The Banach–Tarski paradox for the hyperbolic plane (II)

by

Jan Mycielski (Boulder, CO) and Grzegorz Tomkowicz (Bytom)

Abstract. The second author found a gap in the proof of the main theorem in [J. Mycielski, Fund. Math. 132 (1989), 143–149]. Here we fill that gap and add some remarks about the geometry of the hyperbolic plane \mathbb{H}^2 .

In order to prove the Banach–Tarski paradox for the hyperbolic plane \mathbb{H}^2 , in Section 3 of [1], a free group F of piecewise isometries of a certain bounded set $B \subset \mathbb{H}^2$ is defined, and it is assumed that

(A) Each transformation of F other than the identity has at most countably many fixed points.

But the argument of Section 3 in [1] fails to prove (A), and without (A) Lemma 2.4 cannot be applied, whence the proof of the main result is incomplete. Here follows a proof much simpler than the vagaries in Section 3 of [1] of the following statement slightly stronger than (A):

(B) Each element of $F \setminus \{e\}$ has finitely many fixed points.

Proof. As in [1], all isometries considered here are assumed to be sense preserving. Let the set B and the piecewise isometries φ and ψ be defined as in Section 3 of [1]. Hence φ preserves the real axis and ψ preserves the imaginary axis. Furthermore, φ consists of three disjoint pieces of three isometries of \mathbb{H}^2 . The first of these isometries is of the form $\varphi_1\varphi_2$, the second is φ_1 and the third is φ_2 , where each φ_i preserves the real axis. It follows that the φ_i commute and for every integer n > 0 and every $z \in B$ there exist two integers $n_1(z) \ge 0$ and $n_2(z) \ge 0$, with $n \le n_1(z) + n_2(z) \le 2n$, such that $\varphi^n(z) = \varphi^{n_1(z)}\varphi^{n_2(z)}(z)$ (see [1, Lemma 3.1]). Mutatis mutandis, the same is true for ψ and certain isometries ψ_1 and ψ_2 of \mathbb{H}^2 preserving the imaginary axis. Moreover the parameters defining the φ_i and ψ_i can be chosen such

2010 Mathematics Subject Classification: Primary 03E05, 20E05, 51M10; Secondary 20E06.

Key words and phrases: free group, Hausdorff-Banach-Tarski paradox, paradoxical set.

that the group G which they generate is a free product (non-abelian) of the abelian groups $\langle \varphi_1, \varphi_2 \rangle$ and $\langle \psi_1, \psi_2 \rangle$ and the latter are free abelian of rank 2 (see [1, Lemma 2.2]). Therefore every $\xi \in F \setminus \{e\}$ is a transformation of B which splits into a disjoint union of finitely many pieces of isometries in $G \setminus \{e\}$. Since every isometry of \mathbb{H}^2 other than e has at most one fixed point, ξ has only finitely many fixed points. This concludes the proof of (B) and fills the gap in [1].

REMARKS. 1. The above proof is very similar to the proof in [3] of a conjecture (C) stated in [2] on page 155.

2. Our construction of $F \setminus \{e\}$ does not guarantee that its transformations are fixed-point-free. Let α and β be two distinct, small translations of \mathbb{H}^2 along perpendicular axes k and l, respectively. Then the commutator $\alpha\beta\alpha^{-1}\beta^{-1}$ has a fixed point in \mathbb{H}^2 , i.e., is a rotation of \mathbb{H}^2 .

Indeed, we can choose two straight lines l_1 and l_2 on opposite sides of l both perpendicular to k and both at the same distance to l such that $\beta(l_1) = l_2$, and a similar pair of lines k_1 and k_2 perpendicular to l, at the same distance to k, such that $\alpha(k_1) = k_2$. These lines k_i and l_i form a quadrilateral whose corners can be labeled a, b, c and d, such that $\beta^{-1}(a) = b, \alpha^{-1}(b) = c$, $\beta(c) = d$ and $\alpha(d) = a$. Hence $\alpha\beta\alpha^{-1}\beta^{-1}(a) = a$.

3. We do not know if B admits a free non-abelian group of piecewise isometries whose elements other than e have no fixed points. Without such a group we have no tool to construct, say, a decomposition of B into three disjoint sets X, Y, Z such that $X \equiv Y \equiv Z \equiv X \cup Y \equiv X \cup Z \equiv Y \cup Z$, where \equiv denotes equivalence of sets by finite decomposition. Such decompositions of the sphere \mathbb{S}^2 exist if sense reversing isometries are allowed (see [4, Th. 4.16]).

References

- J. Mycielski, The Banach-Tarski paradox for the hyperbolic plane, Fund. Math. 132 (1989), 143–149.
- J. Mycielski, Non-amenable groups with amenable action and some paradoxical decompositions in the plane, Colloq. Math. 75 (1998), 149–157.
- [3] G. Tomkowicz, A free group of piecewise linear transformations, Colloq. Math. 125 (2011), 141–146.
- [4] S. Wagon, The Banach–Tarski Paradox, Cambridge Univ. Press, 1985.

Jan Mycielski Departament of Mathematics University of Colorado Boulder, CO 80309-0395, U.S.A. E-mail: jmyciel@euclid.colorado.edu Grzegorz Tomkowicz Centrum Edukacji G² Moniuszki 9 41-902 Bytom, Poland E-mail: gtomko@vp.pl

Received 9 October 2012; in revised form 4 July 2013