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Dimension-raising maps in a large scale

by

Takahisa Miyata (Kobe) and Žiga Virk (Ljubljana)

Abstract. Hurewicz’s dimension-raising theorem states that dimY ≤ dimX + n for
every n-to-1 map f : X → Y . In this paper we introduce a new notion of finite-to-one
like map in a large scale setting. Using this notion we formulate a dimension-raising type
theorem for asymptotic dimension and asymptotic Assouad–Nagata dimension. It is also
well-known (Hurewicz’s finite-to-one mapping theorem) that dimX ≤ n if and only if
there exists an (n + 1)-to-1 map from a 0-dimensional space onto X. We formulate a
finite-to-one mapping type theorem for asymptotic dimension and asymptotic Assouad–
Nagata dimension.

1. Introduction. Let us recall the classical Hurewicz dimension theo-
rems for maps.

Theorem 1.1 (Dimension-lowering theorem). Let f : X → Y be a closed
surjective map between metrizable spaces. Then dimX ≤ dimY + dim f ,
where dim f = sup{dim f−1(y) : y ∈ Y }.

Theorem 1.2 (Dimension-raising theorem). Let f : X → Y be a closed
surjective map between metrizable spaces such that |f−1(y)| ≤ n+1 for each
y ∈ Y . Then dimY ≤ dimX + n.

Theorem 1.3 (Finite-to-one mapping theorem). Let X be a metrizable
space. Then dimX ≤ n if and only if there exists a zero-dimensional metric
space Y and a closed surjective map f : Y → X such that |f−1(x)| ≤ n+ 1
for each x ∈ X.

G. Bell and A. Dranishnikov [1] proved the dimension-lowering theo-
rem for asymptotic dimension, and N. Brodskiy, J. Dydak, M. Levin and
A. Mitra [3] generalized it to Assouad–Nagata dimension and asymptotic
Assouad–Nagata dimension. However, there is no simple translation of the
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dimension-raising theorem in a large scale setting since there are simple
one-to-one dimension-raising coarse maps.

In this paper we introduce conditions, called (B)n and (C)n, respectively,
which correspond to the condition that a map is n-to-1. Using those con-
ditions we formulate a dimension-raising type theorem and a finite-to-one
mapping type theorem for asymptotic dimension and asymptotic Assouad–
Nagata dimension.

Our main theorems for asymptotic dimension (asdim) are:

Theorem 1.4. Let X and Y be metric spaces, and let f : X → Y be a
coarse map with the following property:

(B)n For each r <∞, there exists d <∞ such that for each subset B of
Y with diam(B) ≤ r, f−1(B) =

⋃n
i=1Ai for some subsets Ai of X

with diam(Ai) ≤ d for i = 1, . . . , n.

Then
asdimY ≤ (asdimX + 1)n− 1.

Theorem 1.5. Let X be a metric space. Then asdimX ≤ n if and only if
there exist a metric space Y with asdimY = 0 and a coarse map f : Y → X
with property (B)n+1.

Ourmain theorems for asymptotic Assouad–Nagata dimension (asdimAN)
state:

Theorem 1.6. Let X and Y be metric spaces, and let f : X → Y be an
asymptotically Lipschitz map with the following property:

(C)n There exist c, d > 0 such that for each r < ∞ and for each subset
B of Y with diam(B) ≤ r, f−1(B) =

⋃n
i=1Ai for some subsets Ai

of X with diam(Ai) ≤ cr + d for i = 1, . . . , n.

Then
asdimAN Y ≤ (asdimANX + 1)n− 1.

Theorem 1.7. Let X be a metric space. Then asdimANX ≤ n if and
only if there exist a metric space Y with asdimAN Y = 0 and an asymptotic
Lipschitz map f : Y → X with property (C)n+1.

The “if” parts of Theorems 1.5 and 1.7 immediately follow from Theo-
rems 1.4 and 1.6, respectively. For the “only if” parts of Theorems 1.5 and
1.7, we introduce the notion of n-precode structure, which is a sequence of
covers with some conditions determining a map with property (B)n+1 or
(C)n+1 from an ultrametric space to the given space.

We give various examples of dimension-raising maps. In particular, we
present a simple example of 1-precode structure for (Z, dε) with the Eu-
clidean metric dε.
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A finite-to-one mapping theorem for Asouad–Nagata dimension was ob-
tained in [6], where a condition called (B) (see Section 3) was introduced.
Using condition (B), we show a dimension-raising type theorem for Assouad–
Nagata dimension as well.

