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Maps of toric varieties in Cox coordinates

by

Gavin Brown (Loughborough) and Jarosław Buczyński (Warszawa)

Abstract. The Cox ring provides a coordinate system on a toric variety analogous to
the homogeneous coordinate ring of projective space. Rational maps between projective
spaces are described using polynomials in the coordinate ring, and we generalise this to
toric varieties, providing a unified description of arbitrary rational maps between toric
varieties in terms of their Cox coordinates. Introducing formal roots of polynomials is
necessary even in the simplest examples.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
1.1. Motivating examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
1.2. Maps of toric varieties in Cox coordinates . . . . . . . . . . . . . . . . . . . . . 222

2. Simple extensions of rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
2.1. Auxiliary algebra and geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
2.2. Field extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
2.3. Simple ring extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

3. Roots and multi-valued maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
3.1. Multi-valued sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
3.2. Multi-valued maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
3.3. Map rings of multi-valued maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
3.4. Images and preimages under multi-valued maps . . . . . . . . . . . . . . . . . . 241

4. Descriptions of maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4.1. The agreement locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
4.2. Homogeneity and relevance conditions . . . . . . . . . . . . . . . . . . . . . . . . 245
4.3. Existence of descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
4.4. The agreement locus revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
4.5. Existence of complete descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 254

5. Geometry of descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
5.1. Properties (D)–(F) of complete descriptions . . . . . . . . . . . . . . . . . . . . . 259
5.2. Image of a subscheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
5.3. Preimage of a subscheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

2010 Mathematics Subject Classification: Primary 14M25; Secondary 14E05, 14Q99.
Key words and phrases: Cox ring, toric variety, rational map.

DOI: 10.4064/fm222-3-2 [213] c© Instytut Matematyczny PAN, 2013



214 G. Brown and J. Buczyński

1. Introduction. This paper describes maps between toric varieties in
terms of Cox coordinates, that is, using the usual generators of the Cox rings
of the source and target. The results are not confined to maps that preserve
the toric structures, but to arbitrary rational maps of such varieties.

Any rational map between two projective spaces can be lifted to a mor-
phism between their Cox covers, their affine GIT covering spaces: it is de-
scribed by a sequence of homogeneous polynomials of the same degree. To
generalise this to maps between any toric varieties, we need descriptions
which also use roots of polynomials, and so we cannot hope to lift the maps
to morphisms, or even to rational maps, between covering spaces: instead, we
consider multi-valued maps like x 7→ ±

√
x, which we denote by x � 0.0.

0. √
x

to emphasise that they are not maps in the usual sense.
The use of radical expressions to define maps is well established in some

toric and orbifold contexts; writing weighted blowups of cyclic quotient sin-
gularities, for example. The radicals define a map on the orbifold cover, and
this paper generalises such calculations to all rational maps of toric vari-
eties.

The Cox ring literature has several treatments of the functors both
of toric varieties, initiated by Cox [Cox95a] and generalised by Kajiwara
[Kaji98], who also uses radical expressions explicitly, and of more general
varieties satisfying certain finiteness conditions by Berchtold and Hausen
[BeHa03]. There is also an approach by Berchtold and Hausen [BeHa04,
Theorem 9.2], using bunches of cones. These are mainly concerned with mor-
phisms, whereas the treatment here considers all rational maps of all toric
varieties, and uses all Weil divisors rather than (sufficiently many) Cartier
divisors.

Our main result, stated more precisely as Theorem 1.1 and in final form
as Theorem 4.19, is this. Let ϕ : X 99K Y be a rational map between toric
varieties (not necessarily respecting their toric structures). Then there is a
‘multi-valued map’ Φ : Cm 0.0.

0. Cn between the Cox covers of X and Y
which is defined using radical expressions in the Cox coordinates of X and
has the following properties:

Evaluation at points: if ϕ is defined at x ∈ X and ξ ∈ Cm is an expression
for x = [ξ] in Cox coordinates, then ϕ(x) = [Φ(ξ)] ∈ Y .

Pullback of divisors: If D = (f) is a Cartier divisor on Y , where f lies in
the Cox ring S[Y ] of Y , then the divisors ϕ∗(D) and (Φ∗f) on X agree
on the open subset where ϕ is regular.

These are the two essential properties of the complete description Φ, refined
as properties (A)–(F) in Sections 4–5.1, but it has other good features: for ex-
ample, it allows easy computation of the image and preimage of subschemes
under ϕ (§§5.2–5.3).
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In the rest of this introduction we present some examples and briefly
survey enough of the Cox ring approach to toric geometry to be able to state
the main result more precisely. Section 2 explains a class of radical extensions
of rings which we apply in Section 3 to make a basic theory of multi-valued
maps. These two sections are the technical heart of the paper. The practical
theory for describing maps that we build on this is natural, but it succeeds
because we work in carefully controlled extensions of the Cox rings when
writing the coordinates of maps. In Section 4, we say what it means for a
multi-valued map to describe a rational map between toric varieties, and we
prove the main Theorem 4.19 on the existence of a complete description Φ.
Section 5 explains the composition of descriptions and the computation of
images and preimages.

We work over the complex numbers C. The foundational aspects of toric
geometry [KKMSD73] work over any field, but our presentation relies on
Cox’s construction [Cox95b], and that is given over C.

1.1. Motivating examples

1.1.1. A line on a quadric. A weighted projective space P(a1, . . . , an) is a
(usually) singular algebraic variety obtained as the quotient (Cn \ {0})/C∗,
where the action of C∗ has weights (a1, . . . , an), that is,

t · (y1, . . . , yn) = (ta1y1, . . . , t
anyn).

This is completely analogous to the case of an ordinary projective space
Pn−1 = P(1, . . . , 1) and just as in the case of Pn−1 we can consider y1, . . . , yn
to be the homogeneous coordinates on P(a1, . . . , an).

Consider the weighted projective space P(1, 1, 2) with homogeneous co-
ordinates y1, y2, y3. The coordinate axis Γ = (y2) ⊂ P(1, 1, 2) is a smooth
rational curve Γ ∼= P1. In coordinates x1, x2 on P1, we can describe the
embedding P1 → Γ ⊂ P(1, 1, 2) by

[x1, x2]
� 0.0.

0.
[
√
x1, 0, x2]

(see §3.1 for our formal definition of
√
x1 ). Multiplying through by

√
x1 with

the given weights (1, 1, 2) gives an alternative:

[x1, x2] 7→ [x1, 0, x1x2].

We discuss two benefits of the first.
The first issue is to calculate images of points. For instance, to see the

image of the point [0, 1] ∈ P1 using the first description, we immediately
compute [0, 0, 1]. With the second description, we are in trouble, because
the description of the map evaluates to [0, 0, 0] and so does not help. The
square root is not too bad. The image of the point [1, 0] ∈ P1 computed by
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the first description is either [1, 0, 0] or [−1, 0, 0] depending on which root we
take; but these are the same point in P(1, 1, 2), so either expression is fine.

The second issue is to pull back divisors. For instance, to pull back a
Cartier divisor from the linear system of OP(1,1,2)(2), we would like simply
to substitute the defining equations of the map. For example, suppose we
pull back y3 = 0. Clearly, this coordinate axis meets Γ transversely in one
point [1, 0, 0]. Using the first description, we pull back the function y3 to get
the function x2, whose vanishing locus on P1 is exactly [1, 0] as we would
like. The second description, however, is not good enough in this respect
either: the naive pullback is x1x2.

1.1.2. Weighted blowups: the affine 1
2(1, 1) singularity. In the first ex-

ample, the square root merely simplified some calculations. Now we give an
example where it is unavoidable. Consider the simplest singular toric variety
Y : the affine 1

2(1, 1) singularity, that is, the quotient of C2 by Z/2 acting by

(y1, y2) 7→ (−y1,−y2).

Let X be an affine piece of its resolution, X = C2 ⊂ Bl[0,0] Y . In fan termi-
nology this corresponds to the following embedding of cones:

• •
• •

•
••

•

•

•
•
•
•
•••••

•
•
•
• • • •

// • •
• •

•
••

•

•

•
•
•
•
•••••

•
•
•
• • • •

The map ϕ : X → Y as a map of affine varieties,

ϕ : SpecC[x1, x2]→ SpecC[y1
2, y1y2, y2

2],

corresponds, via the dual map of cones, to the affine coordinate ring homo-
morphism

ϕ∗ : C[y1
2, y1y2, y2

2]→ C[x1, x2],

y1
2 7→ x1, y1y2 7→ x1x2, y2

2 7→ x1x2
2.

Therefore if we hope to extend ϕ∗ to the full Cox ring S[Y ] = C[y1, y2],

ϕ∗ : C[y1
2, y1y2, y2

2] //
� _

��

C[x1, x2]
� _

��
Φ∗ : C[y1, y2] // some new ring

we need a map Φ∗ with either

y1
� 0.0.

0. √
x1

y2
� 0.0.

0.
x2
√
x1

or
y1

� 0.0.
0. −
√
x1

y2
� 0.0.

0. −x2
√
x1.
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Introducing the square roots is necessary for such a description. We are
allowed to choose either square root of x1, but we must make the choice only
once: having picked the root of x1 for the first coordinate, the root of x1
used in the second coordinate must be the same.

1.1.3. Fake weighted projective space. Descriptions of maps that require
roots also arise for maps between projective toric varieties. Let ΣY be the
fan

• •
• •

•
••

•

•

•
•
•
•
•••••

•
•
•
• • • •

and Y the associated toric variety; this is the simplest example of a fake
projective space (see [Bucz08], [Kasp09]) and is the quotient of P2 by Z/3
acting with weights (2, 1, 0).

Let X be a weighted blowup of any of the three singular points of Y , for
example given by the fan

• •
• •

•
••

•

•

•
•
•
•
•••••

•
•
•
• • • •

Then every description of the blowup map X → Y will involve at least third
roots of polynomials. For instance, if we encode the actions defining X and
Y as (

1 1 1 0

2 1 0 −3

)
and

(
1 1 1

2/3 1/3 0

)
in coordinates x1, . . . , x4 on X, y1, . . . , y3 on Y—treating the second row of
the weights of Y as the homogeneity imposed by the finite Z/3 action—then
the map is defined by

[x1, . . . , x4]
� 0.0.

0.
[x1 3
√
x4

2, x2 3
√
x4, x3].

(The second row of the grading matrix of Y only permits scaling by cube
roots of unity, so it cannot be used to eliminate the radical here; the notation
is slightly clumsy.)

1.1.4. Ideals of subvarieties of toric varieties. The use of Cox rings to
describe subschemes of toric varieties includes a small, well-known catch
[Cox95b, Thm. 3.7]: significantly different ideals can determine the same sub-
scheme. This problem arises when considering maps too. Consider X = P2

and an action of Z/2 on X with weights (0, 0, 1). The quotient of X by Z/2
is Y = P(1, 1, 2), and, in coordinates, the quotient map ϕ : X → Y is

[x1, x2, x3] 7→ [x1, x2, x3
2].



218 G. Brown and J. Buczyński

This description of ϕ has the two properties mentioned at the outset (it is
well defined at every point of X and Cartier divisors can be pulled back
by simple substitution), but there is still a difficulty when calculating the
preimage of subschemes in Y . For instance, in coordinates yi on Y , the
subschemes B1 and B2 of Y defined, respectively, by the ideals

〈y1〉 and 〈y12, y1y2〉

are equal and both reduced, but the ideal defining B2 is not radical even
though both ideals are saturated at the irrelevant maximal ideal. Local cal-
culations show that the preimage subscheme A = ϕ−1(B2) is nonreduced
and equal to the scheme defined by 〈x12, x1x2〉. On the other hand, if we
pull back the defining equations of B1 we get the reduced scheme A′ = (x1).
Although A and A′ are certainly not equal as schemes, their scheme struc-
tures are equal on the preimage of the smooth locus of Y . This is the best
we can hope for and is explained generally in Theorem 5.5.

1.1.5. Reading toric birational maps from complete descriptions. Let
X = P(1, 1, 2) with Cox coordinates x1, x2, x3 and Y be the toric variety
with Cox coordinates y1, y2, y3, y4, with the bi-grading given by the matrix
of weights(

1 2 0 −1

0 0 1 1

)
and irrelevant ideal BY = (y1, y2) ∩ (y3, y4).

Suppose Y and X are described by fans in a common lattice N = Z2 as
follows:

• •
• •

•
••

•

•

•
•
•
•
•••••

•
•
•
• • • •

fan of Y

// • •
• •

•
••

•

•

•
•
•
•
•••••

•
•
•
• • • •
• • • • •

fan of X

The implicit birational map between X and Y is

ϕ : X 99K Y, ψ : Y 99K X,

[x1, x2, x3] 7→ [x1, x1x2, x1x3, x1x2], [y1, y2, y3, y4] 7→ [y1
2y4, y2y4, y1y2y3y4].

The geometry of this birational equivalence is evident in the fans but we
hope to read it from equation descriptions. It is better seen using complete
descriptions, which we can make easily from the original monomial descrip-
tions: the question is simply how much we can cancel. For ϕ we can use the
first grading of Y to remove a

√
x1 factor, and then the second grading to
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remove a further x1: thus

[x1, x1x2, x1x3, x1x2] becomes [
√
x1, x2, x1x3, x1x2

√
x1 ],

which in turn becomes [
√
x1, x2, x3, x2

√
x1 ].

Similarly we can modify the description of ψ, so the result is

ϕ : [x1, x2, x3]
� 0.0.

0.
[
√
x1, x2, x3, x2

√
x1 ],

ψ : [y1, y2, y3, y4]
� 0.0.

0.
[y21
√
y4, y2

√
y4, y1y2y3].

Many features of the birational geometry are now clear. The map ϕ is not
defined on the three 0-strata of X, while ψ is not defined on the 0-strata
(1, 0, 1, 0) and (0, 1, 1, 0) in Y . The coordinate loci (x1) and (x2) in X are
contracted, and similarly (y1), (y2) and (y4) in Y are contracted. Further-
more, comparing with the weighted blowups above, we see that (x1) and (y4)
are contracted as 1

2(1, 1) exceptional divisors, while (y1) is a (2, 1) weighted
blowup of a smooth point, and (y2) and (x2) are ordinary (smooth) blowups
of smooth points.

1.1.6. Spaces of maps. For two toric varieties X and Y and a map
α : PicY → PicX we can use the structure of descriptions to classify all
the regular maps ϕ : X → Y for which ϕ∗ = α, precisely because our results
on descriptions apply to all maps. We illustrate by computing all maps from
a toric del Pezzo surface to a certain weighted projective 5-space; the conclu-
sion is that the map is unique and toric up to coordinate choice. For brevity,
we will assume that the image of ϕ is not contained in any toric stratum of
Y , not even after a change of coordinates on Y .

Let X = F1, simply P2 blown up in a single point, a del Pezzo surface of
degree 8. Thus

S[X] = C[x1, x2, x3, x4] graded by Z2 with gradings
(

1 1 1 0

0 0 1 1

)
and irrelevant ideal (x1, x2) ∩ (x3, x4). Consider also Y = P(1, 1, 1, 2, 2, 2):

S[Y ] = C[y1, . . . , y6] graded by Z with gradings (1 1 1 2 2 2).

For the demonstration, we assume that the regular map ϕ : X → Y pulls
back a divisor in OY (2) (the ample generator of PicY ) to an anticanonical
divisor of X in O(3, 2). We claim that the map ϕ is unique up to changes of
coordinates onX and Y . (This is analogous to nondegenerate quadratic maps
P1 → P2 being the usual conic in the right coordinates.) We use the results
of this paper, in particular that complete descriptions exist (Theorem 4.19)
and have properties (A)–(D) (Definitions 4.8 and 5.3 and Propositions 4.9
and 5.4).

Let Φ : C4 0.0.
0. C6 be a complete description of ϕ, a well-defined expres-

sion of the map using rational functions and radicals as above (with, loosely
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speaking, as much cancellation as possible already done). We may assume
that each component of Φ is of the form p · q1/r for polynomials p, q and
some r ∈ N. (This holds in general for regular maps by Corollary 4.18.) By
condition (D) (the pullback of Cartier divisors is given by Φ∗ on the regular
locus of ϕ) the expressions (Φ∗y1)

2, (Φ∗y2)
2, (Φ∗y3)

2, Φ∗y4, Φ∗y5 and Φ∗y6
are rational forms. Applying the homogeneity condition (A2) (the usual ho-
mogeneity condition that rational functions pull back to rational functions)
we see that Φ∗y2/Φ∗y1 and Φ∗y3/Φ∗y1 are rational functions. Thus we can
write

Φ : C4 0.0.
0. C6, x � 0.0.

0.
(f1
√
g, f2
√
g, f3
√
g, f4, f5, f6),

for polynomials fi, g ∈ S[X], and apply condition (A2) once more to see that

deg f1 = deg f2 = deg f3, deg f4 = deg f5 = deg f6,

2 deg f1 + deg g = deg f4 = (3, 2).

The last condition narrows the possibilities for the multidegree of f1:

deg f1 ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}.
But the linear systems in multidegrees (0, 0), (1, 0), (0, 1) are small, and al-
lowing the degree of f1 to be any those would force the three sections f1, f2, f3
to be linearly dependent. A suitable coordinate change on Y would then
transform (at least) one of f1, f2, f3 to 0, presenting the image of ϕ inside
some toric stratum, which is exactly what our simplifying assumption for-
bids. So deg f1 = (1, 1).

