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Characterizing the powerset by a complete (Scott) sentence
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Abstract. This paper is part II of a study on cardinals that are characterizable by a
Scott sentence, continuing previous work of the author. A cardinal κ is characterized by
a Scott sentence φM if φM has a model of size κ, but no model of size κ+.

The main question in this paper is the following: Are the characterizable cardinals
closed under the powerset operation? We prove that if ℵβ is characterized by a Scott
sentence, then 2ℵβ+β1 is (homogeneously) characterized by a Scott sentence, for all 0 <
β1 < ω1. So, the answer to the above question is positive, except the case β1 = 0 which
remains open.

As a consequence we derive that if α ≤ β and ℵβ is characterized by a Scott sentence,

then ℵℵβ+β1
α+α1

is (homogeneously) characterized by a Scott sentence, for all α1 < ω1 and
0 < β1 < ω1. Hence, depending on the model of ZFC, we see that the class of characteriz-
able and homogeneously characterizable cardinals is much richer than previously known.
Several open questions are mentioned at the end.

1. Introduction. This is part II of a study on cardinals that are char-
acterizable by a Scott sentence. We refer the reader to [6] for more details
and background information. The main question we try to answer in this
paper is the following: Are the characterizable cardinals closed under the
powerset operation?

We give a positive answer for all cardinals of the form 2ℵβ+β1 , where ℵβ
is characterized by a Scott sentence and 0 < β1 < ω1. The case β1 = 0
remains open. The main construction is contained in Theorem 4.1: Given a
cardinal ℵβ that is characterized by a Scott sentence, we prove that 2ℵβ+1

is also characterized by a Scott sentence. The idea is to create a complete
graph whose edges are ℵβ+1-colored and which “mimics” the behavior of
2ℵβ+1 (cf. Property 4.4 below). This will ensure that the graph cannot have
size greater than 2ℵβ+1 and the theorem follows.
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Throughout the paper we work only with countable languages, but we
do not restrict ourselves to relational languages only.

Basic definitions. We start by mentioning the basic definitions.

Definition 1.1. We say that an Lω1,ω-sentence φ characterizes ℵα, or
that ℵα is characterizable, if φ has models in all cardinalities up to ℵα, but
not in cardinality ℵα+1. If φ is the Scott sentence of a countable model (or
any other complete sentence), we say that it completely characterizes ℵα,
or that ℵα is completely characterizable. Denote by CHω1,ω the set of all
completely characterizable cardinals.

W. Hanf proved in [2] that there exists a cardinal, denoted by H(Lω1,ω),
such that if an Lω1,ω-sentence has a model in cardinality H(Lω1,ω), then it
has models in all cardinalities. H(Lω1,ω) is called the Hanf number for Lω1,ω

and it is equal to iω1 . So, CHω1,ω ⊂ iω1 and from now on we only consider
cardinals below iω1 . We will also restrict ourselves to cardinals that are
completely characterizable, and we may refer to them as just characterizable
cardinals.

Definition 1.2. If P is a unary predicate symbol, we say that it is
completely homogeneous for the L-structure A if PA = {a | A |= P (a)} is
infinite and every permutation of it extends to an automorphism of A.

If κ is a cardinal, we will say that κ is homogeneously characterizable by
(φκ, Pκ) if φκ is a complete Lω1,ω-sentence and Pκ is a unary predicate in
the language of φκ such that

• φκ does not have models of power > κ,
• if M is the (unique) countable model of φκ, then Pκ is infinite and

completely homogeneous for M and
• there is a model A of φκ such that PAκ has cardinality κ.

Denote the set of all homogeneously characterizable cardinals by HCHω1,ω.

Obviously, HCHω1,ω ⊂ CHω1,ω and in [3] Hjorth proved that ℵ0 ∈
CHω1,ω \HCHω1,ω. So, HCHω1,ω is a proper subset of CHω1,ω and it is open
whether there is another example in CHω1,ω \ HCHω1,ω besides ℵ0.

In the same paper [3] Hjorth also proved that the class of characterizable
cardinals is closed under successors and countable unions, i.e. if ℵα ∈ CHω1,ω

and β < ω1, then ℵα+β ∈ CHω1,ω. This means that characterizable cardinals
come in clusters of length ω1.

Definition 1.3. A cardinal ℵα ∈ CHω1,ω is called the head of a cluster
if we cannot find ordinals β, γ such that

• ℵγ ∈ CHω1,ω,
• β < ω1, and
• ℵα = ℵγ+β.
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It is immediate that all characterizable cardinals are of the form ℵα+β,
where ℵα is the head of a cluster and β < ω1.

2. Fräıssé construction. We describe briefly a Fräıssé-type construc-
tion which we will use in Section 4. Definition 2.1 is an expanded version
of a similar definition in [7] and the theorems that follow Definition 2.1 are
from [7] too. The interested reader should refer there for more details on the
proofs (1).

In Definition 2.1 we work with a relational vocabulary τ . If τ is not
relational and M is a τ -structure, replace all constant symbols c ∈ τ by
corresponding (unary) predicate symbols Pc and all function symbols f of
arity n by predicate symbols Pf of arity n+ 1 and stipulate:

• PMc (x) iff cM = x, and
• PMf (~x, y) iff fM(~x) = y.

So, without loss of generality assume that τ is a relational vocabulary.

Definition 2.1. Fix a relational vocabulary τ and a τ -modelM. Let M
be a unary predicate not in τ and ? be a constant symbol not in τ . Abusing
notation, ? denotes both the constant symbol and its interpretation, which
we now fix to be some element not in M.

(1) Let τ ′ be a (not necessarily relational) vocabulary such that τ ′ ⊃
τ ∪ {M,?} and let A ⊃ (M∪ {?}) be a τ ′-model. Call A a model
over M (write “model/M”) if all the following hold:

(a) For any x ∈ A, A |= M(x) iff x ∈M.
(b) If R ∈ τ , then the interpretation of R is retained on M and is

void outside of M. That is, for any tuple ~x ∈ A, A |= R(~x) iff
~x ∈M and M |= R(~x).

(c) If f is a function symbol in τ ′ \τ , then f is of interest only when
defined on tuples ~a ∈ A\M. If ~a contains an element inM, then
let f(~a) = ?. Other than that, we make no use of the constant
symbol ?.

(2) LetA be a model/M andA0 ⊂ A. Denote by 〈A0〉 the τ ′-substructure
of A generated by A0. If B = 〈A0 ∪M〉, where A0 is a finite subset
of A\M , then B will be called finitely generated over M. Abbrevi-
ate “finitely generated over M” as “finitely generated/M”. Similar
abbreviations apply below too.

(1) As mentioned in [7] too, these theorems are straightforward generalizations of
Fräıssé’s theorems in the context of “finitely generated over M structures”. Hjorth [3]
used similar constructions, as did Laskowski and Shelah [5]. The proofs of Theorems 2.2
and 2.3 follow the proofs of the original Fräıssé theorems. So, our effort was in organizing
into a unique framework tools that other authors have used before.
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(3) If A0 ⊂ A1 are two models/M, and A0 is a τ ′-substructure of A1,
then A0 is called a substructure over M of A1, written A0 ⊂M A1.
If f : A0 → A1, f |M = idM and f(A0) ⊂M A1, then f is called
an embedding overM of A0 into A1. Again, “substructure/M” and
“embedding/M” are the obvious abbreviations.