Throughout the paper, N, Z, R, R+ denote the set of nonnegative in-
tegers, the set of integers, the set of real numbers, and the set of positive
real numbers, respectively. For any set X, let idX denote the identity map
on X.

2. Asymptotic dimension, Assouad–Nagata dimension, and
asymptotic Assouad–Nagata dimension. In this section, we recall the
definitions and properties of asymptotic dimension, Assouad–Nagata di-
mension, and asymptotic Assouad–Nagata dimension. For more details, the
reader is referred to [1], [2], [5], and [4].

Let (X, d) be a metric space. For each x ∈ X and r > 0, let B(x, r) =
{y ∈ X : d(x, y) < r}, and B(x, r) = {y ∈ X : d(x, y) ≤ r}. For each subset
A of X, let diam(A) denote the diameter of A.

Let U be a cover of X. The multiplicity of U , denoted mult(U), is de-
fined as the largest integer n such that no point of X is contained in more
than n elements of U , and the r-multiplicity of U , denoted r-mult(U), is
the largest integer n such that no subset of diameter at most r meets more
than n elements of U . The Lebesgue number of U , denoted Leb(U), is de-
fined as the supremum of positive numbers r such that for every subset A
with diam(A) ≤ r, there exists U ∈ U with A ⊂ U . The mesh of U , de-
noted mesh(U), is sup{diam(U) : U ∈ U}, and U is said to be uniformly
bounded if mesh(U) < ∞. A family U of subsets of X is said to be r-
disjoint if d(x, x′) > r for any x and x′ that belong to different elements
of U .

A metric space X is said to have asymptotic dimension at most n, writ-
ten asdimX ≤ n, if there exists a function DX : R+ → R+ (called an
n-dimensional control function for X) such that for every r <∞ there exist
r-disjoint families U0, . . . ,Un of subsets of X such that

⋃n
i=0 U i is a cover of

X and mesh(U) ≤ DX(r).
A metric space X is said to have Assouad–Nagata dimension at most n,

written dimANX ≤ n, if there exists an n-dimensional control function DX

such that DX(r) = cr for some c ≥ 0.
A metric space X is said to have asymptotic Assouad–Nagata dimension

at most n, written asdimANX ≤ n, if there exists an n-dimensional control
function DX such that DX(r) = cr + d for some c, d ≥ 0.

We write asdimX = n if asdimX ≤ n and asdimX 6≤ n − 1, and write
asdimX = ∞ if asdimX 6≤ n for any nonnegative integer n. Similarly, we
define dimANX = n and asdimANX = n.
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The following characterizations of asymptotic dimension, Assouad–Naga-
ta dimension, and asymptotic Assouad–Nagata dimension are well-known
(see [2], [5], and [4]).

Proposition 2.1. Let X be a metric space. Then the following condi-
tions are equivalent:

(1) asdimX ≤ n.
(2) For every uniformly bounded cover V of X, there exists a uniformly

bounded cover U of X such that mult(U) ≤ n+ 1 and V < U .
(3) For every s <∞, there exists a uniformly bounded cover V of X such

that s-mult(V) ≤ n+ 1.
(4) For every t < ∞, there exists a uniformly bounded cover W of X

such that Leb(W) ≥ t and mult(W) ≤ n+ 1.

Proposition 2.2. Let X be a metric space. Then the following condi-
tions are equivalent:

(1) asdimANX ≤ n (resp., dimANX ≤ n).
(2) There exists c > 0 (resp., there exist c, s0 > 0) such that for every

s <∞ (resp., s ≥ s0), there exists a cover V of X with mesh(V) ≤ cs
and s-mult(V) ≤ n+ 1.

(3) There exists c > 0 (resp., there exist c, t0 > 0) such that for every
t <∞ (resp., t ≥ t0), there exists a cover W of X with mesh(W) ≤
ct, Leb(W) ≥ t, and mult(W) ≤ n+ 1.

The following characterization of the asymptotic dimension will be used
in Section 6.