So deg g = (1, 0), and changing coordinates on X we may assume g = x1.
Also the C-linear span of f1, f2, f3 is equal to the span of x1x4, x2x4, x3, so
changing coordinates on Y we may assume

f1 = x1x4, f2 = x2x4, f3 = x3.

The linear system (3, 2) is spanned by the nine monomials

x1x3
2, x2x3

2, x1
2x3x4, x1x2x3x4, x2

2x3x4, x1
3x4

2, x1
2x2x4

2, x1x2
2x4

2, x2
3x4

2.

However if any of f4, f5, f6 contains any summand divisible by x1 then we
can change the coordinates on Y to get rid of this summand. For instance,
if f4 = x2x3

2 + x1x2x3x4, then f4 − (f2
√
g)(f3

√
g) = x2x3

2. Therefore we
may assume f4, f5, f6 are contained in the span of x2x32, x22x3x4, x23x42,
and changing coordinates on Y again we may assume

f4 = x2x3
2, f5 = x2

2x3x4, f6 = x2
3x4

2.

Thus every map ϕ satisfying the assumptions can be written as

ϕ : X → Y, x � 0.0.
0.
[x1x4

√
x1, x2x4

√
x1, x3

√
x1, x2x3

2, x2
2x3x4, x2

3x4
2],

in some homogeneous coordinates on X and Y .
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1.1.7. Multi-valued multi-linear systems. It is worth noting that the ho-
mogeneity conditions of Definition 4.8 are more precise than simply arranging
for the degrees of the components of a map being correct.

Let X = P(1, 1, 2) with coordinates x1, x2, x3 and Y = P(1, 2, 3) with
coordinates y1, y2, y3. Let f = x1

3 − x2x3 and γ =
√
f . Then

Φ : (x1, x2, x3)
� 0.0.

0.
(
√
x1, x2, γ)

has the correct degrees but nevertheless fails to determine a rational map:
indeed,

Φ∗(y2/y1
2) = x2/x1 is nice, but Φ∗(y3/y1

3) =

√
1− x2x3

x13

is not a rational function on X (which is what the homogeneity condition
requires; or, using the homogeneity condition (A1) and the language of Def-
inition 3.1 instead, Φ∗(y13 + y3) is not a homogeneous multi-valued section).
Simply arranging for the correct homogeneous degrees is not the full content
of the homogeneity condition. It is better thought of as requiring all defin-
ing sections to be elements of a single vector space of multi-valued sections
together with their multiples. If γ is the third coordinate, then the degree 3
sections defining the map must all have γ as their common irrational part;
formally speaking, this is the conclusion of Proposition 3.6.

But they do not: Φ∗(y1y2) =
√
x1 · x2 has irrational part

√
x1 not equal

to that of Φ∗(y3). Forcing Φ∗y3 = γ requires r
√
f for r = 6 and 4 respectively

as a factor into the first two components; but then we can scale the entire
irrational part away in any case.

However, defining a (different) map as

Φ : (x1, x2, x3)
� 0.0.

0.
(γ, x2

3, γ3 + γx1x3)

is fine, since now

Φ∗(y2/y1
2) = x2

3/f and Φ∗(y3/y1
3) = 1 + (x1x3/f).

(And, at least as a first test, Φ∗(y13 + y3) is now γ · (2f + x1x3), which is a
homogeneous multi-valued section.)

If we regard a map to a weighted projective space as being determined
by a basis of a graded ring V =

⊕
d∈N Vd where each Vd ⊂ S(X) is a finite-

dimensional vector space consisting only of multi-valued sections of degree
d/N , for some fixed denominator N ∈ N, then we must ensure that each Vd
has the same irrational part γd, for some γ ∈ S[X]. In the corrected example,
this reads

V1 = γ · C, V2 = γ2 · C〈1, x23/f〉, V3 = γ3 · C〈1, x23/f, x1x3/f〉
and so on—the irrational parts of these spaces of sections are visibly the
same (up to the power that fixes their degree).
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1.2. Maps of toric varieties in Cox coordinates

1.2.1. Cox coordinates on toric varieties. We review the standard ele-
ments of toric geometry that we use throughout this paper, closely follow-
ing three of the standard sources [Cox95b], [Dani78] and [Fult93], without
further comment or citation. A toric variety X of dimension d is defined
by a fan ΣX spanning a (possibly strict) subspace of a d-dimensional lat-
tice NX . The rays of ΣX , which, by minor abuse of notation, we can take
as the primitive vectors ρ1, . . . , ρm on the 1-skeleton Σ

(1)
X , play two roles.

First, treating them as independent symbols, they generate a new lattice
RX ∼= Zm, the ray lattice of X, with chosen basis the ρi. The natural map
ρX : RX → NX sends each symbol ρi to the primitive vector. When con-
sidering the Cox quotient construction, one usually assumes for convenience
that X has no torus factors, but this is not necessary in our approach (see
also [CLS11, §5.1]). If X = X ′ × (C∗)k, where X ′ has no torus factors, then
the fan ΣX spans a linear subspace 〈ΣX〉 ⊂ NX ⊗ R of codimension k. We
choose primitive lattice vectors ρm+1, . . . , ρm+k in NX such that the lattice
〈ΣX〉 ∩ NX together with ρm+1, . . . , ρm+k generate the lattice NX . These
additional lattice vectors are called virtual rays and they play the role of
place holders for variables corresponding to coordinates on (C∗)k. The ray
lattice is then extended to RX ∼= Zm+k with the bigger basis ρ1, . . . , ρm+k,
and the map ρX : RX → NX is extended accordingly to take account of these
virtual rays.

Second, we denote the elements of the basis dual to the ρi in RX by
xi, and interpret them as the indeterminates of a polynomial ring. The ring
the xi generate is the famous Cox ring S[X] of X, also known as its ho-
mogeneous, or total, coordinate ring. It is graded by the divisor class group
Cl(X). The irrelevant ideal BX ⊂ S[X] is defined by standard generators,
one for each maximal cone σ ∈ ΣX , defined as µσ =

∏
xi, where the product

is taken over those rays ρi not contained in σ (one sets BX = S[X] if there
is only one cone of maximal dimension). Note that if ρi is a virtual ray then
the monomial µσ is divisible by xi for every σ.

Thus X = C × C∗, determined by a fan with a single ray in NX = Z2

as its unique maximal cone, has Cox ring S[X] = C[x1, x2] and irrelevant
ideal BX = 〈x2〉 (rather than S[X] = BX = C[x1, x2, 1/x2], for example),
where the variable x1 corresponds to the 1-skeleton of the fan and x2 to a
virtual ray chosen arbitrarily to extend the rational span of the fan to the
entire Z2.

We also treat the xi in their own right, namely as a basis of the lattice
dual to RX , the Cox monomials lattice TM(X). We write TM [X] for the
positive orthant in TM(X). The lattice MX of monomials, the dual of NX ,
embeds MX ↪→ TM(X) as the dual map to ρX .
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The Cox cover of X is defined to be SpecS[X]; it is isomorphic to
Cm with standard coordinates xi, and we usually write it as such with
its heritage implicit. The gradings describe the action of a group GX =
Hom(Cl(X),C∗) ' T ⊕ A, where T ∼= Gm

d is an algebraic torus and A
is a finite abelian group. Cox [Cox95b, Theorem 2.1] proves that X is a
quotient of Cm by GX in the sense of GIT. Indeed, there is a rational
map πX : Cm 99K X that is a morphism precisely on Reg πX , the com-
plement of the irrelevant locus Irrel(X) = V (BX) ⊂ Cm, and is a categor-
ical quotient there. Thus one thinks of elements ξ ∈ Cm as representative
coordinate expressions for their images x = πX(ξ) ∈ X; we also denote
πX(ξ) by [ξ]. These are the Cox coordinates on X that we use systemati-
cally.

Denoting the field of fractions of S[X] by S(X), the function field C(X) of
X is naturally isomorphic to the subfield of S(X) of GX -invariant functions.
We treat these as being the rational functions on Cm of degree 0, just as
for rational functions on projective space. We refer to elements of S[X] and
S(X) as polynomial and rational sections on X respectively, rather than
functions. We say that a section f ∈ S(X) is regular on U ⊂ X if f is a
regular function on π−1X (U) = {ξ ∈ Reg πX | πX(ξ) ∈ U}.

The Cox ring has a more intrinsic definition. Suppose in the first place
that X has no torus factors. Then

S[X] =
⊕

H0(X,D)

where the sum is taken over the Weil class group Cl(X), with D being
a representative Weil divisor in the particular class (chosen systematically
so that multiplication is defined automatically). The natural isomorphism
between these two descriptions follows from the association of a Weil divisor
Dρ to each ray ρ: Dρ is the irreducible divisor supported on the image of
{xρ = 0} ⊂ Cm in X, where xρ is the Cox coordinate corresponding to ρ. In
general, when X = X ′ × (C∗)k with virtual rays ρm+1, . . . , ρm+k,

S[X][x−1m+1, . . . , x
−1
m+k] =

⊕
H0(X,D)

where

S[X][x−1m+1, . . . , x
−1
m+k] = C[x1, . . . , xm, xm+1, x

−1
m+1, . . . , xm+k, x

−1
m+k].

We take these isomorphisms as implicit, so for each homogeneous rational
section f ∈ S(X) there is a Weil divisor, denoted (f). The converse is also
true and follows from the same isomorphism: if D is a Weil divisor on a
toric variety X, then D = (f) for some nonzero homogeneous function f ∈
S(X). Moreover, in the case X has no torus factors, D is effective if and
only if f ∈ S[X]; if X does have torus factors, the criterion is instead that
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f ∈ S[X][x−1m+1, . . . , x
−1
m+k]. In any case, if D is effective, then there exists a

nonzero homogeneous section f ∈ S[X] such that D = (f). This association
also obeys the natural calculus: (fg) = (f) + (g).

Given f ∈ S[X], as well as considering the divisor (f) on X, we will also
consider the zero set of f in the Cox cover Cm of X. To avoid confusion we
will always denote this affine zero set by {f = 0} ⊂ Cm.

1.2.2. The main results. The elementary examples of §1.1 are part of
a general theory. The first result is that any rational map between toric
varieties has a description by radicals of Cox coordinates.

Theorem 1.1. Let X and Y be toric varieties over C with Cox rings
S[X] = C[x1, . . . , xm] and S[Y ] = C[y1, . . . , yn] and corresponding Cox cov-
ers Cm and Cn. If ϕ : X 99K Y is a rational map, then there are homogeneous
rational sections qi ∈ S(X) and an expression

Φ : [x1, . . . , xm] � 0.0.
0. [ r1√q1, . . . , rn√qn],

which has the following properties:

(i) If ξ ∈ Cm and ϕ is regular at x = [ξ], then y = [Φ(ξ)] is a well-
defined point of Y and ϕ(x) = y.

(ii) If D = (f) is a Cartier divisor on Y whose support does not contain
the image of ϕ, where f ∈ S(Y ), then ϕ∗D and (Φ∗f) are equal as
divisors on X when restricted to the regular locus of ϕ.

(iii) If A ⊂ X is a closed subscheme defined by a saturated ideal IA C
S[X], then the image ϕ(A) ⊂ Y is defined by the preimage under
Φ∗ of the span of IA in some extension of S[X].

(iv) If B ⊂ Y is a closed subscheme defined by an ideal IB C S[Y ],
then the preimage ϕ−1(B) ⊂ X is defined on ϕ−1(Y0) by the ideal
〈Φ∗(IB)〉 ∩ S[X] of S[X], where Y0 is the smooth locus of Y .

This statement needs some explanation. In §4.1, we explain what it means
for an expression Φ : [x1, . . . , xm] � 0.0.

0.
[ r1
√
q1, . . . ,

rn
√
qn], to be a description

of a rational map X 99K Y , and Definition 4.17 specifies ‘complete descrip-
tions’. This theorem gathers some results for complete descriptions proved
in Theorems 4.19, 5.5, 5.9, Proposition 5.1 and their subsequent comments
and corollaries. Those results are more general and detailed; the statements
above are special cases. The statement on preimage above does not explain
the extension (in fact, it is simply a map ring Γ (Φ) as discussed next), but
the precise details are in Corollary 5.10.

Furthermore, care is needed when defining Φ(ξ). Recall from §1.1.2 that
the root of a polynomial can be chosen arbitrarily, but only chosen once. If
the same root of the same polynomial occurs again in the expression for Φ
(even if not in an explicit form), then we must use the root chosen before. We
make this book-keeping precise by introducing simple extensions of rings in
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§2.3 and map rings Γ (Φ) for Φ in §3.3. The point is that we work in extensions
Γ (Φ) of S[X] containing the image of Φ∗ which cannot be made arbitrarily;
the notion of ‘simple’ extension assembles just enough conditions for our
purposes here. The ideal spans of the form 〈J〉 appearing in the statement
are taken inside these Γ (Φ). Theorems 5.5 and 5.9 explain this precisely, and
the latter also explains how to achieve the exact preimage over the singular
locus.

Remark 1.2. The statement of the theorem might suggest that using
the descriptions one is able to pull back the Weil divisors, even those that
are not Q-Cartier. However, in the situation when Y is not Q-factorial, the
complete descriptions as in Theorem 1.1 are not unique (see Example 4.23).
It is implicit in the statement that the divisor (Φ∗f) does not depend on the
choice of Φ whenever (f) is Cartier on Y . But when (f) only defines a Weil
divisor, then (Φ∗f) depends on Φ.

The second result gives a criterion for a radical expression like Φ above
to determine a rational map of toric varieties; this is spelled out in Theo-
rem 4.10.

Theorem 1.3. Let Φ : Cm 0.0.
0. Cn be a multi-valued map between the

Cox covers of toric varieties X and Y . If Φ satisfies the homogeneity and
relevance conditions of Definition 4.8, then there is a unique rational map
ϕ : X 99K Y that Φ describes.

In other words, subject only to natural conditions of homogeneity with
respect to all gradings and relevance (and the precise specification of what is
allowed as a radical expression to define Φ), a sequence of radical expressions
in Cox coordinates does indeed determine a rational map.

It was pointed out by an anonymous referee that the methods here should
apply more generally to the Mori dream spaces of Hu and Keel [HuKe00] in
a fairly natural way: the Cox ring of a Mori dream space is a quotient of a
polynomial ring, so we can work with coordinates (and so also multi-valued
coordinates) as usual. However we have not checked the details of this: the
relations in the Cox ring add more relevance conditions and also relate the
radical multi-valued expressions (which we keep independent by use of the
simple extensions of §2.3), so there is something to check.

2. Simple extensions of rings. We review some material in the context
of multi-graded rings in §2.1, then present some field theory in §2.2, and
finally give the key definition of simple extension of rings in §2.3.

2.1. Auxiliary algebra and geometry

2.1.1. Homogeneous ideals. We outline standard points about ideals in
rings graded over finitely-generated abelian grading semigroups. The cases
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we have in mind include the Cox ring S[X] of a toric variety X, exten-
sions S[X][f−1] for a homogeneous polynomial f , quotients S[X]/I for some
homogeneous ideal I and combinations of these. Recall that S[X] has a dis-
tinguished ideal, the irrelevant ideal BX . In our applications, the grading
group is H = Hom(GX ,C∗). We write H additively with identity 0 ∈ H; we
often consider elements of degree 0 in the rings above.

Definition 2.1. Let S be a graded ring. A homogeneous ideal p C S is
homogeneously prime if whenever a homogeneous h ∈ p factorises as h = fg
with homogeneous factors f, g ∈ S, then either f ∈ p or g ∈ p.

This notion is also called G-prime; see [Perl07, Remark 3.20], or [Ludw86]
in an unrelated context. A homogeneous ideal which is prime is homoge-
neously prime, but the converse is not always true.

Example 2.2. LetX be the affine 1
2(1, 1) singularity, so S[X] =C[x1, x2]

graded by Z/2 as multiplication by −1 and BX = S[X]. The ideal generated
by x12−1 is homogeneously prime but not prime. It determines an irreducible
line L ⊂ X, but regarded on the GIT cover C2 it determines a disjoint union
of two lines, x1 = 1 and x1 = −1, the preimage π−1X L.

However, when the grading group is Zk with no torsion, it is easy to see
that the two concepts (homogeneously prime ideals and ideals that are prime
and homogeneous) coincide.

Proposition 2.3 ([Cox95b, Proposition 2.4]). For every homogeneously
prime ideal I C S[X] there exists a unique irreducible subvariety V (I) ⊂ X
such that a section f ∈ S[X] vanishes identically on V (I) if and only if
f ∈ I.

Conversely, for every irreducible subvariety V ⊂ X, there exists a homo-
geneously prime ideal I(V ) C S[X] contained in the irrelevant ideal B such
that V (I(V )) = V .

Definition 2.4. Let S be a graded ring and I C S an ideal. The ho-
mogenisation of I is the biggest homogeneous ideal Ihgs contained in I.