(4) If A0,A1 are two models/M, then A0,A1 are isomorphic over M,
denoted by A0

∼=M A1, if there exists an isomorphism i : A0 → A1

such that i|M = idM. If A0 = A1, then every isomorphism over
M will be called an automorphism over M. A partial function
i between A0 and A1 is a partial isomorphism over M if M ⊂
dom(i) and i is an isomorphism/M between dom(i) and range(i).
“Isomorphism/M”, “automorphism/M” and “partial isomor-
phism/M” are again the obvious abbreviations.

(5) If A0,A1 are two models/M, they will be called back-and-forth-
equivalent overM (abbreviated as “back-and-forth equivalent/M”)
if there is a back-and-forth system of partial isomorphisms/M be-
tween A0 and A1.

(6) If in the usual Joint Embedding Property (JEP) and Amalgamation
Property (AP) “embeddings” are replaced by “embeddings/M”, we
get the Joint Embedding Property overM (JEP/M) and the Amal-
gamation Property over M (AP/M) respectively.

Conventions and notation. For the rest of the paper, JEP and AP
denote JEP/M and AP/M respectively.

Let M |τ |= φ denote the fact that for all τ ′-structures A the inter-
pretation of the predicate M in A restricted to the vocabulary τ satisfies
the sentence φ. If φ is an Lω1,ω-sentence, then M |τ |= φ can be expressed
by an Lω1,ω-sentence. If A is a τ ′-structure, then for the rest of the paper
M(A) =M and M(A) |= φ will denote that M(A)|τ =M and M(A)|τ |= φ
respectively, although sometimes we will include the subscripts for empha-
sis.

The key observation is that Fräıssé’s theorems hold even in the context
of finitely generated/M substructures.

Theorem 2.2. Fix a countable model M and let K(M) be a count-
able collection of finitely generated/M structures (up to isomorphism/M).
If K(M) has the Hereditary Property (HP), the Joint Embedding Prop-
erty (JEP) and the Amalgamation Property (AP), then there is a countable
structure F which we will call the Fräıssé limit of K(M) such that

(1) F is a model/M and is unique up to isomorphism/M,
(2) K(M) is the collection of all finitely generated/M substructures of
F (up to isomorphism/M), and
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(3) every isomorphism/M between finitely generated/M substructures
of F extends to an automorphism/M of F .

The converse is also true, i.e. if F is a countable model/M such that every
isomorphism/M between finitely generated/M substructures of F extends
to an automorphism/M of F and K(M) is the collection of all finitely
generated/M substructures of F , then K(M) has the HP, JEP and AP.

We will use the notation limK(M) when referring to the Fräıssé limit.

Proof. Both Theorems 2.2 and 2.3 follow from the corresponding proofs
of the original theorems of Fräıssé by obvious modifications. One can con-
sult [4] for more details.

Theorem 2.3. Fix a model M. Assume that A,B are two (not neces-
sarily countable) models/M such that

• for any finitely generated/M substructures C ⊂ D of A (or of B),
and every embedding/M f : C 7→ A (resp. f : C 7→ B), there is an
embedding/M g : D 7→ A (resp. g : D 7→ B) that extends f , and
• the collection of all finitely generated/M substructures of A (up to

isomorphism/M) is the same as the set of all finitely generated/M
substructures of B (up to isomorphism/M).

Then A and B are back-and-forth equivalent/M. In particular, A and B are
back-and-forth equivalent and A ≡∞,ω B.

We now give a slightly different version of Theorem 2.2 that will be more
fitting to work with in the next section.

Theorem 2.4. Fix a countable model M and let φM be its Scott sen-
tence. Let ψ be an Lω1,ω(τ ′)-sentence all whose models are finitely generated
substructures over some model of φM (2). Let K(M) be the collection (up
to isomorphism/M) of all finitely generated/M structures that satisfy ψ.
If K(M) is countable and satisfies the HP, JEP and AP, then the Fräıssé
limit F of K(M) satisfies the conjunction of:

(I)M Every finitely generated/M substructure satisfies ψ.
(II)M For every finitely generated/M substructure A0, if A1 ⊃ A0 and

A1 satisfies ψ, then there exists some finitely generated/M sub-
structure B and an isomorphism i : B ∼= A1 such that A0 ⊂ B
and i|A0 = id.

Moreover, the conjunction of (I)M and (II)M can be written as an Lω1,ω-
sentence and if A is a countable model/M that satisfies this conjunction,
then A is isomorphic/M to F .

(2) This can be expressed by M |τ |= φM.
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Proof. The fact that F satisfies the conjunction of (I)M and (II)M fol-
lows from Theorem 2.2. The proof that (I)M ∧ (II)M can be written as an
Lω1,ω-sentence is straightforward, given the assumptions on ψ. The proof
that A is isomorphic to F is a standard back-and-forth (over M) argu-
ment.

Corollary 2.5. Fix a countable modelM, let φM be its Scott sentence
and letM′ be another countable model of φM. Let ψ be an Lω1,ω(τ ′)-sentence
all of whose models are finitely generated substructures over some model
of φM. For any model N of φM, let K(N ) be the collection of all finitely
generated/N structures (up to isomorphism/N ) that satisfy ψ. Assume that
K(M) is countable and satisfies the HP, JEP and AP. Then:

(a) limK(M) ∼= limK(M′), and
(b) if A is a countable model/M′ that satisfies (I)M′ ∧ (II)M′, then A ∼=

limK(M).

Proof. (a) It is immediate by the assumptions that K(M′) is also count-
able and satisfies the HP, JEP and AP.

Let i witness that M∼=M′ and let ĩ be the following mapping:

ĩ(x) =

{
x if x ∈ limK(M) \M,

i(x) if x ∈M.

Obviously, ĩ(limK(M)) is a countable structure/M′ that satisfies both
(I)M′ and (II)M′ . By Theorem 2.4, it is isomorphic to limK(M′), and part
(a) follows.

(b) is immediate from (a) and Theorem 2.4.

We need a bit more. Assume M, φM,M′, ψ,K(M) are as in Corollary
2.5 and consider the following variation of (I)M and (II)M, the difference
being that finitely generated substructures are over the (interpretation of
the) predicate M :

(I) Every finitely generated/M substructure satisfies ψ.
(II) For every A0 finitely generated/M substructure, if A1 ⊃ A0 and A1

satisfies ψ, then there exists some finitely generated/M substructure
B and an isomorphism i : B ∼= A1 such that A0 ⊂ B and i|A0 = id.

It is immediate that any model of (I)M∧(II)M will also satisfy (I)∧(II) and
the same is true for all models of (I)M′ ∧ (II)M′ . By Corollary 2.5(b), the
conjunction of (I) ∧ (II) with M |τ |= φM yields a complete sentence. In ad-
dition, it is expressible in Lω1,ω that a substructure is finitely generated/M ,
which makes (I)∧ (II)∧M |τ |= φM an Lω1,ω-sentence. Consequently, all its
models (countable or uncountable) are ≡ω1,ω-equivalent to each other.
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Corollary 2.6. Let M, φM, ψ,K(M) be as in Corollary 2.5 and let
N be another model of φM (possibly uncountable). If A is a model/N that
satisfies (I) ∧ (II), then A is ≡∞,ω-equivalent to limK(M).

Proof. By the comments before the corollary.

If M is a countable model whose Scott sentence φM characterizes a
certain cardinal κ, we will use the Scott sentence of limK(M) to characterize
some cardinal λ ≥ κ. In order to construct (uncountable) models of the Scott
sentence of limK(M) we will use the following theorem.