Proposition 2.3. Let X be a metric space. Then the following condi-
tions are equivalent:

(1) asdimX ≤ n.
(2) For all s, t <∞, there exists a uniformly bounded cover U of X such

that s-mult(U) ≤ n+ 1 and Leb(U) ≥ t.
Proof. The implication (2)⇒(1) is obvious by Proposition 2.1. To show

(1)⇒(2), suppose asdimX ≤ n. Let s, t < ∞ and r ≥ s + 4t. Then by
definition there exist uniformly bounded r-disjoint families U0, . . . ,Un of
subsets of X such that U ′ =

⋃n
i=0 U i is a cover of X. Consider the cover

U = {B(U, 2t) : U ∈ U ′}. Then s-mult(U) ≤ n+1. Indeed, let A be a subset
of X with diam(A) ≤ s such that A ∩ B(U, 2t) 6= ∅ and A ∩ B(U ′, 2t) 6= ∅
for some U,U ′ ∈ U ′. Then d(U,U ′) ≤ s+ 4t ≤ r, which implies U ∈ U i and
U ′ ∈ U i′ for some i, i′ with i 6= i′. Thus A intersects at most n+ 1 elements
of U , proving that s-mult(U) ≤ n+1. To show Leb(U) ≥ t, let A be a subset
of X such that diam(A) ≤ t. Then A ∩ U 6= ∅ for some U ∈ U ′, and hence
A ⊂ B(U, 2t). This shows (2).
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The following characterization of asymptotic Assouad–Nagata dimension
will be used in Section 7.

Proposition 2.4. Let X be a metric space. Then the following condi-
tions are equivalent:

(1) asdimANX ≤ n.
(2) There exist c, d > 0 such that for all s, t <∞, there exists a cover U

of X such that U is (c(s+ 4t) + d)-bounded, s-mult(U) ≤ n+ 1, and
Leb(U) ≥ t.

Proof. (2)⇒(1) is obvious by Proposition 2.2. (1)⇒(2) can be proved by
the same argument as in the proof of Proposition 2.3. Indeed, let s, t < ∞,
and let c, d > 0 be the constants as in the definition of asdimANX ≤ n.
Without loss of generality, we can assume c ≥ 2. Put r = s + 4t, and let
U0, . . . ,Un be (cr/2 + d)-bounded r-disjoint families of subsets of X such
that U ′ =

⋃n
i=0 U i is a cover of X. Then the cover U = {B(U, 2t) : U ∈ U ′}

satisfies the required conditions. Note that (c(s+4t) + d)-boundedness of U
follows from the following inequalities:

mesh(U) ≤ mesh(U ′) + 4t ≤ c(s+ 4t)/2 + d+ 4t ≤ c(s+ 4t) + d.

3. Dimension-raising maps: properties (B)n and (C)n. In this sec-
tion, we prove dimension-raising type theorems for Assouad–Nagata dimen-
sion, asymptotic dimension, and asymptotic Assouad–Nagata dimension.

A map f : (X, dX) → (Y, dY ) is said to be bornologous if there exists
a function δf : R+ → R+ such that dY (f(x), f(x′)) ≤ δf (dX(x, x

′)) for all
x, x′ ∈ X, and it is coarse if it is bornologous and proper. It is Lipschitz
(resp., asymptotically Lipschitz) if there exists a function δf : R+ → R+

such that dY (f(x), f(x′)) ≤ δf (dX(x, x
′)) for all x, x′ ∈ X and δf (t) = ct

for some c > 0 (resp., δf (t) = ct+ b for some b, c > 0). It is quasi-isometric
if:

(1) there exist functions δf , γf : R+ → R+ such that

γf (dX(x, x
′)) ≤ dY (f(x), f(x′)) ≤ δf (dX(x, x′)) for all x, x′ ∈ X,

δf (t) = ct+ b, and γf (t) = (1/c)t− b for some b, c > 0;
(2) f(X) is coarsely dense in Y , i.e., there exists R > 0 such that

dY (y, f(X)) ≤ R for every y ∈ Y .

Two maps f, f ′ : (X, dX) → (Y, dY ) are said to be close if there exists
S>0 such that dY (f(x), g(x))≤S for all x ∈ X. A map f : (X, dX)→(Y, dY )
is called a coarse equivalence if there exists a coarse map g : (Y, dY )→(X, dX)
such that f ◦ g is close to idY and g ◦ f is close to idX .
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3.1. Dimension-raising type theorem for Assouad–Nagata di-
mension. For any map f : X → Y , consider the following property [6]:

(B) There exists d > 0 such that for each r > 0 and for each B ⊂ Y with
diam(B) ≤ r, there exists A ⊂ X with diam(A) ≤ dr and f(A) = B.

