1 ∪ {≤}
where ≤ is a binary symbol not in LJ . Structures from OLn are of the form
(A, {IAi }ni=1, {RA

j }j∈J ,≤A) where (A, {IAi }ni=1, {RA
j }j∈J) is in Ln and ≤A is

a linear ordering on A. Then we say that the class L is n-adaptable if OLn
has RP. If L is n-adaptable for all natural n then we say that L is adaptable.
If we take L to be the class of finite graphs we obtain an adaptable class.
One can also show that the class of finite metric spaces is adaptable. We
introduce adaptable classes in order to transfer the proof of Theorem 4.9
into a corresponding proof for the class OLEK. More precisely, we make the
recursive step in the proof of Theorem 4.9 possible for the class OLEK under
the assumption of adaptability. Using the idea of the proof of Theorem 4.9
we obtain

Theorem 4.11. Let K be a class of finite rigid relational structures in
a signature LI = {Ri}i∈I . Let L be a class of finite relational structures in
a signature LJ = {Rj}j∈J . Let OLEK be as in Definition 2.5. If K has RP
and L is adaptable then OLEK also has RP.

Note that Theorem 4.9 can be obtained as a corollary of Theorem 4.11
if we take L to be the class of finite sets in the empty signature.

5. Ordering property

Proposition 5.1. Let K be a class of finite relational structures in a
signature L = {Ri}i∈I . Let � be a binary relational symbol such that � /∈ L,
and let K∗ be a class of finite relational structures in the signature L ∪ {�}
such that K∗ is an ordered expansion of K and K∗|L = K. Let CE [K∗] be as
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in Definition 2.3. Then K∗ has OP with respect to K iff CE [K∗] has OP with
respect to EK.

Proof. (⇒) We assume that K∗ has OP with respect to K. For a given

A = (A, {RA
i }i∈I , EA) ∈ EK, we have A/E = (A/E, {RA/E

i }i∈I) ∈ K. OP
of K∗ with respect to K implies the existence of B = (B, {RB

i }i∈I) ∈ K such
that for all linear orderings ≤A/E and ≤B on A/E and B respectively with

(A/E, {RA/E
i }i∈I ,≤A/E), (B, {RB

i }i∈I ,≤B) ∈ K∗ we have

(A/E, {RA/E
i }i∈I ,≤A/E) ↪→ (B, {RB

i }i∈I ,≤B).

We consider C = (C, {RC
i }i∈I , EC) ∈ EK such that C/E = B and for all

c ∈ C,

|[c]EC | = max{|[a]EA | : a ∈ A}.
Let ≤C be a given linear ordering on C, and let ≤A be some linear ordering
on A. By OP for K∗, there is an embedding

e : (A/E, {RA/E
i }i∈I ,≤A/E)→ (B, {RB

i }i∈I ,≤B) = (C/E, {RC/E
i }i∈I ,≤C),

and according to the size of the EC-equivalence classes in C, there is an
embedding f : A→ C such that fE = e, so OP is verified for CE [K∗] with
respect to EK.

(⇐) Assume that CE [K∗] has OP with respect to EK, but K∗ does not
have OP with respect to EK. Note that the embedding f : A→ B, where
A and B are from CE [K∗], induces an embedding fE : A/E → B/E of
structures from EK. Therefore, if CE [K∗] has OP with respect to EK, then
K∗ would have OP with respect to K. This contradicts our assumption.

Proposition 5.2. Let K and L be classes of finite relational structures
in signatures LI = {Ri}i∈I and LJ = {Rj}j∈J respectively such that L has
JEP. Let K∗ and L∗ be ordered expansions of K and L respectively. Let
C[L∗]E [K∗] and LEK be as in Definitions 2.6 and 2.4. Then K∗ and L∗ have
OP with respect to K and L respectively iff C[L∗]E [K∗] has OP with respect
to LEK.

Proof. (⇒) Let A be a given structure from LEK. We assume that A
is represented in the form 〈C, (Dc)c∈C〉 where C is a structure from K
with underlying set C and Dc ∈ L for all c ∈ C (see the paragraph after
Definition 2.4). Since L∗ has OP with respect to L, for each c ∈ C there is
D̄c ∈ L which witnesses OP for Dc. JEP for L∗ implies that there is D ∈ L
such that D̄c ↪→ D. Since K∗ has OP with respect to K, there is E ∈ L,
with underlying set E, which witnesses OP for C.