Theorem 2.7. Let M, φM, ψ,K(M) be as in Corollary 2.5 and assume
that φM characterizes an infinite cardinal κ, N is a model of φM, and λ is
a cardinal ≥ κ. Moreover, assume that:

(1) The number of finitely generated substructures/N (up to isomor-
phism/N ) that satisfy ψ is ≤ λ. In particular, if A is a finitely
generated/N structure, then there are ≤ λ many (non-isomor-
phic/N ) structures/N that satisfy ψ and extend A.

(2) For every a model/N G such that

|G \M(G)| < λ, G satisfies (I)N ,

and for any finitely generated/N structures A0, A1 with

A0 ⊂ G, A1 ⊃ A0, and A1 satisfies ψ,

there exists some model/N G′ ) G such that

|G′ \M(G)| < λ, G′ satisfies (I)N

and there is some finitely generated/N structure B ⊂ G′ and an
isomorphism i : B ∼= A1, with A0 ⊂ B and i|A0 = id.

Then there exists a model/N G∗ with |G∗ \M(G)| = λ and G∗ satisfies (I)N
and (II)N . By Theorem 2.6, G∗ also satisfies the Scott sentence of limK(M).

Notice that in part (1) of Theorem 2.7, the number of non-isomorphic
structures in K(N ) is allowed to be strictly less than λ. Actually, in the
construction of Section 4 the number of non-isomorphic structures in K(N )

will be κ+, while the size of G∗ will be 2(κ
+), i.e. λ = 2(κ

+). Also, notice that
the structure G′ in part (2) is required to be strictly bigger than G.

3. Known theorems. This section contains certain known theorems
about characterizable cardinals. They are quoted from [1], [3], [6] and [7].

Theorem 3.1 ([6, Theorem 3.4]). If λ ∈ CHω1,ω, then λω ∈ HCHω1,ω.

Corollary 3.2 ([6, Corollary 3.6]). If κ is an infinite cardinal and
λκ ∈ CHω1,ω, then λκ ∈ HCHω1,ω.
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Theorem 3.3 ([6, Theorem 3.7]). If ℵℵβα ∈ CHω1,ω, then for all γ < ω1,

ℵℵβα+γ ∈ HCHω1,ω.

From [1] we have the following theorem, which also appears in [6].

Theorem 3.4 (Baumgartner). If κ ∈ HCHω1,ω, then 2κ ∈ HCHω1,ω.

The following two theorems can be derived from [3] and appear in [6]
and [7] (3) respectively.

Theorem 3.5 (Hjorth). Whenever ℵαn, n ∈ ω, is a non-decreasing se-
quence of cardinals in CHω1,ω, then ℵλ = supℵαn is also in CHω1,ω.

Theorem 3.6 (Hjorth). If κ ∈ CHω1,ω, then at least one of the following
holds:

(1) κ+ ∈ HCHω1,ω, or
(2) there is a countable model M in a language that contains a unary

predicate P and a binary predicate < and whose Scott sentence φ0

(a) has no models of cardinality κ++,
(b) does have a model of cardinality κ+,
(c) in every model of φ0, < is a dense linear order without endpoints,
(d) in every model N of φ0 of size κ+, every initial segment of

(PN , <N ) has size ≤ κ.

With all these in place we are ready to prove some new theorems.

4. Powersets

Theorem 4.1. If κ ∈ CHω1,ω, then 2(κ
+) ∈ HCHω1,ω.

We will split the proof into a series of lemmas and theorems. By Corollary
3.2, if 2(κ

+) ∈ CHω1,ω, then 2(κ
+) is also in HCHω1,ω. So, it suffices to prove

2(κ
+) ∈ CHω1,ω.
By Theorem 3.6 we have to consider two cases. If κ+ ∈ HCHω1,ω the

result is immediate from Theorem 3.4. If this is not the case, then there
exists a countable model M as in part (2) of Theorem 3.6. That is, if φ0 is
the Scott sentence ofM, then the language of φ0 contains a unary predicate
P and a binary predicate < and if N is any model of φ0, then

(a) |N | ≤ κ+,
(b) (PN , <N ) is a dense linear ordering without endpoints that has size
≤ κ+, and

(c) for every m ∈ PN , the initial segment {m1 ∈ PN | m1 <
N m} has

size ≤ κ.

(3) The formulation of Theorem 3.6 as it appears here is slightly different than the
one in [7].
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Moreover, there is a certain model N for which equality holds true in all the
above properties.

Definition 4.2. For the rest of the proof, fix M and φ0 as in part (2)
of Theorem 3.6, and fix N that makes equality true for (a)–(c) above. Let
τ be the signature of φ0; it follows that τ ⊃ {P,<}.

The following is immediate from the definition of N and it will be used
later in the proof.

Fact 4.3. An increasing sequence in P (N ) is cofinal iff it has length
κ+.

Our goal is to construct a certain ψ ∈ Lω1,ω and let K(M) be the
collection of all finitely generated/M structures that satisfy ψ. By Lemma
4.9, K(M) will satisfy both the JEP and AP, while the HP is immediate. By
Theorem 2.4, K(M) has a (Fräıssé) limit, which we will call F . The Scott

sentence of F , called φF , witnesses that 2(κ
+) ∈ CHω1,ω, i.e. it does not have

any models of size > 2(κ
+) (Theorem 4.13), but it does have a model of

size 2(κ
+) (Theorem 4.14). This last assertion is established by considering

K(N ), the collection of all finitely generated structures/N that satisfy ψ,
and using Theorem 2.7.

The idea behind the construction is to try to mimic the behavior of the
powerset. If κ is an infinite cardinal and a, b ∈ 2κ, then let f(a, b) be the least
α ∈ κ such that a(α) 6= b(α). It is immediate that all distinct a, b, c ∈ 2κ

have the following property which we isolate.

Property 4.4. For distinct a, b, c ∈ 2κ, exactly two of f(a, b), f(a, c)
and f(b, c) are equal, while the third one is larger than the other two.

Property 4.4 can be expressed in Lω1,ω (indeed in Lω,ω) and is the one
that drives the whole construction. We will consider all elements of 2κ as
vertices of a complete graph V and we will color all the edges between them
using colors from a linearly ordered set M in such a way that Property 4.4
is satisfied. The symbol for the coloring function will be f .

Definition 4.5. Let τ be the signature of φ0 fixed by Definition 4.2.
Without loss of generality we assume that τ is a relational signature. If
this is not the case, work similarly to the comments before Definition 2.1.
Let V,M, f, ? be new symbols not in τ such that V (·),M(·) are new unary
predicate symbols, f is a new binary function symbol and ? is a new constant
symbol. Let τ ′ = τ ∪ {V,M, f}.

We will consider τ ′-structures A such that:

• A ⊃ M (M fixed by Definition 4.2) and A is a “model over M” (cf.
Definition 2.1). In particular, M(A) =M, M(A) |= φ0 and there are
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predicate symbols P and < in τ such that P (A) ⊂ M(A) and <A is
a linear order on P (A) which is void outside M(A).
• V (A) and M(A) (the interpretations of V and M in A respectively)

partition the whole universe.

We make the following convention.

Convention. P (A) = M(A). In general, P (A) is a subset of M(A).
Under this assumption, the whole M(A) becomes linearly ordered by <A (4).

