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Extended Ramsey theory for words representing rationals

by

Vassiliki Farmaki and Andreas Koutsogiannis (Athens)

Abstract. Ramsey theory for words over a finite alphabet was unified in the work
of Carlson, who also presented a method to extend the theory to words over an infinite
alphabet, but subject to a fixed dominating principle. In the present work we establish an
extension of Carlson’s approach to countable ordinals and Schreier-type families develop-
ing an extended Ramsey theory for dominated words over a doubly infinite alphabet (in
fact for ω-Z∗-located words), and we apply this theory, exploiting the Budak–Işik–Pym
representation of rational numbers, to obtain an analogous partition theory for the set of
rational numbers.

1. Introduction. We introduce (in Definition 2.1) the notion of ω-Z∗-
located words (Z∗ = Z \ {0}) over an alphabet Σ = {αn : n ∈ Z∗} dom-

inated by a two-sided sequence ~k = (kn)n∈Z∗ of natural numbers: a word
w = wn1 . . . wnl over Σ with domain {n1 < · · · < nl} ⊆ Z∗ is ω-Z∗-located
if for 1 ≤ i ≤ l, wni ∈ {α1, . . . , αkni} if ni ∈ N and wni ∈ {α−kni , . . . , α−1} if
−ni ∈ N. The inspiration for this notion came from the representation of ra-
tional numbers introduced by T. Budak, N. Işik and J. Pym [BIP, Theorem
4.2], who proved that every rational number q has a unique representation
as

q =

∞∑
s=1

q−s
(−1)s

(s+ 1)!
+
∞∑
r=1

qr(−1)r+1r!,

where (qn)n∈Z∗ ⊆ N ∪ {0} with 0 ≤ q−s ≤ s for every s > 0, 0 ≤ qr ≤ r
for every r > 0 and q−s = qr = 0 for all but finitely many r, s. So, the set
of non-zero rational numbers can be identified with the set of ω-Z∗-located
words over Σ = {αn : n ∈ Z∗}, where α−n = αn = n for n ∈ N, dominated
by the sequence (kn)n∈Z∗ , where k−n = kn = n for n ∈ N.

The entire infinitary Ramsey theory can be obtained for ω-Z∗-located
words; indeed, the classical Ramsey theory consisting of a partition the-
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orem for the family of m-tuples of ω-Z∗-located words with m a natural
number and a partition theorem for the family of infinite sequences of ω-Z∗-
located words considering suitable partition sets, as Borel sets with regard
to the product topology, is presented in Section 2 (Theorems 2.5 and 2.6
respectively) and mainly follows from the fundamental work of Carlson [C]
(Theorem 2.3 below).

In Section 3, we extend the classical Ramsey theory to partitions in-
volving ξ-Schreier-type sequences of ω-Z∗-located words for every countable
ordinal ξ (Definition 3.2), which constitute the natural transfinite analogues
of m-tuples of ω-Z∗-located words (with m a natural number). The basic
feature that distinguishes the families of ξ-Schreier-type sequences of ω-Z∗-
located words from each other is their complexity, as measured by a suit-
able Cantor–Bendixson type index introduced in Definition 3.15 (Proposi-
tion 3.18). Thus Theorem 3.5, a partition theorem for the family of ξ-Schreier
sequences of ω-Z∗-located words for each countable ordinal ξ, extends The-
orem 2.6 (corresponding to ordinal level ξ = m, a natural number).

The main result of Section 3, and indeed of the paper, is Theorem 3.21,
which on the one hand strengthens Theorem 3.5, in case the set of all finite
sequences of variable ω-Z∗-located words is partitioned by a family F which
is a tree, and on the other hand implies a stronger countable ordinal form
of Theorem 2.5 in case the partition sets are clopen in the product topol-
ogy. More specifically, Theorem 3.5 provides no information on whether the
ξ-homogeneous family, for a countable ordinal ξ, falls in F or in its comple-
ment, while Theorem 3.21 provides such a criterion in terms of a suitable
Cantor–Bendixson type index of F : if this index is greater than ξ + 1 then
the ξ-homogeneous family falls in F , and if less than ξ it falls in its comple-
ment.

The set of non-zero rational numbers with addition, using the representa-
tion given by Budak–Işik–Pym, can be identified with the set of ω-Z∗-located
words over Σ = {αn : n ∈ Z∗}, where α−n = αn = n for n ∈ N, dominated
by the sequence (kn)n∈Z∗ , where k−n = kn = n for n ∈ N, via the function

g : L̃(Σ,~k) → Q \ {0} which sends a word w = qt1 . . . qtl ∈ L̃(Σ,~k) to the
rational number

q(w) =
∑

t∈dom−(w)

qt
(−1)−t

(−t+ 1)!
+

∑
t∈dom+(w)

qt(−1)t+1t!,

since g is one-to-one and onto and g(w1 ? w2) = g(w1) + g(w2) for every

w1 <R1 w2 ∈ L̃(Σ ∪ {0},~k). Applying the results of Sections 2 and 3,
via the function g, to the rationals with addition, we obtain, in Section 4,
an analogous Ramsey theory for the rational numbers, starting from the
partition Theorem 4.1, a strengthened van der Waerden theorem for the
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set of rational numbers. Analogous partition theorems can be obtained for
semigroups representable as ω-Z∗-located words.

Notation. Let N = {1, 2, . . .} be the set of natural numbers, Z the set
of integers, Z− = {n ∈ Z : n < 0}, Z∗ = Z \ {0} and Q the set of rational
numbers. For a non-empty set X we denote by [X]<ω the set of all finite
subsets of X and by [X]<ω>0 the set of non-empty finite subsets of X.

2. Classical Ramsey theory for ω-Z∗-located words. The purpose
of this section is to introduce ω-Z∗-located words over an alphabet Σ =
{αn : n ∈ Z∗} dominated by a two-sided sequence ~k = (kn)n∈Z∗ of natural
numbers (Definition 2.1) and to develop the classical Ramsey theory for
such words. These results mainly follow from the partition Theorem 2.3 for
ω-located words (Definition 2.2) proved by Carlson [C]. Let us start with
the necessary terminology and notation.

Definition 2.1. Let Σ = {αn : n ∈ Z∗} be an alphabet, ~k = (kn)n∈Z∗ ⊆
N a sequence such that kn ≤ kn+1 and k−n ≤ k−(n+1) for every n ∈ N, and let
υ /∈ Σ be an entity which is called a variable. We will call these assumptions
“standard assumptions” throughout the paper.

An ω-Z∗-located word over Σ dominated by ~k is a function w from a non-
empty, finite subset F of Z∗ into Σ such that w(n) = wn ∈ {α1, . . . , αkn}
for every n ∈ F ∩ N and wn ∈ {α−kn , . . . , α−1} for every n ∈ F ∩ Z−.

A variable ω-Z∗-located word over Σ dominated by ~k is a function w
from a non-empty, finite subset F of Z∗ into Σ ∪ {υ} such that w(n) =
wn ∈ {υ, α1, . . . , αkn} for every n ∈ F ∩ N and wn ∈ {υ, α−kn , . . . , α−1} for
every n ∈ F ∩ Z−, and there exist n1 ∈ F ∩ N and n2 ∈ F ∩ Z− such that
wn1 = wn2 = υ.

So, the set L̃(Σ,~k) of all (constant) ω-Z∗-located words over Σ domi-

nated by ~k is

L̃(Σ,~k) = {w = wn1 . . . wnl : l ∈ N, n1 < · · · < nl ∈ Z∗ and wni ∈
{α1, . . . , αkni} if ni > 0, wni ∈ {α−kni , . . . , α−1} if ni < 0 for

every 1 ≤ i ≤ l},

and the set of variable ω-Z∗-located words over Σ dominated by ~k is

L̃(Σ,~k; υ) = {w = wn1 . . . wnl : l ∈ N, n1 < · · · < nl ∈ Z∗, wni ∈
{υ, α1, . . . , αkni} if ni > 0, wni ∈ {υ, α−kni , . . . , α−1} if

ni < 0 for all 1 ≤ i ≤ l and there exist n1 < 0 < n2 with
wn1 = wn2 = υ}.

We set L̃(Σ ∪ {υ},~k) = L̃(Σ,~k) ∪ L̃(Σ,~k; υ).
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For w = wn1 . . . wnl ∈ L̃(Σ ∪ {υ},~k) the set dom(w) = {n1 < · · · < nl}
is the domain of w. Let dom−(w) = {n ∈ dom(w) : n < 0} and dom+(w) =
{n ∈ dom(w) : n > 0}.

For w = wn1 . . . wnr , u = um1 . . . uml ∈ L̃(Σ ∪ {υ},~k) with dom(w) ∩
dom(u) = ∅ we define their concatenation located on the union of the do-
mains of w, u as

w ? u = zq1 . . . zqr+l ∈ L̃(Σ ∪ {υ},~k),

where {q1 < · · · < qr+l} = dom(w) ∪ dom(u), zi = wi if i ∈ dom(w) and
zi = ui if i ∈ dom(u).

We endow the set L̃(Σ ∪ {υ},~k) with a relation <R1 by defining for

w, u ∈ L̃(Σ ∪ {υ},~k),

w <R1 u ⇔ dom(u) = A1 ∪A2 with A1, A2 6= ∅ such that
maxA1 < min dom(w) ≤ max dom(w) < minA2.

We define

L̃∞(Σ,~k; υ) = {(wn)n∈N ⊆ L̃(Σ,~k; υ) : wn <R1 wn+1 for every n ∈ N}.
For m ∈ N we set

L̃m(Σ,~k; υ) = {(w1, . . . , wm) : w1 <R1 · · · <R1 wm ∈ L̃(Σ,~k; υ)}.
For every (p, q) ∈ N× N ∪ {(0, 0)} we define the functions

T(p,q) : L̃(Σ ∪ {υ},~k)→ L̃(Σ ∪ {υ},~k)

setting, for w = wn1 . . . wnl ∈ L̃(Σ ∪ {υ},~k), T(0,0)(w) = w and, for (p, q) ∈
N× N, T(p,q)(w) = un1 . . . unl , where, for 1 ≤ i ≤ l,

uni =



wni if wni ∈ Σ,

αp if wni = υ, ni > 0 and p ≤ kni ,
αkni if wni = υ, ni > 0 and p > kni ,

α−q if wni = υ, ni < 0 and q ≤ kni ,
α−kni if wni = υ, ni < 0 and q > kni .

We remark that for every (p, q) ∈ N×N∪{(0, 0)} we have dom(T(p,q)(w)) =

dom(w) for w ∈ L̃(Σ∪{υ},~k), T(p,q)(w) = w for w ∈ L̃(Σ,~k) and T(p,q)(w?u)

= T(p,q)(w)?T(p,q)(u) for every w, u ∈ L̃(Σ∪{υ},~k) with dom(w)∩dom(u) =

∅. Also, T(p,q)(L̃(Σ ∪ {υ},~k)) ⊆ L̃(Σ,~k) for every (p, q) ∈ N× N.

