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When Cp(X) is domain representable

by

William Fleissner (Lawrence, KS) and
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Abstract. Let M be a metrizable group. Let G be a dense subgroup of MX . We
prove that if G is domain representable, then G = MX . The following corollaries answer
open questions. If X is completely regular and Cp(X) is domain representable, then X is
discrete. If X is zero-dimensional, T2, and Cp(X,D) is subcompact, then X is discrete.

1. Introduction. Let X be a completely regular space and R the topo-
logical group of real numbers. Let Cp(X) denote the group of continuous
functions from X to R equipped with the topology of pointwise conver-
gence. The space Cp(X) is usually not complete. One can make “usually”
precise when one makes the notion “complete” precise. For example, Lutzer
and McCoy showed [10, Theorem 8.6] that the following are equivalent: (a)
Cp(X) is Čech-complete, (b) X is countable and discrete, and (c) Cp(X) is
completely metrizable. They also showed [10, Theorem 8.4 and Remark 8.5]
that the following are equivalent when X is a normal space: (a) Cp(X) is
pseudo-complete, (b) Cp(X) is weakly α-favorable, and (c) every countable
subset of X is closed and discrete. Almost thirty years later, Tkachuk [11]
showed that X is discrete iff Cp(X) is subcompact. Inspired by Tkachuk’s
results and methods, Bennett and Lutzer [2, Main Theorem] showed that
the following are equivalent for normal spaces X: (a) Cp(X) is Scott-domain
representable, (b) Cp(X) is domain representable, and (c) X is discrete.

For any space M and set X, MX denotes the space of all functions from
X to M with the usual product topology; further notation and terminol-
ogy is established in Section 2. In Section 3, we briefly discuss completeness
properties in general, and then focus on subcompactness and domain rep-
resentability. In Section 4, we prove our main theorem: If M is a metriz-
able group and G is a dense, domain representable subgroup of MX , then
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G = MX . Corollaries to our main theorem continue the line of research
of the previous paragraph. In particular, a space X is discrete iff Cp(X) is
domain representable, which answers a question of Bennett and Lutzer ([2,
Question 5.1] and [6, Question 6.2]); and a zero-dimensional, T2 space X
is discrete iff Cp(X,D) is subcompact, which answers a question of Lutzer,
van Mill, and Tkachuk ([11, Question 5.6]). Here D is the doubleton {0, 1}
with the discrete topology. In Section 5, we show how to adapt our methods
to the case where the range M is the unit interval I. Section 6 contains a
remark about measurable cardinals.

2. Notation and terminology. All topological spaces are assumed to
be completely regular. When X is a topological space, we let τ(X) denote
the topology on the set X, and we let τ∗(X) denote the family of nonempty
elements of τ(X). When discussing open filter bases and completeness prop-
erties, we often say “B ⊆ τ∗(X)” is a base for X instead of “B ∪ {∅} is a
base for X”.

When (M,+) is a group, possibly not Abelian, and X is a set, then the
product MX is a group with pointwise operations, that is, (g + h)(x) :=
g(x) + h(x). When X and M are topological spaces, we will denote the set
of continuous functions from X to M by C(X,M). If M is a group, then
C(X,M) is a group, too. We write Cp(X,M) when we consider C(X,M) as
a subspace of the usual, finite support, product topology on MX . This is the
topology of pointwise convergence on C(X,M). If M is a topological group,
then Cp(X,M) is a topological group, too. In particular, (C(X,R),+) is a
subgroup of (RX ,+). We write C(X) for C(X,R) and Cp(X) for Cp(X,R).

Our main result was proved originally for Cp(X), but it holds whenever
the range of the continuous functions is a metrizable group. We use (M,+)
to denote the range. We do not assume that (M,+) is Abelian nor that
the metric is translation invariant. Some results hold when M is a metriz-
able median algebra—for example, a metrizable linearly ordered space. See
Section 5 for definitions.

If κ is an infinite cardinal, we let [X]<κ denote {Y ⊆ X : |Y | < κ},
the family of subsets of X of cardinality less than κ. Analogously, we set
[X]κ = {Y ⊆ X : |Y | = κ}.

Definition 2.1. Let κ be an infinite cardinal and let G ⊆MX . We say
G covers all <κ-faces of MX if for every Y ∈ [X]<κ, every function from
Y to M extends to an element of G. When κ = ω, we say that a subset G
of a product MX covers all finite faces of MX . Similarly, we say G covers
all countable faces of MX when κ = ω1.

For any topology on M , if a subset G ⊆ MX covers all finite faces of
MX then G is dense in MX , and if M carries the discrete topology then
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G covers all finite faces of MX if and only if G is dense in MX . Since all
spaces considered here are completely regular, we have

Lemma 2.2. Cp(X) covers all finite faces of RX . If X is zero-dimensional
and T2, then Cp(X,D) covers all finite faces of DX .

We say that a subset Y is C-embedded in a space X if every element of
C(Y ) extends to an element of C(X).

Lemma 2.3. Let M be a space with more than one point. If Cp(X,M)
covers all <κ-faces of MX , then every Y ∈ [X]<κ is closed and discrete in X.
If Cp(X,M) covers all <|X|+-faces of MX , then X is discrete. Cp(X) covers
all <κ-faces of RX iff every Y ∈ [X]<κ is closed, discrete, and C-embedded
in X.

Proof. Choose two points a, b ∈ M . If Y ⊆ X contains a limit point p
of itself and |Y | < κ, then the function f : Y → M given by f(y) = a if
y ∈ Y \ {p} and f(p) = b cannot be extended to an element of Cp(X,M).