Definition 4.6. Let ψ be the conjunction of the following:

(1) V ∪M partition the universe, V is finite and M |τ |= φ0. In particular,
there is a linear order < defined on a subset of M and following the
above convention, we will assume that < is a linear order on the
whole M . V will be seen as a set of vertices in a complete graph,
while M will be an ordered set of colors. Colors will be assigned to
edges.

(2) For all x, y, f(x, y) ∈ M and f(x, y) = f(y, x). If ∆ = {(v, v) |
v ∈ V }, then f is of interest only on V 2 \ ∆ and assume that for
all (x, y) /∈ V 2 \ ∆, f(x, y) = ?, where ? is a fixed value (cf. also
Definition 2.1). For a 6= b ∈ V , we think of f as assigning to the
edge (a, b) a color in M .

(3) For any distinct a0, a1, a2 ∈ V , if f(a0, a1) 6= f(a0, a2), then

f(a1, a2) = min{f(a0, a1), f(a0, a2)}.
Otherwise, f(a1, a2) > f(a0, a1) = f(a0, a2).

LetK(M) be the collection of all τ ′-structuresA (up to isomorphism/M)
such that A is a model overM (cf. Definition 2.1) and A |= ψ. In particular,
M(A) =M.

Notice that clause (3) is a reformulation of Property 4.4 and it is the
one that will require work to prove. Also, since the relations from τ are
void outside of M, the isomorphism type of any structure A in K(M) is
determined by the values of fA on the finite set V (A). Hence, there are only
|M|<ω = |M| many possibilities for f and we conclude:

Observation 4.7. The size of K(M) is the same as the size of M and
the same holds true if we replace M by any other model of φ0 (possibly
uncountable).

The following is also immediate.

(4) The convention that P (A) = M(A) is made for convenience. There is no problem
if we assume that P (A) is a strict subset of M(A), but this case would require a little
more work; namely in clause (2) of Definition 4.6, f(x, y) must be an element of P (not
M) for all x, y. In order to simplify the notation and not carry both predicates M and P
around, we assume that P (A) = M(A).
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Observation 4.8. If a, b, c are distinct elements in V , and f(a, b) = m,
then at least one of f(a, c), f(b, c) is ≤ m.

Lemma 4.9. K(M) satisfies the JEP and AP.

Proof. For the AP, let A,B, C ∈ K(M) with A ⊂ B, C. In particular,
M(A) = M(B) = M(C) =M. We can assume that B ∩ C = A and we aim
at making the union of B and C into a τ ′-structure in K(M). This entails
two steps: (1) Make B ∪ C into a τ ′-structure by defining f on pairs of the
form (b, c), b ∈ B, c ∈ C, and (2) prove that under this definition, B ∪ C
satisfies ψ. In particular, prove clause (3) of Definition 4.6. Without loss of
generality we can assume that

|V (B) \ V (A)| = |V (C) \ V (A)| = 1.

If this is not the case, we use (double) induction on |V (B) \ V (A)| and on
|V (C) \ V (A)|.

So, assume that V (B) \ V (A) = {b} and V (C) \ V (A) = {c}. We define
f(b, c) by cases: If there exists some a ∈ V (A) such that f(a, b) 6= f(a, c),
then let f(b, c) = min{f(a, b), f(a, c)}. If this is not the case, then f(a, b) =
f(a, c) for all a ∈ V (A). Let m be a value in M which is greater than all
elements in range(fB) ∪ range(fC) and assign f(b, c) = m.

A couple of comments before we proceed:

(a) In the above definition f(a, b) means fB(a, b) and f(a, c) means
fC(a, c). Since fA, fB and fC agree on all elements of V (A), su-
perscripts do not make any difference and will be omitted.

(b) Since V (B) and V (C) are finite, the same is true for range(fB) and
range(fC) and the existence of m in the second case is guaranteed
by the fact that (M, <) is a dense linear order without endpoints.

We now prove

Claim 4.10. The value of f(b, c) is well-defined.

Proof. Assume that there exists some a1 ∈ V (A) such that f(a1, b) 6=
f(a1, c) and let m1 = min{f(a1, b), f(a1, c)}. We have to prove that for all
other values a2 ∈ V (A), if f(a2, b) 6= f(a2, c), then

min{f(a2, b), f(a2, c)} = m1.

Towards a contradiction assume that there is some a2 ∈ V (A) such that
f(a2, b) 6= f(a2, c) and min{f(a2, b), f(a2, c)} 6= m1. Let m2 be min{f(a2, b),
f(a2, c)}. We will derive a contradiction in the case that m2 > m1 and
m1 = f(a1, b). The proofs in all other cases are similar.

Thus, a1, a2, b are all elements in V (B) and f(a1, b) = m1 < m2 ≤
f(a2, b). By assumption, B |= ψ, which implies that

f(a1, a2) = min{f(a1, b), f(a2, b)} = f(a1, b) = m1.
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By Observation 4.8, f(a1, a2) = m1 implies that one of f(a1, c), f(a2, c) has
value ≤ m1. But m1 < m2 ≤ f(a2, c). So, it must be that f(a1, c) ≤ m1.
If f(a1, c) = m1, then f(a1, b) = f(a1, c) = m1 which contradicts the
assumption that f(a1, b) 6= f(a1, c). If f(a1, c) < m1, then f(a1, c) <
min{f(a1, b), f(a1, c)}, which is also a contradiction. So, in either case we
get a contradiction, which proves that f(b, c) is well-defined.

Claim 4.11. Under the above definition of f(b, c), B∪C |= ψ. In partic-
ular, B ∪ C ∈ K(M).

Proof. Clauses (1) and (2) of Definition 4.6 are immediate and only
clause (3) requires some work. We have to prove that for all a1 ∈ V (A), if
f(a1, b) 6= f(a1, c), then f(b, c) = min{f(a1, b), f(a1, c)}. Otherwise, f(b, c)
> f(a1, b) = f(a1, c). We split the proof into two cases:

Case I: There is some a ∈ V (A) such that f(a, b) 6= f(a, c). Then
f(b, c) = min{f(a, b), f(a, c)}. Let a1 6= a be a different element in V (A).
If f(a1, b) 6= f(a1, c), then by the proof of the previous claim, f(b, c) =
min{f(a1, b), f(a1, c)}, which gives the result. If f(a1, b) = f(a1, c), we will
prove that f(b, c) > f(a1, b) = f(a1, c). Towards a contradiction, assume
that f(b, c) ≤ f(a1, b) = f(a1, c). Without loss of generality we also assume
that min{f(a, b), f(a, c)} = f(a, b); the other case is proved similarly. We
split the proof into two subcases:

Subcase I.1: f(b, c) = f(a1, b) = f(a1, c). It follows that f(a, b) =
min{f(a, b), f(a, c)} = f(b, c) = f(a1, b) = f(a1, c). Since B |= ψ and a, a1, b
are all elements in B such that f(a, b) = f(a1, b), we conclude that f(a, a1) >
f(a, b) = f(a1, b). Moreover, f(a, c) > f(a, b) = min{f(a, b), f(a, c)} =
f(b, c) = f(a1, c). Since C |= ψ and a, a1, c are all elements in C such
that f(a, c) > f(a1, c), we conclude that f(a, a1) = min{f(a, c), f(a1, c)} =
f(a1, c). Combining these two results together, f(a, a1) > f(a1, b) = f(a1, c)
= f(a, a1), a contradiction.

