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Abstract. We discuss the Borel Tukey ordering on cardinal invariants of the con-
tinuum. We observe that this ordering makes sense for a larger class of cardinals than
has previously been considered. We then provide a Borel version of a large portion of
van Douwen’s diagram. For instance, although the usual proof of the inequality p ≤ b
does not provide a Borel Tukey map, we show that in fact there is one. Afterwards, we
revisit a result of Mildenberger concerning a generalization of the unsplitting and splitting
numbers. Lastly, we use our results to give an embedding from the inclusion ordering on
P(ω) into the Borel Tukey ordering on cardinal invariants.

1. Introduction. Cardinal invariants of the continuum are cardinal
numbers which are determined by families of real numbers (or any simi-
lar continuum such as P(ω), the set of subsets of the natural numbers). For
instance, the least size of a Lebesgue nonnull set is a cardinal invariant, one
of many derived from properties of measure and category. A second example
is the least size of a family of sequences of natural numbers such that any
other sequence is eventually dominated by one from the family. This example
is one of several which are known as combinatorial cardinal invariants.

As with each of these examples, most classical cardinal invariants take
on values between ℵ1 and c. The particular values can vary from one model
of set theory to another; for instance, in a model of CH they always have
value ℵ1 = c. But the pattern of values is not arbitrary: there exist deep
connections between them which dictate that certain inequalities must hold
in any model of set theory. We refer the reader to Andreas Blass’s excellent
article [Bla03] in Handbook of Set Theory for a survey of this rich area of
research.
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In this article we will be interested in a categorical approach to car-
dinal invariants and their inequalities which is due to Vojtáš. See [Voj93],
or [Bla03, Section 4] for a more detailed account. This approach rests on
the following definition scheme for cardinal invariants. A Vojtáš triple is
some A = (A−, A+,A), where A is a relation from A− to A+ (that is,
A ⊂ A− × A+). The cardinal invariant of the continuum corresponding to
such a triple A is defined by

‖A‖ := min{|F| : F is a dominating family with respect to A}.

Here, a subset F ⊂ A+ is said to be a dominating family with respect to A
iff for all x ∈ A− there exists y ∈ F such that x A y. The simplest example
is the dominating number d, which was described in the first paragraph. It
is easy to see that d is the cardinal invariant corresponding to the triple
(ωω, ωω,≤∗), where ωω denotes the space of sequences of natural numbers
and ≤∗ denotes the eventual domination relation.

We will be interested in the Vojtáš triples themselves, and not the corre-
sponding cardinal invariants. This is really a separate pursuit, since it is clear
that many different Vojtáš triples may be used to define the same cardinal
number. Of course many triples do not define interesting invariants, but our
study may be more compelling when they do.

The natural maps between Vojtáš triples are (generalized) Tukey mor-
phisms. If A and B are Vojtáš triples, then a Tukey morphism (or just
morphism) from A to B is a pair of maps

φ : B− → A−, ψ : A+ → B+

such that for all b− ∈ B− and a+ ∈ A+,

φ(b−) A a+ ⇒ b− B ψ(a+).

In particular, if (φ, ψ) is a morphism from A to B and F is a dominating
family with respect to A, then ψ(F) is a dominating family with respect
to B. But the existence of a morphism entails more than just this. For
instance, the symmetry in the definitions leads to a notion of duality for
triples and morphisms. If (φ, ψ) is a morphism from A to B, then (ψ, φ) is
a morphism from B⊥ to A⊥, where A⊥ is the triple defined by (A+, A−, Ă)

and a Ă a′ iff a′ 6A a.
As a consequence of the observation that morphisms send dominating

families to dominating families, it follows that if there is a morphism from A
to B, then ‖A‖ ≥ ‖B‖. Just as cardinal inequalities can be forced to hold
or fail, Tukey morphisms between triples can be forced to exist or not. How-
ever, assuming some amount of definability on the triples and morphisms
involved, one can use morphisms to establish absolute cardinal inequali-
ties.
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1.1. Definition.

• The Vojtáš triple (A−, A+,A) is called Borel if A− and A+ are Borel
subsets of Polish spaces, and A is a Borel relation.
• If A and B are Borel, then we say that a morphism (φ, ψ) from A to
B is Borel if both φ and ψ are Borel functions.

If there is a Borel morphism from A to B, then we write A ≥BT B. Borel
morphisms were initially studied by Blass [Bla96], who first noted that they
resolve the absoluteness problem mentioned above. Indeed, if there exists
a Borel Tukey morphism from A to B, then the corresponding cardinal
inequality ‖A‖ ≥ ‖B‖ is absolute to forcing extensions. Additionally, Blass
was motivated by some more subtle applications of Borel morphisms. For
instance, consider the cardinal equalities rm = rn for all m,n, where rn
denotes the n-unsplitting number : the least cardinality of a family of reals
such that every coloring c ∈ mω is almost constant on some member of
the family. In other words, rn is defined by the triple (nω, [ω]ω,Rn), where
c Rn B iff c is almost constant on B. (Thus r2 is just the usual unsplitting
number r; see the next section.) The proofs of the inequalities rm ≥ rn for
2 ≤ m < n can be seen as involving an operation on Vojtáš triples called
sequential composition. Blass conjectured that for 2 ≤ m < n the inequality
rm ≥ rn is not witnessed by a Borel morphism, which we would take to mean
that sequential composition is necessary to prove the inequality.