Extracted ω-Z∗-located words, extractions. Let Σ, υ and ~k satisfy
the standard assumptions. We fix a sequence ~w = (wn)n∈N ∈ L̃∞(Σ,~k; υ).

An extracted variable ω-Z∗-located word of ~w is a variable ω-Z∗-located
word u ∈ L̃(Σ,~k; υ) such that

u = T(p1,q1)(wn1) ? · · · ? T(pλ,qλ)(wnλ),



Extended Ramsey theory for words representing rationals 5

where λ ∈ N, n1 < · · · < nλ ∈ N, (pi, qi) ∈ N×N∪{(0, 0)} with 0 ≤ pi ≤ kni ,
0 ≤ qi ≤ k−ni for every 1 ≤ i ≤ λ and (0, 0) ∈ {(p1, q1), . . . , (pλ, qλ)}. The

set of extracted variable ω-Z∗-located words of ~w is denoted by ẼV(~w).

An extracted ω-Z∗-located word of ~w is an ω-Z∗-located word z ∈ L̃(Σ,~k)
with

z = T(p1,q1)(wn1) ? . . . ? T(pλ,qλ)(wnλ),

where λ ∈ N, n1 < · · · < nλ ∈ N and (pi, qi) ∈ N × N with 1 ≤ pi ≤ kni ,
1 ≤ qi ≤ k−ni for every 1 ≤ i ≤ λ. The set of extracted ω-Z∗-located words

of ~w is denoted by Ẽ(~w). Let

ẼV
∞

(~w) = {~u = (un)n∈N ∈ L̃∞(Σ,~k; υ) : un ∈ ẼV(~w) for every n ∈ N}.

For m ∈ N we set

ẼV
m

(~w) = {(u1, . . . , um) : u1 <R1 · · · <R1 um ∈ ẼV(~w)}.

If ~u ∈ ẼV
∞

(~w), then we say that ~u is an extraction of ~w and we write

~u ≺ ~w. Notice that for ~u, ~w ∈ L̃∞(Σ,~k; υ) we have ~u ≺ ~w if and only if

ẼV(~u) ⊆ ẼV(~w).

Definition 2.2. Let Σ={αn : n ∈ N} be an alphabet, ~k = (kn)n∈N⊆N
a sequence such that kn ≤ kn+1 for every n ∈ N and let υ /∈ Σ be a variable.

An ω-located word over the alphabet Σ dominated by ~k is a function
w from a non-empty, finite subset F of N into Σ such that w(n) = wn ∈
{α1, . . . , αkn} for every n ∈ F .

A variable ω-located word over Σ dominated by ~k is a function w from
a non-empty, finite subset F of N into Σ ∪ {υ} such that w(n) = wn ∈
{υ, α1, . . . , αkn} for every n ∈ F and there exists n1 ∈ F such that wn1 = υ.

So, the set of ω-located words over Σ dominated by ~k is

L(Σ,~k) = {w = wn1 . . . wnl : l ∈ N, n1 < · · · < nl ∈ N,
wni ∈ {α1, . . . , αkni} for every 1 ≤ i ≤ l},

and the set of variable ω-located words over Σ dominated by ~k respectively,
is

L(Σ,~k; υ) = {w = wn1 . . . wnl : l ∈ N, n1 < · · · < nl ∈ N, wni ∈
{υ, α1, . . . , αkni} for every 1 ≤ i ≤ l and there exists
1 ≤ i ≤ l with wni = υ}.

Let L(Σ ∪ {υ},~k) = L(Σ,~k) ∪ L(Σ,~k; υ).

For w, u ∈ L(Σ ∪ {υ},~k) we write

w <R2 u ⇔ max dom(w) < min dom(u).
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We define

L∞(Σ,~k; υ) = {(wn)n∈N ⊆ L(Σ,~k; υ) : wn <R2 wn+1 for every n ∈ N}.

For every p ∈ N ∪ {0} we define the functions

Tp : L(Σ ∪ {υ},~k)→ L(Σ ∪ {υ},~k)

setting for w = wn1 . . . wnl ∈ L(Σ ∪ {υ},~k): T0(w) = w and, for p ∈ N,
Tp(w) = un1 . . . unl , where, for 1 ≤ i ≤ l, uni = wni if wni ∈ Σ, uni = αp if
wni = υ and p ≤ kni and finally, uni = αkni if wni = υ and p > kni .

Let ~w = (wn)n∈N ∈ L∞(Σ,~k; υ). The set EV(~w) of extracted variable
ω-located words of ~w consists of all words of the form

Tp1(wn1) ? · · · ? Tpλ(wnλ),

where λ ∈ N, n1 < · · · < nλ ∈ N and p1, . . . , pλ ∈ N ∪ {0} such that 0 ≤ pi
≤ kni for every 1 ≤ i ≤ λ and 0 ∈ {p1, . . . , pλ}, and the set E(~w) of extracted
ω-located words of ~w consists of all words of the form Tp1(wn1)?· · ·?Tpλ(wnλ),
where λ ∈ N, n1 < · · · < nλ ∈ N and p1, . . . , pλ ∈ N such that 1 ≤ pi ≤ kni
for every 1 ≤ i ≤ λ. Let

EV∞(~w) = {~u = (un)n∈N ∈ L∞(Σ,~k; υ) : un ∈ EV(~w) for every n ∈ N}.

If ~u ∈ EV∞(~w), then we say that ~u is an extraction of ~w and we write
~u ≺ ~w. Notice that ~u ≺ ~w if and only if EV(~u) ⊆ EV(~w).

With the previous terminology we can state the following fundamen-
tal partition theorem of Carlson for infinite sequences of variable ω-located
words, which is a corollary of the much stronger Theorem 15 of [C]. Ac-
cording to the latter, the partition families A1, . . . , Ar, referred to in the
statement of Theorem 2.3 below, can be members of a wider class of sets,
but we restrict to the class of Borel sets, since it is a sufficiently large,
universally understood class.

Theorem 2.3 (Carlson, [C]). Let Σ = {αn : n ∈ N} be an infinite count-

able alphabet, υ /∈ Σ a variable, ~k = (kn)n∈N ⊆ N an increasing sequence

and r ∈ N. If L∞(Σ,~k; υ) = A1 ∪ · · · ∪ Ar where Ai is a Borel set (with

regard to the product topology on sequences of elements of L(Σ,~k; υ), where

L(Σ,~k; υ) has the discrete topology) for all i = 1, . . . , r, then there exists a

sequence ~w = (wn)n∈N ∈ L∞(Σ,~k; υ) and 1 ≤ i0 ≤ r such that

EV∞(~w) ∈ Ai0 .

For the sake of completeness, we will state the following partition theo-
rem for variable ω-located words. It follows from the stronger Theorem 2.3,
but it can also be proved independently either similarly to Lemma 5.9 in [C],
as indicated in [C], or as Theorem 1.4 in [F4].



Extended Ramsey theory for words representing rationals 7

Theorem 2.4 (Carlson, [C]). Let Σ = {αn : n ∈ N} be an infinite count-

able alphabet, υ /∈ Σ a variable, ~k = (kn)n∈N ⊆ N an increasing sequence

and r, s ∈ N. If L(Σ,~k; υ) = A1 ∪ · · · ∪ Ar and L(Σ,~k) = C1 ∪ · · · ∪ Cs,
then there exists a sequence ~w = (wn)n∈N ∈ L∞(Σ,~k; υ) and 1 ≤ i0 ≤ r,
1 ≤ j0 ≤ s such that

EV(~w) ∈ Ai0 and E(~w) ∈ Cj0 .
Now we will prove a partition theorem for infinite sequences of variable

ω-Z∗-located words using Theorem 2.3.

Theorem 2.5. Let Σ, υ and ~k satisfy the standard assumptions and let
~w = (wn)n∈N ∈ L̃∞(Σ,~k; υ), r ∈ N. If L̃∞(Σ,~k; υ) = A1∪· · ·∪Ar, where Ai
is a Borel set (with regard to the product topology on sequences of elements

of L̃(Σ,~k; υ), where L̃(Σ,~k; υ) has the discrete topology) for all i = 1, . . . , r,
then there exists an extraction ~u = (un)n∈N of ~w and 1 ≤ i0 ≤ r such that

ẼV
∞

(~u) ⊆ Ai0 .
Proof. We will order the set N × N. For (p, q) ∈ N × N we set i(p, q)

equal to the least n ∈ N such that p ≤ kn and q ≤ k−n; then we define
the order <∗ of N × N so that (p1, q1) <∗ (p2, q2) if and only if either
i(p1, q1) < i(p2, q2) or both i(p1, q1) = i(p2, q2) and (p1, q1) is less than
(p2, q2) in the lexicographical ordering (i.e. either p1 < p2 or both p1 = p2
and q1 < q2).

Let N×N = {β1 <∗ β2 <∗ · · · } and let ~l = (ln)n∈N ⊆ N be the increasing

sequence such that βln = (kn, k−n). We set Σ̃ = {βn : n ∈ N} and we

consider the function h : L(Σ̃,~l; υ) → ẼV(~w) which sends tn1 . . . tnλ ∈
L(Σ̃,~l; υ) to

h(tn1 . . . tnλ) = T(p1,q1)(wn1) ? · · · ? T(pλ,qλ)(wnλ),

where for 1 ≤ i ≤ λ, (pi, qi) = (0, 0) if tni = υ and (pi, qi) = (µ1, µ2) if

tni = βµ = (µ1, µ2). The function h is one-to-one and onto ẼV(~w).

Now, we define an extension h of h to L∞(Σ̃,~l; υ) setting

h : L∞(Σ̃,~l; υ)→ ẼV
∞

(~w) with h((tn)n∈N) = (h(tn))n∈N

for every (tn)n∈N ∈ L∞(Σ̃,~l; υ). Note that h is a homeomorphism with
respect to the product topologies.

By Theorem 2.3, there exist a sequence ~s = (sn)n∈N ∈ L∞(Σ̃,~l; υ) and

1 ≤ i0 ≤ r such that EV∞(~s) ⊆ (h)−1(Ai0). Set un = h(sn) ∈ ẼV(~w) for

every n ∈ N and ~u = (un)n∈N. Then ~u = (un)n∈N ≺ ~w and ẼV
∞

(~u) ⊆
h(EV∞(~s)) ⊆ Ai0 .

Theorem 2.5 implies the following partition theorem for ordered m-tuples
of variable ω-Z∗-located words for every natural number m.
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Theorem 2.6. Let Σ, υ and ~k satisfy the standard assumptions and let
~w = (wn)n∈N ∈ L̃∞(Σ,~k; υ) and r,m ∈ N. If L̃m(Σ,~k; υ) = C1 ∪ · · · ∪ Cr,
then there exists an extraction ~u = (un)n∈N of ~w and 1 ≤ i0 ≤ r such that

ẼV
m

(~u) ⊆ Ci0 .

Proof. Set Ai = {(xn)n∈N ∈ L̃∞(Σ,~k; υ) : (x1, . . . , xm) ∈ Ci} for i =

1, . . . , r. Then L̃∞(Σ,~k; υ) = A1∪· · ·∪Ar, and A1, . . . , Ar are Borel subsets

of L̃∞(Σ,~k; υ). The conclusion follows from Theorem 2.5.