The hypothesis that every small subset is closed discrete does not imply
that every small subset is C-embedded. Tkachuk informed us that a slight
modification of a construction of Reznichenko [13] provides, for every in-
finite cardinal κ, a space Xκ with the following properties: (a) Xκ ⊂ D2κ

is pseudocompact and |Xκ| = 2κ, (b) every Y ∈ [Xκ]κ is closed discrete
in Xκ, and (c) Xκ covers all κ-faces of D2κ . Because Xκ is pseudocompact,
no infinite subset of Xκ is C-embedded.

We establish notation for a base of the product space MX .

Definition 2.4. When (M,d) is a metric space and X is an index set,
we will denote the basic open subsets of the product space MX as

O(g, S, ε) = {f ∈MX : d(f(x), g(x)) < ε for all x ∈ S}

where g ∈MX , S ∈ [X]<ω and ε > 0. If u is a function from a subset Y ⊂ X
to M , then for S ∈ [Y ]<ω and ε > 0, we write O(u, S, ε) for the set O(g, S, ε)
where g ∈MX is any function with g|S = u|S .

3. Some completeness properties. The study of completeness prop-
erties strives to generalize completeness from the class of metrizable spaces
or from the class of locally compact spaces to more general topological
spaces. One strand of properties starts with complete metrizability and pro-
ceeds through pseudocompleteness and α-favorability towards the Baire Cat-
egory Theorem. These properties assert that certain countable filter bases
of open sets have nonempty intersection. Another strand starts with com-
pactness and leads to subcompactness and domain representability. These
properties assert that certain filter bases, without cardinality restriction,
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have nonempty intersection. We can define new properties by adding cardi-
nality restrictions—for example, countable compactness and countable sub-
compactness. In this section we define the notion of subcompactness and
introduce a simplified definition of domain representability.

See [6] for definitions of the other properties, history of completeness
properties, open questions, and much more.

Definition 3.1. An upward directed set is a nonempty set P together
with a reflexive and transitive binary relation � or ≺ with the additional
property that every pair of elements has an upper bound. Downward directed
sets are defined analogously. Let us define ≺cl on τ∗(X) via V ≺cl U iff
clV ⊆ U . An open filter base on a space X is a nonempty subset F of
τ∗(X) such that (F ,⊆) is downward directed. A regular open filter base on
a space X is a nonempty subset F of τ∗(X) such that (F ,≺cl) is downward
directed. In this example, U ≺cl U iff U is clopen.

Definition 3.2. A space X is called subcompact if it has a base B ⊆
τ∗(X) with the property that

⋂
F 6= ∅ whenever F ⊆ B is a regular open

filter base. We say that a space X is κ-subcompact if it has a base B ⊆ τ∗(X)
with the property that

⋂
F 6= ∅ whenever F ⊆ B is a regular open filter

base and |F| < κ. In this context we say that B is a κ-subcompact base
for X.

Observe that if M is a complete metric space and G covers all <κ-
faces of MX , then {O(g, S, ε) ∩ G : g ∈ MX , S ∈ [X]<ω, ε > 0} is a
κ-subcompact base for G. In Proposition 4.6 we will show a converse. If G
is a dense subgroup of MX and is κ-subcompact, then G covers all <κ-faces
of MX .

Another notion of completeness begins with a dcpo, i.e., a directed-
complete poset (P,v), and uses v to define a new relation � on P . One
writes that a� b (often spoken, “a approximates b”) if for each directed set
D ⊆ P having b v sup(D), some d ∈ D has a v d. Note that� is transitive
and antisymmetric. For each a ∈ P define ↓↓(a) = {b ∈ P : b� a}. The poset
P is said to be continuous if ↓↓(a) is directed and has a = sup(↓↓(a)) for each

a ∈ P . Given that (P,v) is a continuous dcpo, we let ↑↑(a) = {c ∈ P : a� c}
for each a ∈ P . Then the collection {↑↑(a) : a ∈ P} is a base for what is called
the Scott topology on P , and the collection {↑↑(a) ∩ max(P ) : a ∈ P} is a
base for the subspace topology on the set max(P ) consisting of all maximal
elements of P . When a space X is homeomorphic to the space max(P ) for
a continuous dcpo, Martin [12] writes that X has a model, while Bennett
and Lutzer [6] write that X is domain representable.

We are able to prove our theorems with what seems, at first, to be a
weaker topological property, namely:
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Definition 3.3. We say that a triple (Q,�, B) represents X provided

(1) B : Q→ τ∗(X) and {B(q) : q ∈ Q} is a base for X,
(2) � is a transitive, antisymmetric relation on Q,
(3) for all p, q in Q, p� q implies B(q) ⊆ B(p),
(4) for all x ∈ X, {q ∈ Q : x ∈ B(q)} is upward directed,
(5) if D ⊆ Q and (D,�) is upward directed, then

⋂
{B(p) : p ∈ D} 6= ∅.

We can add a cardinal parameter. For κ an uncountable cardinal, we say
that (Q,�, B) κ-represents X if (1)–(4) and (5)κ hold, where

(5)κ if D∈ [Q]<κ and (D,�) is upward directed, then
⋂
{B(p) : p∈D}

6= ∅.
Next, we discuss the implications among subcompactness, domain rep-

resentabilty, and the property of Definition 3.3.

Lemma 3.4. If X is subcompact, then there is a triple (Q,�, B) which
represents X.

Proof. Let B be a subcompact base for X. Define Q = B, � = ≺cl, and
B = id, where id(B) = B for all B ∈ B.

If the converse of Lemma 3.4 were true, then that converse, together
with Lemma 3.5 and Tkachuk’s theorem, would give a proof of Theorem
4.1. However, the converse of Lemma 3.4 is false [9].

Lemma 3.5. If X is domain representable, then there is a triple (Q,�, B)
which represents X.