Since Blass’s initial study, however, there have been just a couple of re-
sults on Borel morphisms. Blass’s conjecture concerning rn was established
by Mildenberger, who showed in [Mil02] that there are no such Borel mor-
phisms. Another step was taken in [PR95], where the authors showed that
after suitably coding the null and meager ideals, all of the inequalities in Ci-
choń’s diagram are witnessed by Borel (in fact continuous) morphisms. On
the other hand, there are a growing number of applications of Borel mor-
phisms appearing in the literature. See, for instance, the body of recent work
on parametrized diamond principles initiated in [MHD04], or the results in
Borel equivalence relations found in [CS11].

In this paper we wish to renew an interest in the systematic study of the
relationships between cardinal invariants with respect to Borel morphisms.
We would also like to propose a mild generalization of this study to certain
cardinal invariants which are not definable from Vojtáš triples alone. To see
what we mean, consider the almost disjointness number a. This cardinal is
the least size of a family which is not only dominating with respect to 6⊥,
but which is also almost disjoint. Presently, we show how to handle cardi-
nals which are definable in this more general sense. (This is motivated in
part by Zapletal’s [Zap04], where such cardinals are discussed and handled
collectively.)
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1.2. Definition. If A is a Vojtáš triple and P is an arbitrary property
of subsets of A+, then the cardinal invariant of the continuum corresponding
to A and P is

‖A‖P := min{|F| : F satisfies property P and is a dominating family
with respect to A}.

In the case that P is trivial, that is, the cardinal is definable from a
Vojtáš triple alone, we say that the cardinal is simple. Again, it makes sense
to define Tukey morphisms between cardinals which are not simple.

1.3. Definition. If A and B are Vojtáš triples, and P and Q are prop-
erties, then a morphism from A, P to B, Q is a pair of maps φ : B− → A−
and ψ : A+ → B+ satisfying:

(a) if F satisfies property P , then ψ(F) satisfies property Q, and
(b) φ(b−) A a+ ⇒ b− B ψ(a+).

We are proposing to study Borel Tukey morphisms between a number
of cardinal invariants definable from some A and P , a more ambitious plan
than that of [Bla03]. This extension was proposed by Coskey and Schneider,
who encountered the problem in a slightly different context [CS11]. By al-
lowing cardinal definitions where P is nontrivial, we open the door for many
important new cardinals to be compared with respect to Borel morphisms.
For instance, we can now incorporate into the Borel Tukey order several new
entries from the van Douwen diagram of combinatorial cardinal invariants.

We should address the common objection to this programme that the
existence of a Borel morphism is much stronger than is needed to prove
the corresponding cardinal inequality. To answer this, simply note that the
above-mentioned applications of Borel morphisms to parametrized diamond
principles and Borel equivalence relations cannot be established on the ba-
sis of cardinal inequalities alone. Thus in these areas the Borel Tukey order
serves as a dictionary of positive results. Moreover, results concerning Borel
morphisms can have combinatorial value. For instance, Mildenberger’s dis-
covery that there is no Borel morphism from rm to rn for m < n can be
viewed as new information concerning measurable colorings of ω and homo-
geneity.

This paper is organized as follows. In the next section, we will establish a
Borel version of van Douwen’s diagram. The third section is devoted to the
proof of just one of the edges in this diagram: the construction of a morphism
from p to b. In the fourth section, we do for splitting numbers what Blass
and Mildenberger did for unsplitting numbers: we define n-splitting numbers
sn and prove an analog of Mildenberger’s theorem. We also consider the
infinite versions rσ and sσ of the unsplitting and splitting numbers. In the
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final section we give a method for constructing arbitrary patterns in the
Borel Tukey order.

2. A Borel van Douwen diagram. In this section, we consider the
cardinal invariants in van Douwen’s diagram which can be naturally defined
using Vojtáš triples. Specifically, we consider the cardinal invariants shown in
Figure 1. The aim is to produce a “Borel version” of van Douwen’s diagram,
with arrows only in the case that the cardinal inequalities are witnessed by
Borel morphisms.

i u

d
�

r
?�

a

s
?

b
?�

-

p
?-

Fig. 1. Provable size relationships among some combinatorial cardinal invariants. (Here,
→ means ≥.)

Since each cardinal invariant can be defined by several different Vojtáš
triples, the answer to the question of whether a cardinal inequality is wit-
nessed by a Borel morphism will vary depending on the choice of triples. We
shall take the approach of choosing at our discretion a particularly natural
triple defining each of the cardinal invariants in Figure 1. Afterwords, we can
conflate without confusion the cardinal invariants with their chosen defining
triples. Thus, the meaning of a shorthand such as d ≥BT b may be resolved
by examining the definitions in Table 1 below.

Table 1. Natural definitions for the cardinal invariants shown in Figure 1

cardinal A− A+ A P = “F is . . . ”
p [ω]ω [ω]ω 6⊂∗ centered
s [ω]ω 2ω is split by –
r 2ω [ω]ω does not split –
b ωω ωω 6≥∗ –
d ωω ωω ≤∗ –
a IC IC 6⊥ a.d., infinite
i IC IC does not split (see discussion)
u [ω]ω [ω]ω does not split centered



34 S. Coskey et al.

Because the table is displayed compactly, it is necessary to explain some
of the terminology. First, recall that a function c ∈ 2ω is said to split the
infinite set A if c�A takes both values infinitely often. Next, IC denotes
the family of infinite/co-infinite subsets of ω, and ⊥ denotes the relation “is
almost disjoint from”. Finally, in row i, the property P (F) should actually
say that “F is derived from an independent family by taking all intersections
of finitely many sets or their complements”.