Remark 2.7. 1) The initial case (m = 1) of Theorem 2.6 has a proof
independent of Theorem 2.5 applying Theorem 2.4 via the function h :
L(Σ̃,~l; υ)→ ẼV(~w) defined in the proof of Theorem 2.5.

2) Theorem 2.6 can be proved by induction from its initial case m = 1,
using Lemma 3.6 as in the proof of Theorem 3.5.

3) Theorems 2.5 and 2.6 imply the analogous partition theorems for
constant ω-Z∗-located words.

3. Ramsey-theoretic results involving Schreier systems for ω-
Z∗-located words. The starting point of this section is Theorem 3.5, an
extended Ramsey-type partition theorem ([R]) for variable ω-Z∗-located
words over an alphabet Σ = {αn : n ∈ Z∗}, dominated by a sequence
~k = (kn)n∈Z∗ ⊆ N. It is an extension to every countable order ξ of Theo-
rem 2.5 corresponding to the case ξ = m, a natural number. As a conse-
quence of Theorem 3.5 we can get an extended (to every countable order)
Ramsey-type partition theorem for ω-located words (see Corollary 3.8).

The main result of this section is Theorem 3.21. It is a strengthening
of Theorem 3.5 in case the partition family F is a tree, providing a crite-
rion, in terms of a Cantor–Bendixson type index for F , to decide whether
the ξ-homogeneous family falls into F or into its complement. We note, in
Theorem 3.24 and Remark 3.25, that Theorem 3.21 can be considered as a
strengthening of the particular case of Theorem 2.5 in which the partition
families of L̃∞(Σ,~k; υ) are clopen in the product topology.

The vehicle for proving these extended Ramsey type partition Theorems
3.5 and 3.21 is the Schreier systems (L̃ξ(Σ,~k))ξ<ω1 and (L̃ξ(Σ,~k; υ))ξ<ω1 ,
consisting of all families of finite orderly sequences of (constant and variable
respectively) ω-Z∗-located words over the alphabet Σ, dominated by the

sequence ~k (given in Definition 3.2). Instrumental for this definition are the
Schreier sets Aξ, consisting of finite subsets of N, which are defined below in
Definition 3.1 (employing in case (3iii) the Cantor normal form of ordinals;
cf. [KM], [L]). Schreier sets were systematically studied in [F1] and [F3].

Notation. For s1, s2 ∈ [N]<ω>0 we write s1 < s2 ⇔ max s1 < min s2.
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Definition 3.1 (The Schreier systems, [F1, Def. 7], [F2, Def. 1.5], [F3,
Def. 1.4]). For every non-zero, countable, limit ordinal λ choose a strictly
increasing sequence (λn)n∈N of successor ordinals smaller than λ with
supn λn = λ (i.e. λ is the least ordinal such that λn ≤ λ for all n ∈ N).
The system (Aξ)ξ<ω1 is defined recursively as follows:

(1) A0 = {∅} and A1 = {{n} : n ∈ N};
(2) Aζ+1 = {s ∈ [N]<ω>0 : s = {n} ∪ s1, where n ∈ N, {n} < s1 and

s1 ∈ Aζ};
(3i) Aωβ+1 = {s ∈ [N]<ω>0 : s =

⋃n
i=1 si, where n = min s1, s1 < · · · < sn

and s1, . . . , sn ∈ Aωβ};
(3ii) for a non-zero, countable limit ordinal λ, Aωλ = {s ∈ [N]<ω>0 : s ∈

Aωλn with n = min s};
(3iii) for a limit ordinal ξ such that ωα < ξ < ωα+1 for some 0 < α < ω1,

if ξ = ωαp +
∑m

i=1 ω
aipi, where m ∈ N with m ≥ 0, p, p1, . . . , pm

are natural numbers with p, p1, . . . , pm ≥ 1 (so that either p > 1,
or p = 1 and m ≥ 1) and a, a1, . . . , am are ordinals with a > a1 >
· · · > am > 0, then

Aξ = {s ∈ [N]<ω>0 : s = s0 ∪
⋃m
i=1si with sm < · · · < s1 < s0, s0 =

s01 ∪ · · · ∪ s0p with s01< · · ·<s0p ∈ Aωa , and si=si1 ∪ · · · ∪ sipi
with si1 < · · · < sipi ∈ Aωai for every 1 ≤ i ≤ m}.

The Schreier systems are special systems of Ramsey families defined
in [F3].

A system of Ramsey families is a collectionA = (Aξ)ξ<ω1 of finite subsets
of N defined recursively, by fixing for every non-zero, limit countable ordinal
ξ a strictly increasing sequence of successor ordinals smaller than ξ with
supn ξn = ξ, as follows:

A0 = {∅} and A1 = {{n} : n ∈ N};
for every countable ordinal ζ,

Aζ+1 = {s ∈ [N]<ω>0 : s = {n} ∪ s1, where n ∈ N, {n} < s1 and s1 ∈ Aζ};
and for every non-zero, limit countable ordinal ξ,

Aξ = {s ∈ [N]<ω>0 : s ∈ Aξn with n = min s}.
With suitable choices of sequences (ξn)n∈N for each countable, non-zero limit
ordinal ξ one can define interesting systems of Ramsey families. The Schreier
systems are the simplest systems of Ramsey families defined by employing
the Cantor normal form of countable ordinals. We note that although a
Schreier system is a purely combinatorial entity, it nevertheless arose grad-
ually in connection with the theory of Banach spaces (more details can be
found in the introduction of [FN2]).
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We point out that the results in this section can be stated for systems
of Ramsey families instead of Schreier systems and also that they do not
depend on the particular choice of the converging sequences, as the com-
plexity of the family Aξ, as measured by its Cantor–Bendixson index, is
independent of the particular choice of the converging sequences.

We will now define the Schreier systems of ω-Z∗-located words.

Notation. Let Σ, υ and ~k satisfy the standard assumptions (see Defi-
nition 2.1). We define the finite orderly sequences of ω-Z∗-located words over

Σ dominated by ~k as follows:

L̃<∞(Σ,~k) = {w = (w1, . . . , wl) : l ∈ N, w1<R1 · · · <R1wl ∈ L̃(Σ,~k)}∪{∅},
L̃<∞(Σ,~k; υ) = {w = (w1, . . . , wl) :

l ∈ N, w1 <R1 · · · <R1 wl ∈ L̃(Σ,~k; υ)} ∪ {∅},
L̃<∞(Σ ∪ {υ},~k) = L̃<∞(Σ,~k) ∪ L̃<∞(Σ,~k; υ).

Definition 3.2 (Schreier systems (L̃ξ(Σ,~k))ξ<ω1 and (L̃ξ(Σ,~k; υ))ξ<ω1).
We define

L̃0(Σ,~k) = {∅} = L̃0(Σ,~k; υ), ξ ≥ 1,

and for every countable ordinal

L̃ξ(Σ,~k) = {(w1, . . . , wl) ∈ L̃<∞(Σ,~k) :

{min dom+(w1), . . . ,min dom+(wl)} ∈ Aξ},
L̃ξ(Σ,~k; υ) = {(w1, . . . , wl) ∈ L̃<∞(Σ,~k; υ) :

{min dom+(w1), . . . ,min dom+(wl)} ∈ Aξ}.

Remark 3.3.

(i) ∅ /∈ L̃ξ(Σ,~k; υ) for every ξ ≥ 1.

(ii) L̃m(Σ,~k; υ) = {(w1, . . . , wm) : w1 <R1 · · · <R1 wm ∈ L̃(Σ,~k; υ)}
for m ∈ N.

(iii) L̃ω(Σ,~k; υ) = {(w1, . . . , wn) ∈ L̃<∞(Σ,~k; υ) : n ∈ N, and
min dom+(w1) = n}.

(iv) Alternatively we could define the sets L̃ξ(Σ,~k), L̃ξ(Σ,~k; υ) via the
negative part of the domain of words as follows:

L̃ξ(Σ,~k) = {(w1, . . . , wl) ∈ L̃<∞(Σ,~k) :

{|max dom−(w1)|, . . . , |max dom−(wl)|} ∈ Aξ},
L̃ξ(Σ,~k; υ) = {(w1, . . . , wl) ∈ L̃<∞(Σ,~k; υ) :

{|max dom−(w1)|, . . . , |max dom−(wl)|} ∈ Aξ}.

The following proposition justifies the recursiveness of (L̃ξ(Σ,~k))ξ<ω1

and (L̃ξ(Σ,~k; υ))ξ<ω1 .
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For a family F ⊆ L̃<∞(Σ ∪ {υ},~k) and t ∈ L̃(Σ ∪ {υ},~k), we set

F(t) = {w ∈ L̃<∞(Σ ∪ {υ},~k) : either w = (w1, . . . , wl) 6= ∅ and

(t, w1, . . . , wl) ∈ F , or w = ∅ and (t) ∈ F},
F − t = {w ∈ F : either w = (w1, . . . , wl) 6= ∅ and t <R1 w1, or w = ∅}.

Proposition 3.4. Let Σ, υ and ~k satisfy the standard assumptions. For
each countable ordinal ξ ≥ 1, there exists a sequence (ξn)n∈N of countable

ordinals with ξn < ξ such that for s ∈ L̃(Σ,~k) and t ∈ L̃(Σ,~k; υ), with
min dom+(s) = min dom+(t) = n, we have

L̃ξ(Σ,~k)(s) = L̃ξn(Σ,~k) ∩ (L̃<∞(Σ,~k)− s),
L̃ξ(Σ,~k; υ)(t) = L̃ξn(Σ,~k; υ) ∩ (L̃<∞(Σ,~k; υ)− t).

Moreover, ξn = ζ for every n ∈ N if ξ = ζ + 1, and (ξn)n∈N is a strictly
increasing sequence with supn ξn = ξ if ξ is a limit ordinal.

Proof. This follows from Theorem 1.6 in [F3], according to which for
each countable ordinal ξ > 0 there exists a sequence (ξn)n∈N of countable
ordinals with ξn < ξ such that Aξ(n) = Aξn ∩ [{n+1, n+2, . . .}]<ω for every
n ∈ N, where Aξ(n) = {s ∈ [N]<ω : s ∈ [N]<ω>0 , n < min s and {n} ∪ s ∈ Aξ
or s = ∅ and {n} ∈ Aξ}. Moreover, ξn = ζ for every n ∈ N if ξ = ζ + 1,
and (ξn)n∈N is a strictly increasing sequence with supn ξn = ξ if ξ is a limit
ordinal.