Proof. Let X be homeomorphic to the subspace max(P ) for a continuous
dcpo (P,v) with defined relation �P . Define Q = {p ∈ P : ↑↑(p) ∩max(P )
6= ∅}, � =�P |Q, and B(q) = ↑↑(q) ∩max(P ) for all q ∈ Q.

The converse of Lemma 3.5 is true. Suppose that (Q,�, B) represents X.
Then the ideal completion of (Q,�), denoted Idl(Q), is a continuous dcpo
(see [1, Proposition 2.2.22]), andX is homeomorphic to max(Idl(Q)) (see [9]).
This method is used in [4] to show that subcompactness implies domain
representability.

4. Main theorem. This section is devoted to an inductive proof of a
theorem that extends results of Bennett, Lutzer, van Mill, and Tkachuk,
and answers questions posed in [2], [6], and [11].

Theorem 4.1. Let M be a metrizable group, let G be a dense subgroup
of MX , and let κ be an uncountable cardinal. If there is a triple (Q,�, B)
which κ-represents X, then G covers all <κ-faces of MX . If there is a triple
(Q,�, B) which represents X, then G = MX . In particular, if G is domain
representable, then G = MX .



70 W. Fleissner and L. Yengulalp

Proof. We proceed by induction on κ. For the initial stage, κ = ω1,
applying Lemma 4.4 below takes us from our hypothesis that G is dense in
MX to the conclusion that G covers all finite faces of MX . Then Lemma
4.5 finishes the initial step by showing G in fact covers all countable faces
of MX . The successor stage, from µ to µ+ = κ, is Proposition 4.6. Finally,
if κ is a limit cardinal, the stage is trivial because a set of cardinality less
than κ has cardinality less than µ for some µ < κ.

Corollary 4.2. If X is completely regular and Cp(X) is domain repre-
sentable, then Cp(X) = RX . Hence X is discrete. If X is zero-dimensional,
T2, and Cp(X,D) is domain representable, then Cp(X,D) = DX . Hence X
is discrete.

Proof. Use Lemma 2.3.

The next theorem and its proof are well known and due to Banach
(also when R is replaced by a completely metrizable topological group). The
reader may choose to use the alternative proof which follows as a warm-up
since it presents the proof of our main theorem without filter bases, product
neighborhoods, and new completeness properties.

Theorem 4.3. Let G be a dense subgroup of R. If G has a complete
metric, then G = R.

Proof. It is well known that G dense and completely metrizable implies
that G is a dense Gδ. Let f ∈ R be arbitrary. Then G′ = {f − h : h ∈ G}
and G∩G′ are also dense Gδ’s. By the Baire Category Theorem, there is an
element f − h = g in G′ ∩G. Then f = g + h ∈ G because G is a subgroup
of R.

Let X be a (possibly uncountable) space. We want to show that the
only complete (in some suitable sense) dense subgroup of RX is in fact RX
itself. We cannot consider complete metrizabilty and hope to use Banach’s
proof because RX is (completely) metrizable only when X is countable. Even
Čech-completeness is too restrictive for our purposes in light of the theo-
rem of Lutzer and McCoy [10] that Cp(X) is a Čech-complete space if and
only if X is countable and discrete. To consider uncountable X, we need a
more general completeness property, like subcompactness or domain repre-
sentability. Then, however, the quick proof above cannot be used, because a
space can have disjoint dense subcompact subspaces. In particular, the top
arrow and the bottom arrow are disjoint subcompact dense subspaces of
the double arrow space. (We thank Tkachuk and Lutzer for independently
showing us this example.)

The following proof of Theorem 4.3 is messy, but we can apply this
method to RX with the hypothesis there is a triple (Q,�, B) which repre-
sents G.
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Alternative proof of Theorem 4.3. Let d be the usual metric on R and
let ρ be a complete metric on G. Let f ∈ R be arbitrary. For n ∈ ω, let Wn

be the d-ball of radius 2−n centered at f . By induction on n ∈ ω, we will
construct 〈gn + hn : n ∈ ω〉, a sequence of points in G converging to f .

Here is the first step of our induction. Let g0 ∈ G and U0 open in R
satisfy ρ-diam(U0 ∩G) ≤ 1 and g0 ∈ U0. Then

−g0 + f ⊆ (−U0 + f) ∩ (−g0 +W0).

Because (−U0 + f) ∩ (−g0 + W0) is open and G is dense, we may choose
h0 ∈ G and V0 open in R satisfying ρ- diam(V0 ∩G) ≤ 1, and

h0 ∈ V0 ⊆ (−U0 + f) ∩ (−g0 +W0).

Because g0 + h0 is in W0, we have d(g0 + h0, f) ≤ 1. Also we observe that
f − V0 ⊆ f − (−U0 + f) = U0.

Suppose the (n−1)th step of the induction is complete. Because f−Vn−1
is open and G is dense, we may choose gn ∈ G and Un open in R satisfying
ρ-diam(Un∩G) ≤ 2−n, clG(Un∩G) ⊆ Un−1 and gn ∈ Un ⊆ f −Vn−1. Hence

−gn + f ⊆ (−Un + f) ∩ (−gn +Wn).

Let hn ∈ G and Vn open in R satisfy ρ-diam(Vn ∩G) ≤ 2−n, clG(Vn ∩G) ⊆
Vn−1, and

hn ∈ Vn ⊆ (−Un + f) ∩ (−gn +Wn).

Because gn + hn and f are in Wn, we have d(gn + hn, f) ≤ 2−n. Also we
observe that f − Vn ⊆ f − (−Un + f) = Un.

After ω steps, because ρ is complete, we know that there is a unique
point g in the intersection

⋂
{clG(Un ∩ G) : n ∈ ω} and that the sequence

〈gn : n ∈ ω〉 converges to g. Similarly, the sequence 〈hn : n ∈ ω〉 converges
to h, the unique point in

⋂
{clG(Vn ∩ G) : n ∈ ω}. Because the group

operation is continuous, 〈gn + hn : n ∈ ω〉 converges to g + h.