We now consider in turn each edge of the diagram. First, there are a
number of easy answers to be reaped.

d→ b Since dominating families are unbounded, this is just a trivial
morphism.

d→ s The classical proof can be seen as a morphism proof. See [Bla03],
Theorem 3.3 and the corresponding discussion in Section 4 of that article.

r→ b This is dual to d ≥ s.

u→ r The identity maps clearly work.

i→ r The identity maps clearly work, except that we technically must
define the behavior of φ on the finite and cofinite sets. In fact, if B is cofinite,
then we can let φ(B) ∈ [ω]ω be arbitrary.

i→ d There do not exist Borel such maps. Indeed, suppose that (φ, ψ)
were such a morphism. Then, in particular, φ and ψ satisfy

φ(f) does not split A ⇒ f ≤ ψ(A).

This implies that (φ, ψ) is a Borel morphism from r to d. Now, it is well-
known that the inequality r ≥ d can be violated in a forcing extension (for
instance in the Miller model), and hence in this extension we have r 6≥BT d.
But since both r and d are simple, the fact that (φ, ψ) is a morphism from
r to d would be preserved to the forcing extension, a contradiction.

2.1. Question. Is it possible to tinker with the definition of i in such a
way that this question becomes nontrivial?

a→ b This question is somewhat trivial, since it is easy to see that
there does not exist any morphism (let alone a Borel one) from a to b.

2.2. Proposition. There do not exist maps φ : ωω→ IC and ψ : IC→ωω

satisfying
φ(f) 6⊥ A ⇒ f 6≥∗ ψ(A).

Proof. Suppose that the φ and ψ were such maps. Consider the sets
O = the odd numbers and E = the even numbers in place of A, and let
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f(n) = max{ψ(O)(n), ψ(E)(n)}. Now either φ(f) 6⊥ O or else φ(f) 6⊥ E, a
contradiction in either case.

We find this triviality-of-a-proof unsatisfying, particularly because it ex-
ploits a pair of complementary sets—something never present in an infinite
a.d. family. This would be resolved by a negative answer to the following,
subtler question.

2.3. Question. Can there be a pair of maps satisfying the condition
of Proposition 2.2 just for sets A ranging in some mad family of minimal
cardinality?

This discussion admits a generalization to cardinals with definitions sim-
ilar to that of a. Specifically, for C a collection of filters on ω let pC bet
the cardinal defined by the triple ([ω]ω, [ω]ω, 6⊂∗) together with the property
P (F) = “F generates a filter which is in C”. Then p is pC where C consists
of all filters. Moreover, it is easy to see that a is pC where C consists of those
filters whose dual ideal is generated by an infinite mad family.

2.4. Proposition. For any class of filters C, we have pC 6≥BT b (whether
the inequality pC ≥ b is true or false).

The proof is identical to that of Proposition 2.2 (and we can ask a version
of Question 2.3 in this case). Concerning morphisms going the other way,
the following observation shows that the problem is closely connected with
that of diagonalizing filters.

2.5. Proposition. Suppose that it is possible to diagonalize any filter
in C without adding dominating reals. Then b 6≥BT pC.

Proof. Suppose that there is such a morphism, that is, there exist Borel
maps φ : [ω]ω → ωω and ψ : ωω → [ω]ω satisfying:

(a) ψ(ωω) generates a filter in C, and
(b) A ⊂∗ ψ(f)⇒ f ≤∗ φ(A).

Then by our assumption, it is possible to force to add a pseudo-intersection
Ȧ of ψ(ωω) without adding dominating reals. Thus there exists f ∈ ωω ∩ V
such that f 6≤∗ φ(Ȧ). Since φ is Borel, in the extension we have, for all
x ∈ [ω]ω,

x ⊂∗ ψ(f)⇒ f ≤∗ φ(x).

Plugging in x = Ȧ yields an immediate contradiction.

Of course, in the case of pC = a, we already know that there is no Borel
morphism from b to a (since the inequality b ≥ a can be forced to fail). It
would be interesting to give a proof of this using a diagonalization argument.
Notice also that the proof of Proposition 2.5 shows outright that φ cannot
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be Borel. It would be nice to find a condition which implies ψ cannot be
Borel.

a→ p Since we established that a 6≥BT b, it is natural to ask whether
we even have a ≥BT p. Indeed, this is the case, since the maps ψ(A) = ωrA
and φ = id satisfy the requirements:

(a) if F is a.d. and infinite then ψ(F) is centered, and
(b) φ(A) 6⊥ B ⇒ A 6⊂∗ ψ(B).

Thus a has not fallen off of the diagram!

s→ p The following result shows that in fact s 6≥BT p.

2.6. Theorem. Suppose that φ, ψ : [ω]ω → [ω]ω are maps satisfying:

(a) ψ([ω]ω) is centered, and
(b) A ⊂∗ ψ(B)⇒ B does not split φ(A).

Then φ and ψ cannot both be Borel.

Coskey and Schneider have previously established this result under the
additional assumption that φ is E0-invariant (i.e., A =∗ A′ iff φ(A) =∗

φ(A′)). However, that fact is now superseded by the following shorter and
stronger argument, which was pointed out to us by Dilip Raghavan.

Proof of Theorem 2.6. Suppose that (φ, ψ) are Borel functions satisfying
(a) and (b). Letting F denote the filter generated by ψ([ω]ω), we use the
(relativized) Mathias forcing to add a pseudo-intersection Ȧ for F . This
forcing is always ccc, and since F is analytic, the forcing is Suslin as well
(see [BJ95, Definition 3.6.1]). It follows from [BJ95, Lemma 3.6.24] that the
ground model is a splitting family in the forcing extension. In particular,
there exists B ∈ [ω]ω ∩ V such that B splits φ(Ȧ). In the ground model, we
apply (b) to obtain

(∀x ∈ [ω]ω) x ⊂∗ ψ(B)⇒ B does not split φ(x).

Since φ is Borel, the same sentence holds in the extension. It follows that B
does not split φ(Ȧ), which is a contradiction.