We claim that the structure 〈E, (Fe)e∈E〉, where Fe = D for all e ∈ E,
witnesses OP for A. Let ≤A be a linear ordering such that (A,≤A) ∈
C[L∗]E [K∗]. Then (A,≤A) is of the form 〈(C,≤C), ((Dc,≤Dc))c∈C〉 where
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(C,≤C) ∈ K∗ and (Dc,≤Dc) ∈ L∗ for c ∈ C (see the paragraph after Defi-
nition 2.6). We consider 〈(E,≤E), ((Fe,≤Fe))e∈E〉 from C[L∗]E [K∗]. By the
choice of E there is an embedding from (C,≤C) into (E,≤E). By the choice
of the structure D there is an embedding of (Dc,≤Dc) into (Fe,≤Fe) for all
c ∈ C and all e ∈ E. Therefore we have an embedding from (A,≤A) into
〈(E,≤E), ((Fe,≤Fe))e∈E〉.

(⇐) Suppose that L∗ does not have OP with respect to L. Since L has
JEP, there is D ∈ L and a linear ordering ≤C such that (D,≤D) ∈ L∗
but for all E ∈ L and all linear orderings ≤E with (E,≤E) ∈ L∗ there is no
embedding from (D,≤D) into (E,≤E). Then we consider an arbitrary C∈K,
with underlying set C, and A = 〈C, (Dc)c∈C〉 from LEK where Dc = D for
all c ∈ C. We consider 〈(C,≤C), ((Dc,≤Dc))c∈C〉 from C[L∗]E [K∗] such that
(Dc,≤Dc) = (D,≤D) for all c ∈ C. Let

〈(E,≤E), ((Fe,≤Fe))e∈E〉 ∈ C[L∗]E [K∗]
be such that linear orderings ≤Fe are such that there is no embedding from
(D,≤D) into (Fe,≤Fe). Then there is no embedding

〈(C,≤C), ((Dc,≤Dc))c∈C〉 ↪→ 〈(E,≤E), ((Fe,≤Fe))e∈E〉,
so C[L∗]E [K∗] does not have OP with respect to LEK.

Suppose that K∗ does not have OP with respect to K. Let A = 〈(C,≤C),
((Dc,≤Dc))c∈C〉 and B = 〈(E,≤E), ((Fe,≤Fe))e∈E〉 be two structures from
C[L∗]E [K∗]. Then any embedding from A into B induces an embedding from
(C,≤C) into (E,≤E). So if (C,≤C) witnesses that K∗ does not have OP
with respect to K, then A witnesses that C[L∗]E [K∗] does not have OP with
respect to LEK.

Lemma 5.1. Let K be a class of finite relational structures in a signature
L = {Ri}i∈I . Let ≤ and E be binary relational symbols such that � /∈ L,
E /∈ L, and let OEK be as in Definition 2.2. Then OEK does not have OP
with respect to EK.

Proof. Note that for A ∈ OEK \ CE [K∗] and B ∈ CE [K∗] there is no
embedding A ↪→ B, so OEK does not have OP with respect to EK.

Lemma 5.2. Let K and L be classes of finite relational structures in
signatures LI = {Ri}i∈I and LJ = {Rj}j∈J respectively. Let K∗ and L∗ be
ordered expansions of K and L respectively. Let OLEK and LEK be as in
Definitions 2.4 and 2.5. Then OLEK does not have OP with respect to LEK.

Proof. This follows from the fact that for A ∈ OLEK \ C[L∗]E [K∗] and
B ∈ C[L∗]E [K∗] there is no embedding A ↪→ B.

6. Dynamics. In this section we present a few topological implications
of the results from Sections 4 and 5.
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Let G be a topological group. A G-flow X is a continuous action G×X
→ X on a compact Hausdorff space X. A G-flow X is minimal if each of its
orbits is dense, i.e. X = G · x for all x ∈ X. If every minimal G-flow X is a
point then we say that G is an extremely amenable group. Equivalently, G is
extremely amenable if every G-flow X contains a fixed point x, i.e. we have
gx = x for all g ∈ G. The following result shows that among all minimal
G-flows there is a largest one.