It follows that Ihgs is the ideal generated by all the homogeneous elements
in I. The following easy proposition contains the essential observation that
an image of an irreducible variety is irreducible. We use this later to prove
that certain multi-valued maps descend to honest regular maps between toric
varieties, even though on the Cox rings the pathologies of Example 2.2 can
occur.

Proposition 2.5. Let S be a graded domain. If p C S is a prime ideal,
then phgs is homogeneously prime. In particular, if R is any domain and
α : S → R is any ring homomorphism, then (kerα)hgs is homogeneously
prime.
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If R is a ring and I ⊂ R is any subset, then we use 〈I〉 or 〈I〉R to denote
the ideal generated by the set I. We use this notation very often when S ⊂ R
is a subring and I C S is an ideal. Then 〈I〉R C R is the extension of the
ideal I in the ring R.

Definition 2.6 ([Hart77, I.3]). Let S be a graded ring and let p C S be
a homogeneously prime ideal. Then the set A of all homogeneous elements
in S which are not in p is multiplicative, and the (homogeneous) localisation
S(p) is defined to be the set of degree 0 elements in A−1S. It is a local ring
with maximal ideal (p ·A−1S) ∩ S(p).

If f ∈ S is homogeneous, define the (homogeneous) localisation S(f) to
be the set of degree 0 elements in S[f−1]. If I C S is a homogeneous ideal,
then I(f) is the set of degree 0 elements in 〈I〉S[f−1]; equivalently,

I(f) = 〈I〉S[f−1] ∩ S(f).

When S = S[X] is the Cox ring of a toric variety X and Z ⊂ X an irre-
ducible subvariety defined by a homogeneously prime ideal I(Z) C S[X], the
localisation S[X](I(Z)) is equal to the local ring of point Z in the scheme X:

S[X](I(Z)) = {q ∈ C(X) | Z ∩ Reg q 6= ∅}.

This is analogous to the usual statement for Proj of an N-graded ring: see
[Hart77, Prop. II.2.5(a)], for example. Localisation at an element f is also
analogous to the case of usual Proj. Roughly, S(f) consists of all global
rational functions that are regular on an open subset Xf = X \(f), but there
are caveats. First, if X has nontrivial C∗-factors, then we assume that the
zero locus of f contains the resulting divisorial components of the irrelevant
locus Irrel(X). Second, the open subsetXf is not necessarily affine, so regular
functions on Xf might be scarce (or even all constant).

Definition 2.7. An ideal I C S[X] is relevant if it does not contain any
power of the irrelevant ideal BX .

Note that if I is relevant, then so is Ihgs.

Lemma 2.8. Let X be a toric variety and p C S[X] a homogeneously
prime ideal. Set R = S[X](p). If p is relevant, then R and R−1 gener-
ate C(X).

Proof. Let A be the set of all homogeneous elements in S[X] which are
not in p, so R = (A−1S[X])0. We consider the subset µ ⊂ A of monomials
not in p; we will find enough elements to generate C(X) from that. We treat
µ naturally as a subset of TM [X]. Here and below, TM [X] and TM(X)
are as defined in §1.2.1. In fact, since p is homogeneously prime, µ forms a
lattice cone in TM(X) which is a face of the positive cone TM [X].
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Let µ∗ be the face of the positive cone of the ray lattice RX that is dual
to µ (that is, the span of the basis elements ρi for which the corresponding
Cox variable xi is not in µ). Let (µ∗)∨ ⊂ TM(X) be the cone dual to µ∗,
which is precisely

(µ∗)∨ = {z − y | z ∈ TM [X], y ∈ µ},
so the localisation A−1S[X] contains all the monomials in (µ∗)∨. For exam-
ple, if TM(X) ' Z2 and µ is generated by (1, 0), then µ∗ is generated by ρ2,
and (µ∗)∨ = 〈(1, 0), (−1, 0), (0, 1)〉. Restricting only to those monomials of
degree 0 with respect to the gradings is the same as taking the pullback via
the principal divisor map MX ↪→ TM(X), so to prove the claim it is enough
to prove that this pullback is a cone of maximal dimension in MX .

The pullback above is simply the dual of the image of µ∗ in NX under the
ray lattice map. Since p is relevant, this image cone is one of the cones in the
fan, so it is strictly convex and therefore its dual is of maximal dimension,
as required.

2.1.2. Equations defining subschemes. Subschemes are defined by ide-
als in Cox rings. We discuss different choices here, which arise later when
considering images and preimages of subschemes.

Definition 2.9. LetX be a toric variety with Cox ring S[X]. If I C S[X]
is a homogeneous ideal, then we write R = S[X]/I for the graded quotient
ring, and for h ∈ S[X] we write h̃ for h+ I ∈ R.

Suppose A ⊂ X is a closed subscheme.

• We say I defines A if for every affine open subset Xh = X \ (h) for
some homogeneous h in S[X] we have equality of schemes: A ∩Xh =
SpecR(h̃).
• We say I maximally defines A if I defines A and I ′ ⊂ I for any other
I ′ C S[X] which defines A.
• We say I freely defines A if I defines A and I is generated by f1, . . . , fk

for some homogeneous fi ∈ S[X] such that fi defines a Cartier divisor.

Lemma 2.10. Suppose A1, A2 ⊂ X are two closed subschemes defined by
homogeneous ideals IA1 , IA2, respectively. Then the scheme-theoretic inter-
section A1 ∩A2 is defined by IA1 + IA2.

Example 2.11. Let X = P(1, 1, 2) with Cox coordinates x1, x2, x3 and
let A be the coordinate locus x2 = 0. Then the ideal Imax = 〈x2〉 maximally
defines A and Ifree = 〈x1x2, x22〉 freely defines A.

In practice, ideals maximally defining a subscheme are often the simpler
ones and describe global properties of the scheme, while ideals freely defining
a subscheme say more about local properties. For instance in the example
above we immediately see that A is not a local complete intersection.
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Following Kajiwara [Kaji98, 1.5], we say that a toric varietyX has enough
Cartier divisors if the complement of each torus invariant affine patch on X
supports an effective T -invariant Cartier divisor. We also say that an ideal
I C S[X] is saturated if (I : BX) = I, or equivalently if the scheme in Cm
defined by I has no (embedded) components with support on Irrel(X) ⊂ Cm.

Proposition 2.12. Let X be a toric variety and A ⊂ X a closed sub-
scheme. Then there exists a unique homogeneous ideal Imax C S[X] maxi-
mally defining A, and this ideal is saturated. If, furthermore, X has enough
Cartier divisors (in the sense above), then there exists a saturated ideal Ifree
freely defining A.

Recall that if X is Q-factorial or quasiprojective, then it has enough
Cartier divisors. Our methods do not require this condition, except where
stated.

Being saturated is essential for accurate calculations of images of a sub-
variety.

Example 2.13. Let X = P1 × C, Y = C and let ϕ : X → Y be the
projection described in coordinates as Φ(x1, x2, x3) = (x3). Then S[X] =
C[x1, x2, x3] with BX = 〈x1, x2〉. Let I1 = 〈x1x3, x2x3〉 and I2 = 〈x3〉.
Then I1 is not saturated, its saturation is I2 and the scheme-theoretic image
ϕ(A) of the scheme A ⊂ X given by either of these ideals is equal to the
scheme given by 〈y1〉 C S[Y ]. This ideal is obtained as (ϕ∗)−1(I2) whereas
(ϕ∗)−1(I1) = 〈0〉.

2.1.3. Rational maps. We assemble standard facts about images of sub-
schemes under rational maps. Let X and Y be two (irreducible) algebraic
varieties with fields of rational functions C(X) and C(Y ). Suppose A ⊂ X is
a closed subscheme; we denote the corresponding ideal sheaf by IA C OX .

Given a rational map ϕ : X 99K Y , we denote by Regϕ ⊂ X the max-
imal open subset on which ϕ is regular and by ϕreg the restricted (regu-
lar) map ϕ|Regϕ. Suppose U ⊂ Regϕ is an open subset. By definition, the
scheme-theoretic image ϕ|U (A) ⊂ Y of A under ϕ restricted to U is the min-
imal closed subscheme of Y such that ϕreg|A∩U factorises through ϕ|U (A).
Set-theoretically, ϕ|U (A) is supported on ϕreg(A ∩ U). We write ϕ(A) for
ϕ|Regϕ(A).

For a closed irreducible subvariety Z ⊂ Y let OY,Z ⊂ C(Y ) be the local
ring of Z with maximal ideal mY,Z . The next proposition is standard; see
[Hart77, §I.4] or [EiHa00, §V.1.1], for example.

Proposition 2.14. Let ϕ : X 99K Y be a rational map between algebraic
varieties.

(i) If Z = ϕ(X), then Z is reduced and irreducible, and pullback deter-
mines a ring homomorphism ϕ∗ : OY,Z → C(X) with kernel mY,Z .
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(ii) Conversely, suppose R ⊂ C(Y ) is a subring such that R and R−1
generate C(Y ) (as a ring). Then every ring homomorphism α :
R → C(X) uniquely determines a rational map ψ : X 99K Y such
that ψ∗|R = α and R ⊂ OY,Z , where Z = ψ(X).

(iii) If A ⊂ X is a closed subscheme and V ⊂ Y is an open affine subset,
then

Iϕ(A)(V ) = (ϕ∗)−1IA(ϕ−1regV ) C OY (V ).

(iv) If B ⊂ Y is a closed subscheme and U ⊂ Regϕ is an open affine
subset, then

Iϕ−1
reg(B)(U) = 〈ϕ∗IB〉 C ORegϕ(U)

determines the ideal sheaf of the preimage of B, also denoted
IB · ORegϕ in this context.

Analogous algorithms compute the image of a point and the preimage of a
subscheme under a map between toric varieties expressed in Cox coordinates;
see §3.4.1 and §5.3.

The next proposition describes the locus where a rational map is regular;
it is used later to prove the existence of ‘complete’ descriptions.

Proposition 2.15. Let ϕ : X 99K Y be a rational map of irreducible
varieties. Let {Vi} be an affine cover of Y and I be the set of those i for
which Vi ∩ ϕ(X) is nonempty. Let Gi be a set of generators of the affine
coordinate ring OVi . Then the locus where ϕ is regular is

Regϕ =
⋃
i∈I

⋂
g∈Gi

Regϕ∗g.

Proof. It is enough to assume that Y = V1 is affine and then, by com-
posing it with a closed immersion into an affine space, that Y is an affine
space and G1 is the set of coordinate functions. In that case the statement
is clear.

2.2. Field extensions. Throughout this subsection we assume F is a
field which contains all the roots of unity. We denote the algebraic closure
of F by F. Our main interest is in F = C(x1, . . . , xm) or a finite extension of
this.

Lemma 2.16. Let γ ∈ F be such that γr ∈ F for r > 0 and assume r is
minimal with this property. Then the polynomial tr−γr ∈ F[t] is the minimal
polynomial of γ. In particular, the extension F ⊂ F(γ) is of degree r.

Proof. Let ε be a primitive rth root of unity. Then in F[t] we have
tr − γr = (t− γ)(t− εγ) · · · (t− εr−1γ).

If p ∈ F[t] is the minimal polynomial of γ, then p divides tr−γr (see [Lang02,
§V.1]). Hence (up to a scalar in F) p must be a product of j factors of tr−γr
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above for some 0 < j ≤ r. But then p(0) = εNγj for some power N . Hence
γj ∈ F, and so by minimality of r we must have j = r and p = tr − γr as
claimed. The degree calculation follows by [Lang02, Prop. V.1.4].

Corollary 2.17. Consider a sequence of field extensions

F = F0 ⊂ F1 ⊂ · · · ⊂ Fa = F(γ1, . . . , γa)

where Fi = Fi−1(γi) and each γi to some power is in F. Let ri be the minimal
positive integer such that γiri ∈ Fi−1. Then the collection{

γ1
j1 · · · γaja | ji ∈ {0, . . . , ri − 1}, i ∈ {1, . . . , a}

}
forms a basis of F(γ1, . . . , γa) as an F-vector space.

Proof. Follows immediately from Lemma 2.16 and [Lang02, Prop.V.1.2].

The following lemma is elementary, but we have not found any reference
for it.

Lemma 2.18. Assume γ0, . . . , γa ∈ F are all such that γiri ∈ F for some
ri > 0 and γ0 + · · · + γa = 0. Then the set Ξ = {γ0, . . . , γa} divides into a
disjoint union Ξ1 t · · · tΞb such that for each j all γ ∈ Ξj are proportional
over F and

∑
γ∈Ξj γ = 0.

Proof. We argue by induction on a. If a = 0, then there is nothing to
prove, so assume the result holds for all values less than a ≥ 1 and that
γi 6= 0 for every i.

Let ri be the minimal positive integer for which γiri ∈ F and let εi be a
primitive rith root of unity. Without loss of generality we may assume that
r0 is maximal among the ri. By Lemma 2.16, tri − γrii ∈ F[t] is the minimal
polynomial of γi.

Consider γ0 = −(γ1 + · · ·+ γa). The polynomial

q(t) =
∏

j1∈{0,...,r1−1}...
ja∈{0,...,ra−1}

(t+ ε1
j1γ1 + · · ·+ εa

jaγa)

is in F[t] and it vanishes at γ0. Hence the irreducible polynomial tr0 − γ0r0
must divide q(t). In particular

ε0(γ1 + · · ·+ γa) = ε1
j1γ1 + · · ·+ εa

jaγa for some j1, . . . , ja.

Writing δi = (ε0 − εi
ji)γi for i ∈ {1, . . . , a}, this equation becomes δ1 +

· · · + δa = 0. Now, by the inductive assumption, the δi divide into groups
Ξ1, . . . , Ξb, each of whose elements are proportional over F, and for which

(2.19)
∑
δ∈Ξk

δ = 0 for each k.
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We consider three cases. First, suppose there exist two different numbers
i1 and i2 such that δi1 and δi2 belong to the same set Ξk and ε0 − εi1ji1 6= 0
and ε0− εi2ji2 6= 0. Without loss of generality, assume i1 = a− 1 and i2 = a.
Then

γa−1 =
δa−1

ε0 − εa−1ja−1
= ga−1δ and γa =

δa
ε0 − εaja

= gaδ

for some ga−1, ga ∈ F. So the a-tuple γ0, γ1, . . . , γa−2, γa−1 + γa satisfies the
conditions of the lemma and we use our inductive assumption to conclude.
Note that γa−1 and γa either form a new group on their own (if γa−1 = −γa)
or are both proportional to elements of one of the groups existing by the
inductive assumption.

In the second case, suppose that within a given group Ξk there is only
one i such that ε0 − εi

ji 6= 0. Then from (2.19) we deduce that γi = 0,
contrary to our assumption.

Finally, as the third case, suppose that ε0 = εi
ji for all i. In particular,

r0 divides ri. But since we have assumed r0 is maximal among the ri, we
have r0 = ri for all i.

We have shown that for every (a+1)-tuple satisfying the hypotheses of the
lemma either all elements of the tuple are divided into groups proportional
over F, or their minimal powers are equal.

To conclude, consider the following (a+ 1)-tuple which also satisfies the
hypotheses:

1, γ1/γ0, . . . , γa/γ0.

If it divides into the appropriate groups proportional over F, then so do
the γi. On the other hand, if the minimal powers are equal, then they are
all equal to 1 (since 11 ∈ F). In that case, γi/γ0 ∈ F and so again the γi are
proportional over F (forming just one group Ξ1 in this case).

Corollary 2.20. Let k ⊂ F be a subfield, and V be a k-vector space with
a k-linear map i : V → F such that for every δ ∈ i(V ) there is some r > 0
for which δr ∈ F. Then there exists γ ∈ F and a k-linear map j : V → F such
that i(v) = j(v) · γ for all v ∈ V .

We express the conclusion of this corollary by saying that the elements
of i(V ) have a common irrational part.

Proof. If dim i(V ) = 0, then there is nothing to prove, so assume dim i(V )
≥ 1. Fix a nonzero element γ ∈ i(V ) and take any other δ ∈ i(v). Apply
Lemma 2.18 for the triple γ, δ,−(γ+δ) to conclude that δ = h(δ) ·γ for some
h(δ) ∈ F. The implicit map h is clearly k-linear in δ, so define a k-linear map
j by j(v) = h(i(v)). These j and γ have the required properties.
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2.3. Simple ring extensions. Let k be a field which contains all roots
of unity and S an integral k-domain with field of fractions F. Let F be the
algebraic closure of F.

Definition 2.21. A ring Γ is called a simple extension of S if there
exist γ1, . . . , γa ∈ F, with each γiri ∈ S for some ri > 0 (which is assumed
to be minimal), for which

(i) Γ = S[γ1, . . . , γa],
(ii) Γ is a free S-module with basis {γ1l1 · · · γala | 0 ≤ li < ri}, and
(iii) for any δ in the field of fractions K(Γ ) ⊂ F of Γ , if δr ∈ S for some

integer r > 0, then δ ∈ Γ .

The elements γ1, . . . , γa are called the distinguished generators of Γ over S.

We establish some basic properties of simple ring extensions as a corollary
of §2.2.