We remark that the argument of Theorem 2.6 also shows that there is no
Borel morphism from sσ to p (for the definition of sσ, see the later section
on splitting). We leave open the following question:

2.7. Question. Does there exist a morphism (φ, ψ) from s to p such
that just one of the maps is Borel?

b→ p It is the case that b ≥BT p. Since the construction is fairly
involved, we shall give the proof its own section, below.
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To complete our discussion of van Douwen’s diagram, we finally verify
that whenever an edge does not appear in Figure 1, then there is not a Borel
morphism either. Most of this verification is routine, because it is already
known that any cardinal inequality not shown in Figure 1 can be violated by
forcing. Hence, if there is no edge between simple invariants ‖A‖ and ‖B‖
in Figure 1, then we automatically obtain A 6≥BT B.

Even when just one of the invariants involved is simple, a forcing argu-
ment will work. Indeed, if there is a Borel morphism from A, P to B, then
the condition in Definition 1.3(a) is trivial, and so it is preserved to forcing
extensions. On the other hand, if there is a Borel morphism from A to B, Q,
and property Q is downward closed, then the condition in Definition 1.3(a)
amounts to saying that all of im(ψ) has property Q. Since all of the car-
dinals we are considering are defined by a property Q which is downward
closed and very low in complexity, this will again be preserved to forcing
extensions.

Hence, we need only handle the inequalities between cardinals which are
both not simple. This is done in the next result.

2.8. Proposition. The invariants i, u and a are incomparable with re-
spect to ≥BT.

Proof. Referring to the definitions of i and u, it is clear that if we had
either a ≥BT i or a ≥BT u, then we would have a ≥BT r. But now the
inequality a ≥ r can be violated by forcing and r is simple, so we can use the
argument above.

The rest of the cases are similar. If we had u ≥BT i then we would also
have r ≥BT i; if we had u ≥BT a then we would also have r ≥BT a; if we had
i ≥BT u then we would have r ≥BT u; if we had i ≥BT a then we would have
r ≥BT a. In all four of these cases, the argument above applies.

The results of this section are summarized in Figure 2.

i u

d r
?�

s
?

b
?-

a

p
?�

Fig. 2. Borel Tukey morphisms among some combinatorial cardinal invariants. (Here, →
means ≥BT.)
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2.9. Question. Is there an interesting alternative set of definitions of
these invariants for which the Borel morphisms faithfully reflect all of the
inequalities in van Douwen’s diagram?

For instance, we know that there is no Borel morphism from i to d as we
have defined them. But it is worth mentioning that if φ and ψ are the maps
constructed in Theorem 3.1 below, then property 3.1(b) comes very close to
giving the condition needed for a morphism from i to d (with the roles of φ
and ψ interchanged). Hence it may be possible to give a new proof that i ≥ d
by slightly modifying the triple for i and the construction in Theorem 3.1.

t No discussion involving p would be complete without mentioning the
tower number, t. This cardinal is defined by the same triple as p, together
with the property P (F) = “F is linearly ordered”. Clearly t ≥BT p, but it
has only recently been shown by Malliaris and Shelah [MS12] that p ≥ t.
Thus, it is desirable to verify that the latter inequality does not have a Borel
proof.

2.10. Proposition. We have p 6≥BT t.

Proof. Suppose towards a contradiction that (φ, ψ) satisfy:

(a) if F is centered then ψ(F) is linearly ordered, and
(b) φ(x) 6⊂∗ y ⇒ x 6⊂∗ ψ(y).

Let A,B,C be any three infinite sets with empty intersection but such
that any two have infinite intersection. Then applying (a) to each pair
{A,B}, {A,C}, {B,C} we conclude that ψ({A,B,C}) is linearly ordered.
Thus ψ({A,B,C}) has infinite intersection, and using (b), it follows that
{A,B,C} does too. This contradicts the choice of A,B,C.

Once again this result is rather trivial, so it would be interesting to rework
the question to yield a more poignant theorem. Moreover, we were unable
to include t in Figure 2 since we do not know its Borel relationship to the
other invariants. Thus we are left with the following question:

2.11. Question. Can the result of the next section be improved to show
that b ≥BT t?

3. A Borel morphism from b to p. Although the simplest proof that
b ≥ p does not give a Borel morphism, the following result establishes that
it is indeed the case that b ≥BT p.

3.1. Theorem. There exists a continuous map ψ : ωω → [ω]ω and a
Borel map φ : [ω]ω → ωω satisfying:

(a) ψ(ωω) is centered, and
(b) A ⊂∗ ψ(f)⇒ f ≤∗ φ(A).
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Proof. The outline of the proof is as follows. We will construct a con-
tinuous map ψ which satisfies (a), and has the additional property that,
for every ≤∗-unbounded subset S ⊂ ωω, the image ψ(S) does not have a
pseudo-intersection. In particular, we will have:

(?) for each A ∈ [ω]ω, the set CA := {f ∈ ωω : A ⊂∗ ψ(f)} is ≤∗-
bounded.

Letting φ(A) be such a bound, it is easy to see that (φ, ψ) satisfy property (b).
We will show moreover that bounds φ(A) can be chosen in a Borel fashion.

We now begin the construction of ψ. Let n ∈ N, and let Tn denote the tree
which is ω-branching for the first n levels, and binary branching afterward.