Theorem 6.1 ([2]). Given a topological group G, there is a minimal
G-flow X with the following property: For any minimal G-flow Y there is
a surjective continuous map φ : X → Y such that g · φ(x) = φ(g · x) for
all g ∈ G, x ∈ X. Moreover the G-flow X is uniquely determined up to
isomorphism, i.e. for any other G-flow X̄ with the same property there is a
continuous bijection φ : X → X̄ with g ·φ(x) = φ(g ·x) for all g ∈ G, x ∈ X.

The G-flow given by the previous theorem is called the universal minimal
G-flow.

A way to recognize extremely amenable groups among groups of auto-
morphisms of Fräıssé structures is given in [11]. In addition, the authors
of [11] provide the technique for the calculation of universal minimal flows
of certain automorphism groups of Fräıssé structures. In the following, we
present material that we need for topological interpretation of our combi-
natorial results from the previous sections.

If L is a countable structure, then we consider the group Aut(L) of its
automorphisms as a topological group with pointwise topology (see [3]).

Theorem 6.2 ([11]). Let L be a Fräıssé ordered class and let L =
Flim(L). Then the topological group Aut(L) with the pointwise topology is
extremely amenable iff L has the Ramsey property.

If the topological group is not extremely amenable, we will try to cal-
culate its universal minimal flow. Let L0 and L1 be countable signatures
such that L0 ⊆ L1 = L0 ∪ {≤}, ≤ /∈ L0, where ≤ is a binary relational
symbol. We assume that a Fräıssé class L1 in the signature L1 is an order
expansion of a Fräıssé class L0 in the signature L0. Also, we assume that ≤
is interpreted as a linear ordering in each structure from L1. We consider
the Fräıssé limits L0 = Flim(L0) and L1 = Flim(L1). In terms of reducts
we have L0 = L1|V0. The interpretation of the symbol ≤ in L1 is as a linear
ordering ≤L1 . Without loss of generality we may assume that the structures
L0 and L1 are defined on the set of natural numbers N. The set of all linear
orderings of natural numbers, LO ⊆ 2N×N, is a compact Hausdorff space
(see [3]). In particular ≤L1 ∈ LO. Let G0 = Aut(L0) and consider the logic
action of G0 on LO (see [3]). The topological closure of the orbit of ≤L1
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under the logic action,

XL1 = G0 · ≤L1 ⊆ LO,

is important for calculation of universal minimal flows. Linear orderings from
XS will be called S-admissible.

Theorem 6.3 ([11]). Let L1 and L0 be countable signatures such that
L0 = L1 \{≤} where ≤ is a binary relational symbol. Let L1 be a reasonable
Fräıssé order class in L1 and let L0 be a Fräıssé class in L1. Assume that
L0 = L1|L0 and the Fräıssé limits L1 = Flim(L1) and L0 = Flim(L0) are
defined on the set of natural numbers. Let G0 = Aut(L0) with pointwise
topology, and let XL1 be the set of L1-admissible linear orderings. Then:

(i) XL1 is the universal minimal G0-flow iff L1 is a Ramsey class with
the ordering property with respect to L0.

(ii) XL1 is a minimal G0-flow iff L1 has the ordering property with re-
spect to L0.

If K is a Fräıssé class of finite relational structures in a signature L =
{Ri}i∈I , then I has to be countable.

Theorem 6.4. Let K be a Fräıssé class of finite relational structures in
a signature L = {Ri}i∈I . Let � and E be binary relational symbols such that
� /∈ L, E /∈ L. Let K∗ be a Fräıssé class of finite relational structures in the
signature L∪{�} such that K∗ is an ordered expansion of K and K∗|L = K.
Let EK, OEK and CE [K∗] be as in Definitions 2.1–2.3. Then:

(i) The Fräıssé limits EK = Flim(EK), OEK = Flim(OEK) and
CE[K∗] = Flim(CE [K∗]) are well-defined.

(ii) The topological group Aut(CE[K∗]) is extremely amenable iff K∗
has RP.

(iii) The topological group Aut(OEK) is extremely amenable iff K is a
Ramsey class of finite rigid structures.