For each n, we noted that d(gn + hn, f) ≤ 2−n; hence 〈gn + hn : n ∈ ω〉
also converges to f . We conclude that f = g + h, as desired.

The next lemma follows the pattern of the alternative proof of Theorem
4.3. Rather than specifically the real line, it applies to any metrizable topo-
logical group (M,+), whose group operation is not necessarily Abelian and
whose metric is not necessarily translation invariant. The ambient space is
MX , so we will use the basic open sets O(g, S, ε) of Definition 2.4. Moreover,
instead of assuming that G is completely metrizable, we assume that there
is a triple (Q,�, B) which represents G.

Lemma 4.4. Let G be a dense subgroup of MX . If there is a triple
(Q,�, B) which ω1-represents G, then G covers all finite faces of MX .
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Proof. Let (Q,�, B) ω1-represent G. Let Y ∈ [X]<ω and w : Y → M
be arbitrary. Let f ∈ MX extend w. For n ∈ ω, set Wn = O(f, Y, 2−n). By
induction on n ∈ ω, we construct 〈gn + hn : n ∈ ω〉, a sequence of points in
G such that 〈(gn + hn)(y) : n ∈ ω〉 converges to f(y) for all y ∈ Y .

Here is the first step of our induction. Let g0 ∈ G be arbitrary. Choose
p0 ∈ Q and a basic open set U0 = O(g0, S0, ε0), where Y ⊆ S0 ∈ [X]<ω and
ε0 < 1, satisfying

g0 ∈ U0 ∩G ⊆ B(p0).

Because (−U0 + f) ∩ (−g0 + W0) is open and G is dense, we may choose
h0 ∈ G, q0 ∈ Q, and a basic open set V0 = O(h0, T0, η0), where S0 ⊆ T0 and
η0 < 1, satisfying

h0 ∈ V0 ∩G ⊆ B(q0) ⊆ (−U0 + f) ∩ (−g0 +W0).

Because g0 + h0 is in W0, we have d((g0 + h0)(y), f(y)) < 1 for all y ∈ Y .
Also we observe that (f − V0) ⊆ f − (−U0 + f) = U0.

Suppose the (n−1)th step of the induction is complete. Because f−Vn−1
is open and G is dense, we may choose gn ∈ G, pn ∈ Q, and a basic open
set Un = O(gn, Sn, εn), where Tn−1 ⊆ Sn and εn < 2−n, satisfying

gn ∈ Un ∩G ⊆ B(pn) ⊆ f − Vn−1 ⊆ Un−1.
Since gn ∈ Un−1∩G ⊆ B(pn−1), we see that gn ∈ B(pn−1)∩B(pn). Replacing
pn with the r guaranteed by Definition 3.3(4), we assume that pn−1 � pn.
Because (−Un + f) ∩ (−gn + Wn) is open and G is dense, we may choose
hn ∈ G, qn ∈ Q, and a basic open set Vn = O(hn, Tn, ηn), where Sn−1 ⊆ Tn
and ηn < 2−n, satisfying

hn ∈ Vn ∩G ⊆ B(qn) ⊆ (−Un + f) ∩ (−gn +Wn).

Because gn + hn and f are in Wn, we have d((gn + hn)(y), f(y)) ≤ 2−n for
all y ∈ Y . Also we observe that f − Vn ⊆ f − (−Un + f) = Un. By the same
reasoning used with the gn, we may assume that qn−1 � qn.

Suppose that the induction is complete. Set S =
⋃
{Sn : n ∈ ω}. Note

that Y ⊆ S =
⋃
{Tn : n ∈ ω}. Because {pn : n ∈ ω} is �-directed, by

Definition 3.3(5), there is g ∈
⋂
{B(pn) : n ∈ ω}. Observe that for all n and

all m > n,

g, gm ∈ Un = O(gn, Sn, εn).

Hence 〈gn(x) : n ∈ ω〉 converges to g(x) for all x ∈ S. Similarly, there is
h ∈

⋂
{B(qn) : n ∈ ω} and 〈hn(x) : n ∈ ω〉 converges to h(x) for all x ∈ S.

Because + is continuous, 〈gn(x) +hn(x) : n ∈ ω〉 converges to (g+h)(x) for
all x ∈ S.

From d((gn + hn)(y), f(y)) < 2−n for all n ∈ ω and for all y ∈ Y , we
may conclude that (g+h)(y) = f(y) for all y ∈ Y . We have found g+h ∈ G
extending w as desired.
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The next proof follows the same pattern with a few differences. Because
Y = {yn : n ∈ ω} ∈ [X]ω is infinite, we cannot require Y ⊆ S0. Instead, in
the induction we require yn ∈ Sn. For each n ∈ ω, either we define h`(yn) =
−g`(yn) + f(yn) for some ` ≤ n, or we define g`+1(yn) = f(yn) − h`(yn)
for some ` ≤ n. As a result, the sequences converge by being eventually
constant.

Lemma 4.5. Let G be a subgroup of MX which covers all finite faces
of MX . If there is a triple (Q,�, B) which ω1-represents G, then G covers
all countable faces of MX .

Proof. Let (Q,�, B) ω1-represent G. Let Y = {yn : n ∈ ω} ∈ [X]ω and
w : Y →M be arbitrary. Let f ∈MX extend w. By induction on n ∈ ω, we
construct 〈gn : n ∈ ω〉 and 〈hn : n ∈ ω〉, sequences of points in G such that
〈gn(y) + hn(y) : n ∈ ω〉 converges to f(y) for all y ∈ Y .