Corollary 2.22. Let S, F, Γ and the γi be as in Definition 2.21(i), (ii).
Let K(Γ ) ⊂ F be the field of fractions of Γ . Let δ ∈ K(Γ ) be such that δr ∈ F
for some r. Then:

(i) K(Γ ) is a vector space over F with basis {γ1l1 · · · γala | 0 ≤ li < ri}.
(ii) δ = g · γ1l1 · · · γala for some g ∈ F and 0 ≤ li < ri.
(iii) δ ∈ Γ if and only if g ∈ S, where δ is expressed in the basis as in

(ii). In particular, Γ ∩ F = S.
(iv) Fix any j ∈ {1, . . . , a}. Let Γj−1 be the ring S[γ1, . . . , γj−1] and let

K(Γj−1) be its field of fractions. Then the polynomial trj − γjrj is
irreducible in K(Γj−1)[t].

Proof. To prove that (i) holds, observe that K(Γ ) is F-generated by
the listed elements because Γ is. On the other hand if there were an F-
linear relation between these generators, then after clearing the denominator
there would be a relation between these S-generators of Γ , contradicting the
assumption that Γ is the free module.

To prove (ii) using (i), write δ = δ1 + · · ·+ δb where each δi is of the form
gi · γ1l1,i · · · γala,i . Setting δ0 = −δ we can apply Lemma 2.18 to deduce that
actually the δi divide into groups of elements proportional over F such that
the sum in each group is 0. In particular, δ0 must be either 0 or proportional
over F to at least one of the δi, which finishes the proof of (ii). Part (iii)
follows immediately from (ii).

In (iv), rj is also the minimal positive integer such that γjrj ∈ K(Γj−1),
for otherwise we would have an F-linear relation between smaller powers of
the γi, contrary to (i). So the conclusion follows from Lemma 2.16.

Our main concern is a particular class of simple extensions.
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Proposition 2.23. Let S = C[x1, . . . , xm] be a polynomial ring. Suppose
g1, . . . , ga are square free, pairwise coprime polynomials and r1, . . . , ra are
positive integers. Set γi = ri

√
gi. Then Γ = S[γ1, . . . , γa] is a simple extension

of S with distinguished generators γ1, . . . , γa.

Proof. Since the polynomials are pairwise coprime, there is no polynomial
relation between the γj other than those generated by γjr − gj = 0. Thus Γ
is a free module over S with the desired basis and Γ satisfies (i) and (ii) of
Definition 2.21.

Suppose δ ∈ K(Γ ) and δr ∈ S are as in Definition 2.21(iii). Then by
Corollary 2.22(ii) we can write δ = g

h1···hb · γ1
l1 · · · γala , where g and the hj

are nonconstant polynomials in S, the hj are irreducible, and none of the hj
divides g.

We claim b = 0 so that the denominator does not exist, as required
by Definition 2.21(iii). Suppose, on the contrary, that b ≥ 1. Since the gi
are pairwise coprime, at most one of g1, . . . , ga, say gi, is divisible by h1,
and since gi is square free, it can only divide h1 with multiplicity 1. Thus
the multiplicity of h1 in δr ∈ S is −r + rli/ri, which is always negative, a
contradiction.

A simple verification of the definition confirms that simple extensions
behave well under localisation.

Proposition 2.24. Suppose S ⊂ Γ is a simple ring extension and that
f ∈ S. Then S[f−1] ⊂ Γ [f−1] is a simple ring extension with the same set
of distinguished generators.

For δ ∈ K(Γ ) with δr ∈ F write δ = g · γ1l1 · · · γala with 0 ≤ li < ri and
g ∈ F as in Corollary 2.22(ii). Define the floor bδc and the ceiling dδe of δ to
be

bδc := g and dδe := g · γ1ε1r1 · · · γaεara ,
where εi = dli/rie is either 0 (if li = 0) or 1 (if li > 0). They are both
elements of F, and are related by b1/δc = 1/dδe.

Proposition 2.25. For δ as above, the floor and ceiling of δ satisfy both

δ ∈ Γ ⇔ bδc ∈ S and δ ∈ Γ ⇒ dδe ∈ S.
Moreover, if δ is an invertible element of Γ , then bδc and dδe are invertible
elements of S.

So far we have not exploited the property (iii) of Definition 2.21. It is
a normality condition, and it has two important consequences. First, if δ ∈
K(Γ ) satisfies δr ∈ F for some r > 0, then δ is regular on SpecS (as a multi-
valued function, meaning that it has no poles; see Definition 3.3) if and only
if δ ∈ Γ . This is made precise in the proof of Lemma 5.2. Meanwhile we
illustrate it with an example.
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Example 2.26. Suppose S := C[x1, x2], and let Γ ′ = S[γ] where γ :=
4
√
x1x22. Then the extension S ⊂ Γ ′ satisfies conditions (i)–(ii) of Defini-

tion 2.21, but does not satisfy (iii): for example, the multi-valued function
δ :=

√
x1 ∈ K(Γ ′) has no poles, but δ = γ2/x2 /∈ Γ ′. Instead, we may

consider a slightly bigger ring Γ = S[ 4
√
x1, 2
√
x2]. Then S ⊂ Γ is a simple

extension and γ, δ ∈ Γ .
The second consequence of 2.21(iii) is the uniqueness of b·c and d·e op-

erations.

Proposition 2.27. Suppose δ ∈ F is such that δr ∈ F. Then up to an in-
vertible element in S, bδc and dδe are well defined elements of F, independent
of the choice of simple ring extension S ⊂ Γ such that K(Γ ) contains δ.

Proof. It is enough to prove the statement for bδc. More precisely, sup-
pose Γ := S[γ1, . . . , γa] and Γ ′ := S[γ′1, . . . , γ

′
b] are two simple ring extensions

of S with δ ∈ Γ, Γ ′. Write δ = g · γ1l1 · · · γala = g′ · γ′1
m1 · · · γ′b

mb . We have to
prove g′/g ∈ S (inverting the roles of Γ and Γ ′ we also get g/g′ ∈ S).

Observe that δ/g = γ1
l1 · · · γala ∈ Γ , thus (δ/g)r ∈ S for some r. By

Definition 2.21(iii) also δ/g ∈ Γ ′. Since δ/g = (g′/g) ·γ′1
m1 · · · γ′b

mb by Corol-
lary 2.22(iii) we have g′/g ∈ S as claimed.

The next corollary shows that the intersection with S is readily calculated
for certain ideals in simple extensions Γ ⊃ S.

Corollary 2.28. Let I C Γ be an ideal generated by δ1, . . . , δβ where
each δi satisfies δiri ∈ S for some ri > 0. Then

I ∩ S = 〈dδ1e, . . . , dδβe〉 C S.

In particular intersecting ideals generated by such δi in Γ with S is additive:

(I1 + I2) ∩ S = (I1 ∩ S) + (I2 ∩ S).

Proof. This is repeated application of Lemma 2.29 below, keeping in
mind Corollary 2.22(iv).

Lemma 2.29. Let S be an integral domain. Consider an integral domain
Γ = S[γ]/〈γr − g〉 for some r ∈ Z, r > 0 and g ∈ S for which Γ is a
free S-module with basis 1, γ, . . . , γr−1 (in particular, γr − g is irreducible
over S). Furthermore assume I is an ideal in Γ generated as

I = 〈f1, . . . , fα, fα+1γ
mα+1 , . . . , fβγ

mβ 〉

where fi ∈ S and 0 < mi < r. Then

I ∩ S = 〈f1, . . . , fα, fα+1g, . . . , fβg〉.
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Proof. Clearly the listed generators are in I ∩ S.
So consider h ∈ I:

h =
( α∑
i=1

r−1∑
j=0

hi,jfiγ
j
)

+
( β∑
i=α+1

r−1∑
j=0

hi,jfiγ
j+mi

)
for some hi,j in S. Rewrite h as

h =
( α∑
i=1

hi,0fi

)
+
( β∑
i=α+1

hi,r−mifig
)

+ γ(. . . ) + · · ·+ γr−1(. . . ).

If h ∈ S, then the summands with γi for i ∈ {1, . . . , r− 1} are all 0 (because
Γ is a free S-module with basis 1, γ, . . . , γr−1). Hence

h =
( α∑
i=1

hi,0fi

)
+
( β∑
i=α+1

hi,r−mifig
)
,

which is an element of 〈f1, . . . , fα, fα+1g, . . . , fβg〉 C S as claimed.

Lemma 2.30. Let S, F, Γ and the γi be as in Definition 2.21. Analo-
gously, let Γ ′ be a simple extension of an integral k-domain S′ and let F′ be
the field of fractions of S′. Assume Φ∗ : S → Γ ′ is a homomorphism. Then
Φ∗ can be extended (nonuniquely) to a homomorphism Φ̃∗ : Γ → F as in the
diagram

S

Φ∗

$$

� _

��

S′
� _

��

Γ

Φ̃∗

%%

� _

��

Γ ′
� _

��
F F′

(so that, in particular, the diagonal square is commutative). The extension
can be chosen as follows. For every i, suppose γiri ∈ S is the (minimal)
defining property of γi and set gi := γi

ri. Then set

Φ̃∗(γi) := ri
√
Φ∗(gi) ∈ F′

for any choice of the rith root.

Proof. Since the only polynomial relations between γ1, . . . , γa are gi−γiri,
Φ̃∗ really defines a homomorphism.

3. Roots and multi-valued maps. In this section we introduce the
main technical tool to study descriptions of maps between toric varieties.
We extend the field of rational functions to include special elements of its
algebraic closure, so-called multi-valued functions. We use them to define
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multi-valued maps in the same way rational functions are used to define
rational maps.

We fix notation for this section, and indeed for the rest of this paper. We
work with two toric varieties X and Y and their Cox covers

Cm = SpecS[X]

πX
��
X

SpecS[Y ] = Cn

πY
��
Y

where S[X] = C[x1, . . . , xm] and S[Y ] = C[y1, . . . , yn]. Although in this
section we work exclusively on the Cox covers Cm and Cn, and everything
could be described with no reference toX and Y , we maintain the connection
between the Cox covers and their toric varieties in the notation.

3.1. Multi-valued sections

Definition 3.1. A multi-valued section on X is an element γ of the
algebraic closure S(X). We say γ is homogeneous if γr = f for some homo-
geneous f ∈ S(X) and for some integer r ≥ 1.

Notation 3.2. If γ is a homogeneous multi-valued section with γr = f
as above, then we write γ = r

√
f . It is implicit in this notation that r is

minimal and that an rth root of f has been chosen once and for all, and any
other use of r

√
f in the same calculation refers to the same γ.

The product and quotient of two homogeneous multi-valued sections is
again homogeneous, but their sum is usually not:

√
x1 +

√
x2 is not homo-

geneous even if x1 and x2 have the same degree. Furthermore, it is not true
that every multi-valued section can be expressed as a sum of homogeneous
ones.

In the first place, we treat multi-valued sections on X as mildly gener-
alised rational functions on the affine Cox cover Cm. In particular, we simply
define when a homogeneous multi-valued section is regular or invertible on
an open subset of Cm following the notions for rational functions.

Definition 3.3. Let γ = r
√
f be a homogeneous multi-valued section

of X with f ∈ S(X) homogeneous. Then γ is regular if f ∈ S[X]. More
generally, γ is regular on U , for a Zariski open subset U ⊂ Cm, if f is regular
on U . If γ is regular on U and does not vanish anywhere on U , we say γ is
invertible on U .

The domain of γ, also called the regular locus of γ and denoted Reg γ, is
defined to be the largest open subset of Cm on which γ is regular.

If V ⊂ X is a Zariski open subset ofX and γ a homogeneous multi-valued
section of X, then we say that γ is regular on V if it is regular on the open
subset π−1X (V ) ⊂ Cm.
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A typical homogeneous multi-valued section γ = r
√
f is not a function in

the usual sense. Nevertheless, for ξ ∈ Reg γ we write γ(ξ) for the finite set
of values a ∈ C for which ar = f(ξ).

Definition 3.4. A homogeneous multi-valued section γ = r
√
f is single-

valued if r = 1, in which case γ = f ∈ S(X).

This notion relies on the convention of 3.2 that r is assumed to be min-
imal. Thus, for example, r

√
1 is single-valued, since the minimal choice is

r = 1. Since we are in characteristic 0 and our ground field contains all
roots of unity, there is an equivalent set-theoretic condition (Proposition 3.5
below); we omit the proof.

Proposition 3.5. A homogeneous multi-valued section γ ∈ S(X) is
single-valued if and only if γ(ξ) has exactly one element for a general
ξ ∈ Reg γ.

Finally, we show that linear subspaces of homogeneous multi-valued sec-
tions all have the same irrational part. This is one of the key points that
makes the theory work: if we imagined a map to projective space as be-
ing determined by a basis of a vector space of sections corresponding to a
‘multi-valued linear system’, then this property would allow us to divide out
by the common irrational part to recover a map defined without radicals.

Proposition 3.6. If V is a C-vector space and i : V → S(X) is a C-
linear map whose image consists of only homogeneous multi-valued sections,
then there exists a homogeneous multi-valued section γ ∈ S(X) and a C-
linear map j : V → S(X) whose image consists of homogeneous elements of
a constant degree, and i(v) = j(v) · γ for all v ∈ V.

Proof. If dim i(V ) = 0, then there is nothing to prove, so assume
dim i(V ) ≥ 1. Apply Corollary 2.20 for k = C and F = S(X) and let j′
and γ′ be the resulting map and section. Let v0 ∈ V be a vector such that
j′(v0) is not zero and set γ := γ′ · j′(v0) and j(v) := j′(v)/j′(v0).

By assumption (j(v) · γ)r is a homogeneous section in S(X) for some r.
Hence γr ∈ S(X) and γr is homogeneous (take v = v0). But then also j(v)r

is homogeneous, being a quotient of two homogeneous sections, and so j(v)
is homogeneous too.

It remains to prove that j(v1) and j(v2) have the same degree for any
v1, v2 ∈ V . Consider j(v1+v2) = j(v1)+j(v2). If j(v1) and j(v2) had different
degrees, then the decomposition of j(v1 +v2) into homogeneous components
would have two components, but j(v1 + v2) is also homogeneous, so there
can be only one component.

3.2. Multi-valued maps. We define multi-valued ‘maps’ between affine
spaces allowing roots in their descriptions. We will not consider the largest



Maps of toric varieties in Cox coordinates 239

possible class of maps that one might define by multi-valued sections, but
only a particular case.

Definition 3.7. A multi-valued map Φ from Cm to Cn is a C-algebra
homomorphism Φ∗ : C[Cn]→ C(Cm) such that Φ∗yi is a homogeneous multi-
valued section for each i = 1, . . . , n. We say Φ is regular on U ⊂ Cm if all
Φ∗yi are regular on U .

Notation 3.8. If Φ is a multi-valued map as above, then we write

Φ : Cm 0.0.
0. Cn, ξ � 0.0.

0. (
(Φ∗y1)(ξ), . . . , (Φ

∗yn)(ξ)
)
.

Of course evaluating Φ at a point ξ ∈ Cm is slightly delicate. Each component
is the evaluation of a multi-valued function, so it is a set. However Φ(ξ) is
not necessarily the product of these sets, since we must match the roots
appearing in the multi-valued sections when they are the same, as in §1.1.2.
The evaluation will be explained in detail in §3.4.1.

We extend Φ∗ to a subset of rational functions (for which the pullback
makes sense, i.e. we do not divide by 0) by

Φ∗
(
f

g

)
=
Φ∗f

Φ∗g
whenever Φ∗g 6= 0.

If q = f/g is a reduced expression and Φ∗g = 0, then we say Φ∗q is not
defined.

Example 3.9. The toric map of §1.1.2, an affine patch on the blowup of
the affine quotient singularity 1

2(1, 1), lifts to a multi-valued map

Φ : C2 0.0.
0. C2, (s, t) � 0.0.

0.
(
√
s, t
√
s).

Definition 3.10. Let ϕ be a rational map Cm 99K Cn. We can naturally
associate a multi-valued map Φ to ϕ, by setting Φ∗ := ϕ∗. If a multi-valued
map Φ arises in this way, then we say Φ is single-valued.

The maximal subset U ⊂ Cm on which Φ is regular is an open affine
subset.

Proposition 3.11. Let

Φ : Cm 0.0.
0. Cn, x � 0.0.

0.
((

f1
g1

)1/r1

, . . . ,

(
fn
gn

)1/rn)
,

be a multi-valued map. Assume that fi/gi is reduced for each i. Then the max-
imal subset U ⊂ Cm where Φ is regular is the complement of the vanishing
locus of g := g1 · · · gn, that is,

U = (Cm)g = SpecS[X][g−1].

In particular, since the gi are homogeneous, U is GX-invariant, where GX
is the group acting on Cm, making X = Cm//GX (see notation in §1.2.1).
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Proof. Clearly Φ is regular on (Cm)g. Further let ξ be such that gi(ξ) = 0

for some i. Then Φ is not regular at ξ, because Φ∗yi = ri
√

(fi/gi) is not regular
at ξ.

Definition 3.12. Let Φ : Cm 0.0.
0. Cn be a multi-valued map. The do-

main of Φ, also called the regular locus of Φ and denoted RegΦ, is defined
to be the affine open subset U of Proposition 3.11.

Corollary 3.13. If a description Φ is determined by polynomial radi-
cals,

x � 0.0.
0.
(r1
√
f1, . . . ,

rn
√
fn),

for polynomials f1, . . . , fn ∈ S[X], then RegΦ = Cm.