(iv) The Aut(EK)-flow XCE[K∗] is minimal iff K∗ has OP with respect
to K.

(v) XCE[K∗] is the universal minimal Aut(EK)-flow iff K∗ has RP and
OP with respect to K.

Proof. (i) This follows from Lemmas 3.3, 3.4, 3.5 and 3.7.
(ii) This follows from Theorems 6.2 and 4.5.
(iii) This follows from Theorem 6.2, Lemma 4.7, Lemma 4.10 and The-

orem 4.9.
(iv) This follows from Theorem 6.3 and Proposition 5.1.
(vi) This follows from Theorem 6.3, Theorem 4.5 and Proposition 5.1.

Theorem 6.5. Let K and L be Fräıssé classes of finite relational struc-
tures in signatures LI = {Ri}i∈I and LJ = {Rj}j∈J respectively such that
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LI ∩ LJ = ∅. Assume that L has SAP and that at least one of L or K
has SJEP. Let K∗ and L∗ be reasonable Fräıssé ordered expansions of K
and L respectively. Let LEK and OLEK and C[L∗]E [K∗] be as in Definitions
2.4–2.6. Then:

(i) The Fräıssé limits LEK = Flim(LEK), OLEK = Flim(OLEK)
and C[L∗]E[K∗] = Flim(C[L∗]E [K∗]) are well-defined.

(ii) The topological group Aut(C[L∗]E[K∗]) is extremely amenable iff
K∗ and L∗ have RP.

(iii) If K is a Ramsey class and L is adaptable then the topological group
Aut(OLEK) is extremely amenable.

(iv) The Aut(LEK)-flow XC[L∗]E[K∗] is minimal iff K∗ and L∗ have OP
with respect to K and L respectively.

(v) XC[L∗]E[K∗] is the universal minimal Aut(LEK)-flow iff K∗ and L∗
have RP and OP with respect to K and L respectively.

Proof. Argue as in the proof of Theorem 6.4.

7. Finite topological spaces. We denote by T the class of finite topo-
logical spaces, and its elements by (X, τ) where τ is a topology on X.
A topology τ on a finite set X has a base {Ux : x ∈ X} where

Ux =
⋂
{U ∈ τ : x ∈ U},

and there is a binary relation ≤ on X such that for x, y ∈ X we have

x ≤ y ⇔ x ∈ Uy.

Clearly, the relation ≤ is transitive and reflexive, but it is not antisymmetric.
Consequently, ≤ is a quasi ordering on X and the pair (X,≤) is a qoset. In
this way we assign to each finite topological space a qoset. It is also possible
to make an assignment in the opposite direction. Let (Y,≤) be a qoset. Then
we have a collection U = {Uy : y ∈ Y } of sets such that

Uy = {z ∈ Y : z ≤ y}.
Clearly, U is a base of a topology onX. Note that this is a 1-1 correspondence
between the classes of finite topological spaces and of finite qosets. Instead
of examining the class of finite topological spaces with linear ordering we
may examine the class of finite qosets with linear ordering. Also, there is
no countable signature describing finite topological spaces, but we have a
countable signature describing finite qosets. We refer the reader to [14] and
[29] for more details about finite topological spaces.

Let Q be the class of finite qosets and P the class of finite posets. Ac-
cording to Definition 2.1 we have Q = EP.

For a given set A, the collection of all linear orderings on A is denoted
by lo(A). If ≤ is a given partial ordering on a set A, then the collection of
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all linear extensions of the partial ordering ≤ is denoted by le(≤). Then we
have the class of finite posets with linear orderings,

P1 = {(A,�,≤) : (A,�) ∈ P, ≤ ∈ lo(A)},
and the class of finite posets with linear extensions,

P2 = {(A,�,≤) ∈ P1 : ≤ ∈ le(�)}.
P is a Fräıssé class (see [23]), as also are P1 and P2 (see [25]), so by Lemmas
3.3 and 3.5. Q = EP and Q0 = OEP are Fräıssé classes. If we take K∗ =
P1 or K∗ = P2 then by Definition 2.3 we get classes Q1 = CE [P1] and
Q2 = CE [P2] which are also Fräıssé by Lemma 3.7. Note that we have three
reasonable Fräıssé ordered expansions of the classQ:Q0,Q1 andQ2. We also
have the corresponding Fräıssé limits: Q, Q0, Q1, Q2 and their respective
automorphism groups G, G0, G1, G2. The class P1 does not have OP with
respect to P, but P2 does (see [25]).