Lemma 3.1. Let f : X → Y be a map, and let U be a cover of X. If
|f−1(y)| ≤ n for each y ∈ Y , then

mult(f(U)) ≤ mult(U) · n.

Proof. Let k = mult(U). Suppose to the contrary that mult(f(U)) > kn.
Then there exist U1, . . . , Ukn+1 ∈ U such that there exists y ∈ f(U1) ∩
· · · ∩ f(Ukn+1). So, there exist xi ∈ Ui for i = 1, . . . , kn + 1 such that
y = f(x1) = · · · = f(xkn+1). Since |f−1(y)| ≤ n, there exist at least k + 1
indices i1, . . . , ik+1 ∈ {1, . . . , kn + 1} such that xi1 = · · · = xik+1

, implying
that Ui1 ∩ · · · ∩ Uik+1

6= ∅. This contradicts mult(U) ≤ k.

Theorem 3.2. Let X and Y be metric spaces, and let f : X → Y be a
surjective Lipschitz map such that |f−1(y)| ≤ n for each y ∈ Y , and f has
property (B). Then

dimAN Y ≤ (dimANX + 1)n− 1.

Proof. Since the assertion is trivial if dimANX = ∞, assume m =
dimANX <∞. Then there exists c > 0 such that for each r > 0 there exists
a cover Ur of X with mult(Ur) ≤ m + 1, mesh(Ur) ≤ cr, and Leb(Ur) ≥ r.
Let d > 0 be as in (B), and for each r > 0, let Vr = f(Udr). Then
Lemma 3.1 implies mult(Vr) ≤ mult(Udr) · n. Since f is Lipschitz, we have
mesh(Vr) ≤ Lip(f)mesh(Udr) ≤ Lip(f)·cdr. To show that Leb(Vr) ≥ r, letB
be a subset of Y such that diam(B) ≤ r. Then (B) implies that there exists a
subset A of X such that diam(A) ≤ dr and f(A) = B. Since Leb(Udr) ≥ dr,
A ⊂ U for some U ∈ Udr. Hence B = f(A) ⊂ f(U) ∈ Vr, showing that
Leb(Vr) ≥ r. Thus we have shown that dimANX ≤ (m+ 1)n− 1.

3.2. Dimension-raising type theorem for asymptotic dimension.
For any map f : X → Y and for each n ∈ N, consider the following property:

(B)n For each r < ∞, there exists d < ∞ such that for each subset B of
Y with diam(B) ≤ r, f−1(B) =

⋃n
i=1Ai for some subsets Ai of X

with diam(Ai) ≤ d for i = 1, . . . , n.

The following properties are useful in constructing maps with property
(B)n in later sections.

Proposition 3.3. Suppose f : X → Y is a coarse map with property
(B)n and g : Y → Z is a coarse map with property (B)m. Then gf is a
coarse map with property (B)nm.
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Proof. Let A ⊂ Z be an r-bounded set. Then g−1(A) is a union of dg-
bounded sets A1, . . . , Am. Similarly, for each i the set f−1(Ai) is a union
of df -bounded sets Ai1, . . . , Ain. Consequently, (gf)−1(A) is a union of nm
df -bounded sets {Aij}i=1,...,m; j=1,...,n.

Proposition 3.4. Suppose f : X→Y is a coarse map with property (B)n
and g : Z → W is a coarse map with property (B)m. Then g × f is a coarse
map with property (B)nm.

Proof. Suppose pY and pW are projections of Y ×W to Y and W re-
spectively. Given an r-bounded set A ⊂ Y × W , pY (A) and pW (A) are
r-bounded as well. Furthermore, since f−1(pY (A)) is a union of df bounded
sets A1, . . . , An and g−1(pW (A)) is a union of dg bounded sets B1, . . . , Bm
we conclude that (f × g)−1(A) is a union of m · n (df + dg)-bounded sets
{Ai ×Bj}i=1,...,n; j=1,...,m.

Proposition 3.5. Suppose X is a metric space of asymptotic dimen-
sion 0 and Y is any metric space. Then asdim(X × Y ) = asdimY .