3.3. Map rings of multi-valued maps. There is another natural way
of thinking of a multi-valued map, and it is the key to the analysis here. Let
Φ : Cm 0.0.

0. Cn be a multi-valued map with corresponding toric varieties
X and Y . Choose Γ (Φ) to be any subring in S(X) which has the following
properties:

(i) Γ (Φ) = C[RegΦ][γ1, . . . , γa] for some homogeneous multi-valued
sections γ1, . . . , γa, all of which are regular on RegΦ.

(ii) The image Φ∗(S[Y ]) = Φ∗(C[Cn]) is contained in Γ (Φ).
(iii) S[X][γ1, . . . , γa] is a simple extension of S[X] with distinguished

generators γ1, . . . , γa (so by Proposition 2.24 also Γ (Φ) is a simple
extension of C[RegΦ] with the same generators).

Although such rings are not uniquely determined, they are important in
our considerations.

Definition 3.14. Any ring Γ (Φ) satisfying (i)–(iii) is called a map ring
of Φ.

Proposition 3.15. Let Φ : Cm 0.0.
0. Cn be a multi-valued map. Then

there exists a map ring Γ (Φ) of Φ.

This proof is constructive but does not necessarily give the most efficient
way of choosing a map ring.

Proof. Let Φ∗yi = ri
√
fi, where fi ∈ S(X). Let {g1, . . . , ga} be a finite

set of homogeneous, square free, and pairwise coprime polynomials in S[X]
so that each fi has an expression as a Laurent monomial in the gj . Let r be
the least common multiple of all ri. Then set

γj = r
√
gj for all j ∈ {1, . . . , a}.

We claim that Γ (Φ) = C[RegΦ][γ1, . . . , γa] is a map ring of Φ.
Property (i) is satisfied by construction. It is also clear that each Φ∗yi

can be expressed in terms of the γj , so Γ (Φ) contains the image of S[Y ],
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which is property (ii). Finally, (iii) follows by Proposition 2.23 since the gj
are coprime.

The fact that the map ring is a simple extension has three advantages.
First, the image of a point can be calculated by a simple evaluation. Second,
it allows us to compose appropriate pairs of multi-valued maps. Finally, with
the distinguished generators (which only need be calculated once for each
map), preimages of subvarieties can be calculated, at least away from certain
loci. Section 5 explains this.

3.4. Images and preimages under multi-valued maps. Let Φ :
Cm 0.0.

0. Cn be a multi-valued map and Γ (Φ) be a ring satisfying condi-
tions (i) and (ii) of §3.3. Eventually we need Γ (Φ) to be a map ring of Φ,
but for the sole purpose of proving Proposition 3.18 we consider this slightly
more general object.

Setting V (Φ) = SpecΓ (Φ), we have two natural morphisms:

Cm pΦ←− V (Φ)
qΦ−→ Cn,

where p∗Φ is the inclusion of S[X] in Γ (Φ) and q∗Φ is defined by mapping yi
to Φ∗yi ∈ Γ (Φ). We treat V (Φ) informally as a correspondence (even though
it is not constructed in the product, and in any case it is finite over RegΦ
but not necessarily over Cm). Using this, we can define (set-theoretic) image
and preimage of subsets in a natural way.

Definition 3.16. Let Φ : Cm 0.0.
0. Cn be a multi-valued map. Let A ⊂

RegΦ be a subset. The image of A under Φ is the subset of Cn defined by

Φ(A) := qΦ(p−1Φ (A)).

Let B ⊂ Cn be a subset. The preimage of B under Φ is the subset of RegΦ
defined by

Φ−1(B) := pΦ(q−1Φ (B)).

In Section 3.4.1 below, we explain how to evaluate a multi-valued function
Φ at a point ξ; this agrees with the notion of image just discussed for A = {ξ}:
Φ(A) = {Φ(ξ)}. When Φ is a single-valued map, these definitions give the
usual image and preimage under a rational map.

Since qΦ is continuous and pΦ : V (Φ) → RegΦ is finite and locally free
(and thus closed by [Hart77, Ex. II.3.5(b)] and open by [sta, Lemmas 042S
and 02KB]), preimage behaves well with respect to the Zariski topology.

Proposition 3.17. If B ⊂ Cn is open, then Φ−1(B) ⊂ Cm is open. If
B ⊂ Cn is closed, then Φ−1(B) ⊂ RegΦ is closed.

Proposition 3.18. The definitions of image and preimage above are
independent of the choice of Γ (Φ) satisfying conditions (i) and (ii) of §3.3.
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Proof. All the rings satisfying conditions (i) and (ii) must contain

Γ (Φ)min := C[RegΦ][Φ∗y1, . . . , Φ
∗yn].

On the other hand Γ (Φ)min itself satisfies these two conditions. So for any
Γ (Φ) we have the commutative diagram

SpecΓ (Φ)

����

{{{{ &&

SpecΓ (Φ)min

uuuu **
RegΦ Cn

and since the middle vertical arrow is epimorphic it follows that it does not
matter which way around one carries the subset between RegΦ and Cn.

In §5.2–5.3 we explain how to consider scheme-theoretic image and pre-
image under certain multi-valued maps. This is more delicate since the
scheme structure of the image or preimage may depend on the choice of
map ring Γ (Φ).

Proposition 3.19.The ideal of the Zariski closure Φ(RegΦ) of Φ(RegΦ)
is the kernel of Φ∗.

Proof. Since the image of pΦ is exactly RegΦ,

Φ(RegΦ) = qΦ(p−1Φ (RegΦ)) = qΦ(V (Φ)).

Now f ∈ S[Y ] vanishes on qΦ(V (Φ)) if and only if 0 = q∗Φf = Φ∗f .

3.4.1. Image of a single point. We consider the image of a single closed
point under a multi-valued map and prove that it can be computed by eval-
uation with a little care.

Example 3.20. Consider the following multi-valued map:

Φ : C2 0.0.
0. C2, (s, t) � 0.0.

0.
( 6
√
s,

2
√
s3(t2 + s)).

The image of the point (64,−1) consists of the six points

(2ε6, 512ε36(1 + 64))

as ε6 runs over the 6th roots of unity. On the other hand, the point
(2,−512× 65) is not in the image of (64,−1), even though 2 = 6

√
64 and

−512× 65 = −
√

643((−1)2 + 64).
The crucial observation in this example is that the irrational parts 6

√
s

and 2
√
s3 are algebraically dependent: in fact,

( 6
√
s)9 =

2
√
s3,
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so 2
√
s3 is already in the extension ring C[s, t][ 6

√
s]. (Some choice of the sixth

root must have been made, and here we enforce that choice on the whole
calculation.)

Choose a point ξ ∈ RegΦ and let evξ : C[RegΦ] → C be the evaluation
map. Consider the diagram

C[Cn]

Φ∗

''

C[RegΦ]
� _

��

evξ // C

Γ (Φ)
ẽvξ // C

The extensions ẽvξ exist and they are precisely determined by any choice of
roots of images of the distinguished generators (see Lemma 2.30).

Theorem 3.21. Let ξ ∈ RegΦ. Then Φ(ξ) is precisely the set of all those
η ∈ Cn whose maximal ideal is the kernel of ẽvξ ◦Φ∗ for some extension ẽvξ.

Proof. Let mξ = ker evξ C RegΦ be the maximal ideal of ξ. First assume
η ∈ Φ(ξ). Then there exists a point ζ ∈ V (Φ) such that qΦ(ζ) = η and
pΦ(ζ) = ξ. So if mζ C Γ (Φ) is the maximal ideal of ζ, then mζ ⊃ 〈mξ〉C Γ (Φ).
Consider evζ : Γ (Φ)→ Γ (Φ)/mζ ' C. Now clearly evζ |C[RegΦ] is a (nonzero)
ring homomorphism, whose kernel contains the maximal ideal mξ. So

evζ |C[RegΦ] = evξ,

and so ẽvξ := evζ is an extension of evξ such that the kernel of ẽvξ ◦Φ∗ is mη.
Now assume we have an extension ẽvξ. Let mζ be its kernel. Clearly

〈mξ〉 ⊂ mζ , so pΦ(ζ) = ξ and therefore qΦ(ζ) ∈ Φ(ξ).

4. Descriptions of maps. Consider two toric varieties X and Y and
their Cox covers Cm = SpecS[X] and Cn = SpecS[Y ], where S[X] =
C[x1, . . . , xm] and S[Y ] = C[y1, . . . , yn]. In this section, we show how to use
multi-valued maps Φ : Cm 0.0.

0. Cn to describe rational maps ϕ : X 99K Y .
In particular, we address the following issues:

• What does it mean for a multi-valued map Φ to describe a rational
map ϕ?
• Which multi-valued maps describe rational maps at all?
• Can every rational map be described by a multi-valued map?
• Which classes of multi-valued maps describe rational maps particularly

well, or completely?

An algorithm for finding such a complete description Φ of a given ϕ is
implicit in the proofs.
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4.1. The agreement locus. Let Φ : Cm 0.0.
0. Cn be a multi-valued

map. It fits into a diagram

(4.1)
Cm Φ 0.0.

0.

πX
��

Cn

πY
��

X Y

The regular locus RegΦ ⊂ Cm of Φ, where its denominators do not vanish
as in Definition 3.12, contains a finer subset, the locus where πY ◦ Φ is a
well-defined map of sets:

RegY Φ := {ξ ∈ RegΦ | Φ(ξ) ∩ Reg πY 6= ∅ and #πY (Φ(ξ)) = 1}.

This locus RegY Φ may be empty. On the other hand, if RegY Φ contains
a nonempty open subset, then we regard Φ as being adapted to Y ; under
this assumption, it makes sense to ask where Φ agrees with a rational map
X 99K Y .

Definition 4.2. Given a multi-valued map Φ : Cm 0.0.
0. Cn and a ra-

tional map ϕ : X 99K Y , in the notation above, the agreement locus of Φ
and ϕ is

Agr(Φ,ϕ) = {ξ ∈ RegY Φ ∩ π−1X (Regϕ) | πY ◦ Φ(ξ) = ϕ ◦ πX(ξ)}.

In other words, the agreement locus is the set of points where both com-
positions πY ◦ Φ and ϕ ◦ πX are well-defined as maps of sets and they have
the same values.

Remark 4.3. At this point, even if RegY Φ contains an open dense sub-
set, this agreement locus could be contained in a proper closed subset, equal
to a finite number of points, or even empty. In this paper, we are interested
in the case when the agreement locus contains an open dense subset (see
Definition 4.4), but it is easy to imagine it is only dense in some subvariety
Z of X (for instance, Z could be a Mori dream space with m generators of
the Cox ring of Z, and X could be a toric variety containing Z). Then we
could study descriptions of maps between Z and Y (or yet another subvariety
of Y ). We would not comment further on this possibility.

Perhaps the next definition does not seem surprising, but it really is
the key one in this paper. As written it is purely set-theoretic—what is
surprising is that with our general restrictions on the multi-valued maps,
the set-theoretic properties suffice to prove many algebraic conditions, such
as Propositions 4.6 and 5.4.

Definition 4.4. We say Φ is a description of ϕ, or that Φ describes ϕ,
if Agr(Φ,ϕ) contains an open dense subset of Cm.
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When we have a multi-valued map Φ that describes a rational map ϕ,
we say that ϕ is given in Cox coordinates by

ϕ : X 99K Y, x 7→ [(Φ∗y1)(x), . . . , (Φ∗yn)(x)],

leaving implicit that Φ∗yi is really only evaluated on some ξ ∈ Agr(Φ,ϕ) for
which x = [ξ].

Section 1.1 has several examples of descriptions of maps, and here is
another.

Example 4.5. The diagonal embedding of P1 ↪→ P1 × P1 has the de-
scription

Φ : [x1, x2] 7→ [x1, x2, x1, x2].

In this case, kerΦ∗ = 〈y1 − y3, y2 − y4〉 is not a homogeneous ideal with
respect to the gradings(

1 1 0 0

0 0 1 1

)
on the Cox coordinates y1, . . . , y4,

in contrast to the case of projective spaces. It is easy to see in this case that
the homogeneous part of the kernel is 〈y1y4 − y2y3〉, and that this defines
the image of the embedding.

4.2. Homogeneity and relevance conditions. We determine when
a multi-valued map Φ between the Cox covers of two toric varieties X and
Y describes a rational map X 99K Y . First we show the equivalence of four
conditions analogous to the usual homogeneity conditions for maps between
projective spaces. Together, they are referred to as the homogeneity condi-
tion.

Proposition 4.6. Let Φ be a multi-valued map as in (4.1) above and
consider the set

L = {yi | i ∈ {1, . . . , n} and Φ∗yi 6= 0}

of Cox generators of S[Y ] that pull back nontrivially under Φ. The following
conditions are equivalent:

(A1) If q ∈ S(Y ) is homogeneous and Φ∗q is defined, then Φ∗q is a
homogeneous multi-valued section on X.

(A2) If q ∈ C(Y ) and Φ∗q is defined, then Φ∗q ∈ C(X).
(A3) There exist rational monomials l1, . . . , lk generating C(Y ) ∩ C(L)

= C(L)0 as a field extension of C such that Φ∗li are homogeneous
single-valued sections of degree 0.

(A4) For all ξ, ξ′ ∈ RegΦ with ξ′ ∈ GX · ξ, if η ∈ Φ(ξ) and η′ ∈ Φ(ξ′)
then η′ ∈ GY · η.
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(A4′) There exists an open dense subset U ⊂ RegΦ such that for all
ξ, ξ′ ∈ U with ξ′ ∈ GX · ξ, if η ∈ Φ(ξ) and η′ ∈ Φ(ξ′) then
η′ ∈ GY · η.

(A2) is the usual treatment of a rational map X 99K Y as a map of
function fields, taking care with the domain in case the map is not dominant.
We use this to recover a rational map from a description (see Theorem 4.10),
and it is also convenient in calculations, as in the introduction. (A3) is the
same condition expressed for a finite number of generators, which is useful
when deciding whether an expression determines a rational map; we also use
it to construct a description of a rational map (see Theorem 4.12).

(A1) is used to prove Proposition 4.16, calculating the dimension of the
complement of the agreement locus. It is not much help for deciding whether
a given expression determines a rational map, as the example in §1.1.7 il-
lustrates. (A4) is the geometric condition that Φ maps GX -orbits into GY -
orbits. This is a closed condition, which is expressed as (A4′). (A4) and (A4′)
are used to give conditions for a multi-valued map to be a description of some
rational map (see Proposition 4.9 and Theorem 4.10) and in the calculations
of agreement locus in §4.4.

Proof of Proposition 4.6. Suppose (A1) holds for Φ. Let V ⊂ S(Y ) be the
subspace of homogeneous sections of degree 0 for which the pullback by Φ is
defined. Denote the restriction of Φ∗ to V by i : V → S(X). Since i(1) = 1 is
rational and has degree 0, Proposition 3.6 implies that all elements of i(V )
are rational and of degree 0. Therefore (A2) holds for Φ.

Suppose (A2) holds. Since C(L)0 ⊂ S(Y )0, any monomial generating set
l1, . . . , lk of C(L)0 satisfies (A3) for Φ.

Suppose (A3) holds for Φ; we show that (A1) holds. Let q ∈ S(Y ) be any
homogeneous function. Write

q =
µ1 + · · ·+ µα
ν1 + · · ·+ νβ

,

where the µi and νj are monomial terms in S[Y ] with degµi = d1 and
deg νj = d2 for all i and j. Assume that Φ∗(ν1 + · · · + νβ) 6= 0, so Φ∗q is
defined.

Certainly each Φ∗µi is a homogeneous multi-valued section. Therefore the
Laurent monomial µi1/µi2 is homogeneous of degree 0 and either Φ∗(µi1) = 0
or Φ∗(µi2) = 0 or Φ∗(µi1/µi2) is a nonzero homogeneous degree 0 rational
section in C(X). In particular, for every i,

Φ∗(µi) = fi · γ
where γ ∈ S(X) is a fixed homogeneous multi-valued section (independent
of i) and fi ∈ C(X). So

Φ∗(µ1 + · · ·+ µα) = (f1 + · · ·+ fα)γ.
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Similarly, Φ∗(ν1 + · · · + νβ) = (g1 + · · · + gβ)δ 6= 0, for some δ ∈ S(X) and
gj ∈ C(X). So

Φ∗(q) = h · ε

where ε = γ/δ ∈ S(X) is homogeneous and h = (
∑
fi)/(

∑
gj) ∈ C(X). So

Φ∗(q) is homogeneous and (A1) holds.
It remains to prove the equivalence of (A2), (A4) and (A4′).
Suppose (A2) holds. Let ξ ∈ RegΦ and consider GX ·ξ. The claim of (A4)

is that Φ(GX · ξ) is contained in one GY -orbit. Let A ⊂ {1, . . . , n} be the set
of those i such that Φ∗yi vanishes at ξ. Since Φ∗yi is homogeneous, if i ∈ A,
then Φ∗yi vanishes identically on the orbit GX · ξ, and if i /∈ A, then Φ∗yi is
nowhere zero on GX · ξ. Thus Φ(GX · ξ) is contained in the torus T ⊂ Cn
given by yi = 0 for i ∈ A and yj 6= 0 for i /∈ A. By definitions, the group GY
preserves T . We consider the quotient torus T/GY = SpecOTGY and obtain
the following diagram:

p−1Φ (GX · ξ)
� _

��

yyyy ##

V (Φ)
pΦ

xxxx %%
GX · ξ �

� // RegΦ Cn T? _oo // // T/GY

The claim of (A4) is that the image of p−1Φ (GX · ξ) under the composed
map p−1Φ (GX · ξ) → T/GY is a single point. Equivalently, for any regu-
lar function on T/GY , the pullback is a constant function on p−1Φ (GX · ξ).
A regular function on T/GY is a GY -invariant regular function on T . Any
GY -invariant function on T is the restriction of a degree zero rational func-
tion q on Cn, whose pullback Φ∗q is defined, and is regular at ξ. By (A2) we
have Φ∗q ∈ C(X), in particular the pullback of q to p−1Φ (GX · ξ) is equal to
p∗Φ(Φ∗q|GX ·ξ). Since Φ∗q|GX ·ξ is GX -invariant, Φ∗q|GX ·ξ ≡ Φ∗q(ξ), i.e., it is
a constant function. Its pullback by p∗Φ is therefore also a constant function
on p−1Φ (GX · ξ) and the claim of (A4) is proved.