Subcase I.2: f(b, c) < f(a1, b) = f(a1, c). Again, it follows that f(a, b)
= min{f(a, b), f(a, c)} = f(b, c) < f(a1, b) = f(a1, c) and since B |= ψ
and a, a1, b are all elements in B such that f(a, b) < f(a1, b), we conclude
that f(a, a1) = min{f(a, b), f(a1, b)} = f(a, b). On the other hand, since
C |= ψ and a, a1, c are elements in C, by Observation 4.8, one of f(a, c) and
f(a1, c) must be ≤ f(a, a1). But f(a, c) > min{f(a, b), f(a, c)} = f(a, b) =
f(a, a1) and f(a1, c) > f(b, c) = f(a, b) = f(a, a1). So, both cases give a
contradiction.

Case II: For all a1 ∈ V (A), f(a1, b) = f(a1, c). Then f(b, c) is greater
than any value in range(fB) ∪ range(fC). In particular, f(b, c) > f(a1, b) =
f(a1, c) for all a1 ∈ V (A), which concludes the proof.
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Finally, for the JEP, let A = B ∩ C and work as in the proof of the AP.
If V (A) = ∅, while V (B) = {b} and V (C) = {c}, then range(fB)∪ range(fC)
is empty and assign f(b, c) to be any value. The details are omitted.

The fact that K(M) satisfies the HP is immediate and by Theorem 2.2,
the Fräıssé limit of K(M) exists.

Definition 4.12. Let F be the Fräıssé limit of K(M) (cf. Theorem 2.2),
where K(M) is the collection given by Definition 4.6. Then F is countable
and unique up to isomorphism/M.

Also let φF be the Scott sentence of F . By Theorem 2.4, φF is equivalent
to (I) ∧ (II) ∧M |τ |= φM.

By Corollary 2.5, the choice of M is not of importance and it can be
replaced by any other (isomorphic) model of φ0. However, if G is a (possibly
uncountable) model of φF , then M(G) |= φ0, and if G is countable, then

M(G) ∼= M. The Scott sentence φF is the one that witnesses that 2(κ
+) ∈

CHω1,ω, i.e. it does not have any models of size > 2(κ
+) (Theorem 4.13), but

it does have a model of size 2(κ
+) (Theorem 4.14).

Theorem 4.13. If G |= φF , then |G| ≤ 2(κ
+).

Proof. Towards a contradiction, assume, that G |= φF and |G| > 2(κ
+).

Without loss of generality, |G| = (2κ
+

)+ = (i1(κ
+))+. Since M(G) |= φ0 and

φ0 characterizes κ+, it must be that |M(G)| ≤ κ+, which further implies that
|V (G)| = (i1(κ

+))+. Hence, fG gives a function from [(i1(κ
+))+]2 to κ+.

By the Erdős–Rado theorem,

i1(κ
+)+ → (κ++)2κ+ ,

which also implies

i1(κ
+)+ → (3)2κ+ .

Applying this to fG we find that there is a homogeneous set of size 3, i.e.
there are a, b, c ∈ V (G) such that

fG(a, b) = fG(b, c) = fG(a, c),

which contradicts the way F was defined and the fact that G |= φF .

Theorem 4.14. There exists some G∗ |= φF such that |G∗| = 2(κ
+).

Proof. Let N be the model of φ0 fixed by Definition 4.2. In particular,

(a) |N | = κ+,
(b) (PN , <N ) is a dense linear ordering without endpoints that has size

equal to κ+, and
(c) for every m ∈ PN , the initial segment {m1 ∈ PN | m1 <

N m} has
size equal to κ.
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Following the convention right before Definition 4.6 we assume that <N is
a linear order on the whole N .

Let K(N ) be the collection of all τ ′-structures A (up to isomorphism/N )
such that A is a model over N and A |= ψ (cf. Definition 4.6). By Obser-
vation 4.7 the number of non-isomorphic/N structures in K(N ) is κ+ and
we will prove that K(N ) also satisfies assumption (2) of Theorem 2.7 for

λ = 2(κ
+), which will conclude the proof.

Thus, assume that G is a model over N such that

|G| < 2(κ
+) and G satisfies (I)N .

Also assume that A ⊂ G, A ⊂ B, A,B ∈ K(N ). Then we have to prove
that there is a structure G′ ) G that satisfies (I)N , and there is some C ⊂ G′
and i : B ∼= C with i|A = id.

Without loss of generality assume that V (B) \V (A) = {b}. If this is not
the case, proceed by induction on |V (B) \ V (A)|. We can also assume that
b /∈ G. If this is not the case, replace B by an isomorphic copy. Let G′ = G∪{b}
and define fG

′
to agree with fG on G and to agree with fB on B. This is

well-defined, since fG and fB agree on A, and with the exception of a couple
of instances, we will drop superscripts from f for the rest of the proof.

The goal is to:

(1) extend the definition of fG
′

on pairs of the form (b, v) for all v ∈
V (G) \ V (A)—then G′ becomes a τ ′-structure; and

(2) prove that any finitely generated/N substructure of G′ is in K(N ).
Equivalently, any finitely generated/N substructure of G′ satisfies ψ.
Clauses (1) and (2) of ψ are immediate, but clause (3) takes some
work again.

Part (1) of the goal is accomplished in two steps by Definitions 4.15 and
4.26. The latter definition involves certain sequences that we call selectors
(cf. Definition 4.20) and we will first prove some lemmas about selectors
before we can define fG

′
(b, v), v ∈ V (G) \ V (A).

Part (2) of the goal is the content of Lemma 4.27.
We begin with the following observation: Let b the unique element of

V (B)\V (A) and v some element in V (G)\V (A). Notice that the value f(b, v)
has not been defined yet. If there exists some a ∈ V (A) such that f(a, b) 6=
f(a, v), then the only way to define f(b, v) so that the substructure/N gen-
erated by a, b, v satisfies sentence ψ is to set f(b, v) = min{f(a, b), f(a, v)}.
The point is that we do not have freedom to select the value of f(b, v). We
can actually push this argument even further applying the same observation
ω many times.

Definition 4.15. Define the following sets:

• V0 = V (A).
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• Vn+1 = {v ∈ V (G) | ∃a ∈ Vn(f(a, b) 6= f(a, v))} for all n ∈ ω.
• Vω =

⋃
n Vn.

• W0 = V (G) \ Vω.

If v ∈ Vn+1, let f(b, v) = min{f(a, v), f(a, b)}, where a is given by the fact
that v ∈ Vn+1.

Under this definition we have extended the definition of fG
′

into the
whole Vω. We need to prove that it is well-defined and it actually satisfies
ψ as we intended to.

Claim 4.16. The value of f(b, v), for v ∈ Vω, is well-defined.

Proof. By induction on n and working as in the proof of Claim 4.10 of
Lemma 4.9. The details are left to the reader.

Claim 4.17. Any finitely generated/N substructure of Vω ∪{b} satisfies
sentence ψ (cf. Definition 4.6). In particular, there is an isomorphic/N copy
of it in K(N ).

Proof. Again, by induction on n and working this time as in the proof
of Claim 4.11 of Lemma 4.9.