Proof. Let n = asdimY . Given r < ∞ there exist d ∈ R, d-bounded
r-disjoint families U0, . . . ,Un of subsets of Y such that

⋃n
i=0 Ui is a cover

of Y , and a d-bounded r-disjoint cover V of X. Define Wi = {V × U : U ∈
Ui, V ∈ V} for i = 0, . . . , n and note that W0, . . . ,Wn is a collection of
2d-bounded r-disjoint families of subsets of X × Y such that

⋃n
i=0Wi is a

cover of X ×Y . Hence asdim(X ×Y ) ≤ n = asdimY . Since X ×Y contains
an isometric copy of Y we also have asdim(X × Y ) ≥ asdimY .

Lemma 3.6. Let f : X → Y be a map, and let U be a cover of X. Suppose
that f has property (B)n. Let r <∞, and let d <∞ be as in (B)n. Then

r-mult(f(U)) ≤ d-mult(U) · n.
Proof. Let m = d-mult(U). Suppose to the contrary that r-mult(f(U))

> mn. Then there exists a subset B of Y with diam(B) ≤ r such that
B∩f(Ui) 6= ∅ for some U1, . . . , Umn+1 ∈ U . Then (B)n implies that f−1(B) =⋃n
j=1Aj for some subsets Aj of X with diam(Aj) ≤ d for i = 1, . . . , n. So,
∅ 6= f−1(B) ∩ Ui = (

⋃n
j=1Aj) ∩ Ui for i = 1, . . . ,mn + 1. This implies

that there exists j0 such that Aj0 ∩ Ui 6= ∅ for some i ∈ {i1, . . . , im+1} ⊂
{1, . . . ,mn+ 1}. This contradicts the condition that d-mult(U) = m.

Theorem 3.7. Let X and Y be metric spaces, and let f : X → Y be a
coarse map with property (B)n. Then

asdimY ≤ (asdimX + 1)n− 1.

Proof. Since the assertion is trivial if asdimX=∞, assume m=asdimX
< ∞. Let r > 0, and let d > 0 be as in (B)n. Then, by Proposition 2.1(3),
there exists a uniformly bounded cover Ud ofX such that d-mult(Ud) ≤ m+1.
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Consider V = f(Ud). By Lemma 3.6, r-mult(V) ≤ d-mult(Ud) ·n ≤ (m+1)n.
Since f is bornologous, V is uniformly bounded. Consequently, asdimY ≤
(m+ 1)n− 1 = (asdimX + 1)n− 1, as required.

3.3. Dimension-raising type theorem for asymptotic Assouad–
Nagata dimension. We can modify the argument for asymptotic dimen-
sion to obtain the dimension-raising theorem for asymptotic Assouad–Naga-
ta dimension.

For any map f : X → Y and for each n ∈ N, consider the following
condition:

(C)n There exist c, r0 > 0 such that for each r ≥ r0 and for each subset
B of Y with diam(B) ≤ r, f−1(B) =

⋃n
i=1Ai for some subsets Ai

of X with diam(Ai) ≤ cr for i = 1, . . . , n.

Remark 3.8. It can be verified that Propositions 3.3–3.5 hold for asymp-
totic Assouad–Nagata dimension if “coarse map” is replaced by “asymptotic
Lipschitz map”.

Lemma 3.9. Let f : X → Y be a map, and let U be a cover of X.
Suppose that f satisfies condition (C)n. Let c, r0 > 0 be as in (C)n. Then for
each r ≥ r0,

r-mult(f(U)) ≤ cr-mult(U) · n.
Proof. Use the same technique as in the proof of Lemma 3.6.

Theorem 3.10. Let X and Y be metric spaces, and let f : X → Y be
an asymptotically Lipschitz map with property (C)n. Then

asdimAN Y ≤ (asdimANX + 1)n− 1.

Proof. We can assume m = asdimANX <∞. Let c, r0 > 0 be as in (B)n,
and let r ≥ r0. Then, by Proposition 2.2(2), there exists a cover Ur of X
such that mesh(Ur) ≤ cr and d-mult(Ur) ≤ m+ 1. Consider V = f(Ur). By
Lemma 3.9, r-mult(V) ≤ cr-mult(Ur)·n ≤ (m+1)n. Since f is asymptotically
Lipschitz, mesh(V) ≤ c′cr + b for some b, c′ > 0. If r ≥ max{r0, b/c}, then
mesh(V) ≤ c′′cr, where c′′ = c′ + 1. Hence asdimAN Y ≤ (m + 1)n − 1 =
(asdimANX + 1)n− 1, as required.