Here is the first step of our induction. Let g0 ∈ G be arbitrary. Choose
p0 ∈ P and a basic open set U0 = O(g0, S0, ε0), where y0 ∈ S0 ∈ [X]<ω and
ε0 < 1, satisfying

g0 ∈ U0 ∩G ⊆ B(p0).

Because G covers all finite faces of MX , we may choose h0 ∈ G, q0 ∈ P , and
a basic open set V0 = O(h0, T0, η0), where S0 ⊆ T0 and η0 < 1, satisfying
h0(x) = (−g0 + f)(x) for all x ∈ S0 and

h0 ∈ V0 ∩G ⊆ B(q0) ⊆ −U0 + f.

Suppose the (n−1)th step of the induction is complete. Because G covers
all finite faces of MX , we may choose gn ∈ G, pn ∈ P , and a basic open
set Un = O(gn, Sn, εn), where {yn} ∪ Tn−1 ⊆ Sn and εn < 2−n, satisfying
gn(x) = (f − hn−1)(x) for all x ∈ Tn−1 and

gn ∈ Un ∩G ⊆ B(pn) ⊆ f − Vn−1 ⊆ f − (−Un−1 + f) = Un−1.

Observe that Sn−1 ⊆ Tn−1 ⊆ Sn. Hence for all x ∈ Sn, we have

gn(x) = f(x)− hn(x) = f(x)− (−gn−1(x) + f(x)) = gn−1(x).

Since gn ∈ Un−1∩G ⊆ B(pn−1), we see that gn ∈ B(pn−1)∩B(pn). Replacing
pn with the r guaranteed by Definition 3.3(4), we assume that pn−1 � pn.

Because G covers all finite faces of MX , we may choose hn ∈ G, qn ∈ P ,
and a basic open set Vn = O(hn, Tn, ηn), where Sn−1 ⊆ Tn and ηn < 2−n,
satisfying hn(x) = (−gn + f)(x) for all x ∈ Sn and

hn ∈ Vn ∩G ⊆ B(qn) ⊆ −Un + f ⊆ −(f − Vn−1) + f = Vn−1.

By the same reasoning used with gn, we have hn(x) = hn−1(x) for all x ∈
Tn−1 and we assume that qn−1 � qn.
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Suppose that the induction is complete. Set S =
⋃
{Sn : n ∈ ω}. Note

that Y ⊆ S =
⋃
{Tn : n ∈ ω}. Observe that for all n, all x ∈ Sn, and all

m > n,

gn(yn) = gm(yn).

Therefore there is a function g̃ : S →M such that 〈gn(x) : n ∈ ω〉 converges
to g̃(x) for all x ∈ S. Because {pn : n ∈ ω} is �-directed, by Definition
3.3(5)κ, there is g satisfying

(∗) g ∈
⋂
{B(pn) : n ∈ ω} =

⋂
{O(gn, Sn, εn) : n ∈ ω} ∩G.

From εn → 0, we see that g|S = g̃. Hence 〈gn(x) : n ∈ ω〉 converges to g(x)
for all x ∈ S. There are functions h̃ : S → M and h ∈ G with analogous
properties.

If n ≤ m, then hm(yn) = (−gm + f)(yn) and gm+1(yn) = (f − hm)(yn).
Hence

w = f |Y = (g̃ + h̃)|Y = (g + h)|Y ,

and g + h ∈ G is the desired function.

The next proposition is the successor step in the inductive proof of The-
orem 4.1.

Proposition 4.6. Let µ be an uncountable cardinal and let κ = µ+ be
its cardinal successor. Let G ⊆MX cover all <µ-faces of MX . If there is a
triple (Q,�, B) which κ-represents G, then G covers all <κ-faces of MX .

Compared to the proof of Lemma 4.5, the proof of Proposition 4.6 (to be
found at the end of this section) is longer with auxiliary notions. However,
the key ideas are the same. Definition 4.7 and Lemma 4.8 establish the
analogue of equation (∗) above.

Definition 4.7. Suppose X, M and (Q,�, B) are as in Proposition
4.6. We say that (Y,D, u) is a neat triple if

(1) Y is a subset of X,
(2) D is a directed subset of (Q,�),
(3) u is a function from Y to M ,
(4) for every p∈D, there are S∈ [Y ]<ω and m∈ω such that O(u, S, 2−m)
∩G ⊂ B(p),

(5) for every S ∈ [Y ]<ω and m ∈ ω there is p ∈ D such that B(p) ⊂
O(u, S, 2−m).

For example, (S, {pn : n ∈ ω}, g|S) and (S, {qn : n ∈ ω}, h|S) from the
proof of Lemma 4.5 are neat triples.

We make a few observations about neat triples.
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Lemma 4.8. Assume the hypotheses of Proposition 4.6.

(1) Let (Y,D, u) be a neat triple with |D| < κ. Then there exists

g ∈
⋂
{B(p) : p ∈ D} =

⋂
{O(u, S, 2−m) : S ∈ [Y ]<ω, m ∈ ω} ∩G

and hence g|Y = u.
(2) Let (Yi, Di, ui), i < δ, be an increasing chain of neat triples. Then

the triple of unions is a neat triple.
(3) Suppose that (Y,D, u) is a neat triple, that u′ is a function with

domu ∩ domu′ = ∅, and that |Y ∪D ∪ u′|+ ω = ν < µ. Then there
is a neat triple (Z,E, v) satisfying Y ⊆ Z, D ⊆ E, u ∪ u′ ⊆ v, and
|Z ∪ E| ≤ ν.

Proof. (1) We note that D is directed and |D| < κ. By Definition 3.3(5)κ,
there is g in the first intersection. The two intersections are equal because
of items (4) and (5) of Definition 4.7.

(2) The union of an increasing chain of sets is a set; the union of an
increasing chain of directed sets is a directed set; and the union of an in-
creasing chain of functions is a function.