It remains to define f(b, w) for w ∈W0.
We first observe that

(∗) W0 = {w ∈ V (G) | ∀a ∈ Vω, f(a, b) = f(a,w)}.
We work as before: Let b be the unique element of V (B) \V (A), w some

element in W0 and the value f(b, w) has not been defined yet. Since for
all a ∈ Vω, f(a, b) = f(a,w), the only way to define f(b, w) so that the
substructure/N generated by a, b, w satisfies sentence ψ is to set f(b, w) >
f(a, b) = f(a,w). That is, every a ∈ Vω imposes a restriction on each w ∈W
that f(w, b) must be defined greater than f(b, a) = f(a,w). On the face of it,
we have many restrictions to worry about, but in fact there are only finitely
many.

Claim 4.18. If m ∈M(G) is greater than f(b, a) for all a ∈ V (A) = V0,
then it is greater than f(b, v) for all v ∈ Vω =

⋃
n Vn.

Proof. By induction on n. Assume that this is true for Vn and that
v ∈ Vn+1 as witnessed by a ∈ Vn, i.e. f(a, b) 6= f(a, v). Then

f(b, v) = min{f(a, b), f(a, v)} ≤ f(a, b) < m.

The key point here is that these finitely many restrictions do not even
depend on w.

Definition 4.19. Let

m−1 := max{f(b, a) | a ∈ V0}.
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By (∗) it follows that

m−1 = max{f(a,w) | a ∈ V0, w ∈W0}

and we have to ensure that for all w ∈ W0, f(b, w) is defined greater than
m−1.

Before we define f(b, w) (Definition 4.26), we give some motivation: Let
v0 ∈ W0 be an arbitrary element, let m0 > m−1 and define f(b, v0) = m0.
Once f(b, v0) has been defined, if w is such that f(w, v0) 6= m0, then, arguing
as before, the substructure/N generated by b, w, v0 satisfies ψ only if we
define f(b, w) = min{f(b, v0) = m0, f(w, v0)}.

The only elements for which this argument does not apply are the el-
ements of the set A1 := {v ∈ W0 | f(v, v0) = m0}. If v ∈ A1, then
f(b, v0) = m0 = f(v0, v) and the substructure/N generated by b, v0, v satis-
fies ψ only if f(b, v) is defined greater than m0. We can continue in this fash-
ion, replacing W0 by A1 and m−1 by m0. Then select some v1 ∈ A1 and some
m1 > m0 and define f(b, v1) = m1 and f(b, w) = min{f(b, v1), f(v1, w)} for
all w ∈ A1 such that f(v1, w) 6= m1 and carry the elements of A2 := {v ∈
A1 | f(v, v1) = m1} to the next stage. Repeat this process κ+ many times,
selecting at every stage some mα greater than all previous mβ, β < α, some
vα ∈ Aα and letting Aα+1 := {v ∈ Aα | f(v, vα) = mα}. We stop when we
either find some α such that Aα = ∅, in which case we have defined fG

′
on

all pairs (b, v), v ∈ V (G)\V (A), and G′ is now a τ ′-structure, or we complete
κ+ many steps, in which case the mα’s form a cofinal sequence in N (cf.
Fact 4.3) and there is no room for repeating the process further. If after
κ+ many steps the intersection of all Aα, α < κ+, is empty, then we have
defined fG

′
on all pairs (b, v), v ∈ V (G)\V (A), making G′ into a τ ′-structure

again. Otherwise there is at least one element w ∈ W0 such that w ∈ Aα,
for all α < κ+, and it is impossible to define f(b, w) to be greater than all
mα, α < κ+. Therefore, this last case must be avoided and the motivation
behind selectors is to do exactly that.

More formally now:

Definition 4.20. A sequence ~A = 〈Aα, vα,mα〉 of length κ+ will be
called a selector if

• mα ∈M(G) = N and β < α→ mβ < mα,
• A0 = W0,
• Aγ =

⋂
α<γ Aα for γ limit ordinal,

• if Aα = ∅, then Aα+1 = ∅ and there is no restriction on vα, and
• if Aα 6= ∅, then vα must be an element of Aα and

Aα+1 = {v ∈ Aα | v 6= vα and f(v, vα) = mα}.



Characterizing the powerset by a complete (Scott) sentence 147

The selector will be called good if⋂
α<κ+

Aα = ∅.

Otherwise, it will be called bad.

It follows from the definition that the Aα’s form a decreasing sequence
of subsets of V (G), while all the mα’s form an increasing sequence in M(G).
We continue until we get the empty set, or we complete κ+ many steps.

The existence of a good selector is what we are after.

Lemma 4.21. For all selectors, |
⋂
α<κ+ Aα| ≤ 1.

Proof. This is obvious for good selectors, so let ~A be a bad selector
with a0, a1 ∈

⋂
α<κ+ Aα ⊂ V (G) and f(a0, a1) = m. Since (mα)α<κ+ is an

increasing sequence of length κ+, by Fact 4.3, this sequence is cofinal and
we can choose some α < κ+ such that mα > m. Then a0, a1 ∈ Aα+1, which
implies that

f(a0, vα) = f(a1, vα) = mα.

Since every finitely generated/N substructure of G satisfies ψ, this is true
in particular for the structure generated by a0, a1, vα. Therefore, by clause
(3) of ψ it must be that f(a0, a1) > f(a0, vα) = f(a0, vα). This is a contra-
diction, since f(a0, a1) = m < mα = f(a0, vα) = f(a1, vα).

Hence, |
⋂
α<κ+ Aα| = 1 for all bad selectors.

Definition 4.22. For a bad selector ~A, denote by v( ~A) the unique ele-
ment in

⋂
α<κ+ Aα.

For selectors ~A, ~B (good or bad), let ~A ∼ ~B if and only if⋂
α<κ+

Aα =
⋂
α<κ+

Bα.

For bad selectors, this is the case iff v( ~A) = v( ~B). If ~A is a good selector,
then

⋂
α<κ+ Aα = ∅ and we conclude that all good selectors are equivalent.

This defines an equivalence relation on the selectors, each one associated
with a (unique) element in V (G) or the empty set. So, it is immediate that

there are exactly |V (G)| < 2κ
+

many equivalence classes. We will use this
fact to prove that there is at least one good selector. We need the following
easy lemma before that:

Lemma 4.23. Let α0 < κ+ and ~A = 〈Aα, vα,mα〉, ~B = 〈Bα, wα,m′α〉 be
bad selectors such that:

• for all α ≤ α0, Aα = Bα 6= ∅,
• vα0 = wα0, and
• mα0 6= m′α0

.

Then ~A � ~B.
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Proof. Towards a contradiction, assume that v = v( ~A) = v( ~B). Then,
on the one hand, f(v, vα0) = mα0 , and on the other hand, f(v, wα0) = m′α0

,
a contradiction.

Lemma 4.24. There exists a good selector ~A.

Proof. Recall that W0 = V (G) \ Vω. If W0 is empty, then all selectors
are good. Towards a contradiction, assume that all selectors are bad. In
particular, W0 is non-empty. Let H be the set of increasing functions from
κ+ to N . There are 2κ

+
many of them. For every h ∈ H we will define a

selector ~Ah in such a way that if h 6= h′, then ~Ah � ~Ah′ . This will give us
2κ

+
many bad selectors, which we saw is a contradiction.