To state the following Ramsey type partition theorem for Schreier fam-
ilies of variable ω-Z∗-located words, we need the following notation:

Notation. Let Σ, υ and ~k satisfy the standard assumptions. For ~w =
(wn)n∈N ∈ L̃∞(Σ,~k; υ), w = (w1, . . . , wl)∈ L̃<∞(Σ,~k; υ) and t∈ L̃(Σ,~k; υ),
we set:

ẼV
<∞

(~w) = {u = (u1, . . . , ul) ∈ L̃<∞(Σ,~k; υ) :

l ∈ N, u1, . . . , ul ∈ ẼV(~w)} ∪ {∅},

ẼV(w) = {T(p1,q1)(wn1) ? · · · ? T(pλ,qλ)(wnλ) ∈ L̃(Σ,~k; υ) : 1 ≤ n1 <
· · · < nλ ≤ l and (pi, qi) ∈ (N × N) ∪ {(0, 0)} with 0 ≤
pi ≤ kni , 0 ≤ qi ≤ k−ni for every 1 ≤ i ≤ λ and (0, 0) ∈
{(p1, q1), . . . , (pλ, qλ)}}, and

ẼV
<∞

(w) = {u = (u1, . . . , ul) ∈ L̃<∞(Σ,~k; υ) :

l ∈ N, u1, . . . , ul ∈ ẼV(w)} ∪ {∅}.

Observe that the set ẼV(w) is finite. Also, we set

~w − t = (wn)n≥l ∈ L̃∞(Σ,~k; υ), where l = min{n ∈ N : t <R1 wn},
~w −w = ~w − wl,
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w − t =


(wn, . . . , wl) for n = min{1 ≤ i ≤ l : t <R1 wi},

if {1 ≤ i ≤ l : t <R1 wi} 6= ∅,
∅ otherwise.

Theorem 3.5 (Ramsey type partition theorem for Schreier families of

variable ω-Z∗-located words). Let Σ, υ and ~k satisfy the standard assump-

tions. For every countable ordinal ξ ≥ 1, every family F ⊆ L̃<∞(Σ,~k; υ)

and every infinite orderly sequence ~w ∈ L̃∞(Σ,~k; υ) of variable ω-Z∗-located
words there exists a variable extraction ~u ≺ ~w of ~w such that: either

• L̃ξ(Σ,~k; υ) ∩ ẼV
<∞

(~u) ⊆ F , or

• L̃ξ(Σ,~k; υ) ∩ ẼV
<∞

(~u) ⊆ L̃<∞(Σ,~k; υ) \ F .

This theorem can be deduced from the stronger Theorem 2.5, as the
partition family F of L̃<∞(Σ,~k; υ) can be extended to a partition family

A1 of L̃∞(Σ,~k; υ) which is clopen (and consequently Borel) in the product
topology. But, in view of Proposition 3.4 on the recursiveness of a Schreier
system, we provide for completeness a proof by induction, starting from
the initial case (m = 1) of Theorem 2.6, which, as we have mentioned (in
Remark 2.7), has a proof independent of Theorem 2.5.

In the proof of this partition theorem we will make use of a diagonal
argument, contained in the following lemma.

Lemma 3.6. Let Σ, υ and ~k satisfy the standard assumptions, ~w =
(wn)n∈N ∈ L̃∞(Σ,~k; υ), and

Π = {(t, ~s) : t ∈ L̃(Σ,~k; υ), ~s = (sn)n∈N ∈ L̃∞(Σ,~k; υ)

with ~s ≺ ~w and t <R1 s1}.
If a subset R of Π satisfies

(i) for every (t, ~s) ∈ Π, there exists (t, ~s1) ∈ R with ~s1 ≺ ~s;
(ii) for every (t, ~s) ∈ R and ~s1 ≺ ~s, we have (t, ~s1) ∈ R,

then there exists ~u ≺ ~w such that (t, ~s) ∈ R for all t ∈ ẼV(~u) and ~s ≺ ~u− t.

Proof. Let u0 = w1. By (i), there exists ~s1 = (s1n)n∈N ∈ L̃∞(Σ,~k; υ)
with ~s1 ≺ ~w − u0 such that (u0, ~s1) ∈ R. Let u1 = s11. Then u0 <R1 u1
and u0, u1 ∈ ẼV(~w). We now assume that ~s1, . . . , ~sn ∈ L̃∞(Σ,~k; υ) and

u0, u1, . . . , un ∈ ẼV(~w) have been constructed with ~sn ≺ · · · ≺ ~s1 ≺ ~w,

u0 <R1 u1 <R1 · · · <R1 un and (t, ~si) ∈ R for all t ∈ ẼV((u0, . . . , ui−1)) and
1 ≤ i ≤ n.

We will construct ~sn+1 and un+1. Let {t1, . . . , tl} = ẼV((u0, . . . , un)).

By (i), there exist ~s 1n+1, . . . , ~s
l
n+1 ∈ L̃∞(Σ,~k; υ) such that ~s ln+1 ≺ . . . ≺

~s 1n+1 ≺ ~sn − un and (ti, ~s
i
n+1) ∈ R for every 1 ≤ i ≤ l. Set ~sn+1 = ~s ln+1. If
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~sn+1 = (sn+1
m )m∈N, set un+1 = sn+1

1 . Of course un <R1 un+1, un+1 ∈ ẼV(~w)
and, by (ii), (ti, ~sn+1) ∈ R for all 1 ≤ i ≤ l.

Set ~u = (u0, u1, u2, . . .) ∈ L̃∞(Σ,~k; υ). Then ~u ≺ ~w, since u0 <R1 u1
<R1 · · · ∈ ẼV(~w). Let t ∈ ẼV(~u) and ~s ≺ ~u − t. Set n0 = min{n ∈ N :

t ∈ ẼV((u0, u1, . . . , un))}. Since t ∈ ẼV((u0, u1, . . . , un0)), it follows that
(t, ~sn0+1) ∈ R. Then, by (ii), we have (t, ~u−un0) ∈ R, since ~u−un0 ≺ ~sn0+1,
and also (t, ~s) ∈ R, since ~s ≺ ~u− un0 = ~u− t.

Proof of Theorem 3.5. Let F ⊆ L̃<∞(Σ,~k; υ) and ~w ∈ L̃∞(Σ,~k; υ).
For ξ = 1 the conclusion is valid, according to Theorem 2.5. Let ξ > 1.
Assume that the conclusion holds for every ζ < ξ. Let t ∈ L̃(Σ,~k; υ) with

min dom+(t) = n and ~s = (sn)n∈N ∈ L̃∞(Σ,~k; υ) with ~s ≺ ~w and t <R1 s1.
According to Proposition 3.4, there exists ξn < ξ such that

L̃ξ(Σ,~k; υ)(t) = L̃ξn(Σ,~k; υ) ∩ (L̃<∞(Σ,~k; υ)− t).
Using the induction hypothesis, there exists ~s1 ≺ ~s such that either

• L̃ξn(Σ,~k; υ) ∩ ẼV
<∞

(~s1) ⊆ F(t), or

• L̃ξn(Σ,~k; υ) ∩ ẼV
<∞

(~s1) ⊆ L̃<∞(Σ,~k; υ) \ F(t).

Then ~s1 ≺ ~s ≺ ~w, and either

• L̃ξ(Σ,~k; υ)(t) ∩ ẼV
<∞

(~s1) ⊆ F(t), or

• L̃ξ(Σ,~k; υ)(t) ∩ ẼV
<∞

(~s1) ⊆ L̃<∞(Σ,~k; υ) \ F(t).

Let

R1 = {(t, ~s) : t ∈ L̃(Σ,~k; υ), ~s = (sn)n∈N ∈ L̃∞(Σ,~k; υ), ~s ≺ ~w, t <R1 s1,

and either L̃ξ(Σ,~k; υ)(t) ∩ ẼV
<∞

(~s) ⊆ F(t), or L̃ξ(Σ,~k; υ)(t) ∩
ẼV

<∞
(~s) ⊆ L̃<∞(Σ,~k; υ) \ F(t)}.

The family R1 satisfies the conditions (i) (by the above arguments) and
(ii) (obviously) of Lemma 3.6. Hence, there exists ~w1 = (w1

n)n∈N ≺ ~w such

that (t, ~s) ∈ R1 for all t ∈ ẼV(~w1) and ~s ≺ ~w1 − t.
Let

F1 = {t ∈ ẼV(~w1) : L̃ξ(Σ,~k; υ)(t) ∩ ẼV
<∞

(~w1 − t) ⊆ F(t)}.
We use the induction hypothesis for ξ = 1 (Theorem 2.5). There exists a
variable extraction ~u ≺ ~w1 of ~w1 such that

either ẼV(~u) ⊆ F1, or ẼV(~u) ⊆ L̃(Σ,~k; υ) \ F1.

Since ~u ≺ ~w1 we have ẼV(~u) ⊆ ẼV(~w1). Thus either

• L̃ξ(Σ,~k; υ)(t) ∩ ẼV
<∞

(~u− t) ⊆ F(t) for all t ∈ ẼV(~u), or

• L̃ξ(Σ,~k; υ)(t)∩ ẼV
<∞

(~u− t) ⊆ L̃<∞(Σ,~k; υ) \F(t) for all t ∈ ẼV(~u).
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Hence, either

• L̃ξ(Σ,~k; υ) ∩ ẼV
<∞

(~u) ⊆ F , or

• L̃ξ(Σ,~k; υ) ∩ ẼV
<∞

(~u) ⊆ L̃<∞(Σ,~k; υ) \ F .

Remark 3.7. (1) The particular case ξ = m ∈ N of Theorem 3.5 coin-
cides with Theorem 2.6.

(2) In the case ξ = ω, Theorem 3.5 takes the form: if L̃<∞(Σ,~k; υ) =

A1 ∪ · · · ∪ Ar, r ∈ N and ~w ∈ L̃∞(Σ,~k; υ), then there exists an extraction

~u ≺ ~w of ~w and 1 ≤ i0 ≤ r such that the set {(z1, . . . , zn) ∈ L̃<∞(Σ,~k; υ)) :

n ∈ N,min dom+(z1) = n and z1, . . . , zn ∈ ẼV(~u)} is contained in Ai0 .
(3) In analogy to Theorem 3.5 one can prove a Ramsey type partition

theorem for Schreier families of (constant) ω-Z∗-located words.

As a consequence of Theorem 3.5 we will prove a Ramsey type partition
theorem for Schreier families of variable ω-located words.

Notation. Let Σ = {α1, α2, . . .} be an infinite countable alphabet,

υ /∈ Σ a variable and ~k = (kn)n∈N ⊆ N an increasing sequence. We define
the finite orderly sequences of variable ω-located words over Σ dominated
by ~k as follows:

L<∞(Σ,~k; υ) = {w = (w1, . . . , wl) :

l ∈ N, w1 <R2 · · · <R2 wl ∈ L(Σ,~k; υ)} ∪ {∅}.
For every countable ordinal ξ ≥ 1, we set

Lξ(Σ,~k; υ) = {(w1, . . . , wl) ∈ L<∞(Σ,~k; υ) :

{min dom(w1), . . . ,min dom(wl)} ∈ Aξ}.