(3) Because G covers all <µ-faces of MX , there is g ∈ G such that
u ∪ u′ ⊂ g. For each p ∈ P such that g ∈ B(p), choose S(p) ∈ [X]<ω

and m(p) ∈ ω satisfying O(g, S(p), 2−m(p)) ∩ G ⊂ B(p). For each p, q ∈ P
such that g ∈ B(p) ∩ B(q), choose r(p, q) ∈ P satisfying g ∈ B(r(p, q)) ⊆
B(p) ∩ B(q). Also, for each m ∈ ω and S ∈ [X]<ω, choose q(S,m) ∈ P
satisfying g ∈ B(q(S,m)) ⊂ O(g, S, 2−m).

Set Y (0) = Y ∪ domu′ and D(0) = D. Suppose that Y (n) and D(n) are
defined and |Y (n)|+ |D(n)| ≤ ν. Set Y (n+1) = Y (n)∪

⋃
{S(p) : p ∈ D(n)};

observe that |Y (n+ 1)| ≤ |Y (n)|+ |D(n)| ≤ ν. Set

D(n+ 1) = D(n) ∪ {r(p, q) : p, q ∈ D(n)}
∪ {q(T,m) : T ∈ [D(n)]<ω and m ∈ ω}.

Observe that |D(n+1)| ≤ |D(n)|+|D(n)|+|D(n)|·ω ≤ ν. Set Z =
⋃
{D(n) :

n ∈ ω}, E =
⋃
{D(n) : n ∈ ω}, and v = g|Z . Then (Z,E, v) is a neat triple,

and |Z ∪ E| ≤ ν · ω < µ.

Definition 4.9 and Lemma 4.10 establish the analogue of “for each n ∈ ω,
either we define h`(yn) = −g`(yn) + f(yn) for some ` ≤ n, or we define
g`+1(yn) = f(yn) − h`(yn) for some ` ≤ n” before Lemma 4.5. The notion
of aiming quintuple is in the spirit of acceptable quadruple of [2].

Definition 4.9. Suppose X, M and (Q,�, B) are as in Proposition
4.6. We say that a quintuple (Z,D, u,E, v) aims at a function w from a
subset Y of X to M if

(1) (Z,D, u) and (Z,E, v) are neat triples,
(2) u(x) + v(x) = w(x) for all x ∈ Y ∩ Z.
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For example, in the proof of Lemma 4.5, the quintuple (S, {pn : n ∈ ω},
g|S , {qn : n ∈ ω}, h|S) aims at w : Y →M .

Lemma 4.10. Assume the hypotheses of Proposition 4.6. Let Y ∈ [X]µ

and w : Y → M be arbitrary. Suppose that (Z,D, u,E, v) is a quintuple
which aims at w, that y ∈ Y , and that |Z ∪D∪E|+ω = ν < µ. Then there
is a quintuple (Z ′, D′, u′, E′, v′) which aims at w such that |Z ′∪D′∪E′| = ν
and Z ∪ {y} ⊂ Z ′.

Proof. Let f ∈MX extend w. Set (S0, D0, u0)=(Z,D, u) and (T0, E0, v0)
= (Z,E, v). Set a0 = {(y, w(y))}. Apply Lemma 4.8(3) to obtain (S1, D1, u1)
such that u0 ∪ a0 ⊂ u1 and |S1 ∪ D1| = ν. If (Sn+1, Dn+1, un+1) has been
defined, set bn = {(x,−un+1(x)+f(x)) : x ∈ Sn+1\Tn}. Apply Lemma 4.8(3)
to obtain (Tn+1, En+1, vn+1) such that vn∪bn ⊂ vn+1 and |Tn+1∪En+1| = ν.
If (Tn, En, vn), n > 0, has been defined, set an+1 = {(x, f(x) − vn(x)) :
x ∈ Tn \ Sn}. Apply Lemma 4.8(3) to obtain (Sn+1, Dn+1, un+1) such that
un ∪ an+1 ⊂ un+1 and |Sn+1 ∪Dn+1| = ν.

After ω steps, set Z ′ =
⋃
{S(n) : n ∈ ω} =

⋃
{T (n) : n ∈ ω}, D′ =⋃

{D(n) : n ∈ ω}, u′ =
⋃
{un : n ∈ ω}, E′ =

⋃
{E(n) : n ∈ ω}, and

v′ =
⋃
{vn : n ∈ ω}. Note that all of these sets have cardinality ν · ω = ν.

Note also that D′ and E′ are directed sets and that u′ and v′ are functions.

Observe that Z = {Z} ∪ {dom an : n ∈ ω} ∪ {dom bn : n ∈ ω} is
pairwise disjoint. Let x ∈ Y ∩ Z ′ where Z ′ =

⋃
Z. If x ∈ Z, then u′(x) +

v′(x) = u(x)+v(x) = w(x) because (Z,D, u,E, v) aims at w. If x ∈ dom an,
then u′(x) + v′(x) = (f(x) − v′(x)) + v(x) = w(x) by definition of u′(x). If
x ∈ dom bn, then u′(x)+v′(x) = u′(x)+(−u′(x)+f(x)) = w(x) by definition
of v′(x).

In the proof of Lemma 4.5, we constructed S =
⋃
{Sn : n ∈ ω} where

yn ∈ Sn and each Sn was finite. Below we will construct Z =
⋃
{Zα : α ∈ µ}

where yα ∈ Zα+1 and each Zα satisfies |Zα| < µ.