4. n-Precode structure for asymptotic dimension. A metric space
(X, d) is said to be ultrametric if d(x, z) ≤ max{d(x, y), d(y, z)} for all
x, y, z ∈ X. Every ultrametric space has asymptotic dimension 0. Indeed,
for each r < ∞, there exists an r-disjoint cover U which consists of r-
components. Since each r-component of an ultrametric space is an r-ball,
U is uniformly bounded.

In this section, we present a procedure to construct coarse maps from
ultrametric spaces with property (B)n.
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Theorem 4.1. Suppose U0,U1, . . . is a sequence of uniformly bounded
covers of a metric space X and fix n ∈ N.

(1) If for every i and every U ∈ Ui there exists exactly one V ∈ Ui+1

satisfying U ⊂ V then every W 0 ∈ U0 defines a unique sequence
(W 0,W 1, . . .) with W i ∈ Ui and W i ⊂W i+1.

(2) Assume the conditions of the previous case along with the following
additional condition: for every bounded subset D ⊂ X there exist i
and U ∈ Ui such that D ⊂ U . Then the following rule defines an
ultrametric on U0: dB(V, V ) = 0, and for V 6=W ,

dB(V,W )=3p(V,W ), p(V,W )=min{k ∈ Z : ∃Ũ ∈ Uk : V ∪W ⊂ Ũ}.

Furthermore, asdim(U0, dB) = 0 and a map q : U0 → X sending
U ∈ U0 to any chosen point x ∈ U is coarse.

(3) Assume the conditions of the previous case along with the follow-
ing additional condition: for every r < ∞ there exists i such that
r-mult(Ui) ≤ n. Then q has property (B)n.

Proof. (1) is obvious.
(2) The distance dB is finite (as the union of every pair of elements of

U0 is contained in some U ∈ Ui), symmetric and equals 0 exactly for two
identical elements of U0. It is easy to see that the uniqueness of sequences
in (1) implies that dB is an ultrametric.

It has been remarked that the asymptotic dimension of an ultramet-
ric space is 0. To see that q is coarse observe that if dB(U, V ) ≤ 3n then
d(q(U), q(V )) ≤ mesh(Un).

(3) Fix r < ∞ and choose i such that the r-multiplicity of Ui is at
most n. Suppose B ⊂ Y is of diameter at most r and let U1, . . . , Un denote
the collection of all elements of Ui that intersect B (some elements may be
identical since B might intersect less than n elements of Ui). Then q−1(B)
is the union of the sets Aj = {U ∈ U0 : U ⊂ Uj}, which are of diameter at
most 3i.

We mention the following important technical detail: if U0 ∈ U0 intersects
B then (using the convention of (1)) U i contains U0, hence is listed as Uj
for some j. In particular, U0 ∈ Aj .

Definition 4.2. Any sequence of uniformly bounded covers satisfying
(1)–(3) of Theorem 4.1 is called the n-precode structure for asymptotic di-
mension.

Corollary 4.3. If a metric space X admits an n-precode structure for
asymptotic dimension then there exists an ultrametric space Z and a coarse
map f : Z → X with property (B)n.
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Corollary 4.4. If a metric space X admits a 1-precode structure for
asymptotic dimension then there exists an ultrametric space Z and a coarse
equivalence f : Z → X.

Proof. Suppose X admits a 1-precode structure U0,U1, . . . . Let Z = U0
and let f : Z → X be the coarse map with property (B)1 defined as in (2)
of Theorem 4.1. To verify that f is a coarse equivalence, we define a map
g : X → Z by g(x) = Ux for each x ∈ X, where Ux is an element of U0 with
x ∈ U .

To show that g is bornologous, let R < ∞, and let d(x, y) < R. Take
k ∈ Z such that R ≤ 3k. Then g(x) = Ux and g(y) = Uy, where Ux and
Uy are elements of U0 with x ∈ Ux and y ∈ Uy, respectively. Condition (3)
of Theorem 4.1 implies that 3k-mult(Ui) ≤ 1 for some i ∈ N. Condition (1)
of Theorem 4.1 implies that there exist unique elements U ′x and U ′y of Ui
such that Ux ⊂ U ′x and Uy ⊂ U ′y. Since d(x, y) < 3k and 3k-mult(Ui) ≤ 1,
U ′x = U ′y. This means that dB(Ux, Uy) ≤ 3i.