3.2. Claim. There exists a continuous function ψn : [Tn] → [ω]ω with
the properties:

(i) if f1, . . . , fn ∈ [Tn] then ψn(f1) ∩ · · · ∩ ψn(fn) is infinite,
(ii) if f1, . . . , fn+1 ∈ [Tn] are all distinct, then ψn(f1) ∩ · · · ∩ ψn(fn+1)

is finite, and
(iii) if f1, . . . , fn+1 ∈ [Tn] and f1�n, . . . , fn+1�n are all distinct, then we

even have ψn(f1) ∩ · · · ∩ ψn(fn+1) = ∅.
Proof. It will be more convenient to construct the map ψn from [Tn] into

the set [Ω]ω, where

Ω = {(t1, . . . , tn) ∈ (Tn)n : (∃l > n) (∀i) lev(ti) = l & p(t1�n, . . . , tn�n)q < l}.
Here, p ·q denotes any fixed bijection (ωn)n → ω. Now, we simply define

ψn(f) = {(t1, . . . , tn) ∈ Ω : (∃i) ti ⊂ f}.
To see (i), let f1, . . . , fn ∈ [Tn] be given. Then for l large enough we will
have (f1�l, . . . , fn�l) ∈ Ω, and moreover these sequences will lie in ψn(f1) ∩
· · · ∩ ψn(fn).

Assertion (iii) just follows from the pigeon-hole principle: no sequence of
length n will suffice to match n+ 1 initial segments.

For assertion (ii), if f1, . . . , fn+1 are all distinct, then there exists a level
l such that f1�l, . . . , fn+1�l are all distinct. Using the same pigeon-hole ar-
gument as above, any element (t1, . . . , tn) of ψn(f1)∩· · ·∩ψn(fn+1) must lie
at some level l′ < l. But there are only finitely many such (t1, . . . , tn), since
we require p(t1�n, . . . , tn�n)q < l′ and Tn is finitely branching after level n.

To define ψ, we simply “glue together” all of the ψn. More precisely,
for each n, we regard ωω as a subset of [Tn] and therefore think of ψn as
a function from ωω into [ω]ω. Using this tacitly, we let ψ be the function
from ωω → [ω × ω]ω defined by placing ψn on the nth column. (Even more
precisely, for each n, we fix an embedding from ω<ω into Tn which is equal to
the identity on the first n levels. Letting ιn : ωω → [Tn] denote the induced
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injection, this allows us to replace ψn with ψn ◦ ιn without harming appeals
to Claim 3.2(iii). We then let

ψ(f) = {(n,m) : m ∈ ψn(ιn(f))}.
Of course, we may also use a pairing function to think of ψ as a function
into [ω]ω. In our arguments, we will freely elide the use of ιn and this pairing
function.)

With this definition, it is clear that ψ(ωω) is centered. Indeed, given a
sequence f1, . . . , fn ∈ ωω, we deduce from Claim 3.2(i) that ψn(f1) ∩ · · · ∩
ψn(fn) is infinite, and hence so is ψ(f1) ∩ · · · ∩ ψ(fn). To get property (?),
we use the following auxiliary claim.

3.3. Claim. If S ⊂ ωω is ≤-unbounded then
⋂
f∈S ψ(f) is finite.

Proof. First note that if S is infinite, then for each n we know that⋂
f∈S ψn(f) is finite by Claim 3.2(ii). Hence

⋂
f∈S ψ(f) meets each column

of ω×ω in a finite set. Now, if additionally S ⊂ ωω is ≤-unbounded, then it
is not hard to see that there exists a level l and elements f1, f2, . . . ∈ S such
that f1�l, f2�l, . . . are all distinct. It follows from Claim 3.2(iii) that for every
n > l, we have

⋂
i ψn(fi) = ∅. Hence

⋂
f∈S ψ(f) only meets finitely many

columns of ω × ω. Putting these together, we can conclude that
⋂
f∈S ψ(f)

is finite.

We can now conclude that the function ψ satisfies property (?). Indeed,
for all A ∈ [ω]ω, Claim 3.3 implies that for each n the set

CA,n := {f ∈ ωω : Ar n ⊂ ψ(f)}
is ≤-bounded, and hence CA is ≤∗-bounded. However, to show that a bound
φ(A) can be obtained from A in a Borel fashion, we need one more claim. In
the following result, we will let K(ωω) denote the space of compact subsets
of ωω endowed with its usual hyperspace topology (called the Vietoris topol-
ogy). Note that this space includes all of the CA,n because they are closed
and ≤-bounded.

3.4. Claim. For all n, the function [ω]ω → K(ωω) defined by A 7→ CA,n
is Borel.

Proof. Since the map A 7→ Ar n is continuous, it is enough to treat the
case n = 0, that is, to show that the map

A 7→ {f ∈ ωω : A ⊂ ψ(f)}
is Borel. By [Kec95, Theorem 28.8], ifX and Y are Polish then α : X → K(Y )
is Borel iff the relation {(x, y) : y ∈ α(x)} is Borel. Thus, to establish the
claim, we need only verify that

{(A, f) : A ⊂ ψ(f)}
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is a Borel subset of [ω]ω ×ωω. But this follows easily from Suslin’s theorem,
because A ⊂ ψ(f) if and only if there exists B ∈ [ω]ω such that B = ψ(f)
and A ⊂ B, and also A ⊂ ψ(f) if and only if for all B ∈ [ω]ω if B = ψ(f)
then A ⊂ B.