Proof of Proposition 4.6. Let Y = {yα : α < µ} and w : Y → M
be arbitrary. By induction on α ≤ µ, we define Zα, Dα, uα, Eα, and vα
satisfying:

(1) If β < α, then Zβ ⊂ Zα, Dβ ⊂ Dα, uβ ⊂ uα, Eβ ⊂ Eα, and vβ ⊂ vα.
(2) {yβ : β < α} ⊂ Zα.
(3) (Zα, Dα, uα, Eα, vα) aims at w.

Set Z0 = D0 = u0 = E0 = v0 = ∅. If δ is a limit ordinal, set Zδ =
⋃
{Zα :

α < δ}, Dδ =
⋃
{Dα : α < δ}, uδ =

⋃
{uα : α < δ}, Eδ =

⋃
{Eα : α < δ},

and vδ =
⋃
{vα : α < δ}.

If (Zα, Dα, uα, Eα, vα) has been defined we apply Lemma 4.10 to (Zα, Dα,
uα, Eα, vα) and ya and call the result (Zα+1, Dα+1, uα+1, Eα+1, vα+1).
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By (2), domw ⊂ Zµ = domuµ = dom vµ. By (2) of Definition 4.9,
uµ(x) + vµ(x) = w(x) for all x ∈ Y ∩ Zµ. Because (Zµ, Dµ, uµ) is a neat
triple, Lemma 4.8(2) gives g ∈ G with uµ ⊂ g. Similarly, there is h ∈ G with
vµ ⊂ h. Then g + h ∈ G is the desired extension of w.

5. Medians. To apply the results of the previous section, M must be a
topological group. Some important cases, for example Cp(X, I), are excluded.
However, the method of proof can be applied when the space M carries
another operation called a median operation. For example, if (M,≤) is a
linearly ordered space, then med(r, s, t) defined to be the median of {r, s, t}
is a median operation. More generally, if M is a distributive lattice, then
Birkoff’s [7] self-dual ternary median

med(r, s, t) = (r ∨ s) ∧ (s ∨ t) ∧ (t ∨ r)

is a median operation. (In fact, for the next theorem, we only need a
weaker property, namely that med(r, s, t) = x whenever two or more co-
ordinates of (r, s, t) equal x.) We can extend a median on M to a me-
dian on a product MX by defining operations pointwise: med(g, h, k)(x) =
med(g(x), h(x), k(x)). Because the operation is defined pointwise, med is
continuous on MX if med is continuous on M . We say that G ⊆ MX is
closed under med if med(g, h, k) is in G whenever g, h, and k are in G.
For example, in the case that M is the linearly ordered metric space I,
G = Cp(X, I) is closed under Birkhoff’s med operation defined above.

An analogue of Theorem 4.1 holds when we replace the group operation
with med.

Theorem 5.1. Let M be a metrizable space carrying a continuous me-
dian operation, let X be an index set, let G be a subset of MX closed under
med, let G cover all finite faces of MX , and let κ be an uncountable cardi-
nal. If there is a triple (Q,�, B) which κ-represents G, then G covers all
<κ-faces of MX . Consequently, if G is domain representable, then G = MX .

In particular, if Cp(X, I) is domain representable, then X is discrete.

We state and prove the analogue of Lemma 4.5, leaving the other lemmas
to interested readers.

Lemma 5.2. Let G ⊆MX be closed under med and cover all finite faces
of MX . If there is a triple (Q,�, B) which ω1-represents G, then G covers
all countable faces of MX .

Proof. Let (Q,�, B) ω1-represent G. Let Y = {yn : n ∈ ω} ∈ [X]ω and
w : Y → M be arbitrary. Let f ∈ MX extend w. By induction on n ∈ ω,
we construct sequences 〈gn : n ∈ ω〉, 〈hn : n ∈ ω〉, and 〈kn : n ∈ ω〉 from G
such that for all n ∈ ω one of the following holds:
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(1) for all m ≥ n, gm(yn) = hm(yn) = w(yn),
(2) for all m ≥ n, gm(yn) = km(yn) = w(yn), or
(3) for all m ≥ n, hm(yn) = km(yn) = w(yn).

From our construction, we obtain g, h, and k in G such that med(g, h, k)|Y
= w.

Here is the n = 0 step of our induction. Because G covers all finite faces
of MX , we may choose g0 ∈ G such that g0(y0) = w(y0). Choose p0 ∈ Q
and a basic open set U0 = O(g0, S0, ε0), where y0 ∈ S0 ∈ [X]<ω and ε0 < 1,
satisfying

g0 ∈ U0 ∩G ⊆ B(p0).

Because G covers all finite faces of MX , we may choose h0 ∈ G such that
h0|S0 = f |S0 . Choose q0 ∈ Q and a basic open set V0 = O(h0, T0, η0), where
S0 ⊆ T0 and η0 < 1, satisfying

h0 ∈ V0 ∩G ⊆ B(q0).

Because G covers all finite faces of MX , we may choose k0 ∈ G such that
k0|T0 = f |T0 . Choose r0 ∈ Q and a basic open set W0 = O(k0, T0, ζ0), where
T0 ⊆ R0 and ζ0 < 1, satisfying

k0 ∈W0 ∩G ⊆ B(r0).

This completes the n = 0 step.

Suppose that the (n − 1)th step has been completed. Because G covers
all finite faces of MX , we may choose gn ∈ G such that gn|Sn−1 = gn−1|Sn−1 ,
gn−1|Rn−1\Sn−1

= f |Rn−1\Sn−1
, and, if yn /∈ Rn−1, then gn(yn) = w(yn).

Choose pn ∈ Q and a basic open set Un = O(gn, Sn, εn), where yn ∈ Sn and
εn < 2−n, satisfying pn−1 � pn and

gn ∈ Un ∩G ⊆ B(pn).