Theorem 7.1.

(i) ([24], [25]) P1 is not a Ramsey class.
(ii) ([17], [20], [5], [24], [25]) P2 is a Ramsey class.

Applying the results of Sections 4 and 5 to the classes P, P1 and P2, we
obtain

Corollary 7.2.

(i) Q0 and Q1 are not Ramsey classes, but Q2 is a Ramsey class (see
[14]).

(ii) Q0 and Q1 do not have OP with respect to Q, but Q2 does.

From Theorem 6.4 we get topological implications:

Corollary 7.3.

(i) G2 is an extremely amenable group.
(ii) XQ2 is the universal minimal G-flow.

Remark 7.4. Without loss of generality, we may assume that the qoset
Q = (N,≤) has the set of natural numbers as underlying set. On N, we may
define the collection B = {Ux : x ∈ N} where Ux = {y ∈ N : y ≤ x}. Clearly,
B is a base of a topology T on N. The topological space (N, T ) contains any
finite topological space as subspace, but it does not contain all countable
topological spaces as subspaces because its weight is countable. The qosets
Q0, Q1 and Q2 may be viewed as the topological space (N, T ) with an
additional linear ordering, so Corollaries 7.2 and 7.3 can be stated in terms of
topological spaces. In this case G is actually the group of homeomorphisms
of the topological space (N, T ) with the pointwise topology, and G0, G1,
G2 are its subgroups.
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8. Finite metric spaces. We denote by M the class of finite metric
spaces with all distances in the set Q of rational numbers. ThenM may be
viewed as a class of finite structures in the signature L = {Ri}i∈Q, where
each Ri is a binary relational symbol. To a metric space (A, d) we assign a
structure (A, {RA

i }i∈Q) such that for all x, y ∈ A and all i ∈ Q we have

RA
i (x, y) ⇔ d(x, y) = i.

Adding linear orderings to finite metric spaces we obtain the class of finite
linearly ordered metric spaces:

M1 = {(A, {RA
i }i∈Q,≤) : (A, {RA

i }i∈Q) ∈M, ≤ ∈ lo(A)}.
By Definition 2.1 the class R = EM corresponds to the class of finite pseu-
dometric spaces with rational distances. Definition 2.2 gives us the class
R0 = OEM of linearly ordered finite pseudometric spaces. If we take
K∗ = M1 then by Definition 2.3 we get the class R1 = CE [M1] of con-
vex linearly ordered pseudometric spaces. It is known that M and M1 are
Fräıssé classes (see [11]) such that M1 is a Ramsey class with OP with re-
spect toM (see [13]). Lemmas 3.3, 3.5 and 3.7 imply that R, R0 and R1 are
Fräıssé classes with limits R, R0 and R1 respectively. The automorphism
groups of R, R0 and R1 are H, H0 and H1 respectively, and the results of
Sections 4 and 5 give us the following.

Corollary 8.1.

(i) R1 is a Ramsey class, but R0 is not.
(ii) R1 has OP with respect to R, but R0 does not.

We also have a topological implication of Theorem 6.4.

Corollary 8.2.

(i) H1 is an extremely amenable group.
(ii) XR1 is the universal minimal H-flow.

In the rest of this section we will show thatM is an adaptable class. For
this we need to consider more classes. Let n be a natural number and let
{Ii}ni=1 be a list of unary relational symbols. We denote by In the class of
structures of the form (A, {IAi }ni=1) such that for all 1 ≤ i, i′ ≤ n we have:

• A =
⋃n

i=1{a ∈ A : IAi (a)}.
• i 6= i′ ⇒ {a ∈ A : IAi (a)} ∩ {a ∈ A : IAi′ (a)} = ∅.
We consider:

• OIn, the class of structures of the form (A, {IAi }ni=1,≤A) such that
(A, {IAi }ni=1) ∈ In and ≤ ∈ lo(A).