With this in hand, we can define φ(A) as follows. For all n, since CA,n is
closed and ≤-bounded, we can find its least upper bound bn. (It is an easy
exercise to check that the map K(ωω) → ωω which sends a bounded set to
its least upper bound is continuous.) Then, simply diagonalize to find φ(A)
such that for all n, bn ≤∗ φ(A). This concludes the proof of Theorem 3.1

We remark that the result cannot be improved to get φ continuous too.
Indeed, if ψ is even Borel then ψ(ωω) generates a Baire measurable filter F .
A well-known result of Talagrand [Tal80] and Jalali-Naini [JN76] implies that
there exists a partition of ω into finite intervals (Jn) such that for all F ∈ F
and almost all n, F ∩Jn 6= ∅. Now, let A be the collection of almost transver-
sals for (Jn), i.e., sets A such that |A∩ Jn| ≤ 1 for all n and |A∩ Jn| = 1 for
all but finitely many n. Then A is σ-compact, and if φ is continuous then
φ(A) is σ-compact as well. It follows that φ(A) is ≤∗-bounded, say by f .
Now, ψ(f) ∈ F clearly contains some subset A such that A ∈ A. But then
property (b) implies that f ≤∗ φ(A), and this is a contradiction.

4. Splitting and unsplitting. In this section, we consider the so-called
σ-splitting number sσ and the σ-unsplitting number rσ. These cardinals are
closely related to s and r: we have both sσ ≥ s and rσ ≥ r, and we do not
know whether either of the reverse inequalities are theorems of ZFC. We will
show in each case that the unknown inequalities do not hold in the Borel
Tukey order. For rσ, this result follows trivially from Mildenberger’s result
concerning the cardinals rn which was mentioned in the introduction. For sσ,
we will follow a similar strategy and define a family of cardinals sn which in
some sense approximate sσ.

rσ The σ-unsplitting number, rσ, is defined to be the least cardinality
of a family of reals such that no countable subset of 2ω suffices to split
them all. In other words, it is defined by the triple ((2ω)ω, [ω]ω,Rσ) where
〈cn〉 Rσ B iff for all n, cn is almost constant on B. It is clear that rσ ≥ r,
in fact the trivial maps φ(c) = 〈c〉 (the constant sequence) and ψ = id give
a morphism. On the other hand, it is an important open question whether
the reverse inequality r ≥ rσ holds.

4.1. Corollary (essentially due to Mildenberger). r 6≥BT rσ.

Proof. We have just seen that rσ ≥BT r, and we can similarly show
that rσ ≥BT rn for n > 2. Indeed, we require maps φ : nω → (2ω)ω and
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ψ : [ω]ω → [ω]ω such that:

φ(c)(i) almost constant on B (∀i)⇒ c almost constant on ψ(B).

For this, we simply take φ(c)(i) to be the 2-coloring which assigns to k the
ith bit of c(k), and ψ = id as before. But now if we had r ≥BT rσ, then since
rσ ≥BT rn we would have r ≥BT rn, contradicting the result of Mildenberger
that there are no Borel morphisms from rm to rn for m < n.

It should be noted that Spinas [Spi04] has strengthened Mildenberger’s
result, showing that if (φ, ψ) is a morphism from rm to rn (m < n) then
φ is not Borel. This gives us the analogous strengthening in the case of
morphisms from r to rσ.

sσ The σ-splitting number sσ is the least cardinality of a family F such
that for any A1, A2, . . . ∈ [ω]ω there exists F ∈ F which splits them all. In
other words, it is defined by the triple ((2ω)ω, [ω]ω,Sσ) where 〈An〉 Sσ B iff
for all n, An is split by B. It is easy to see that s ≤ sσ ≤ d, and both of
these inequalities are witnessed by Borel morphisms. (For the first inequality
a trivial morphism works, and for the second inequality the usual proof gives
a morphism.) It is not known whether s ≥ sσ is a true inequality, and so it
is natural to ask for verification that there is no Borel proof of it.

Emulating the example of r, rn and rσ, we can similarly define the cardinal
sn to be the least cardinality of an n-splitting family, that is, a family F such
that given any A1, . . . , An there exists B ∈ F which splits them all. In other
words, sn is defined by the triple (([ω]ω)n, 2ω, Sn), where 〈A1, . . . , An〉 Sn B
iff for all i, Ai is split by B. Thus s and s1 are exactly the same by definition.
It is clear that sn = sm and sn ≥BT sm for m < n. We have the following
analog of Mildenberger’s result.

4.2. Theorem. sn 6≥BT sn+1 for all n.

Proof. We prove the stronger fact that there is no Baire measurable
function ψ which carries n-splitting families to n + 1-splitting families. For
this, we will first focus on the proof that there is no Baire measurable function
ψ which carries (1-)splitting families to 2-splitting families. Afterwards, we
will show how to modify the argument in the case when n > 1.

Suppose, towards a contradiction, that ψ carries splitting families to
2-splitting families and that ψ is continuous on a comeager set G. Let On be
a decreasing family of dense open sets such that

⋂
On ⊂ G.Wewill construct a

partition (Ik) of ω into finite intervals, a sequence of distinct integers ak, and a
family of sequences {θ(s) ∈ 2Ik : s ∈ 2I<k} (where I<k denotes

⋃
j<k Ij). In our

construction, we shall ensure that for each s ∈ 2I<k the following are satisfied:

(a) Ns∪θ(s) ⊂ Ok, and
(b) for all c ∈ Ns∪θ(s) ∩G we have ψ(c)(ak) = 1.
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Here as usual the notation Ns means the basic open neighborhood of 2ω

corresponding to the sequence s. Borrowing some terminology from [Bla94],
let us say that θ predicts c ∈ 2ω at level k if θ(c�I<k

) = c�Ik . Thus, condition
(a) implies that if θ predicts c at infinitely many levels, then c lies in G.

Admitting the construction, we consider the families

Seven = {c ∈ 2ω : θ predicts c at all even levels},
Sodd = {c ∈ 2ω : θ predicts c at all odd levels}.