If (A4) holds, then clearly (A4′) holds too.
Finally, suppose (A4′) holds. Let q ∈ C(Y ) be such that Φ∗q is defined.

Suppose ξ ∈ U is general. The possible values taken by Φ∗q at ξ are simply
those values taken by q at the points of the image set Φ(ξ). Setting ξ′ = ξ
in (A4′) shows that Φ(ξ) is contained in a single GY -orbit, and so Φ∗q(ξ) =
{q(η) | η ∈ Φ(ξ)} is a single point. Therefore Φ∗q ∈ S(X) by Proposition 3.5.
In any case, for any ξ, ξ′ as in (A4′),

(Φ∗q)(ξ) = q(Φ(ξ)) = q(Φ(ξ′)) = (Φ∗q)(ξ′)
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since q is constant on GY -orbits. That is, Φ∗q is constant on a general GX
orbit, so Φ∗q is GX -invariant.

Next we note the equivalence of another three conditions, jointly referred
to as the relevance condition.

Proposition 4.7. Let Φ be a multi-valued map as in (4.1) above and
consider the set

R0 =
{
ρi ∈ Σ(1)

Y | i ∈ {1, . . . , n} and Φ∗yi = 0
}

of rays of the fan ΣY of Y which correspond to Cox generators of S[Y ] that
pull back trivially under Φ. The following conditions are equivalent:

(B1) The image of Φ is not contained in the irrelevant locus of Y .
(B2) kerΦ∗ does not contain the irrelevant ideal BY of Y , that is, kerΦ∗

is a relevant ideal.
(B3) The rays of R0 are all contained in a single cone of ΣY .

Proof. The equivalence of the first two conditions is immediate (even
taking into account the multi-values of Φ). If σ is a maximal cone of ΣY
containing all the rays of R0, then the standard generator mσ ∈ BY deter-
mined by σ satisfies Φ∗mσ 6= 0. Thus mσ is not contained in kerΦ∗, and so
neither is BY . Conversely, if there is no maximal cone containing all the rays
of R0, then every standard generator of BY contains at least one such ray.
Therefore BY ⊂ kerΦ∗.

Definition 4.8. Let Φ be a multi-valued map as in (4.1) above.

(A) We say that Φ satisfies the homogeneity condition if any of the equiv-
alent conditions (A1), (A2), (A3), (A4), (A4′) of Proposition 4.6 hold
for Φ.

(B) We say that Φ satisfies the relevance condition if any of the equivalent
conditions (B1), (B2), (B3) of Proposition 4.7 hold for Φ.

Proposition 4.9. If Φ is a description of a rational map ϕ : X 99K Y ,
then Φ satisfies the homogeneity and relevance conditions of Definition 4.8.

Proof. By Definition 4.4 of description, πY ◦ Φ is defined on an open
subset of Cm, so Φ(x) cannot be contained in the irrelevant locus for those
points. Therefore Φ satisfies the relevance condition (B1).

Since Φ is a description, the agreement locus Agr(Φ,ϕ) contains an open
dense subset of RegΦ. The homogeneity condition (A4′) is satisfied on this
set.

The converse is the main point: the homogeneity and relevance conditions
guarantee that a multi-valued map is a description of a uniquely determined
rational map.
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Theorem 4.10. Let Φ be a multi-valued map as in (4.1) above that sat-
isfies the homogeneity and relevance conditions of Definition 4.8.

(i) By its action on rational functions, Φ∗ naturally determines a ratio-
nal map ϕ : X 99K Y .

(ii) Φ is a description of a map ψ : X 99K Y if and only if ψ = ϕ.

Proof. To prove (i) first note that p := (kerΦ∗)hgs C S[Y ] is homoge-
neously prime by Proposition 2.5, so that the following localisation makes
sense:

R := S[Y ](p).

We claim Φ∗ naturally determines a ring homomorphism

C(Y ) ⊃ R Φ∗−→ C(X).

This is because by definition

R =
{
f/g | f, g ∈ S[Y ], g /∈ p and

f , g are homogeneous of the same degree
}
.

Since p is generated by all homogeneous sections in kerΦ∗, we can also replace
the condition g /∈ p with g /∈ kerΦ∗:

R =
{
f/g | f, g ∈ S[Y ], g /∈ kerΦ∗ and

f, g are homogeneous of the same degree
}
.

In particular, if f/g ∈ R, then the pullback by Φ is defined (because Φ∗g is
not zero).

By the homogeneity condition (A2),

Φ∗
(
f

g

)
∈ S[X]0 ∼= C(X).

So we have a ring homomorphism R→ C(X) as claimed.
Note, that by Lemma 2.8 together with the relevance condition (B2),

R and R−1 together generate C(Y ). Hence by Proposition 2.14 the ring
homomorphism

Φ∗ : R→ C(X)

determines a rational map ϕ : X 99K Y which is characterised by its action
on rational functions q ∈ C(Y ) being ϕ∗(q) = Φ∗(q).

Next we have to prove that Φ describes ϕ. Consider the open subset

U = {ξ ∈ RegΦ | ξ /∈ Irrel(X), Φ(ξ) * Irrel(Y )}
of RegΦ; note that it contains a nonempty open subset of Cm by the rel-
evance condition. Choose any ξ ∈ U . By the homogeneity condition (A4),
πY (Φ(ξ)) is a single point y. We claim y = ϕ(πX(ξ)), so that ξ ∈ Agr(Φ,ϕ).
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To prove the claim, we set x = [ξ] = πX(ξ) and evaluate rational func-
tions q ∈ C(Y ) at ϕ(x) and y:

q(ϕ(x)) = (ϕ∗q)(x) = (Φ∗q)([ξ]) = q([Φ(ξ)]) = q(y).

So no rational function on Y can distinguish between ϕ(x) and y and there-
fore y = ϕ(x). Hence U ⊂ Agr(Φ,ϕ) and Φ describes ϕ.

Finally, we note that if ψ : X 99K Y is another rational map which is
also described by Φ, then for ξ ∈ Agr(Φ,ψ) with x = [ξ] and for a rational
function q ∈ K(Y ) we have

(ψ∗q)(x) = q(ψ(x)) = q([Φ(ξ)]) = (Φ∗q)(ξ) = (ϕ∗q)(x).

Hence ψ∗ = ϕ∗ and therefore ψ = ϕ.

Corollary 4.11. Let Φ be a description of a rational map ϕ : X 99K Y .

(i) Let σ ∈ ΣY be the smallest cone which contains all rays whose cor-
responding coordinate yi is pulled back to 0 by Φ. Then the closed
toric stratum corresponding to σ is the smallest closed stratum of Y
that contains ϕ(X).

(ii) The assignment

Ψ∗yi :=

{
0 if the ith ray of ΣY is in σ,
Φ∗yi otherwise,

defines a multi-valued map Ψ , and Ψ also describes ϕ.
(iii) If, furthermore, Y is Q-factorial, then Φ∗yi = 0 if and only if ϕ(X)

is contained in the locus yi = 0.

Proof. When πY : Cn 99K Y is a geometric quotient, η ∈ Cn is a semi-
stable point and yi is a Cox coordinate, then

yi(η) = 0 ⇔ πY (η) ∈ Supp(yi),

where (yi) is the divisor on Y corresponding to yi. So if Y is Q-factorial and
ξ ∈ Agr(Φ,ϕ), then

ϕ(πX(ξ)) ∈ Supp(yi) ⇔ πY (Φ(ξ)) ∈ Supp(yi)

⇔ yi(Φ(ξ)) = 0 ⇔ (Φ∗yi)(ξ) = 0,

which proves the final statement.
If the quotient πY is not geometric, then we have only

yi(η) = 0 ⇒ πY (η) ∈ Supp(yi),

so that ϕ(X) is contained in the intersection of the supports of the divisors
(yi) for those yi with Φ∗yi = 0. On Y , this intersection is the toric stratum
corresponding to the cone σ. In particular, ϕ(X) ⊂ Supp(z) for every Cox
coordinate z corresponding to a ray of σ, whether or not Φ∗z is zero. So for
any ξ ∈ Agr(Φ,ϕ) we have πY (Φ(ξ)) = πY (Ψ(ξ)). Therefore Ψ and Φ have
the same agreement locus, so Ψ is also a description of ϕ.
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4.3. Existence of descriptions. The previous section shows that de-
scriptions of rational maps are characterised by the homogeneity and rele-
vance conditions. Now we show that every rational map does have a descrip-
tion.

Theorem 4.12. Let ϕ : X 99K Y be a rational map of toric varieties.
Then there exists a description Φ : Cm 0.0.

0. Cn of ϕ.

Proof. We construct Φ∗y1, . . . , Φ∗yn inductively. Set Φ∗yi = 0 if and only
if ϕ(X) ⊂ Supp(yi). So assume without loss of generality that ϕ(X) is con-
tained in y1 = · · · = ys = 0 only, for some s ∈ {0, . . . , n}. Fix Φ∗yi = 0 for
i ∈ {1, . . . , s}.

Assume Φ∗yi is fixed for all i ∈ {1, . . . , k−1} for some k ∈ {s+1, . . . , n}.
Let F ⊂ C(ys+1, . . . , yn) be the subfield generated by degree 0 functions in
C(ys+1, . . . , yn) and by ys+1, . . . , yk−1.

If yk ∈ F, then there is a unique way to express Φ∗yk: write yk = µ · ν,
where µ ∈ C(ys+1, . . . , yn) is a monomial of degree 0 and ν is a monomial in
ys+1, . . . , yk−1. Then Φ∗µ = ϕ∗µ and Φ∗ν is already fixed. So set

Φ∗yk = ϕ∗µ · Φ∗ν.

Similarly, if ykr ∈ F for some r > 0, then take the minimal such r and
again write ykr = µ · ν, where µ ∈ C(ys+1, . . . , yn) is a monomial of degree 0
and ν is a monomial in ys+1, . . . , yk−1. Then set

Φ∗yi = r
√
ϕ∗µ · Φ∗ν.

Otherwise, if ykr /∈ F for any r > 0, then we have complete freedom
to choose Φ∗yk to be any homogeneous multi-valued section we like. For
instance, we may fix Φ∗yk = 1.

Proceeding by induction, we eventually fix all Φ∗y1, . . . , Φ∗yn and hence
define the multi-valued map Φ : Cm 0.0.

0. Cn.
We must now show that Φ defined above indeed describes ϕ. Firstly, we

observe Φ satisfies the homogeneity condition (A3): Let µ ∈ C(ys+1, . . . , yn)
be a monomial of degree 0. Assume there is a nontrivial contribution of yk
in µ and there is no contribution of yi for i > k. Then

yk
r = µ · ν

where ν is a monomial in ys+1, . . . , yk−1. By our construction,

(Φ∗yk)
r = ϕ∗µ · Φ∗ν.

Therefore

(4.13) Φ∗µ =
(Φ∗yk)

r

Φ∗ν
= ϕ∗µ.

In particular Φ∗µ is homogeneous of degree 0, so (A3) holds.
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Also the locus y1 = · · · = ys = 0 is the (nonempty) toric stratum con-
taining ϕ(X), so Φ satisfies the relevance condition of Definition 4.8.

Finally, by (4.13) the two ring homomorphisms Φ∗ and ϕ∗ agree, so by
Theorem 4.10 indeed Φ describes ϕ.

The descriptions obtained by following the algorithm of this proof are not
the favoured ones we discussed in the introduction. For instance for ϕ = idP1

we get

Φ : C2 → C2, [x1, x2] 7→ [1, x2/x1],

and for the embedding ϕ : P1 ↪→ P(1, 1, 2) of §1.1.1, we get

Φ : C2 → C3, [x1, x2] 7→ [1, 0, x2/x1
2].

In §4.5 we explain how to modify the descriptions obtained here.

4.4. The agreement locus revisited. In this section we calculate the
agreement locus for any description.

Proposition 4.14. Let Φ be a description of ϕ. Then

Agr(Φ,ϕ) = RegΦ \
(
Irrel(X) ∪ Φ−1(Irrel(Y ))

)
.

Proof. By the definition of the agreement locus, if ξ ∈ Agr(Φ,ϕ), then

ξ ∈ RegΦ \ Irrel(X).

The homogeneity condition holds for Φ, so, for such ξ, Φ(ξ) is contained in a
single orbit by condition (A4) of Proposition 4.6. Since πY (Φ(ξ)) is defined it
follows that no point in Φ(ξ) is in Irrel(Y ), which proves the first inclusion:

Agr(Φ,ϕ) ⊂ RegΦ \
(
Irrel(X) ∪ Φ−1(Irrel(Y ))

)
.

To prove the other inclusion, take ξ ∈ RegΦ \
(
Irrel(X)∪Φ−1(Irrel(Y ))

)
and set y = πY (Φ(ξ)) ∈ Y . We must prove that x = πX(ξ) ∈ Regϕ and
ϕ(x) = y, in other words that ϕ∗ maps the local ring OY,y ⊂ C(Y ) into the
local ring OX,x ⊂ C(X). So take any q ∈ OY,y. By the proof of Theorem 4.10,

ϕ∗q = Φ∗q as elements of C(X).

Since a lift of y to Cm is in the image of Φ, it follows that Φ∗q is defined and
hence ϕ∗q is defined. Hence we can calculate

(ϕ∗q)(x) = (Φ∗q)(ξ) = q(Φ(ξ)) = q(y),

where the outer equalities hold because rational functions can be evaluated
on any representative of a point in the Cox cover. Since q is regular at y,
also ϕ∗q ∈ OX,x as claimed. So ϕ(x) = y and thus ξ ∈ Agr(Φ,ϕ).

Corollary 4.15. The agreement locus Agr(Φ,ϕ) is an open GX-inv-
ariant subset of Cm (and of RegΦ). In addition, if X is Q-factorial, then
πX(Agr(Φ,ϕ)) is open. In general, πX(Agr(Φ,ϕ)) contains an open dense
subset of X.
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Proof. RegΦ is an open GX -invariant subset by Proposition 3.11.
Irrel(X) is clearly closed and GX -invariant. Finally, Irrel(Y ) is a GY -invari-
ant subset of Cn, so by (A4) also Φ−1(Irrel(Y )) is GX -invariant, and it
is closed in RegΦ by Proposition 3.17. Thus Agr(Φ,ϕ) is open and GX -
invariant by Proposition 4.14.

The definition of the agreement locus gives Agr(Φ,ϕ) ⊂ π−1X (Regϕ).
In §4.5, we distinguish those descriptions for which equality holds. In the
meantime, we call the difference between the two sets the disagreement locus.

Proposition 4.16. Let ϕ : X 99K Y be a rational map between two toric
varieties X and Y with a description Φ : Cm 0.0.

0. Cn. Consider two open
subsets U2 ⊂ U1 of Cm:

U1 = π−1X (Regϕ) and U2 = Agr(Φ,ϕ).

The disagreement locus D = U1 \U2 is either a closed subset in U1 purely of
codimension 1 in U1, or is empty.

Proof. Since U2 is a nonempty open subset of U1 by Proposition 4.14 (it
is an intersection of three open subsets), clearly D is a proper closed subset
in U1. By Proposition 4.14 we have U2 = RegΦ\

(
Irrel(X) ∪ Φ−1(Irrel(Y ))

)
.

Note that Irrel(X) is disjoint from U1 (because πX is not regular on Irrel(X)).
Therefore

D = (U1 \ RegΦ)︸ ︷︷ ︸
=:Dind

∪
(
U1 ∩ Φ−1(Irrel(Y ))

)︸ ︷︷ ︸
=:Dirrel

.

By Proposition 3.11 the locus Dind is indeed purely of codimension 1 (or
empty). It therefore remains to prove that also Dirrel is purely of codimen-
sion 1 or empty.