For ~w = (wn)n∈N ∈ L∞(Σ,~k; υ) we set

EV<∞(~w) = {u = (u1, . . . , ul) ∈ L<∞(Σ,~k; υ) :

l ∈ N, u1, . . . , ul ∈ EV(~w)} ∪ {∅}.
Corollary 3.8 (Ramsey type partition theorem for Schreier families

of variable ω-located words). Let Σ = {α1, α2, . . .} be an infinite countable

alphabet, υ /∈ Σ a variable, ~k = (kn)n∈N ⊆ N an increasing sequence and

ξ ≥ 1 a countable ordinal. For a partition family F ⊆ L<∞(Σ,~k; υ) and

~w ∈ L∞(Σ,~k; υ), there exists an extraction ~u ≺ ~w of ~w such that either

• Lξ(Σ,~k; υ) ∩ EV<∞(~u) ⊆ F , or

• Lξ(Σ,~k; υ) ∩ EV<∞(~u) ⊆ L<∞(Σ,~k; υ) \ F .

Proof. We set Σ̃ = {αn : n ∈ Z∗}, ~k∗ = (k̃n)n∈Z∗ ⊆ N and ~w∗ =

(w̃n)n∈N ∈ L̃∞(Σ̃,~k∗; υ), where α−n = αn, k̃−n = k̃n = kn and w̃n = υ−n?wn
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for every n ∈ N. Let ϕ : L̃(Σ̃,~k∗; υ) → L(Σ,~k; υ) with ϕ(wn1 . . . wnl) =

wni0 . . . wnl , where ni0 = min dom+(wn1 . . . wnl) and ϕ̃ : L̃<∞(Σ̃,~k∗; υ) →
L<∞(Σ,~k; υ) with ϕ̃(u1, . . . , ul) = (ϕ(u1), . . . , ϕ(ul)). Then we apply Theo-
rem 3.5 for the family ϕ̃−1(F) and the sequence ~w∗.

In order to prove Theorem 3.21, a strengthening of Theorem 3.5 in case
the partition family F is a tree, we will prove three basic properties of the
Schreier families of variable ω-Z∗-located words (Propositions 3.10, 3.11 and
3.18 below).

Let us start with the necessary notations and definitions.

Definition 3.9. Let Σ, υ and ~k satisfy the standard assumptions and
F ⊆ L̃<∞(Σ,~k; υ).

(i) F is thin if there are no w,u ∈ F with w ∝ u and w 6= u.

(ii) F∗ = {w ∈ L̃<∞(Σ,~k; υ) : w ∝ u for some u ∈ F} ∪ {∅}.
(iii) F is a tree if F∗ = F .

(iv) F∗ = {w ∈ L̃<∞(Σ,~k; υ) : w ∈ ẼV
<∞

(u) for some u ∈ F} ∪ {∅}.
(v) F is hereditary if F∗ = F .

Proposition 3.10. Let Σ, υ and ~k satisfy the standard assumptions.
Every family L̃ξ(Σ,~k; υ) for ξ < ω1 is thin.

Proof. This follows from the fact that the families Aξ are thin (cf. [F3])
(which means that if s, t ∈ Aξ and s ∝ t, then s = t).

Proposition 3.11. Let Σ, υ and ~k satisfy the standard assumptions
and ξ ≥ 1 be a countable ordinal. Then

(i) every infinite orderly sequence ~s = (sn)n∈N ∈ L̃∞(Σ,~k; υ) has canon-

ical representation with respect to L̃ξ(Σ,~k; υ), which means that there
exists a unique strictly increasing sequence (mn)n∈N in N so that

(s1, . . . , sm1) ∈ L̃ξ(Σ,~k; υ) and (smn−1+1, . . . , smn) ∈ L̃ξ(Σ,~k; υ) for
every n > 1;

(ii) every non-empty finite orderly sequence s=(s1, . . . , sk)∈ L̃<∞(Σ,~k; υ)

has canonical representation with respect to L̃ξ(Σ,~k; υ), so either s ∈
(L̃ξ(Σ,~k; υ))∗\L̃ξ(Σ,~k; υ) or there exist unique n ∈ N and m1, . . . ,mn

∈ N with m1 < · · · < mn ≤ k such that either

(s1, . . . , sm1), . . . , (smn−1+1, . . . , smn) ∈ L̃ξ(Σ,~k; υ) and mn = k,

or

(s1, . . . , sm1), . . . , (smn−1+1, . . . , smn) ∈ L̃ξ(Σ,~k; υ),

(smn+1, . . . , sk) ∈ (L̃ξ(Σ,~k; υ))∗ \ L̃ξ(Σ,~k; υ).
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Proof. This follows from the fact that every non-empty increasing se-
quence (finite or infinite) in N has canonical representation with respect

to Aξ (cf. [F3]) and that the family L̃ξ(Σ,~k; υ) is thin (Proposition 3.10).

Now, using Proposition 3.11, we can give an alternative description of the
second horn of the dichotomy described in Theorem 3.5 in case the partition
family is a tree.

Proposition 3.12. Let Σ, υ and ~k satisfy the standard assumptions,
ξ ≥ 1 a countable ordinal and F ⊆ L̃<∞(Σ,~k; υ) be a tree. Then

L̃ξ(Σ,~k; υ) ∩ ẼV
<∞

(~u) ⊆ L̃<∞(Σ,~k; υ) \ F

⇔ F ∩ ẼV
<∞

(~u) ⊆ (L̃ξ(Σ,~k; υ))∗ \ L̃ξ(Σ,~k; υ).

Proof. Suppose L̃ξ(Σ,~k; υ) ∩ ẼV
<∞

(~u) ⊆ L̃<∞(Σ,~k; υ) \ F and s =

(s1, . . . , sk) ∈ F ∩ ẼV
<∞

(~u). Then s has canonical representation with re-

spect to L̃ξ(Σ,~k; υ) (Proposition 3.11), hence either s ∈ (L̃ξ(Σ,~k; υ))∗ \
L̃ξ(Σ,~k; υ), as required, or there exists s1 ∈ L̃ξ(Σ,~k; υ) such that s1 ∝ s.

The second case is impossible. Indeed, since F is a tree and s ∈ F∩ẼV
<∞

(~u),

we have s1 ∈ F ∩ ẼV
<∞

(~u)∩ L̃ξ(Σ,~k; υ), a contradiction to our assumption.

Hence F ∩ ẼV
<∞

(~u) ⊆ (L̃ξ(Σ,~k; υ))∗ \ L̃ξ(Σ,~k; υ).

Definition 3.13. Let Σ, υ and ~k satisfy the standard assumptions.
Identifying every s ∈ L̃<∞(Σ,~k; υ) and every ~s ∈ L̃∞(Σ,~k; υ) with their

characteristic functions xr(s) ∈ {0, 1}L̃(Σ,
~k;υ) and xr(~s ) ∈ {0, 1}L̃(Σ,

~k;υ) re-
spectively (where r(s) = {s1, . . . , sk} is the range of s = (s1, . . . , sk) ∈
L̃<∞(Σ,~k; υ), r(~s) = {sn : n ∈ N} is the range of ~s = (sn)n∈N ∈ L̃∞(Σ,~k; υ)

and r(∅) = ∅), we say that a family F ⊆ L̃<∞(Σ,~k; υ) is pointwise closed
if the family {xr(s) : s ∈ F} is closed in the product topology (equiva-

lently, the pointwise convergence topology) of {0, 1}L̃(Σ,~k;υ), and by analogy

a family U ⊆ L̃∞(Σ,~k; υ) is pointwise closed if {xr(~s ) : ~s ∈ U} is closed in

{0, 1}L̃(Σ,~k;υ) with the product topology.

Proposition 3.14. Let Σ, υ and ~k satisfy the standard assumptions.

(i) If F ⊆ L̃<∞(Σ,~k; υ) is a tree, then F is pointwise closed if and
only if there does not exist an infinite sequence (sn)n∈N in F such
that sn ∝ sn+1 and sn 6= sn+1 for all n ∈ N.

(ii) If F ⊆ L̃<∞(Σ,~k; υ) is hereditary, then F is pointwise closed if and

only if there does not exist ~s ∈ L̃∞(Σ,~k; υ) such that ẼV
<∞

(~s) ⊆ F .

(iii) The hereditary family (L̃ξ(Σ,~k; υ)∩ ẼV
<∞

(~u))∗ is pointwise closed

for every countable ordinal ξ and ~u ∈ L̃∞(Σ,~k; υ).
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Proof. (i) follows from the fact that ẼV
<∞

(s) is finite for every s ∈
L̃<∞(Σ,~k; υ), and (ii) follows from (i). The statement (iii) can be proved
by induction on ξ, using (ii). The main idea of the proof is that given

~s = (sn)n∈N ∈ L̃∞(Σ,~k; υ) with ẼV
<∞

(~s) ⊆ (L̃ξ(Σ,~k; υ) ∩ ẼV
<∞

(~u))∗,
then, according to the pigeonhole principle, there exists k ≤ min dom+(s1)

such that (s2, . . . , sn) ∈ (L̃ξk(Σ,~k; υ) ∩ ẼV
<∞

(~u))∗ for every n ∈ N (using
Proposition 3.4).

Let ~s ∈ L̃∞(Σ,~k; υ). For a hereditary and pointwise closed family F ⊆
L̃<∞(Σ,~k; υ) we will define the strong Cantor–Bendixson index sO~s(F) of
F with respect to ~s.

Definition 3.15. Let Σ, υ and ~k satisfy the standard assumptions,
~s ∈ L̃∞(Σ,~k; υ) and let F ⊆ L̃<∞(Σ,~k; υ) be a hereditary and pointwise

closed family. For every ξ < ω1 we define the families (F)ξ~s inductively as

follows: We define (F)0~s = F . For every w = (w1, . . . , wl) ∈ F ∩ ẼV
<∞

(~s)
we set

Aw = {t ∈ ẼV(~s) : (w1, . . . , wl, t) /∈ F}, A∅ = {t ∈ ẼV(~s) : (t) /∈ F}.

We define

(F)1~s = {w ∈ F ∩ ẼV
<∞

(~s) ∪ {∅} :

Aw does not contain an infinite orderly sequence}.

It is easy to verify that (F)1~s is hereditary, hence it is pointwise closed since
F is pointwise closed (Proposition 3.14). So, we can define for every ξ > 1
the ξ-derivatives of F recursively as follows:

(F)ζ+1
~s = ((F)ζ~s)

1
~s for all ζ < ω1,

(F)ξ~s =
⋂
β<ξ

(F)β~s for ξ a limit ordinal.

The strong Cantor–Bendixson index sO~s(F) of F on ~s is the smallest

countable ordinal ξ such that (F)ξ~s = ∅.

Remark 3.16. Let ~s ∈ L̃∞(Σ,~k; υ) and let F ,R ⊆ L̃<∞(Σ,~k; υ) be
non-empty, hereditary and pointwise closed families.

(i) sO~s(F) is a countable successor ordinal less than or equal to the

“usual” Cantor–Bendixson index O(F) of F into {0, 1}L̃(Σ,~k;υ) (cf.
[KM]).

(ii) sO~s(F ∩ ẼV
<∞

(~s)) = sO~s(F).
(iii) sO~s(F) ≤ sO~s(R) if F ⊆ R.
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(iv) If ~t = (tn)n∈N ∈ L̃∞(Σ,~k; υ) with (tk+n)n∈N ≺ ~s for some k ∈
N ∪ {0} and w ∈ (F)ξ~s, then for every w1 ∈ ẼV

<∞
(~t ) such that

w1 ∈ ẼV
<∞

(w) we have w1 ∈ (F)ξ~t .