• Mn, the class of structures of the form (A, {RA
i }i∈Q, {IAi }ni=1,≤A) such

that (A, {RA
i }i∈Q,≤A) ∈M1 and (A, {IAi }ni=1,≤A) ∈ OIn.



214 M. Sokić

Loosely speaking, In is the class of finite sets partitioned into at most n
labeled parts, OIn is the class of linearly ordered structures from In, and
Mn is the class of finite linearly ordered metric spaces partitioned into at
most n labeled parts. We use the following result in order to prove adapt-
ability for M.

Lemma 8.3. For any natural number n ≥ 1, Mn is a Ramsey class.

Proof. Our proof is based on the technique developed in Section 3 of [27].
This technique gives a method of obtaining a new Ramsey class from two
Ramsey classes. We present the main steps of the proof and leave the easy
verifications to the reader.

Fix a natural number r > 1, and let A = (A, {RA
i }i∈Q, {IAi }ni=1,≤A) and

B = (B, {RB
i }i∈Q, {IBi }ni=1,≤B) be structures from Mn such that

(
B
A

)
6= ∅.

We consider the structures A1 = (A, {RA
i }i∈Q,≤A), A2 = (A, {IAi }ni=1,≤A),

B1 = (B, {RB
i }i∈Q,≤B) and B2 = (B, {IBi }ni=1,≤B). We noticed earlier

in this section that M1 is a Ramsey class; now we observe that OIn
is also a Ramsey class by Theorem 4.8. By Theorem 4.3 there is a pair
(C1,C2) of structures such that C1 = (C1, {RC1

i }i∈Q,≤C1) ∈ OIn, C2 =

(C2, {RC2
i }i∈Q,≤C2) ∈M1 and

(C1,C2)→ (B1,B2)(A1,A2)
r .

In the following we define a structure C = (C, {RC
i }i∈Q, {ICi }ni=1,≤C) ∈Mn

on C = C1×C2. Let (c1, c2) and (c′1, c
′
2) be in C. Let q be a positive rational

number and let i be an integer such that 1 ≤ i ≤ n. Then we define:

• ICi ((c1, c2)) ⇔ IC1
i (c1).

• (c1, c2) ≤C (c′1, c
′
2) ⇔ (c1 <

C1 c′1 or (c1 = c′1 and c2 ≤C2 c′2)).
• RC

q ((c1, c2), (c′1, c
′
2)) ⇔ ((c2 6= c′2 and RC2

q (c2, c
′
2)) or (c2 = c′2 and

c1 6= c′1 and q = m) or (c1 = c′1 and c2 = c′2 and q = 0), where m is
the minimal nonzero distance between points in C2.

We leave it to the reader to verify that C is a structure inMn. Clearly OIn
andM1 are linearly ordered structures. Moreover (B1,B2) and (A1,A2) are
balanced sequences of structures (see the beginning of Section 3 in [27]). It
is easy to see that C with (C1,C2) has the diagonal property (see Section 3
in [27]). Finally, all requirements of Lemma 3 in [27] are satisfied. In the
conclusion of Lemma 3 in [27] we have the structures C�∆((B1,B2)) and
C�∆((A1,A2)) which are isomorphic to B and A respectively (see Section 3
in [27] for the definition of ∆(. . .)). This shows

C→ (B)A
r ,

which completes the proof of the Ramsey property for Mn.

Proposition 8.1. M is an adaptable class.
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Proof. We fix natural numbers n, r ≥ 1 and show that OMn has RP.
Let A = (A, {IAi }ni=1, {RA

i }i∈Q,≤A) and B = (B, {IBi }ni=1, {RB
i }i∈Q,≤B)

be structures from OMn such that
(
B
A

)
6= ∅. We consider structures A1 =

(A1, {RA1
i }i∈Q, {I

A1
i }ni=1,≤A1) and B1 = (B1, {RB1

i }i∈Q, {I
B1
i }ni=1,≤B1) in

Mn such that for all 1 ≤ i, i′ ≤ n, a, a′ ∈ A1, and b, b′ ∈ B1 we have:

• A1 = A, B1 = B.

• IA1
i = IAi , IB1

i = IBi .

• ≤A1 = ≤A, ≤B1 = ≤B.