Then Seven can split any subset of
⋃
j I2j+1, and Sodd can split any subset of⋃

j I2j . It follows easily that Seven ∪ Sodd is a splitting family. On the other
hand, using (b), we deduce that ψ(Seven) cannot split the set {a2j : j ∈ ω},
and ψ(Sodd) cannot split the set {a2j+1 : j ∈ ω}. We therefore conclude that
while Seven ∪ Sodd is a splitting family, ψ(Seven ∪ Sodd) is not a 2-splitting
family, a contradiction.

We now turn to the construction. Suppose that Ij , aj and θ(s) have been
defined for j < k and s ∈ 2I<j . For each s ∈ 2I<k , we first use the fact that
Ok is dense open to find a t(s) such that Ns∪t(s) ⊂ Ok. This will imply that
after the construction, (a) will be satisfied. Next, roughly speaking, we will
use the continuity of ψ on G to find θ(s) ⊃ t(s) which decides certain values
of ψ(c)(m) for c ∈ Ns∪θ(s) ∩ G. To satisfy (b), we just need to ensure that
we can find some m where this value is always decided to be 1.

4.3. Claim. For each s ∈ 2I<k , there are only finitely many m such that
for all c ∈ Ns∪t(s) ∩G we have ψ(c)(m) = 0.

Proof. Otherwise there would be an infinite subset Z ⊂ ω such that for
all c ∈ Ns∪t(s) ∩G we have ψ(c)�Z = 0. But this implies that ψ(Ns∪t(s) ∩G)
is not a splitting family, which is a contradiction because Ns∪t(s) ∩ G is
nonmeager and hence splitting, and ψ takes splitting families to splitting
families.

Now, we can choose ak > ak−1 so large that for all s ∈ 2I<k there exists
cs ∈ Ns∪t(s) ∩ G such that ψ(cs)(ak) = 1. Using the continuity of ψ, we
can choose θ(s) ⊂ cs extending t(s) so that for all c ∈ Ns∪θ(s) ∩ G we have
ψ(c)(ak) = 1. Lengthening θ(s) if necessary, we can suppose that they all
have the same domain, which we take for Ik. This completes the construction,
and the proof in the case when n = 1.

Finally, we briefly show how to change the argument when n > 1. Rather
than defining Seven and Sodd, we simply define Sr to be the set of c such that
θ predicts c at all levels which are congruent to r modulo n. Then it is
not hard to verify that S0 ∪ · · · ∪ Sn−1 is an n − 1-splitting family. But
no element of ψ(S0 ∪ · · · ∪ Sn−1) can simultaneously split all of the sets
Ar = {anj+r : j ∈ ω} for r < n.
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4.4. Corollary. s 6≥BT sσ.

Proof. This is just the same simple argument of Corollary 4.1. Suppose
there were a Borel morphism from s to sσ. Then composing it with a (trivial)
morphism from sσ to s2 we would obtain one from s to s2, contradicting
Theorem 4.2.

The argument of Theorem 4.2 can also be used to separate (arbitrary)
finite splitting from infinite splitting. That is, if we define the cardinal s<ω
by the relation S<ω =

⋃
n∈ω Sn, then we have the following corollary to the

proof of Theorem 4.2.

4.5. Corollary. s<ω 6≥BT sσ.

Proof. Suppose towards a contradiction that ψ is a Borel map which
carries finitely splitting families to infinitely splitting families, and construct
Ik, θ, and ak as before. Now, we simply put together all of the partial splitting
families used in the proof of Theorem 4.2. Namely, let Sn,r denote the set
of all c such that θ predicts c at all levels congruent to r modulo n. Then⋃
Sn,r is clearly n-splitting for all n, but no element of ψ(

⋃
Sn,r) can ever

simultaneously split all of the sets Ar={anj+r : j ∈ ω} for n∈ω and r<n.

5. A sea of splitting numbers. In this last section we describe a family
of Vojtáš triples of size continuum, each of which describes the usual splitting
number as a cardinal invariant, but which are Borel Tukey inequivalent.
Similar results have appeared before; it is known that there is a continuum
of triples which are incomparable even up to ordinary Tukey equivalence.
Our result gives a method of producing essentially arbitrary patterns in the
≤BT ordering.

To begin, we will need to extend the methods of the previous section to
produce antichains as well as chains. Building on our earlier notation, for
m ≤ n we let sn,m denote the least cardinality of an n,m-splitting family :
that is, an F ⊂ 2ω such that for any sequence A1, . . . , An of infinite subsets
of ω there exists B ∈ F which splits at least m of them. Thus sn,m is defined
by a triple (([ω]ω)n, 2ω, Sn,m) where Sn,m denotes the relation “at least m of
which are split by”. Again, all of the cardinals sn,m are equal to s, but it is
not immediately clear which pairs are related by a Borel Tukey map. The
following result computes precisely when this is the case.

5.1. Proposition. Let m ≤ n and m′ ≤ n′.
• If m < m′ then there is no Borel Tukey morphism from sn,m to sn′,m′.
• If m ≥ m′ then there is a Borel Tukey morphism from sn,m to sn′,m′ if
and only if

(5.2) bn/n′c(m′ − 1) + min(r,m′ − 1) < m,

where r denotes the remainder upon dividing n by n′.
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The combinatorial condition in (5.2) means: if you spread n balls evenly
over n′ ordered buckets (with the remainder spread over the left-most buck-
ets), then among the first m′ − 1 buckets there are fewer than m balls. For
a diagram depicting this scenario see Figure 3.

1 m′ − 1 n′

n balls
in total

Fig. 3. Deciding when (5.2) holds. In this particular example, n=14, n′=6, and m′−1=3.
The number of balls lying in the shaded region corresponds to the left-hand side of (5.2).