We define ~Ah = 〈Ah,α, vh,α, h(α)〉 simultaneously for all h ∈ H by in-
duction on α. First let Ah,0 = W0, for all h ∈ H and Ah,γ =

⋂
α<γ Ah,α

for γ limit. If Ah,α is given, by the assumption that all selectors are bad,
necessarily it must be non-empty. Choose vh,α in Ah,α and let

Ah′,α+1 = {v ∈ Ah′,α | f(v, vh,α) = h′(α)}
for all h′ ∈ H such that Ah′,β = Ah,β for all β ≤ α. In this way all selectors
~Ah′ that agree with ~Ah up to α are assigned the same element vh,α. The

value h′(α) may be different and if h′(α) 6= h(α), then, by the previous

lemma, ~Ah′ � ~Ah. Since all functions differ from each other at a point, we
see that all the ~Ah are non-equivalent, a contradiction.

Therefore, there exists a good selector.

We will actually need slightly more than that. Assume that H is the set
of all increasing functions from κ+ to N such that h(α) > m−1. There are

still 2κ
+

many such functions and the argument of the previous lemma also
proves

Corollary 4.25. There is a good selector ~A = 〈Aα, vα,mα〉 such that
mα > m−1 for all α < κ+.

After this preliminary work on selectors, we are back to the goal of
extending fG

′
onto pairs of the form (b, v) for all v ∈W0 and for the unique

b ∈ V (B) \ V (A).

Definition 4.26. Let ~A = 〈Aα, vα,mα〉 be a good selector such that
mα > m−1 for all α < κ+. Such a selector exists by Corollary 4.25.

Define

f(b, vα) = mα for all α < κ+,

and if w ∈ Aα \Aα+1, then let

f(b, w) = min{f(w, vα), f(b, vα) = mα}.
Since the selector is good, f(b, w) is defined for all w ∈W0.
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Definition 4.26 together with Definition 4.15 complete the definition of
fG

′
on pairs of the form (b, v) for all v ∈ V (G) \ V (A). Hence, G′ is now a

τ ′-structure.

Lemma 4.27. Under the above definition of f , any finitely generated/N
substructure of V (G′) = V (G) ∪ {b} satisfies sentence ψ (cf. Definition
4.6). In particular, any such substructure is isomorphic/N to a structure
in K(N ).

Proof. Clauses (1) and (2) of ψ are immediate. Clause (3) is the one that
requires work. Since clause (3) involves only three (distinct) elements at a
time, it is sufficient to consider substructures that are generated by three
elements only. In particular, if all three elements are in V (G) the result is
immediate by the assumptions on G. So, assume b, the unique element of
V (B)\V (A), is one of the three elements, and let a1, a2 ∈ V (G) be the other
two.

Before we proceed, recall that for any a ∈ V (G) \ V (A), f(b, a) was
defined by Definition 4.15 if a ∈ Vω, and by Definition 4.26 if a = vα or if
a ∈ Aα\Aα+1, for some α < κ+. So, there are three different cases we have to
consider for each of fG

′
(b, a1) and fG

′
(b, a2), resulting in a total of nine cases.

Some of the cases will be consolidated together and the proof splits into
corresponding cases. Our goal is to prove that the substructure/N generated
by b, a1, a2 satisfies sentence ψ, and in particular that if f(b, a1) 6= f(b, a2),
then f(a1, a2) = min{f(b, a1), f(b, a2)}, otherwise f(a1, a2) > f(b, a1) =
f(b, a2).

If both a1, a2 are in Vω, then the substructure/N generated by b, a1, a2
satisfies sentence ψ by Claim 4.17. Thus, we can assume that at least one
of a1, a2 is not in Vω.

Case I: There exists some α such that a1, a2 ∈ Aα\Aα+1. If one of a1, a2
is equal to vα, say a1, then by Definition 4.26, f(b, a2) = min{f(a2, vα),
f(b, vα)} = min{f(a2, a1), f(b, a1)}, and the result is immediate.

Hence, assume that both a1, a2 are different from vα and let x1 =
f(vα, a1), x2 = f(vα, a2). Since a1, a2 /∈ Aα+1, we have x1, x2 6= mα. By
Definition 4.26 again, f(b, a1) = min{x1,mα} and f(b, a2) = min{x2,mα}.

Subcase I.1: x1 6= x2. Since a1, a2, vα ∈ V (G), the substructure/N
generated by a1, a2, vα satisfies ψ. In particular, since x1 6= x2, we have
f(a1, a2) = min{x1, x2}. The reader can verify that in any linear ordering,
given three distinct elements x1, x2,mα, exactly two out of the three quan-
tities min{x1,mα}, min{x2,mα} and min{x1, x2} are equal, while the third
one is greater, which gives the result.

Subcase I.2: x1 = x2 < mα. In this case min{x1,mα} = x1, and
f(b, a1), which is equal to min{x1,mα}, is also equal to x1. Similarly, f(b, a2)
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=min{x2,mα}=x2, i.e. f(b, a1)=f(b, a2). In addition, the substructure/N
generated by a1, a2, vα satisfies ψ and since x1 equals x2, f(a1, a2) must be
greater than both f(vα, a1) = x1 and f(vα, a2) = x2. Overall, f(b, a1) =
f(b, a2) = x1 = x2 < f(a1, a2).

Subcase I.3: x1 = x2 > mα. Then min{x1,mα} = mα and f(b, a1),
which is equal to min{x1,mα}, is also equal to mα. Similarly, f(b, a2) =
min{x2,mα} = mα. The same argument as in Subcase I.2 for the sub-
structure generated by a1, a2, vα proves that f(a1, a2) is greater than both
f(vα, a1) = x1 and f(vα, a2) = x2. Overall, f(b, a1) = f(b, a2) = mα < x1 =
x2 < f(a1, a2).

Case II: There exists some α such that a1 ∈ Aα \ Aα+1 and there ex-
ists some β > α such that a2 = vβ. Let f(a1, vα) = x. Since β > α,
Aβ ⊂ Aα+1 and vβ ∈ Aβ implies that vβ is also in Aα+1. By definition of
Aα+1, f(vβ, vα) = mα. Since a1, vα, vβ ∈ V (G), the substructure/N gen-
erated by a1, vα, vβ satisfies ψ. So, f(a1, vβ) = min{f(a1, vα), f(vα, vβ)} =
min{x,mα}. By definition f(b, a1) is equal to min{x,mα}, and therefore
also equal to f(a1, vβ). By definition, also f(b, vβ) = mβ, and overall,
f(b, vβ) = mβ > mα ≥ min{x,mα} = f(b, a1) = f(a1, vβ).

Case III: a1, a2, α, β are as in Case II, except that β < α. We work
similarly. In this case Aα ⊂ Aβ+1 and a1, vα ∈ Aα implies that a1, vα are also
in Aβ+1. So, f(vβ, a1) = f(vβ, vα) = mβ and by definition f(b, vβ) = mβ.
Considering the substructure/N generated by vβ, vα and a1, we conclude
that f(vβ, a1) = f(vβ, vα) = mβ < f(vα, a1). Combining this with the fact
that mβ < mα, we get f(b, vβ) = f(vβ, a1) = mβ < min{f(vα, a1),mα}.
Since by definition min{f(vα, a1),mα} is equal to f(b, a1), the result follows.

Case IV: There exists α such that a1 ∈ Aα \ Aα+1 and a1 6= vα, and
there exists some β > α such that a2 ∈ Aβ \Aβ+1 and a2 6= vβ. First notice
that since we can interchange a1 and a2, the same proof works even for the
case β < α.