Assume Dirrel is not empty and choose ξ ∈ Dirrel. We have to prove that
the codimension of Dirrel at ξ is 1. Since ξ ∈ U1 the rational map ϕ is regular
at x = [ξ]. Consider y = ϕ(x) and its toric open affine neighbourhood V ⊂ Y
given by nonvanishing of certain coordinates, say

V = {y1 6= 0, . . . , yk 6= 0} = {y1 · · · yk 6= 0}.
Set γ = Φ∗(y1 · · · yk). By (A1), there exists f ∈ C[RegΦ] such that γr = f
for some r ≥ 1. We claim that f(ξ) = 0 and that for all ξ′ in the locus
{f = 0} and in some sufficiently small open neighbourhood of ξ we have
ξ′ ∈ Dirrel.

First we prove f(ξ) = 0. Since ξ ∈ Φ−1(Irrel(Y )) it follows Φ(ξ) and
Irrel(Y ) have nonempty intersection. As usual, since Φ(ξ) is contained in a
single torus orbit by (A4), we have Φ(ξ) ⊂ Irrel(Y ). In particular, Φ(ξ) is
disjoint from π−1Y (V ), in other words, y1 · · · yk vanishes on Φ(ξ). So γ vanishes
at ξ and therefore f vanishes at ξ.
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We prove further that ξ′ ∈ {f = 0} implies ξ′ ∈ Dirrel, at least on
some neighbourhood of ξ. More precisely, we take this neighbourhood to be
(ϕ ◦ πX)−1(V ) ∩ RegΦ. Since Φ is regular at such ξ′, we have

0 = f(ξ′) = γr(ξ′) = Φ∗(y1 · · · yk)r(ξ′) = (y1 · · · yk)r(Φ(ξ′)),

so Φ(ξ′) is contained in the locus y1 · · · yk = 0. Therefore Φ(ξ′) is disjoint
from πY

−1(V ) and hence the set πY (Φ(ξ′)) (if nonempty) is not in V . On the
other hand ϕ(x′) is contained in V by our choice of open neighbourhood of ξ.
We conclude that ξ′ cannot be in the agreement locus U2. But ξ′ ∈ RegΦ and
ξ′ /∈ Irrel(X) (again by our choice of open neighbourhood of ξ). Therefore
by Proposition 4.14 there is no other possibility than ξ′ ∈ Φ−1(Irrel(Y )) so
that ξ′ ∈ Dirrel as claimed.

Hence Dirrel locally near ξ contains a subset {f = 0} purely of codimen-
sion 1. Since the same holds true for every ξ ∈ Dirrel and Dirrel 6= U1, we
conclude that Dirrel is purely of codimension 1.

4.5. Existence of complete descriptions. The map Φ(x1, x2) =
(x1

3, x1
2x2) is a description of the identity map on P1. As written, it does

not evaluate automatically at the point (0, 1) ∈ P1: that point is not in the
agreement locus. We can modify the description to increase the agreement
locus following the usual argument that rational maps are defined (regular)
in codimension 1. The divisor (x1) contains the bad locus, and the com-
ponents of Φ have multiplicities ν0 = (3, 2) along this divisor. Using the
exponent vector ν ′ = (1, 0) of x1 itself to push ν0 down into the span of the
gradings on the Cox ring, ν = ν0 − ν ′ = (3, 2) − (1, 0) = (2, 2) computes a
scaling factor with which to modify Φ: define

Φnew = x1
−ν · Φ = [x1, x2].

The agreement locus of Φnew is larger than that of Φ, and this new description
is better behaved at (0, 1).

We use this notion of ‘complete agreement’ to define complete descrip-
tions, and then apply the argument above to show that complete descriptions
exist. In Section 5 we prove a series of additional properties of complete de-
scriptions.

Definition 4.17. A description Φ of ϕ : X 99K Y is complete if it satis-
fies

(C) Agr(Φ,ϕ) = π−1X (Regϕ).

Proposition 4.14, together with this definition, has an immediate corol-
lary.

Corollary 4.18. If Φ is a complete description of ϕ, then

Regϕ = πX
(
RegΦ \ Φ−1(Irrel(Y ))

)
.
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In particular ϕ is regular on X if and only if Φ is regular on Cm \ Irrel(X)
and Φ−1(Irrel(Y )) is contained in Irrel(X).

If X is not a product with C∗ as one of factors, then saying Φ is regular on
Cm \ Irrel(X) is equivalent to saying Φ is regular on Cm (because Irrel(X) is
of codimension at least 2), in which case the regularity criterion for ϕ is the
natural statement one would expect, analogous to the standard statement
for maps between projective spaces.

The main claim of this article is that complete descriptions always exist
and that they have the properties listed in §1.1. We establish the properties
later in Section 5. First we prove the existence.

Let Φ be a description of a rational map of toric varieties ϕ : X 99K Y . If Y
is a projective space and Φ is single-valued, then the procedure for computing
a complete description of Φ is well known: first clear the denominators in
the sequence Φ∗y1, . . . , Φ∗yn and then divide through by the GCD of the
resulting polynomials. The proof of our existence theorem imitates this.

Theorem 4.19. Let ϕ : X 99K Y be a rational map of toric varieties.
Then there exists a complete description Φ : Cm 0.0.

0. Cn of ϕ.

Before we start the proof, we discuss the freedom that we have in choosing
a description of a rational map. Let Φ be a description of a rational map of
toric varieties ϕ : X 99K Y . If f ∈ S[X] and w = (w1, . . . , wn) is a rational
linear combination of C∗-weights of Y , then we can define a multi-valued
map

fw · Φ : Cm 0.0.
0. Cn, x 7→ (fw1Φ∗y1, . . . , f

wnΦ∗yn),

which describes the same map ϕ (this follows easily from the proof of The-
orem 4.10). Of course, if Φ∗yi = 0 for some i, then there is no harm in
replacing the ith coordinate of w with an arbitrary rational number.

More precisely, we consider the n-tuple w as an element of RY ⊗Q ' Qn.
We define a map of vector spaces L, whose kernel describes the freedom of
taking w. Since, by Proposition 4.9, Φ satisfies the relevance condition (B3)
of Definition 4.8, there is a smallest cone σ ∈ ΣY which contains all the rays
whose corresponding Cox generators yi lie in kerΦ∗. By Corollary 4.11, we
may assume that

Φ∗yi = 0 ⇔ ρi ∈ σ,
modifying Φ if necessary.

Let Star(σ) be the star of σ, that is, the subfan of ΣY comprising those
cones that contain σ and their faces. This fan corresponds to the smallest
invariant open neighbourhood of the toric stratum containing ϕ(X). Let
ΣY (σ) be the quotient fan of Star(σ) by σ; this is the fan of the toric stratum
containing ϕ(X) regarded as a toric variety in its own right. (If ϕ(X) is not
contained in any toric stratum of Y , then both Star(σ) and ΣY (σ) are equal
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to ΣY .) Let L be the natural map from RY ⊗ Q to the ambient rational
vector space of ΣY (σ) (the composition of the ray lattice map RY → NY and
the quotient map). This fits into a diagram of lattices as follows:

RY //

L ""

NY

��

dual to MY

NY (σ) dual to MY (σ)

?�

OO

where NY (σ) is the lattice containing the quotient fan ΣY (σ).

Lemma 4.20. For any w ∈ kerL and nonzero f ∈ S[X], both fw ·Φ and
Φ describe the same map ϕ : X 99K Y . Moreover, the agreement locus of the
two descriptions is equal away from the locus {f = 0}, that is,

Agr(Φ,ϕ) \ {f = 0} = Agr(fw · Φ,ϕ) \ {f = 0}.
Proof. That the two multi-valued maps describe the same map ϕ fol-

lows from the above considerations: the kernel of the ray lattice map gives
the freedom to choose a linear combination of C∗-weights, whereas the pull-
back of the kernel of the quotient map reflects the freedom to multiply 0
coordinates in the description Φ by anything.

By Proposition 4.14,

Agr(Φ,ϕ) = RegΦ \
(
Irrel(X) ∪ Φ−1(Irrel(Y ))

)
,

Agr(fw · Φ,ϕ) = Reg (fw · Φ) \
(
Irrel(X) ∪ (fw · Φ)−1(Irrel(Y ))

)
.

Clearly RegΦ and Reg (fw · Φ) are equal away from {f = 0}, and also
Irrel(X) does not depend on Φ. Therefore it remains to compare

Φ−1(Irrel(Y )) with (fw · Φ)−1(Irrel(Y )).

Let A be an irreducible component of Irrel(Y ) defined by the vanishing of
some coordinates, say of y1, . . . , ys. Now, for ξ ∈ RegΦ,

ξ ∈ Φ−1(A) if and only if Φ∗y1(ξ) = · · · = Φ∗ys(ξ) = 0,

whereas for ξ ∈ Reg(fw · Φ),

ξ ∈ (fw · Φ)−1(A) if and only if (fw1Φ∗y1)(ξ) = · · · = (fwsΦ∗ys)(ξ) = 0.

Therefore Φ−1(A) and (fw · Φ)−1(A) are equal away from {f = 0}, as
claimed.

Now we are ready to prove the theorem.

Proof of Theorem 4.19. By Theorem 4.12 there is a description

Φ : Cm 0.0.
0. Cn

of ϕ. By Proposition 4.16, the disagreement locus

D = π−1X (Regϕ) \Agr(Φ,ϕ)
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is a union of codimension 1 components. If D is empty, then the theorem
is proved, so suppose it is not empty; we must modify Φ so that the new
description is defined on those components which cover the locus where ϕ is
defined.

Choose any homogeneously prime component of D and pick a homoge-
neously irreducible polynomial f ∈ S[X] that vanishes along it. We aim
to replace Φ by fw · Φ for some vector w so that Agr(fw · Φ,ϕ) contains a
general point of {f = 0}.

Step 1: interpret disagreement in terms of a fan. Let vi ∈ Q be the
multiplicity of f in Φ∗yi and consider v = (v1, . . . , vn) as a point in RY ⊗Q,
where RY is the ray lattice of Y . Recall that L is the natural map from
RY ⊗Q to the ambient rational vector space of ΣY (σ).

Lemma 4.21. Let m be an integral linear form on the lattice containing
ΣY (σ), and let χm be the corresponding rational function on Y . Then the
order of vanishing of ϕ∗χm along the divisor (f) is equal to 〈L(v),m〉. In
particular, L(v) is an integral point in the lattice of ΣY (σ).

Proof. The pullback L∗m is the monomial expressed in terms of Cox
coordinates of Y . So ϕ∗χm = Φ∗χL

∗m. Now the order of Φ∗yi = Φ∗χei

along (f) is by definition vi = 〈v, ei〉, so the order of Φ∗χL∗m along (f) is
〈v, L∗m〉 = 〈L(v),m〉.

Corollary 4.22. If L(v) is not in the support of ΣY (σ), then ϕ is not
regular on (f).

Proof. Let τ be any cone in ΣY (σ). Since L(v) /∈ τ , there exists mτ ∈ τ∨
such that 〈L(v),mτ 〉 < 0. Then by Lemma 4.21 the rational function ϕ∗χmτ
has a pole along (f). Let Uτ be the affine open subset corresponding to a
cone in Star(σ) which maps to τ . Note that the collection of such Uτ for all
τ ∈ ΣY (σ) will cover the image of ϕ. By Proposition 2.15, this implies that
ϕ is not regular on (f).

Thus if L(v) does not lie in the support of ΣY (σ), then (f) is not part
of the disagreement locus, contradicting our initial setup. In short, we may
assume that L(v) lies the support of ΣY (σ).

Step 2: modify Φ. Let τquo be the cone in ΣY (σ) of minimal dimension
that contains L(v), and τstar be a cone in Star(σ) that maps exactly onto
τquo and is maximal with this property.

By definition of τstar, there is a vector u ∈ τstar that maps to L(v), and
so by choosing a vector v′ of RY ⊗Q in the hyperplane quadrant above τstar
which maps to u, we have v−v′ ∈ kerL. We may assume that the coordinates
of this vector v′ = (v′1, . . . , v

′
n) satisfy v′i = 0 if the ith ray of ΣY is not in
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τstar, and v′i ≥ 0 otherwise. We define

Φnew := fv
′−v · Φ.

By Lemma 4.20 the two descriptions of ϕ have the same (dis)agreement locus
away from {f = 0}.

Step 3: Agr(Φnew, ϕ) contains a general point of {f = 0}. By Proposi-
tion 4.14, it is enough to prove the following two statements:

• Φnew is regular on a general point of (f).
• Φnew does not map a general point of (f) into the irrelevant locus of Y .

The first is immediate: f−v ·Φ is regular along (f), since f does not appear in
any component of f−v ·Φ∗yi, and as each component v′i of v

′ is nonnegative,
Φnew is also regular there. Moreover, this shows that if x ∈ {f = 0} is
a general point, then Φnew(x) has zero yi-coordinate if and only if either
Φ∗yi = 0 or v′i > 0. In particular, if the ith ray of ΣY is not in τstar, then
Φnew(x) has nonzero ith coordinate. This means that the standard generator
of BY determined by τstar is nonzero at Φnew(x), and so Φnew(x) is not in
the irrelevant locus of Y . Therefore Agr(Φnew, ϕ) contains a general point of
{f = 0} as claimed.

Thus we have obtained a description Φnew of ϕ whose disagreement lo-
cus contains one component less than that of Φ. Continuing inductively, we
obtain a description with an empty disagreement locus, that is, a complete
description.

Example 4.23. Complete descriptions are not unique. For example, take
X to be C with coordinate x and Y to be the non-Q-factorial base of the
standard flop from §1.1.6, so S[Y ] = C[y1, y2, y3, y4] graded by Z in degrees
(1, 1,−1,−1). Then the map X → Y given by [x] 7→ [xt, xt, x1−t, x1−t] is a
complete description for any rational t in the interval [0, 1].

If the target is Q-factorial, and the map is regular in codimension 1, then
a complete description is unique up to multiplication by scalars using the
whole group action, but we do not use this fact. (In this example, at values
t = 0 and 1 the map factors through the two respective Q-factorialisations
of the cone, the two sides of the flop; other values of t do not factorise in
this way since they fail the complete agreement condition.)

5. Geometry of descriptions. In this section, we prove that images
and preimages of subschemes behave as well as the first examples could
allow, and we compute descriptions of compositions of maps, where com-
position makes sense. We work throughout with a rational map ϕ together
with a description Φ (not necessarily a complete description, unless explicitly
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mentioned) as in the diagram

Cm Φ 0.0.
0.

πX
��

Cn

πY
��

X
ϕ // Y

From the start we insisted that descriptions should behave well when
pulling back Cartier divisors. We prove this ‘local Cartier pullback’ property
now, and then present a few additional conditions below that are closely
related to the complete agreement property that characterises complete de-
scriptions.

5.1. Properties (D)–(F) of complete descriptions. Recall from §2.3:
if δ is a homogeneous multi-valued section in the field of fractions of Γ (Φ),
then bδc and dδe are both homogeneous (single-valued) sections in S(X).

Proposition 5.1. Let D= (f) be a Weil divisor on Y, for some f ∈S(Y ),
whose support does not contain ϕ(Regϕ). Consider an open subset V ⊂ Y
for which D|V is Cartier. Denote the interior of πX(Agr(Φ,ϕ)) by agr ⊂ X
and let U = ϕ−1(V ) ∩ agr. Write Φ∗f = dΦ∗fe · γ for some homogeneous
multi-valued section γ on X.

Then γ is invertible on π−1X (U) and the Cartier divisor (ϕ|U )∗(D|V ) on
U is equal to the restriction E|U , where E = (dΦ∗fe) denotes the divisor on
X defined by dΦ∗fe.

Note that if Φ is a complete description, then agr = Regϕ and so U =
ϕ−1(V ). Also if D is a Cartier divisor on Y , then we may take V = Y .
Thus, if both of these hold, the statement of the proposition has a much
easier form; see condition (D) below. We record the following lemma before
we prove the proposition.

Lemma 5.2. Let δ be a homogeneous multi-valued section in the field of
fractions of Γ (Φ). If W ⊂ Cm is an open subset on which δ is invertible,
then bδc, dδe ∈ S[X] are also invertible on W .

Proof. By definition, δ = r
√
g is invertible on W if and only if g ∈ S(X)

is invertible on W . For some (reduced) f ∈ S[X] the locus Z = {f = 0} is
the codimension 1 locus of Cm \W , so that OCm(W ) = S[X][f−1]. Now g
is invertible on W if and only if g, g−1 ∈ S[X][f−1]. By Proposition 2.24,
S[X][f−1] ⊂ Γ (Φ)[f−1] is a simple ring extension, so δ, δ−1 ∈ Γ (Φ)[f−1] by
Definition 2.21(iii). Thus by Proposition 2.25 both bδc and dδe are invertible
elements in S[X][f−1] = OCm(W ), and so they are both invertible on W as
claimed.

Proof of Proposition 5.1. We first work locally on an open subset V ′ ⊂ V
where D|V ′ is principal and defined by h ∈ C(Y ). Set k = h/f . By construc-
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tion, k ∈ S(Y ) is invertible on π1Y (V ′). Suppose U ′ = ϕ−1(V ′)∩agr. We claim
that Φ∗k is invertible on W ′ := π−1X (U ′). To show this, we simply check that
(Φ∗k)(ξ) is nonzero for any ξ ∈ W ′. But (Φ∗k)(ξ) = k(η) for any η ∈ Φ(ξ),
and for such η we have πY (η) = ϕ ◦ πX(ξ) ∈ V ′ so k(η) 6= 0. Thus Φ∗k is
invertible. It follows from Lemma 5.2 that bΦ∗kc is also invertible on W ′.