Proof of Proposition 5.1. We begin with the first claim. As in the proof of
Theorem 4.2, we assume towards a contradiction that there is a Borel map ψ
carrying (n,m)-splitting families to (n′,m′)-splitting families. We then carry
out the construction of θ, Ik, and ak satisfying (a) and (b) from the proof
of Theorem 4.2. This done, we again let Sn′,r denote the family consisting
of those c ∈ 2ω such that θ predicts c at all levels which are congruent to r
modulo n′. We then let

S =
⋃

r1<···<rn′−m

⋂
i

Sn′,ri ,

that is, the set of all c such that θ predicts c on at least n′ −m congruence
classes of levels. Then it is not hard to verify that S is an (n,m)-splitting
family—in fact, it is an m-splitting family. But by the construction, no ele-
ment of ψ(S) can split m+ 1 of the sets Ar = {an′j+r : j ∈ ω} for r < n′.

For the second claim, first suppose that (5.2) holds. We shall argue that
every (n,m)-splitting family is in fact (n′,m′)-splitting, and hence the identity
morphism will suffice. Indeed, suppose that a family S is (n,m)-splitting and
let B1, . . . , Bn′ be infinite subsets of ω. Partition each Bi into either bn/n′c
or bn/n′c+ 1 infinite subsets Cji in such a way that there are n many Cji in
total. Since S is (n,m)-splitting, there exists c ∈ S which splits at least m of
these subsets. It now follows from (5.2) that c splits at leastm′ of the original
n′ sets. (To visualize this, refer to Figure 4.) Thus S is (n′,m′)-splitting.

B1 Bm′−1 Bn′

n of the Cji
in total

Fig. 4. If the shaded region contains fewer than m regions, then any set which splits at
least m regions must also split at least m′ of the columns Bi.



46 S. Coskey et al.

Now suppose that (5.2) fails. Note that in this case we have n′ < n.
Once more we take the contradiction approach. Suppose there is a Borel
map ψ which carries (n,m)-splitting families to (n′,m′)-splitting families,
and construct θ, Ik, and ak. We again consider the families Sn,r as above,
and for x ⊂ n we let

Sx =
⋂
r/∈x

Sn,r and S =
⋃
{Sx : |x ∩ n′| ≤ m′ − 1}.

Then S is (n,m)-splitting. Indeed, given B1, . . . , Bn, for each i there exists
ri < n such that Bi has infinite intersection with

⋃
j Inj+ri . Since (5.2) fails,

some m many ri1 , . . . , rim must lie in some x with |x ∩ n′| ≤ m′ − 1 (see
Figure 3). Then some c ∈ Sx splits Bi1 , . . . , Bim .

On the other hand, ψ(S) is not (n′,m′)-splitting, since by the construc-
tion no element of ψ(S) can split m′ of the sets Ar = {anj+r : j ∈ ω} for
r < n′. This completes the proof of the second claim of Proposition 5.1.

It is not hard to see from equation (5.2) that if n/m is much larger than
n′/m′ then there will not be a morphism from sn,m to sn′,m′ . This will allow
us to show that there are infinite antichains among the sn,m in the Borel
Tukey order.

5.3. Theorem. The triples which define s2m,m, where m varies over the
natural numbers ≥ 3, form an antichain in the ≤BT ordering.

Proof. If m < m′ then there is no Borel Tukey map from s2m,m to s2m′ ,m′
by the first claim in Proposition 5.1. If m > m′, we must evaluate whether
(5.2) holds with n = 2m and n′ = 2m

′ . It is not difficult to see that this
equation fails, since in this case r = 0 and

2m

2m′
(m′ − 1) = 2m−m

′
(m′ − 1) ≥ ((m−m′) + 1)(m′ − 1)

≥ ((m−m′) + 1) + (m′ − 1) = m.

(For the second inequality we note that AB ≥ A+B for A,B ≥ 2.) Thus it
follows from the second claim in Proposition 5.1 that there is again no Borel
Tukey map from s2m,m to s2m′ ,m′ .

Finally, we can combine members of this countable antichain to produce
more complex patterns.

5.4. Corollary. The superset ordering on P(ω) embeds into the ≤BT

ordering on triples. In fact, this ordering embeds into the ≤BT ordering on
triples that define s.

Proof. Let us work with P(ωr3) in place of P(ω). For X ⊂ ωr3, we say
that a family S is X-splitting if it is (2m,m)-splitting for all m ∈ X. Clearly,
the “cardinals” sX defined by the corresponding relation are all equal to s.
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Moreover, if X ⊃ Y then X-splitting implies Y -splitting and so there is a
trivial morphism from sX to sY .

Conversely, assume that there exists m0 ∈ Y rX, and suppose towards
a contradiction that there exists a Borel map ψ which carries X-splitting
families to Y -splitting families. By Theorem 5.3 and Proposition 5.1, for
each m ∈ X there exists a (2m,m)-splitting family S(m) and a sequence of
sets A(m)

1 , . . . , A
(m)
2m0 such that no element of ψ(S(m)) splits m0 of the A(m)

i .
Now, if S =

⋃
m∈X S

(m), then clearly S is X-splitting. We claim that
ψ(S) is not Y -splitting, in fact that it is not even (2m0 ,m0)-splitting. To
see this, note that the proof of Proposition 5.1 implies that for each i, A(m)

i
can be taken to be of the form {anj+i : j ∈ ω} for some n. That is, the
indices are taken from the ith congruence class modulo n. It follows easily
that there exists a single set Ai such that Ai ⊂∗ A(m)

i for every m ∈ X. Now,
no element of ψ(S(m)) can split m0 of the Ai, since that would imply that
it splits m0 of the A(m)

i . Hence ψ(S) is not (2m0 ,m0)-splitting, as desired.
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