(v) If ~s1 ≺ ~s, then sO~s1(F) ≥ sO~s(F), according to (iv).
(vi) If r(~s1) \ r(~s) is a finite set, then sO~s1(F) ≥ sO~s(F).

In Proposition 3.18 below, we will prove that the corresponding strong
Cantor–Bendixson index for Schreier families of order ξ is equal to ξ+1. For
the proof we will need the following lemma, which is analogous to Lemma
2.8 in [F5] and has an analogous proof.

Lemma 3.17. Let Σ, υ and ~k satisfy the standard assumptions, ξ ≥ 1 a

countable ordinal, ~s ∈ L̃∞(Σ,~k; υ), ~s1 ≺ ~s, and let F ⊆ ẼV
<∞

(~s) be such

that F∗ and (F(t))∗ are pointwise closed for every t ∈ ẼV(~s).

(i) ((F(t))∗)
ξ
~s1
⊆ (F∗)ξ~s1(t) for every t ∈ ẼV(~s).

(ii) If w = (w1, . . . , wl) 6= ∅ and w ∈ (F∗)ξ~s1 , then there exist ~s2 ≺ ~s1

and t ∈ ẼV(~s) with t <R1 w1 or dom(t) ⊆ dom(w1) such that

w − t ∈ ((F(t))∗)
ξ
~s2
.

Proof. (i) This can be proved by induction on ξ, using Definition 3.15
and the inclusion (F(t))∗ ⊆ F∗(t).

(ii) The proof is by induction on ξ. The main argument is contained in
the proof of the case ξ = 1. Let w = (w1, . . . , wl) ∈ (F∗)1~s1 . For every u ∈
ẼV(~s1) \ Aw there exists vu = (vu1 , . . . , v

u
lu

) ∈ F such that (w1, . . . , wl, u) ∈
ẼV

<∞
(vu). Then vu1 ≤ w1 (which means that vu1 <R1 w1 or dom(vu1 ) ⊆

dom(w1)) for every u ∈ ẼV(~s1) \ Aw and the set {v ∈ ẼV(~s) : v ≤ w1} is
finite. Since w ∈ (F∗)1~s1 , by Theorem 2.6 (case m = 1), there exist ~s2 ≺ ~s1
and t ∈ ẼV(~s) with t ≤ w1 such that ẼV(~s2) ⊆ ẼV(~s1) \Aw and vu1 = t for

every u ∈ ẼV(~s2). Then w − t ∈ ((F(t))∗)
1
~s2
.

Proposition 3.18. Let Σ, υ and ~k satisfy the standard assumptions,
ξ < ω1 be an ordinal and ~s ∈ L̃∞(Σ,~k; υ). Then

sO~s1
(
(L̃ξ(Σ,~k; υ) ∩ ẼV

<∞
(~s))∗

)
= ξ + 1 for every ~s1 ≺ ~s.

Proof. We have (L̃0(Σ,~k; υ)∩ẼV
<∞

(~s))∗ = {∅} for every ~s∈ L̃∞(Σ,~k; υ)
and sO~s1({∅}) = 1 for ~s1 ≺ ~s, since ({∅})1~s = ∅, so the conclusion holds for
ξ = 0.

The families (L̃ξ(Σ,~k; υ)∩ ẼV
<∞

(~s))∗, (L̃ξ(Σ,~k; υ)∩ ẼV
<∞

(~s)(t))∗ are

hereditary and pointwise closed for every 1 ≤ ξ ≤ ω1, ~s ∈ L̃∞(Σ,~k; υ) and

t ∈ ẼV(~s), according to Proposition 3.14, since in case min dom+(t) = n,
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Proposition 3.4 implies that

(L̃ξ(Σ,~k; υ)∩ẼV
<∞

(~s))(t) = L̃ξn(Σ,~k; υ)∩ẼV
<∞

(~s−t) for some ξn < ξ.

In order to prove the proposition, it is enough to prove by induction on ξ

that
(
(L̃ξ(Σ,~k; υ) ∩ ẼV

<∞
(~s))∗

)ξ
~s1

= {∅} for every ~s ∈ L̃∞(Σ,~k; υ), ~s1 ≺ ~s

and 1 ≤ ξ < ω1. Since (L̃1(Σ,~k; υ) ∩ ẼV
<∞

(~s))∗ = {(t) : t ∈ ẼV(~s)} ∪ {∅},
we have

(
(L̃1(Σ,~k; υ) ∩ ẼV

<∞
(~s))∗

)1
~s1

= {∅} for every ~s ∈ L̃∞(Σ,~k; υ) and

~s1 ≺ ~s.
Let ξ > 1 and assume that

(
(L̃ζ(Σ,~k; υ)∩ẼV

<∞
(~s))∗

)ζ
~s1

= {∅} for every

~s ∈ L̃∞(Σ,~k; υ), ~s1 ≺ ~s and 1 ≤ ζ < ξ. Let ~s ∈ L̃∞(Σ,~k; υ) and ~s1 ≺ ~s. For

every t ∈ ẼV(~s) with min dom+(t) = n we have, by Remark 3.16(vi),(
(L̃ξ(Σ,~k; υ) ∩ ẼV

<∞
(~s))(t)∗

)ξn
~s1

=
(
(L̃ξn(Σ,~k; υ) ∩ ẼV

<∞
(~s− t))∗

)ξn
~s1

=
(
(L̃ξn(Σ,~k; υ) ∩ ẼV

<∞
(~s− t))∗

)ξn
~s1−t

= {∅}.

This gives ∅ ∈
(
(L̃ξ(Σ,~k; υ)∩ ẼV

<∞
(~s))(t)∗

)ξn
~s1
. By Lemma 3.17(i) we have

(t) ∈
(
(L̃ξ(Σ,~k; υ)∩ẼV

<∞
(~s))∗

)ξn
~s1
.Hence, ∅ ∈

(
(L̃ξ(Σ,~k; υ)∩ẼV

<∞
(~s))∗

)ξ
~s1

for every ~s ∈ L̃∞(Σ,~k; υ) and ~s1 ≺ ~s. Indeed, if ξ = ζ + 1, then (t) ∈(
(L̃ξ(Σ,~k; υ)∩ẼV

<∞
(~s))∗

)ζ
~s1

for every t ∈ ẼV(~s1), and if ξ is a limit ordinal,

then sup ξn = ξ and ∅ ∈
(
(L̃ξ(Σ,~k; υ) ∩ ẼV

<∞
(~s))∗

)ξn
~s1

for every n ∈ N.

We will prove that {∅} =
(
(L̃ξ(Σ,~k; υ) ∩ ẼV

<∞
(~s))∗

)ξ
~s1

for every ~s ∈
L̃∞(Σ,~k; υ) and ~s1 ≺ ~s. Indeed, let

w = (w1, . . . , wl) ∈
(
(L̃ξ(Σ,~k; υ) ∩ ẼV

<∞
(~s))∗

)ξ
~s1

for some l ∈ N, ~s ∈ L̃∞(Σ,~k; υ) and ~s1 ≺ ~s. By Lemma 3.17(ii) there exist

~s2 ≺ ~s1 and t ∈ ẼV(~s) such that
(
(L̃ξ(Σ,~k; υ) ∩ ẼV

<∞
(~s))(t)∗

)ξ
~s2
6= ∅. If

min dom+(t) = n, analogously to the previous paragraph we have(
(L̃ξ(Σ,~k; υ) ∩ ẼV

<∞
(~s))(t)∗

)ξ
~s2

=
(
(L̃ξn(Σ,~k; υ) ∩ ẼV

<∞
(~s− t))∗

)ξ
~s2

=
(
(L̃ξn(Σ,~k; υ) ∩ ẼV

<∞
(~s− t))∗

)ξ
~s2−t

6= ∅.

A contradiction, since ξn < ξ and
(
(L̃ξn(Σ,~k; υ) ∩ ẼV

<∞
(~s− t))∗

)ξ
~s2−t = ∅,

by the induction hypothesis.

Hence,
(
(L̃ξ(Σ,~k; υ) ∩ ẼV

<∞
(~s))∗

)ξ
~s1

= {∅} and sO~s1((L̃ξ(Σ,~k; υ) ∩

ẼV
<∞

(~s))∗) = ξ + 1 for every ξ < ω1.
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Corollary 3.19. Let ξ1, ξ2 be countable ordinals with ξ1 < ξ2 and ~w ∈
L̃∞(Σ,~k; υ). Then there exists ~u ≺ ~w such that

(L̃ξ1(Σ,~k; υ))∗ ∩ ẼV
<∞

(~u) ⊆ (L̃ξ2(Σ,~k; υ))∗ \ L̃ξ2(Σ,~k; υ).

Proof. The family (L̃ξ1(Σ,~k; υ))∗ ⊆ L̃<∞(Σ,~k; υ) is a tree. According
to Theorem 3.5 and Proposition 3.12 there exists ~u ≺ ~w such that either

• L̃ξ2(Σ,~k; υ) ∩ ẼV
<∞

(~u) ⊆ (L̃ξ1(Σ,~k; υ))∗, or

• (L̃ξ1(Σ,~k; υ))∗ ∩ ẼV
<∞

(~u) ⊆ (L̃ξ2(Σ,~k; υ))∗ \ L̃ξ2(Σ,~k; υ).

The first alternative is impossible, since by Proposition 3.18,

ξ2 + 1 = sO~u((L̃ξ2(Σ,~k; υ)∩ ẼV
<∞

(~u))∗) ≤ sO~u((L̃ξ1(Σ,~k; υ))∗) = ξ1 + 1.

Theorem 3.21 below, the main result in this section, refines Theorem 3.5
in case the partition family is a tree. We denote by supX, where X is a set
of ordinals, the least ordinal α such that β ≤ α for every β ∈ X.

Definition 3.20. Let Σ, υ and ~k satisfy the standard assumptions and

F ⊆ L̃<∞(Σ,~k; υ). We set Fh = {w ∈ F : ẼV
<∞

(w) ⊆ F} ∪ {∅}.
Of course, Fh is the largest subfamily of F ∪ {∅} which is hereditary.

Theorem 3.21. Let Σ, υ and ~k satisfy the standard assumptions, let
F ⊆ L̃<∞(Σ,~k; υ) be a tree and ~w ∈ L̃∞(Σ,~k; υ). Then we have the follow-
ing cases:

[Case 1] The family Fh ∩ ẼV
<∞

(~w) is not pointwise closed.

Then there exists ~u ≺ ~w such that ẼV
<∞

(~u) ⊆ F .

[Case 2] The family Fh ∩ ẼV
<∞

(~w) is pointwise closed.