Because G covers all finite faces of MX , we may choose hn ∈ G such that
hn|Tn−1 = hn−1|Tn−1 and hn|Sn\Tn−1

= f |Sn\Tn−1
. Choose qn ∈ Q and a

basic open set Vn = O(hn, Tn, ηn), where Sn ⊆ Tn and ηn < 2−n, satisfying
qn−1 � qn and

hn ∈ Vn ∩G ⊆ B(qn).

Because G covers all finite faces of MX , we may choose kn ∈ G such that
kn|Rn−1 = kn−1|Rn−1 and kn|Rn\Rn−1

= f |Sn\Tn−1
. Choose rn ∈ Q and a

basic open set Wn = O(kn, Rn, ζn), where Tn ⊆ Rn and ζn < 2−n, satisfying
rn−1 � rn and

kn ∈Wn ∩G ⊆ B(rn).

Suppose that the induction is complete. Set S =
⋃
{Sn : n ∈ ω}. Note

that Y ⊆ S =
⋃
{Tn : n ∈ ω} =

⋃
{Rn : n ∈ ω}. Observe that for all n, all
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x ∈ Sn, and all m > n,
gn(yn) = gm(yn).

Therefore there is a function g̃ : S →M such that 〈gn(x) : n ∈ ω〉 converges
to g̃(x) for all x ∈ S. Because {pn : n ∈ ω} is �-directed, by Definition
3.3(5)κ, there is g satisfying

g ∈
⋂
{B(pn) : n ∈ ω} =

⋂
{O(gn, Sn, εn) : n ∈ ω} ∩G.

From εn → 0, we see that g|S = g̃. Hence 〈gn(x) : n ∈ ω〉 converges to g(x)
for all x ∈ S. There are functions h̃ : S →M , k̃ : S →M , h ∈ G, and k ∈ G
with analogous properties.

Set Z0 = S0 ∪
⋃
{Sn+1 \ Rn : n ∈ ω}, Z1 =

⋃
{Tn \ Sn : n ∈ ω},

and Z2 =
⋃
{Rn \ Tn : n ∈ ω}. Then {Z0, Z1, Z2} is a partition of S.

For x ∈ Z0, h̃(x) = k̃(x) = f(x). For x ∈ Z1, g̃(x) = k̃(x) = f(x). For

x ∈ Z2, g̃(x) = h̃(x) = f(x). Hence med(g, h, k) is an element of G satisfying

med(g, h, k)|Y = med(g̃, h̃, k̃)|Y = f |Y = w.

6. Measurable cardinals. An early version of this paper contained an
interesting result worth mentioning. Instead of Theorem 4.1, we had: if X
is completely regular and Cp(X) is domain representable, then every subset
of X is C-embedded in X. We then asked whether the conclusion implies
that X is discrete.

Theorem 6.1. The following are equivalent:

(1) If every subset of X is C-embedded in X, then X is discrete.
(2) There are no measurable cardinals.

Proof. ¬(2)⇒¬(1). Let κ be a measurable cardinal and fix a countably
complete ultrafilter p on κ. Let X be a set of cardinality κ and identify the
points of X with the set κ+1. Define a topology on X in which every α ∈ κ
is isolated and the neighborhoods of κ are of the form A∪{κ} where A ∈ p.
Let Y be a subset of X and let f ∈ C(Y ). If Y \ {κ} /∈ p, or if κ ∈ Y and
Y \ {κ} ∈ p, then f can easily be extended to a continuous function on X.
Suppose, on the other hand, that Y \{κ} ∈ p and κ /∈ Y . It suffices to extend
f continuously to Y ∪ {κ}. For each n ∈ ω, let Pn = {Pmn : m∈ω} be any
partition of R into sets of diameter less than 1/n. Since p is countably com-

plete, for each n ∈ w there is exactly one m(n) ∈ ω such that f←[P
m(n)
n ] ∈ p.

Furthermore, A =
⋂
{f←[P

m(n)
n ] : n ∈ ω} ∈ p. Since diamP

m(n)
n < 1/n,

f must be constant on A. Therefore, we can extend f continuously to κ.
(2)⇒(1). Suppose X is not discrete. Then there is some x ∈ X with the

property that x ∈ cl(X\{x}). Let U be a maximal pairwise disjoint collection
of nonempty open subsets of X that satisfies x /∈ clU for all U ∈ U . For
each open neighborhood N of x, define U(N) = {U ∈ U : N ∩ U 6= ∅}. Set
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p = {U(N) : N ∈ N (x)}. Since U is maximal, we have ∅ /∈ p, and p has the
finite intersection property. Extend p to an ultrafilter q. Because x /∈ clU for
each U ∈ U , q is free. By the no measurable cardinals hypothesis, q is not
countably complete. That is, there exists {Vn : n ∈ ω} ⊂ q with Vn+1 ⊆ Vn
for all n ∈ ω and

⋂
{Vn : n ∈ ω} = ∅. Set Y =

⋃
{Vn : n ∈ ω} and define

f : Y → R by f(x) = n iff x ∈
⋃
Vn \

⋃
Vn+1. Since Y is C-embedded in X,

there is a continuous extension of f to f̂ ∈ C(X). This is a contradiction
since x ∈ cl

⋃
{Vi : i ≥ n} for all n ∈ ω.

A search of the literature showed that this result had been obtained by
Terada [14] in 1975.

7. Questions. As discussed in the introduction of [6], the class of sub-
compact spaces and the class of domain representable spaces are closed
under the formation of arbitrary products. We wonder if the converse is
known. In particular, we ask:

Question 7.1. If M is a metrizable space, and MX is subcompact for
some index set X with |X| ≥ 2, must M be completely metrizable? More
generally, if S is a topological space such that for some cardinal κ ≥ 2 the
product space Sκ is subcompact, must S be subcompact?

Question 7.2. Is it true that every domain representable topological
group is subcompact?

Acknowledgments. We wish to thank the referee for many suggestions
improving this paper.
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