To verify that g is proper, let R <∞. Suppose A is a subset of Z such that
diam(A) ≤ R, and take k ∈ Z such that R ≤ 3k. Let x, y ∈ g−1(A). Then
g(x) = Ux and g(y) = Uy, where Ux and Uy are elements of U0 with x ∈ Ux
and y ∈ Uy, respectively. Since dB(Ux, Uy) ≤ 3k, we have d(x, y) ≤ mesh(Uk),
showing that diam g−1(A) ≤ mesh(Uk).

To show that f ◦ g is close to idX , let x ∈ X. Then g(x) = Ux, where Ux
is an element of U0 such that x ∈ Ux, and so f(g(x)) ∈ Ux. This means that
d(f(g(x)), x) ≤ mesh(U0). Also g ◦ f = idZ . This shows that Z and X are
coarse equivalent.

Example 4.5. The metric space (N, dε), where dε is the Euclidean met-
ric, admits a 2-precode structure for asymptotic dimension. Indeed, we de-
fine U0 = {U0

n : n ∈ N}, where U0
n = {n} for each n ∈ Z. Assuming that

Ui = {U in : n ∈ N} has been defined, we define Ui+1 = {U i+1
n : n ∈ N}, where

U i+1
n = U i2n ∪ U i2n+1 for each n ∈ N. The sequence of covers Ui thus defined

satisfies conditions (1)–(3) of Theorem 4.1.
Hence there exist an ultrametric space (X, d) and a coarse map f :

(X, d)→(N, dε) with property (B)2. Note asdimX=0 and asdim(N, dε)=1.
Proposition 3.4 implies that f × idNn : (X, d)× (Nn, dε)→ (Nn+1, dε) is

a coarse map with property (B)2. Note that asdimX × Nn = asdimNn = n
(Proposition 3.5) and asdim(Nn+1, dε) = n+ 1.

Example 4.6. In this example we present a 2-precode structure for
asymptotic dimension on the metric space (N, dε), where dε is the Euclidean
metric. The example is closely related to Example 4.5 (and analogous con-
clusions can easily be drawn) although the formal description is somewhat
different. Define ak(n) = {n, n+1, . . . , n+3k−1} ⊂ Z. The 2-precode struc-
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ture for asymptotic dimension is given by the covers Uk = {ak(n) : ∃j ∈ Z :
n = (3k+1 − 1) · 12 + j · 3k}.

Note that Uk is a cover of Z by disjoint intervals of length 3k, the element
0 being approximately in the middle of one such interval. The cover Uk+1 is
obtained by taking unions of three consecutive intervals so that the resulting
cover is disjoint and 0 is approximately in the middle of one such union (i.e.,
three times larger interval).

5. Finite-to-one mapping theorem for asymptotic dimension. In
this section, using the n-precode structure, we prove a finite-to-one mapping
type theorem for asymptotic dimension.

Theorem 5.1. Let X be a metric space. If asdimX ≤ n then X admits
an (n+ 1)-precode structure for asymptotic dimension.

Proof. We provide an inductive construction of covers Ui. Fix x0 ∈ X
and let U0 = {{x}}x∈X be a cover by singletones.

Let k ∈ N and suppose we have constructed covers U0, . . . ,Uk with the
following properties:

(1) Ui is an Mi-bounded cover for i = 0, . . . , k;
(2) the i-multiplicity of Ui is at most n+ 1 for i = 0, . . . , k;
(3) elements of Ui are disjoint for i = 0, . . . , k;
(4) given i < k and U ∈ Ui there exists V ∈ Ui+1 containing U (such a

V is unique by the previous property);
(5) given i < k there exists Uαi ∈ Ui containing the closed ball B(x0, i)

(again, such an element is unique by (3)).