• If IA1
i (a), IB1

i (b), IA1
i′ (a′), IB1

i′ (b′) then

RA1
q (a, a′) ⇔ ((i = i′ and RA

q (a, a′)) or (i 6= i′ and q = m)),

RB1
q (b, b′) ⇔ ((i = i′ and RB

q (b, b′)) or (i 6= i′ and q = m)),

wherem is a rational number strictly greater than any defined non-zero
distance between points in A and between points in B.

Since A1 and A have common underlying set, as also do B1 and B, we
have the following observation:

(N) An embedding of A1 into B1 is an embedding of A into B and vice
versa.

By Lemma 8.3 there is C1 = (C1, {RC1
i }i∈Q, {I

C1
i }ni=1,≤C1) ∈Mn such that

C1 → (B1)A1
r . We consider a structure C = (C, {ICi }ni=1, {RC

i }i∈Q,≤C) ∈
OMn such that for all 1 ≤ i, i′ ≤ n, a, a′ ∈ C, and q ∈ Q we have:

• C = C1.

• ICi = IC1
i .

• ≤C = ≤C1 .

• If ICi (a) and ICi (a′) then RC
q (a, a′)⇔ RC1

q (a, a′).

We claim that

C→ (B)A
r .

In order to check this let

χ :
(
C
A

)
→ {1, . . . , r}

be a given coloring. Then we have an induced coloring

χ1 :
(
C1

A1

)
→ {1, . . . , r}

such that χ1(A′1) = χ(A′) where A′ is a substructure of C which has the

same underlying set as A′1. Then there is B′1 ∈
(
C1

B1

)
such that

χ1�
(B′1
A1

)
= const.
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If B′ is substructure of C which has the same underlying set as B′1, then by
the property (N) we have

χ�
(
B′

A

)
= const.

This completes the verification that for a given n, OMn is a Ramsey class.
Since this is satisfied for all natural n we conclude that M is an adaptable
class.

Now we consider the class G of finite graphs. It is a class in the sig-
nature {E} where E is a binary relational symbol. We denote by Gn the
class of structures of the form (A,EA, {IAi }ni=1,≤A) where (A,EA) ∈ G and
(A, {IAi }ni=1,≤A) ∈ OIn. As a special case of Theorem 4.8 we have the
following.

Lemma 8.4 ([1]). For any natural number n ≥ 1, Gn is a Ramsey class.

Using the same arguments as in the proof of Proposition 8.1 we prove
the following.

Proposition 8.2. G is an adaptable class.

In the following we apply adaptability.

Corollary 8.5.

(i) OP2EM, OP2EG, OM1EM, OM1EG are Fräıssé classes with lim-
its OP2EM, OP2EG, OM1EM, OM1EG respectively.

(ii) All the classes from (i) have RP.
(iii) The topological groups Aut(OP2EM), Aut(OP2EG), as well as

Aut(OM1EM), Aut(OM1EG), are extremely amenable.

Proof. (i) This follows from the results in Section 3.
(ii) This follows from Theorem 4.11, Proposition 8.1 and Proposition 8.2.
(iii) This follows from Theorem 6.5(iii) and from (i) and (ii).

9. Finite ultrametric spaces. Let S 6= ∅ be a subset of (0,∞). We
denote by US the class of finite ultrametric spaces with all distances in S. As
in the case of metric spaces, we may view US as a class of finite structures in
the signature L = {Rs}s∈S , where each Rs is a binary relational symbol. To
each ultrametric space (A, d) we assign a structure (A, {RA

s }s∈S) in the same
way as we assign such a structure to each metric space. For each countable
set S, US is a Fräıssé class with limit US (see [18] and [19]). Note that MS

is not necessarily a Fräıssé class. Let A = (A, d) ∈ US and s ∈ S. Then open
balls of radius s form a partition of A. We say that a linear ordering ≤ on
A is convex if for every a ∈ A and every s ∈ S the open ball with center
a and radius s is an interval with respect to ≤. We denote by co(A) the
collection of all convex linear orderings on the ultrametric space A. Adding
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convex linear orderings to finite ultrametric spaces with all distances in S
we obtain the class

CUS = {(A, {RA
s }s∈S ,≤) : (A, {RA

s }s∈S) ∈ US , ≤ ∈ co((A, {RA
s }s∈S))}.