Then, setting

ζF~w = sup{sO~u(Fh) : ~u ≺ ~w},
which is a countable ordinal, the following subcases obtain:

2(i) If ξ + 1 < ζF~w , then there exists ~u ≺ ~w such that

L̃ξ(Σ,~k; υ) ∩ ẼV
<∞

(~u) ⊆ F ;

2(ii) if ξ + 1 > ξ > ζF~w , then for every ~w1 ≺ ~w there exists ~u ≺ ~w1

such that L̃ξ(Σ,~k; υ)∩ ẼV
<∞

(~u) ⊆ L̃<∞(Σ,~k; υ) \F (equivalently

F ∩ ẼV
<∞

(~u) ⊆ (L̃ξ(Σ,~k; υ))∗ \ L̃ξ(Σ,~k; υ));
2(iii) if ξ + 1 = ζF~w or ξ = ζF~w , then there exists ~u ≺ ~w such that ei-

ther L̃ξ(Σ,~k; υ) ∩ ẼV
<∞

(~u) ⊆ F , or L̃ξ(Σ,~k; υ) ∩ ẼV
<∞

(~u) ⊆
L̃<∞(Σ,~k; υ) \ F .
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Proof. [Case 1] If the hereditary family Fh∩ẼV
<∞

(~w) is not pointwise

closed, then, according to Proposition 3.14, there exists ~u ∈ L̃∞(Σ,~k; υ) such

that ẼV
<∞

(~u) ⊆ Fh ∩ ẼV
<∞

(~w) ⊆ F . Of course, ~u ≺ ~w.

[Case 2] If the hereditary family Fh∩ẼV
<∞

(~w) is pointwise closed, then
ζF~w is a countable ordinal, since the “usual” Cantor–Bendixson index O(Fh)

of Fh into {0, 1}L̃(Σ,~k,υ is countable (Remark 3.16(i)) and also sO~u(Fh) ≤
O(Fh) for every ~u ≺ ~w.

2(i) Let ξ+1 < ζF~w . Then there exists ~u1 ≺ ~w such that ξ+1 < sO~u1(Fh).
By Theorem 3.5 and Proposition 3.12, there exists ~u ≺ ~u1 such that either

• L̃ξ(Σ,~k; υ) ∩ ẼV
<∞

(~u) ⊆ Fh ⊆ F , or

• Fh ∩ ẼV
<∞

(~u) ⊆ (L̃ξ(Σ,~k; υ))∗ \ L̃ξ(Σ,~k; υ) ⊆ (L̃ξ(Σ,~k; υ))∗

⊆ (L̃ξ(Σ,~k; υ))∗.

The second alternative is impossible, for if Fh ∩ ẼV
<∞

(~u) ⊆ (L̃ξ(Σ,~k; υ))∗,
then, according to Remark 3.16 and Proposition 3.18,

sO~u1(Fh) ≤ sO~u(Fh) = sO~u(Fh∩ ẼV
<∞

(~u)) ≤ sO~u((L̃ξ(Σ,~k; υ))∗) = ξ+ 1,

a contradiction. Hence, L̃ξ(Σ,~k; υ) ∩ ẼV
<∞

(~u) ⊆ F .
2(ii) Let ξ + 1 > ξ > ζF~w and ~w1 ≺ ~w. According to Theorem 3.5, there

exists ~u1 ≺ ~w1 such that either

• L̃ζF~w (Σ,~k; υ) ∩ ẼV
<∞

(~u1) ⊆ Fh, or

• L̃ζF~w (Σ,~k; υ) ∩ ẼV
<∞

( ~u1) ⊆ L̃<∞(Σ,~k; υ) \ Fh.

Proposition 3.18 gives ζF~w + 1 = sO~u1((L̃ζ
F
~w (Σ,~k; υ) ∩ ẼV

<∞
(~u1))∗). Since

sO~u1(Fh) ≤ ζF~w , the first alternative is impossible, by Remark 3.16(iii). So,

(1) L̃ζ
F
~w (Σ,~k; υ) ∩ ẼV

<∞
(~u1) ⊆ L̃<∞(Σ,~k; υ) \ Fh.

According to Theorem 3.5, there exists ~u ≺ ~u1 such that either

• L̃ξ(Σ,~k; υ) ∩ ẼV
<∞

(~u) ⊆ F , or

• L̃ξ(Σ,~k; υ) ∩ ẼV
<∞

(~u) ⊆ L̃<∞(Σ,~k; υ) \ F .

Since the family F is a tree, the first alternative does not hold. Indeed, if

L̃ξ(Σ,~k; υ)∩ẼV
<∞

(~u) ⊆ F , then (L̃ξ(Σ,~k; υ)∩ẼV
<∞

(~u))∗ ⊆ F∗ = F . Con-

sequently, from Proposition 3.11 it follows that (L̃ξ(Σ,~k; υ))∗∩ ẼV
<∞

(~u) =

(L̃ξ(Σ,~k; υ)∩ ẼV
<∞

(~u))∗ ⊆ F . Since ξ > ζF~w , by Corollary 3.19 there exists
~t ≺ ~u such that

(L̃ζ
F
~w (Σ,~k; υ))∗ ∩ ẼV

<∞
(~t ) ⊆ (L̃ξ(Σ,~k; υ))∗ ∩ ẼV

<∞
(~u) ⊆ F .

Hence, (L̃ζ
F
~w (Σ,~k; υ))∗ ∩ ẼV

<∞
(~t ) ⊆ Fh, contrary to (1).

2(iii) If ζF~w = ξ + 1 or ζF~w = ξ, we use Theorem 3.5.
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The following immediate corollary to Theorem 3.21 is more useful for
applications. A quite simplified consequence of Theorem 3.21, one not in-
volving Schreier-type families of variable ω-Z∗-located words, is equivalent
to the particular case of Theorem 2.5 in which the partition families of
L̃∞(Σ,~k; υ) are clopen sets in the product topology (Theorem 3.23 below).

Corollary 3.22. Let F⊆ L̃<∞(Σ,~k; υ) be a tree and let ~w∈ L̃∞(Σ,~k; υ).
Then either

(i) there exists ~u ≺ ~w such that ẼV
<∞

(~u) ⊆ F , or
(ii) for every countable ordinal ξ > ζF~w there exists ~u ≺ ~w such that for

every ~u1 ≺ ~u the unique initial segment of ~u1 which is an element of
L̃ξ(Σ,~k; υ) belongs to L̃<∞(Σ,~k; υ) \ F .

Corollary 3.22 can be considered as a strengthening of Theorem 3.23
below; we will prove this by giving a reformulation of Theorem 3.23 in
Theorem 3.24.

Theorem 3.23. Let Σ, υ and ~k satisfy the standard assumptions. If
U ⊆ L̃∞(Σ,~k; υ) is a pointwise closed family and ~w ∈ L̃∞(Σ,~k; υ), then
there exists ~u ≺ ~w such that

either ẼV
∞

(~u) ⊆ U , or ẼV
∞

(~u) ⊆ L̃∞(Σ,~k; υ) \ U .

Theorem 3.23 has the following reformulation.

Theorem 3.24. Let F ⊆ L̃<∞(Σ,~k; υ) be a tree and let ~w ∈ L̃∞(Σ,~k; υ).
Then either

(i) there exists ~u ≺ ~w such that ẼV
<∞

(~u) ⊆ F , or
(ii) there exists ~u ≺ ~w such that for every ~u1 ≺ ~u there exists an initial

segment of ~u1 which belongs to L̃<∞(Σ,~k; υ) \ F .

Remark 3.25. (1) Theorem 3.24 implies Theorem 3.23. Indeed, let U ⊆
L̃∞(Σ,~k; υ) be a closed family in the product topology and ~w ∈ L̃∞(Σ,~k; υ).
Set

FU = {w ∈ L̃<∞(Σ,~k; υ) : there exists ~s ∈ U such that w ∝ ~s}.
Since the family FU is a tree, we use Corollary 3.22. So, we have the following
two cases:

[Case 1] There exists ~u ≺ ~w such that ẼV
<∞

(~u) ⊆ FU . Then ẼV
∞

(~u)

⊆ U . Indeed, if ~z = (zn)n∈N ∈ ẼV
∞

(~u), then (z1, . . . , zn) ∈ FU for every
n ∈ N. Hence, for each n ∈ N there exists ~sn ∈ U such that (z1, . . . , zn) ∝ ~sn.

Since U is pointwise closed, we have ~z ∈ U and so ẼV
∞

(~u) ⊆ U .
[Case 2] There exists ~u ≺ ~w such that for every ~u1 ≺ ~u there exists an

initial segment of ~u1 which belongs to L̃<∞(Σ,~k; υ)\FU . Hence, ẼV
∞

(~u) ⊆
L̃∞(Σ,~k; υ) \ U .
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(2) Theorem 3.23 implies Theorem 3.24. Indeed, let F ⊆ L̃<∞(Σ,~k; υ)

be a tree and let ~w ∈ L̃∞(Σ,~k; υ). Set

UF = {~t = (tn)n∈N ∈ L̃∞(Σ,~k; υ) :

there exists k ∈ N such that (t1, . . . , tk) ∈ F}.

Since L̃∞(Σ,~k; υ) \ UF is a closed family in the product topology, using
Theorem 3.23, we obtain the conclusion of Theorem 3.24.

Using Corollary 3.22, we can get the corresponding result for variable
ω-located words, which extends Corollary 3.8 and implies the particular
case of Theorem 2.3 in case the partition family F is clopen.

Corollary 3.26. Let F⊆L<∞(Σ,~k; υ) be a tree and let ~w∈L∞(Σ,~k; υ).
Then either

(i) there exists ~u ≺ ~w such that EV<∞(~u) ⊆ F , or
(ii) there exists ξ0 < ω1 such that for every countable ordinal ξ > ξ0 there

exists ~u ≺ ~w such that for every ~u1 ≺ ~u the unique initial segment of
~u1 which is an element of Lξ(Σ,~k; υ) belongs to L<∞(Σ,~k; υ) \ F .

4. Applications to the Ramsey theory of the rationals with
addition. T. Budak, N. Işik and J. Pym [BIP, Theorem 4.2] introduced
a representation of rational numbers with specific properties, which implies
that a non-zero rational number can be identified with an ω-Z∗-located
word over the alphabet Σ = {αn : n ∈ Z∗}, where α−n = αn = n for n ∈ N,
dominated by (kn)n∈Z∗ , where k−n = kn = n for n ∈ N. Hence, all the
results concerning ω-Z∗-located words over Σ = {αn : n ∈ Z∗} dominated
by a (kn)n∈Z∗ ⊆ N, proved in the previous sections, can be translated into
statements concerning rational numbers.

In this section we present a strengthened van der Waerden theorem for
the set of rational numbers (Theorem 4.1), using Theorem 2.6 (case m = 1),
an extended Ramsey-type partition theorem for the set of rational numbers
(Theorem 4.2) as a consequence of Theorem 3.5, and a partition theorem
for infinite orderly sequences of rational numbers (Theorem 4.3) as a conse-
quence of Theorem 2.5.