Let f(a1, vα) = x and f(a2, vβ) = y. Since a1 /∈ Aα+1, we have x 6= mα,
and similarly, since a2 /∈ Aβ+1, we have y 6= mβ. The assumption β > α im-
plies that Aβ ⊂ Aα+1, and a2, vβ ∈ Aβ implies that a2, vβ are also in Aα+1.
So, f(a2, vα) = f(vβ, vα) = mα. Considering the substructure/N gener-
ated by a1, a2, vα we conclude that f(a1, a2) = min{f(a1, vα), f(vα, a2)} =
min{x,mα}. By definition min{x,mα} is equal to f(b, a1) and f(b, a2) equals
min{y,mβ}. If we can prove that y > mα, then f(b, a2) = min{y,mβ} >
mα ≥ min{x,mα} = f(a1, a2) = f(b, a1), which gives the result. In or-
der to prove y > mα consider the substructure/N generated by a2, vβ, vα.
Since f(a2, vα) = f(vβ, vα) = mα, we get y = f(a2, vβ) > f(a2, vα) =
f(vβ, vα) = mα.
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Case V: There exists some α such that a1 = vα and a2 is in Vω. Since
a1 = vα ∈W0, by the definitions of Vω and W0, f(b, a2) = f(a2, vα). Also by
definition f(b, vα) = mα and we assumed that for all α < κ+, mα > m−1 =
max{f(b, a) | a ∈ V0}. By Claim 4.18, mα is also greater than max{f(b, a) |
a ∈ Vω}. Therefore, f(b, a2) = f(a2, vα) ≤ m−1 < mα = f(b, vα).

Case VI: There exists some α such that a1 ∈ Aα \ Aα+1 and a2 is Vω.
Working as in Case V we can prove that f(b, a2) = f(a2, vα) < mα. More-
over, by the definition of W0, f(b, a2) = f(a2, a1) = f(a2, vα), and consid-
ering the substructure/N generated by a1, vα, a2, we conclude f(a2, a1) =
f(a2, vα) < f(a1, vα). Also, by definition, f(b, a1) = min{f(a1, vα),mα}.

Combining all these yields f(b, a1) = min{f(a1, vα),mα} > f(a2, a1) =
f(b, a2).

All these cases conclude the proof.

Lemma 4.27 proves that G′ satisfies (I)N . By Theorem 2.7, there exists

some G∗ such that G∗ is a model/N , |G∗| = 2(κ
+) and G∗ satisfies φF , the

Scott sentence of lim(K(M)) (cf. Definition 4.12). This concludes the proof
of Theorem 4.14. Since by Theorem 4.13, φF cannot have any models of
size larger than 2(κ

+), φF witnesses that 2(κ
+) ∈ CHω1,ω, which in return

concludes the proof of the Main Theorem 4.1.

Remark 4.28. The only facts that we used in the proof of Theorem 4.1
about φ0 and the linear ordering < are the following:

• The sentence φ0 is a complete sentence.
• In every model of φ0, < does not have a maximum.
• There is no model of φ0 of size κ++.
• There is a model of φ0 with a <-cofinal sequence of length κ+ (cf.

Fact 4.3).

Replacing κ+ by λ and φ0 by φ in the proof of Theorem 4.1, we conclude:

Theorem 4.29. Let λ be an infinite cardinal and φ be such that:

(1) The sentence φ is a complete sentence.
(2) In every model of φ, < is a linear order without a maximum element.
(3) There is no model of φ of cardinality λ+.
(4) There is a model of φ with a <-cofinal sequence of length λ.

Then 2λ is (homogeneously) characterizable.

Proof. By the proof of Theorem 4.1 and Remark 4.28.

Theorem 4.30. Let (ℵαn)n∈ω be an increasing sequence of cardinals in
CHω1,ω and ℵλ = supn ℵαn. Then 2ℵλ is in HCHω1,ω.
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Proof. By Theorem 4.1, 2ℵαn+1 is in HCHω1,ω.

We know that

2ℵλ = (2<ℵλ)cf(ℵλ) and 2<ℵλ = sup
n

(2ℵαn+1).

By Theorem 3.5, 2<ℵλ ∈ CHω1,ω, and since cf(ℵλ) = ω, we conclude that
2ℵλ ∈ HCHω1,ω by Theorem 3.1.

Combining the last theorem with Theorem 4.1 we can conclude:

Theorem 4.31. If ℵβ ∈ CHω1,ω, then 2ℵβ+β1 ∈ HCHω1,ω for all 0 <
β1 < ω1.

Proof. By induction on β1. If it is a successor ordinal, use Theorem 4.1.
If it is a (countable) limit ordinal, then use 4.30.

The only case that is not covered by the above theorem is when ℵβ
is the head of a cluster (see Definition 1.3) and ℵβ 6= ℵ0 (2ℵ0 is easily
seen to be in HCHω1,ω by Theorem 3.1). Combining with Theorem 3.3 we
get

Theorem 4.32. If α ≤ β, ℵβ ∈ CHω1,ω, α1 < ω1 and 0 < β1 < ω1, then

ℵℵβ+β1α+α1
∈ HCHω1,ω.

Proof. By the previous theorem, 2ℵβ+β1 ∈ HCHω1,ω. Since α ≤ β, we

have ℵℵβ+β1α = 2ℵβ+β1 and we conclude by Theorem 3.3.

Thus, depending on our model of ZFC, we get characterizability of many

cardinals that have not been considered before, like ℵℵβα for α, β < ω1 etc.

5. Open problems. There are a few open problems of various difficul-
ties:

(1) Is there any cardinal that is characterizable by a sentence in Lω1,ω,
but not characterizable by a Scott sentence? It is consistent that the answer
is “No”. Under the GCH for instance, iω1 , the Hanf number for Lω1,ω, equals
ℵω1 and all characterizable cardinals are strictly less than ℵω1 . By [3], for all
α < ω1, ℵα ∈ CHω1,ω. These two results combined together imply that under
the GCH a cardinal κ is characterizable iff κ is completely characterizable
iff κ = ℵα for some α < ω1.

So, we should ask if there is any model of ZFC in which the answer is
positive. If there is no such model, then our job becomes a lot easier, since
we do not have to worry about completeness every time. This is a big step
forward. If there is such a model, then it will be very interesting to see one,
but the author does not have any idea how such a model will look like.
Either way, it seems to be a difficult question.
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(2) Is there any cardinal in CHω1,ω \ HCHω1,ω other than ℵ0? Can such
a cardinal be a successor? If such a cardinal is a limit cardinal, does it
necessarily have cofinality ω? From [6] we know that it is consistent that all
cardinals in CHω1,ω \ HCHω1,ω have cofinality ω.

Conjecture. For κ a characterizable cardinal, κ is not homogeneously
characterizable if and only if it has cofinality ω.

(3) For κ ∈ CHω1,ω, does 2κ belong to CHω1,ω? This would improve
Theorem 4.31 and would provide closure under powerset in all cases. If
κℵ0 = κ, then by Theorem 3.1, κ ∈ HCHω1,ω, and hence 2κ ∈ HCHω1,ω by
Theorem 3.4. But does this hold for all κ? This of course depends on the
model of ZFC too.

(4) If κ, λ are both characterizable, is λκ in CHω1,ω? This would gener-
alize the theorems we prove here. Under the GCH, the answer is trivially
“Yes”, but is this a theorem in ZFC? By Theorem 3.3, we have to consider
only the case where λ is the head of a cluster. See also [7] for theorems along
this line.

(5) Are there any closure properties for CHω1,ω (and HCHω1,ω) besides
successor, countable unions, countable products, powerset and powers?
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