By Definition 2.1 we obtain the class NS = EUS of finite pseudoultametric
spaces with distances in S. Definition 2.2 give us the class NS0 = OEUS of
linearly ordered finite pseudoultrametric spaces with distances in S. If we
take K∗ = CUS then by Definition 2.3 we obtain the class NS1 = CE [CUS ] of
convex linearly ordered pseudoultrametric spaces. It is known that US and
CUS are Fräıssé classes (see [18] and [19]) such that CUS is a Ramsey class
with OP with respect to US . Lemmas 3.3, 3.5 and 3.7 imply that NS , NS0

and NS1 are Fräıssé classes with limits NS , NS0 and NS1 respectively. The
results of Sections 4 and 5 give us the following.

Corollary 9.1.

(i) NS1 is a Ramsey class.
(ii) NS1 has OP with respect to NS.

We also have topological consequences of Theorem 6.4:

Corollary 9.2.

(i) Aut(NS1) is an extremely amenable group.
(ii) XNS1

is the universal minimal Aut(N)-flow.

We now give a new proof that CUS is a Ramsey class using our approach.
First, we note that it is enough to show that CUS is a Ramsey class for S
finite. Suppose S = {s0 < s1 < · · · < sn} and S′ = S \ {s0}. It is sufficient
to show that the Ramsey property for CUS′ implies the Ramsey property
for CUS . Note that structures from EUS′ may also be viewed as structures
from US , every equivalence class being an open ball of radius s0. If we take
K∗ = CUS′ then by Definition 2.3 we obtain the class O∗EUS′ of convex
linearly ordered pseudoultrametric spaces. Note that we may view O∗EUS′

as the class CUS . Then by the result of Section 4 we see that CUS is a Ramsey
class. It remains to note that for S with |S| = 1, the Ramsey property of
CUS follows from the classical Ramsey theorem.

Remark 9.3. If there is q such that 0 < q ≤ inf S, then taking T =
S ∪ {q}, we can view EUS as the class UT of ultrametric spaces.

10. Chains. Let D =
⋃∞

i=1{i} ×Q and let D = (D,≤) be a poset such
that for all (i, p) and (j, q) from D we have

(i, p) ≤ (j, q) ⇔ (i = j and p ≤ q).
We denote by D the class of all finite posets isomorphic to some subposet
of D. Let A = (A,≤) be a poset in D, and let � ∈ lo(A). We say that � is
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convex on A if for all x, y, z ∈ A we have

(x � y � z and x ≤ z) ⇒ x ≤ y ≤ z.
This means that � agrees with ≤ on every maximal chain in A and makes
every maximal chain into an interval. We denote by co(A) the collection of
convex linear orderings on A. Adding convex linear orderings to structures
from D we obtain the class

OD = {(A,≤,�) : (A,≤) ∈ D, � ∈ co((A,≤))}.
It is shown in [23] that D is a Fräıssé class, and in [26] that OD is a Fräıssé
class with the Ramsey property.

By Definition 2.1 we obtain the class J = ED. Definition 2.2 gives us the
class J0 = OED of linearly ordered structures from J . If we take K∗ = OD
then by Definition 2.3 we obtain the class J1 = CE [OD] of convex linearly
ordered structures from J . Lemmas 3.3, 3.5 and 3.7 imply that J , J0 and
J1 are Fräıssé classes with limits J, J0 and J1 respectively. The results of
Sections 4 and 5 give us the following.

Corollary 10.1.

(i) J1 is a Ramsey class.
(ii) J1 has OP with respect to J .

We also have the following topological consequences of Theorem 6.4.

Corollary 10.2.

(i) Aut(J1) is an extremely amenable group.
(ii) XJ1 is the universal minimal Aut(J)-flow.

Remark 10.3. We have the topological group isomorphism Aut(J) ∼=
SN
∞oAut(D) where S∞ is the group of permutations of the natural numbers.

Note that if we drop the equivalence relation from the structure J then the
resulting structure is not isomorphic to D because it does not have the
extension property of the Fräıssé structure D.
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[15] J. Nešetřil and V. Rödl, Partitions of finite relational and set systems, J. Combin.
Theory Ser. A 22 (1977), 289–312.
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