Analytically, according to [BIP], every rational number q has a unique
expression in the form

∞∑
s=1

q−s
(−1)s

(s+ 1)!
+

∞∑
r=1

qr(−1)r+1r!,

where (qn)n∈Z∗ ⊆ N ∪ {0} with 0 ≤ q−s ≤ s for every s > 0, 0 ≤ qr ≤ r for
every r > 0 and q−s = qr = 0 for all but finitely many r, s. So, for a non-zero
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rational number q, there exist unique l ∈ N, {t1 < · · · < tl} = dom(q) ∈
[Z∗]<ω>0 and {qt1 , . . . , qtl} ⊆ N with 1 ≤ qti ≤ −ti if ti < 0 and 1 ≤ qti ≤ ti if
ti > 0 for every 1 ≤ i ≤ l, such that defining dom−(q) = {t ∈ dom(q) : t < 0}
and dom+(q) = {t ∈ dom(q) : t > 0} we have

q =
∑

t∈dom−(q)

qt
(−1)−t

(−t+ 1)!
+

∑
t∈dom+(q)

qt(−1)t+1t!

(we set
∑

t∈∅ = 0). Observe that

e−1 − 1 = −
∞∑
t=1

2t− 1

(2t)!
<

∑
t∈dom−(q)

qt
(−1)−t

(−t+ 1)!
<
∞∑
t=1

2t

(2t+ 1)!
= e−1

and ∑
t∈dom+(q)

qt(−1)t(t+ 1)! ∈ Z∗ if dom+(q) 6= ∅.

Let α−n = αn = n and k−n = kn = n for n ∈ N. We set Σ = {αn : n ∈ Z∗}
and ~k = (kn)n∈Z∗ . For υ = 0 we consider the function g : L̃(Σ ∪{0},~k)→ Q
which sends a word w = qt1 . . . qtl ∈ L̃(Σ ∪ {0},~k) to the rational number

g(w) =
∑

t∈dom−(w)

qt
(−1)−t

(−t+ 1)!
+

∑
t∈dom+(w)

qt(−1)t+1t!.

It is easy to see that the restriction of g to the set of constant words L̃(Σ,~k)
is one-to-one and onto Q \ {0}, and that g(w1 ? w2) = g(w1) + g(w2) for

every w1 <R1 w2 ∈ L̃(Σ ∪ {0},~k). Also, observe that, via the function g,

each variable word w = qt1 . . . qtl ∈ L̃(Σ,~k; 0) corresponds to a function
q which sends every (i, j) ∈ N × N with 1 ≤ i ≤ −max dom−(w) and
1 ≤ j ≤ min dom+(w) to

q(i, j) = g(T(j,i)(w))

=
∑
t∈C−

qt
(−1)−t

(−t+ 1)!
+ i

∑
t∈V −

(−1)−t

(−t+ 1)!
+
∑
t∈C+

qt(−1)t+1t! + j
∑
t∈V +

(−1)t+1t!,

where C− = {t ∈ dom−(w) : qt ∈ Σ}, V − = {t ∈ dom−(w) : qt = 0} and
C+ = {t ∈ dom+(w) : qt ∈ Σ}, V + = {t ∈ dom+(w) : qt = 0}.

For two non-zero rational numbers q1, q2 ∈ g(L̃(Σ,~k)) we set

q1 ≺ q2 ⇔ g−1(q1) <R1 g
−1(q2).

Notation. Let (X,+) be an arbitrary semigroup. For (xn)n∈N ⊆ X we
set

FS[(xn)n∈N] = {xn1 + · · ·+ xnl : n1 < · · · < nl ∈ N}.
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Theorem 4.1. Let Q = Q1 ∪ · · · ∪ Qr for r ∈ N. Then there exist
1 ≤ i0 ≤ r and, for every n ∈ N, a function

qn : {1, . . . , n} × {1, . . . , n} ∪ {(0, 0)} → Q

with

qn(i, j) =
∑
t∈C−n

qnt
(−1)−t

(−t+ 1)!
+ i

∑
t∈V −n

(−1)−t

(−t+ 1)!

+
∑
t∈C+

n

qnt (−1)t+1t! + j
∑
t∈V +

n

(−1)t+1t!,

where C−n , V
−
n ∈ [Z−]<ω>0 , C

+
n , V

+
n ∈ [N]<ω>0 with C−n ∩ V −n = ∅ = C+

n ∩ V +
n ,

qnt ∈ N with 1 ≤ qnt ≤ −t for t ∈ C−n , 1 ≤ qnt ≤ t for t ∈ C+
n , which satisfy

qn(in, jn) ≺ qn+1(in+1, jn+1) for every n ∈ N, and

FS
[(
qn(in, jn)

)
n∈N
]
⊆ Qi0

for all ((in, jn))n∈N ⊆ N× N ∪ {(0, 0)} with 0 ≤ in, jn ≤ n for every n ∈ N.

Proof. Let g : L̃(Σ,~k; 0) → Q be as defined above. By Theorem 2.6

there exist (wn)n∈N∈ L̃∞(Σ,~k; 0) and 1≤ i0≤r such that T(i1,j1)(wn1) ? · · · ?
T(iλ,jλ)(wnλ) ∈ g−1(Qi0) for every λ ∈ N, n1 < · · · < nλ ∈ N, (il, jl) ∈
N × N ∪ {(0, 0)} such that 0 ≤ il, jl ≤ nl for every 1 ≤ l ≤ λ and (0, 0) ∈
{(i1, j1), . . . , (iλ, jλ)}. Let wn = wnmn1

. . . wnmnln
for every n ∈ N. Set qn(i, j) =

g(w3n−2 ? T(j,i)(w3n−1) ? T(1,1)(w3n)) for every n ∈ N and (i, j) ∈ N × N ∪
{(0, 0)} with 0 ≤ i, j ≤ n. The functions qn have the required properties.

Notation. For an arbitrary semigroup (X,+) and a sequence (xn)n∈N
⊆ X, for y1 = xn1 + · · ·+ xnl , y2 = xm1 + · · ·+ xmν ∈ FS[(xn)n∈N] we write
y1 < y2 if nl < m1, and[

FS[(xn)n∈N]
]<∞
>0

= {(y1, . . . , ym) : m ∈ N, y1 < · · · < ym ∈ FS[(xn)n∈N]}.

For every countable ordinal ξ ≥ 1 and every n ∈ N we set

Q<∞ = {(q1, . . . , ql) : l ∈ N, q1 ≺ · · · ≺ ql ∈ Q \ {0}} ∪ {∅},
Qξ = {(q1, . . . , ql) ∈ Q<∞ : {min dom+(q1), . . . ,min dom+(ql)} ∈ Aξ}.

Combining Theorem 3.5 with the representation of rational numbers via
the function g, analogously to Theorem 4.1, we get the following Ramsey
type partition theorem for every countable order ξ for the set of rational
numbers. The case ξ = 1 corresponds to Theorem 4.1.

Theorem 4.2. Let ξ ≥ 1 be a countable ordinal and a family G ⊆ Q<∞.
Then for each n ∈ N there exists a function

qn : {1, . . . , n} × {1, . . . , n} ∪ {(0, 0)} → Q



26 V. Farmaki and A. Koutsogiannis

with

qn(i, j) =
∑
t∈C−n

qnt
(−1)−t

(−t+ 1)!
+ i

∑
t∈V −n

(−1)−t

(−t+ 1)!

+
∑
t∈C+

n

qnt (−1)t+1t! + j
∑
t∈V +

n

(−1)t+1t!,

where C−n , V
−
n ∈ [Z−]<ω>0 , C+

n , V
+
n ∈ [N]<ω>0 with C−n ∩ V −n = ∅ = C+

n ∩ V +
n ,

qnt ∈ N with 1 ≤ qnt ≤ −t for t ∈ C−n , 1 ≤ qnt ≤ t for t ∈ C+
n , which satisfy

qn(in, jn) ≺ qn+1(in+1, jn+1) for every n ∈ N, and either

• Qξ ∩
[
FS[(qn(in, jn))n∈N]

]<∞
>0
⊆ G, or

• Qξ ∩
[
FS[(qn(in, jn))n∈N]

]<∞
>0
⊆ Q<∞ \G

for all ((in, jn))n∈N ⊆ N× N ∪ {(0, 0)} with 0 ≤ in, jn ≤ n for every n ∈ N.
Notation. For a semigroup (X,+) and (xn)n∈N ⊆ X, we set[

FS[(xn)n∈N]
]N

= {(yn)n∈N : yn ∈ FS[(xn)n∈N] and yn < yn+1 for all n ∈ N}.
As a corollary of Theorem 2.5 we have the following partition theorem

for infinite ordered sequences of rational numbers.

Theorem 4.3. Let U be a Borel subset of QN (in the product topology,
considering Q with the discrete topology). Then for each n ∈ N there exists
a function qn : {1, . . . , n} × {1, . . . , n} ∪ {(0, 0)} → Q with

qn(i, j) =
∑
t∈C−n

qnt
(−1)−t

(−t+ 1)!
+ i

∑
t∈V −n

(−1)−t

(−t+ 1)!

+
∑
t∈C+

n

qnt (−1)t+1t! + j
∑
t∈V +

n

(−1)t+1t!,

where C−n , V
−
n ∈ [Z−]<ω>0 , C

+
n , V

+
n ∈ [N]<ω>0 with C−n ∩ V −n = ∅ = C+

n ∩ V +
n ,

qnt ∈ N, with 1 ≤ qnt ≤ −t for t ∈ C−n , 1 ≤ qnt ≤ t for t ∈ C+
n , which satisfy

qn(in, jn) ≺ qn+1(in+1, jn+1) for every n ∈ N, and

either
[
FS[(qn(in, jn))n∈N]

]N ⊆ U , or
[
FS[(qn(in, jn))n∈N]

]N ⊆ QN \ U
for all (in, jn)n∈N ⊆ N× N ∪ {(0, 0)} with 0 ≤ in, jn ≤ n for every n ∈ N.

Proof. Let Σ = {αn : n ∈ Z∗}, ~k = (kn)n∈Z∗ , where α−n = αn = n and

k−n = kn = n for every n ∈ N, and υ = 0. We define ĝ : L̃∞(Σ,~k; 0)→ QN

by ĝ((wn)n∈N) = (g(wn))n∈N. The family ĝ−1(U) ⊆ L̃∞(Σ,~k; 0) is pointwise
closed, since the function ĝ is continuous. So, by Theorem 2.5 there exists
~w = (wn)n∈N ∈ L̃∞(Σ,~k; 0) such that

either ẼV
∞

(~w) ⊆ ĝ−1(U), or ẼV
∞

(~w) ⊆ L̃∞(Σ,~k; 0) \ ĝ−1(U).

From this point on, the proof is analogous to the one of Theorem 4.1.



Extended Ramsey theory for words representing rationals 27

Acknowledgements. We wish to express our indebtedness to the ano-
nymous referee for detailed, in-depth suggestions that led to substantial
improvements of the paper. Thanks are due to Professor S. Negrepontis for
helpful discussions and support during the preparation of this paper.

The first author acknowledges partial support from the Kapodistrias
research grant of Athens University. The second author acknowledges partial
support from the State Scholarships Foundation of Greece.

References

[BBH] V. Bergelson, A. Blass and N. Hindman, Partition theorems for spaces of variable
words, Proc. London Math. Soc. 68 (1994), 449–476.
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