Since f = h/k and Φ∗h = ϕ∗h, hence Φ∗f = ϕ∗h/Φ∗k and dΦ∗fe =
ϕ∗h/bΦ∗kc. It then follows from Φ∗f = dΦ∗fe · γ that γ = bΦ∗kc/Φ∗k, and
so γ is invertible on W ′ and (ϕ|U ′)∗(D|V ′) = E|U ′ .

The same conclusion is true for any V ′ ⊂ V on which D|V ′ is principal.
Since such V ′ cover V and the corresponding U ′ cover U , it follows that γ
is invertible on U and (ϕ|U )∗(D|V ) = E|U as claimed.

Definition 5.3. Let Φ be a description of ϕ : X 99K Y . We recall the
complete agreement property (C) of Definition 4.17 and define some other
properties of Φ:

(C) Complete agreement : Agr(Φ,ϕ) = π−1X (Regϕ).
(D) Global Cartier pullback : Let D = (f) be a Cartier divisor on Y

for some f ∈ S(Y ) whose support does not contain ϕ(Regϕ). Write
Φ∗f = dΦ∗fe · γ for a homogeneous multi-valued section γ on X.
Let E = (dΦ∗fe) be the divisor on X defined by dΦ∗fe. Then γ is
invertible on π−1X (Regϕ) and the Cartier divisor ϕ∗D on Regϕ is
equal to the restriction E|Regϕ.

(E) Weil preimage: If D = (f) is an effective Weil divisor on Y for
some section f ∈ S[Y ] and ϕ(Regϕ) is not contained in the support
of D, then Φ∗f is regular on Regϕ and its set-theoretic zero locus
agrees with the set ϕ−1(D), the preimage of the support of D.

(F) Coordinate divisors preimage: The same as (E) with D = (yi) for
all i ∈ {1, . . . , n}.

Note that in condition (D), if X has no torus factors and ϕ is regular (or
at least regular in codimension 1), then γ is necessarily a constant in C.

Proposition 5.4. Let Φ be a description of ϕ : X 99K Y . We have the
following implications between the properties of Definition 5.3:

(E)⇒(F)⇒(C)⇒(D).

If, furthermore, Y is Q-factorial, then (D)⇒(E), so that all conditions (C),
(D), (E), (F) are equivalent.

Proof. The implication (E)⇒(F) is clear.
Assume (F) holds so that Φ∗yi is regular on π−1X (Regϕ). So, in particular,

RegΦ ⊃ π−1X (Regϕ). Now assume (by changing the order of coordinates if
necessary) that y1, . . . , ys define a component of the irrelevant locus of Y .
Then the intersection (y1) ∩ · · · ∩ (ys) of divisors on Y is empty, and hence



Maps of toric varieties in Cox coordinates 261

so is ϕ−1((y1)) ∩ · · · ∩ ϕ−1((ys)) as a subset of Regϕ. So the zero locus of
Φ∗y1, . . . , Φ

∗ys does not intersect π−1X (Regϕ). Proposition 4.14 now implies
that Agr(Φ,ϕ) = π−1X (Regϕ), and so (C) holds. The implication (C)⇒(D)
follows from Proposition 5.1, with V = Y and agr = Regϕ.

Finally, assume Y is Q-factorial and (D) holds. Then, since every Weil
divisor is Q-Cartier, property (E) follows automatically.

5.2. Image of a subscheme. Suppose A ⊂ X is a closed subscheme
defined by a homogeneous ideal IA C S[X]. We seek the ideal in S[Y ] of the
scheme-theoretic image of A under ϕ : X 99K Y . Recall the notation ϕ|U (A)
for the closure of the image of ϕ|U (A ∩ U) where U ⊂ Regϕ is open.

We define an ideal JA C S[Y ] by

JA :=
(
(Φ∗)−1(〈IA〉Γ (Φ))

)hgs
,

the homogeneous preimage of the ideal that IA generates in the map ring.

Theorem 5.5. Let ϕ : X 99K Y be a rational map of toric varieties with
a description Φ : Cm 0.0.

0. Cn, and let agr be the interior of πX(Agr(Φ,ϕ));
in particular, agr ⊂ Regϕ.

Suppose A ⊂ X is a closed subscheme defined by a homogeneous, satu-
rated ideal IA C S[X], and define JA as above. Then the scheme-theoretic
image ϕ|agr(A) ⊂ Y and the subscheme B ⊂ Y defined by JA are equal. In
particular:

(i) B is independent of the choice of the map ring Γ (Φ) (and of the
choice of the saturated ideal IA).

(ii) If Φ is a complete description of ϕ, then ϕ(A) and B are equal.

Proof. Let V be a standard open affine toric subset of Y given by non-
vanishing of some coordinates, say

V = {y ∈ Y | yi 6= 0 for every i ∈ E}
where E ⊂ {1, . . . , n} is some subset. Denoting υ =

∏
i∈E yi

ri , where ri are
the minimal positive integers such that Φ∗yiri ∈ C[RegΦ], we set OY (V ) to
be the homogeneous localisation of S[Y ] at υ so that V = SpecOY (V ). Of
course, such open subsets form an open cover of Y . It is enough to prove that
B∩V = ϕ|agr(A)∩V , which we do below by comparing their ideals in OY (V ).

First, suppose Φ∗υ = 0. Then by Corollary 4.11 the locus ϕ(X) is disjoint
from V , so in this case we need to prove B∩V = ∅. But υ ∈ (Φ∗)−1(〈IA〉Γ (Φ)),
so υ ∈ JA, and indeed B ∩ V = ∅.

Now assume that Φ∗υ 6= 0 and consider ϕ−1(V ) ∩ agr. It is an open
subset of X, and thus it has a covering by open affine subsets of X. Any
open affine set is the complement of a closed set of codimension 1, so there
exists a finite subset G ⊂ S[X] such that ϕ−1(V )∩ agr =

⋃
g∈GXg and each
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Xg = X \ Supp(g) is affine. Then Xg = SpecOX(Xg) where OX(Xg) is the
homogeneous localisation of S[X] at g.

For any g ∈ G, the following diagram shows the natural relationships
between subrings of a common field S(X) on the left and subrings of S(Y )
on the right:

(5.6)

OX(Xg)
� _

deg 0 part
��

OY (V )
� _

deg 0 part
��

ϕ∗oo

S[X][g−1] S[Y ][υ−1]

C[RegΦ]
?�

OO

� _

��

S[Y ]
?�

OO

Φ∗

vv
Γ (Φ)

Since Φ∗(υ) 6= 0, it is natural to extend the domain of Φ∗ to S[Y ][υ−1]

(we do not need to specify the precise subset of S(X) that is the image of
these elements). With that, by Theorem 4.10, we have

Φ∗f = ϕ∗f for all f ∈ OY (V ).

In this sense diagram (5.6) is commutative. Moreover, since ϕ(Xg) ⊂ V and
π−1X (Xg) ⊂ Agr(Φ,ϕ), it follows that Φ∗(υ) is invertible in S[X][g−1].

It is enough to prove that the following two ideals in OY (V ) are equal:
I(ϕ|agr(A) ∩ V ) =

⋂
g∈G

(ϕ∗)−1((IA)(g)) and I(B) = (JA)(υ).

The intersection consists of precisely those functions on V whose preimage
in any Xg is in the ideal of A there—which is why it defines the image.

We redraw diagram (5.6), marking where each ideal lives:

(IA)(g) C OX(Xg)
� _

deg 0 part
��

OY (V )
� _

deg 0 part
��

ϕ∗oo B I(ϕ|agr(A) ∩ V ), I(B)

〈IA〉S[X][g−1] C S[X][g−1] S[Y ][υ−1] B 〈JA〉S[Y ][υ−1]

IA C C[RegΦ]
?�

OO

� _

��

S[Y ]
?�

OO

Φ∗

vv

B JA

〈IA〉Γ (Φ) C Γ (Φ)
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The idea of the proof is now straightforward: grab an element q in one of the
ideals I(ϕ(A)) or I(B) and drag it around diagram (5.6) to see that in fact
q is also in the other ideal. We exploit the ‘commutativity’ of the diagram
and our choice that Φ∗(υ) is a homogeneous single-valued section which is
invertible on Xg. Here are the details.

Take q ∈ OY (V ). Then q ∈ I(B) if and only if q = q̃/υl for some q̃ ∈ JA
and l ∈ Z, so:

q ∈ I(B) ⇔ Φ∗(q · υl) ∈ 〈IA〉Γ (Φ) ⇔ ϕ∗(q) · Φ∗(υl) ∈ 〈IA〉Γ (Φ).

Since Φ∗(υl) ∈ C[RegΦ] by Corollary 2.22, we have ϕ∗(q)·Φ∗(υl) ∈ C[RegΦ].
At this point, our insistence that Γ (Φ) is a simple extension is key. By
Corollary 2.28 we can continue the chain of equivalences:

. . . ⇔ ϕ∗(q) · Φ∗(υl) ∈ IA.

But Φ∗(υl) is invertible on each Xg, so we continue:

. . . ⇔ ϕ∗(q) ∈ 〈IA〉S[X][g−1] for every g ∈ G.

The implication ⇐ above needs a careful explanation, as it does not hold if
IA is not saturated (as in Example 2.13, say). We postpone the proof of this
implication until later, meanwhile we continue the series of implications:

. . . ⇔ ϕ∗(q) ∈ (IA)(g) for every g ∈ G
⇔ q ∈ (ϕ∗)−1((IA)(g)) for every g ∈ G
⇔ q ∈ I(ϕ|agr(A ∩ V )).

It remains to prove the missing implication for q = q̃/υl as above:

ϕ∗(q) ∈ 〈IA〉S[X][g−1] for every g ∈ G ⇒ ϕ∗(q) · Φ∗(υl) ∈ IA.

Let Â ⊂ RegΦ be the subscheme defined by 〈IA〉C[RegΦ]. Suppose Ug =
{g 6= 0} ⊂ Cm. The claim of the implication is that if ϕ∗(q) vanishes on
Â ∩ Ug for all g ∈ G, then it vanishes on Â ∩ (RegΦ ∩ {Φ∗υ 6= 0}). Since IA
is saturated, Â = Â \ Irrel(X), where the closure is taken in RegΦ, so it is
enough to prove the following inclusion of open subsets:

(RegΦ \ Irrel(X)) ∩ {Φ∗υ 6= 0} ⊂
⋃
g∈G

Ug.

Suppose ξ is in the left hand side set. Then Φ∗υ(ξ) 6= 0 and υ(Φ(ξ)) 6= 0,
so πY ◦ Φ(ξ) ∈ V . In particular Φ(ξ) is not contained in Irrel(Y ) and by
Proposition 4.14, ξ ∈ Agr(Φ,ϕ) and πY ◦Φ(ξ) = ϕreg ◦πX(ξ). Thus πX(ξ) ∈
ϕ−1reg(V ) and there exists g ∈ G such that πX(ξ) ∈ Xg, so in particular
g(ξ) 6= 0 and thus ξ ∈ Ug, as claimed.
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5.3. Preimage of a subscheme. Consider as usual a rational map of
toric varieties ϕ : X 99K Y with a description Φ : Cm 0.0.

0. Cn and fixed
choice of map ring Φ∗ : S[Y ] → Γ (Φ). We study the problem of finding
the preimage of a closed subscheme B ⊂ Y under ϕ. Our main goal is to
compute ϕ−1reg(B), the scheme-theoretic preimage under ϕreg : Regϕ → Y ,
but inevitably the subschemes of X we define are concerned with the closure
of this.

5.3.1. The regular preimage ideal JB. Suppose that B is defined by the
ideal IB C S[Y ]. We consider a related ideal JB C C[RegΦ] which is the
intersection of the ideal in Γ (Φ) generated by Φ∗(IB) with C[RegΦ]:

JB = C[RegΦ] ∩ 〈Φ∗(IB)〉Γ (Φ) C C[RegΦ].

We refer to JB as the regular preimage ideal.
We check first that the calculation of JB depends only on Φ being homo-

geneous.

Proposition 5.7. Let IB = 〈f1, . . . , fβ〉 C S[Y ] be a homogeneous ideal
generated by homogeneous sections fi. Suppose that Φ : Cm 0.0.

0. Cn is a
multi-valued map satisfying the homogeneity condition (A) (this holds if Φ is
the description of some rational map ϕ : X 99K Y ). Then

JB = 〈dΦ∗f1e, . . . , dΦ∗fβe〉 as an ideal of C[RegΦ].

Proof. Follows immediately from the definitions and Corollary 2.28.

Note also that JB does not depend on the choice of map ring Γ (Φ) (see
Proposition 2.27).

5.3.2. Computable preimages. The relationship between the preimage
ϕ−1reg(B) and the regular preimage ideal JB is a little delicate—we have al-
ready seen a counter-example to an over-optimistic statement in §1.1.4—and
so we identify a general property which will permit computation of preimages
under certain conditions.

Definition 5.8. Let ϕ : X 99K Y be a rational map of toric varieties
with a description Φ : Cm 0.0.

0. Cn. Fix a closed subscheme B ⊂ Y with
homogeneous defining ideal IB C S[Y ]. Let JB be the regular preimage ideal
as defined above.

For any open subset W ⊂ Y , we say B has a computable preimage on W
with respect to IB (and with respect to Φ and Γ (Φ)) if the subscheme of X
defined by JB equals ϕ−1reg(B) on ϕ−1reg(W ).

The particular description Φ we are working with at any time is fixed, so
we do not usually mention Φ. A priori, this property depends on the choice
of map ring Γ (Φ), but in fact it does not and so we also do not mention it;
see Corollary 5.10 below.
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Theorem 5.9. Let ϕ : X 99K Y be a rational map of toric varieties
with a description Φ : Cm 0.0.

0. Cn. Let B ⊂ Y be a closed subscheme with
homogeneous defining ideal IB = 〈f1, . . . , fβ〉 ⊂ S[Y ]. If W ⊂ Y is an open
subset on which each divisor (fi)|W is Cartier and π−1X ϕ−1reg(W ) ⊂ Agr(Φ,ϕ),
then B has a computable preimage on W .

Moreover, on the interior of πX(Agr(Φ,ϕ)) the scheme defined by JB is
a subscheme of ϕ−1reg(B).

The main content of this result is that our ability to compute a preimage
for B depends in part on the equations we use to define B.

Corollary 5.10. Let X, Y , ϕ, Φ and B be as in the theorem.

(i) If Φ is a complete description, then the subscheme B has computable
preimage on the smooth locus Y0 of Y .

(ii) If Φ is a complete description and IB freely defines B, then B has
a computable preimage on Y .

(iii) If Φ is a complete description and ϕ−1reg(B) = ϕ−1reg(B ∩ Y0) (which
happens, for instance, when B is disjoint from the singularities
of Y ), then B has a computable preimage on Y .

The conditions do not require the existence of many Cartier divisors
on Y .

The proof of the main part of the theorem is in two steps which we state
as separate lemmas. The first step reduces the theorem to the case where IB
is a principal ideal. In the second we observe that the computable preimage
property holds on the Cartier locus of principal ideals. The proof of the
‘moreover’ part of the theorem is very similar to the proof of Theorem 5.5,
so we just sketch it: one chooses suitable open affine covers of X and Y , and
proves the appropriate inclusion of ideals; the calculations may be simplified
by observing additivity of ideals and reducing to the case where IB is a
principal ideal.

Lemma 5.11. Having a computable preimage is additive in the following
sense. Let B1 and B2 be two subschemes in Y . Suppose W ⊂ Y is an open
subset on which both B1 and B2 have a computable preimage with respect to
their defining ideals IB1 , IB2 ⊂ S[Y ] respectively. Then the closed subscheme
B1 ∩B2 has a computable preimage on W with respect to IB1 + IB2.

Proof. Let B = B1∩B2 ⊂ Y . It is enough to prove that JB = JB1 +JB2 ,
since this sum defines the intersection of the preimages of B1 and B2 on the
open subset ϕ−1reg(W ) (see Lemma 2.10). The equality JB = JB1 +JB2 follows
from Proposition 5.7: for homogeneous ideals IB1 , IB2 ⊂ S[Y ],

C[RegΦ] ∩ 〈Φ∗(IB1 + IB2)〉Γ (Φ) = JB1 + JB2 .
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Lemma 5.12. If f ∈ S[Y ] is a polynomial and W ⊂ Y an open sub-
set on which the restriction (f)|W of the Weil divisor (f) on Y is Cartier
and π−1X ϕ−1reg(W ) ⊂ Agr(Φ,ϕ), then B has computable preimage on W with
respect to its defining ideal IB = 〈f〉.

Proof. By Proposition 5.7, JB is principal and generated by dΦ∗fe. By
Proposition 5.1 we have Φ∗f = dΦ∗fe · γ, where γ is a homogeneous multi-
valued section invertible on π−1X ϕ−1reg(W ). Moreover dΦ∗fe defines the divisor
ϕ∗D on ϕ−1(W ). Since the definition of the pullback of a Cartier divisor
agrees with the definition of the preimage of the underlying scheme, it follows
that ϕ−1(B) is given by the ideal JB on W .
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