The cover Uk+1 is constructed as follows. By Proposition 2.3 there exists
an Nk+1-bounded cover Vk+1 = {Vβ}β∈Σ of (k + 1 + 2Mk)-multiplicity at
most n+1 and of Lebesgue number at least 2(k+1). Let Vαk+1

∈ Vk+1 be a
set containing the closed ball B(x0, k+1). For every U ∈ Uk define τ(U) ∈ Σ
in the following way:

• if U ∩ Vαk+1
6= ∅ then τ(U) = αk+1;

• else τ(U) is any index in Σ such that U ∩ Vτ(U) 6= ∅.
Define Uk+1 = {Uβ}β∈Σ , where

Uβ =
⋃

W∈Uk, τ(W )=β

W.

We now verify that the cover Uk+1 satisfies the required conditions:

(1) Uk+1 is (2Mk +Nk+1)-bounded by construction;
(2) the (k+1)-multiplicity of Uk+1 is at most n+1 (this is a consequence

of two facts: for every β ∈ Σ theMk-neighborhood of Vβ contains Uβ ;
and the (k + 1 + 2Mk)-multiplicity of Vk+1 is at most n+ 1);



94 T. Miyata and Ž. Virk

(3) the elements of Uk+1 are disjoint by construction as the elements of
Uk are disjoint and each U ∈ Uk is assigned exactly one τ(U);

(4) obviously, U ⊂ Uτ(U) for every U ∈ Uk;
(5) Uαk+1

∈ Uk+1 contains the closed ball B(x0, k + 1) by construction.

It is apparent from the properties listed above that the covers Ui form
an (n+ 1)-precode structure for asymptotic dimension on X.

Corollary 5.2 is a large scale version of the finite-to-one mapping theorem.

Corollary 5.2. For every metric space X, asdimX ≤ n if and only if
there exist a metric space Y of asdimY = 0 and a coarse map q : Y → X
with property (B)n+1.

Corollary 5.3. For every n ∈ N and m ≥ n there exist metric spaces
X and Y with asdimY = m and asdimX = n+m, respectively, and a coarse
map q : Y → X with property (B)n+1.

Corollary 5.4. For every metric space (X, d), asdim(X, d) = 0 if and
only if there exists an ultrametric ρ on X such that id : (X, d)→ (X, ρ) is a
coarse equivalence.

Proof. The corollary easily follows from Theorems 5.1 and 4.4.

Corollary 5.4 generalizes the result by Brodskiy, Dydak, Levin, and Mi-
tra [3], which states that dimAN(X, d) = 0 if and only if there is an ultra-
metric ρ such that the identity map id : (X, d)→ (X, ρ) is bi-Lipschitz.

6. Finite-to-one mapping theorem for asymptotic Assouad–Na-
gata dimension. In this section, we generalize the results of Sections 5
and 6 to the case of asymptotic Assouad–Nagata dimension. The following
is an analogue of Theorem 4.1 which provides a general way to construct
asymptotically Lipschitz maps from ultrametric spaces with property (C)n.

Theorem 6.1. Suppose U0,U1, . . . is a sequence of uniformly bounded
covers of a metric space X which satisfies conditions (1) and (2) in Theo-
rem 4.1, and fix n ∈ N.

(1) Assume the following condition: there exist a > 1 and i0 ∈ N such
that mesh(Ui) ≤ ai for i ≥ i0. Then there exists an ultrametric dC
on U0 such that a map q : U0 → X sending U ∈ U0 to any chosen
point x ∈ U is asymptotically Lipschitz.

(2) Assume the condition of the previous case along with the following
additional condition: there exist c, r0 > 0 such that for every r ≥ r0
there exists i ∈ N such that ai ≤ cr and r-mult(Ui) ≤ n. Then q has
property (C)n.
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Proof. (1) Let dC be the ultrametric dB obtained in Theorem 4.1(2) with
the base number 3 being replaced by a, i.e., dC(V, V ) = 0, and for V 6=W ,

dC(V,W ) = ap(V,W ), p(V,W ) = min{k ∈ Z : ∃Ũ ∈ Uk : V ∪W ⊂ Ũ}.

To see that q is asymptotically Lipschitz, observe that if dC(U, V ) = an

then d(q(U), q(V )) ≤ mesh(Un) ≤ dC(U, V ) + ai0 .
(2) Let c, r0 > 0 be as in the hypothesis. Fix r ≥ r0, and choose i

so that ai ≤ cr and r-mult(Ui) ≤ n. Suppose B ⊂ Y is of diameter at
most r, and let U1, . . . , Un denote the collection of all elements of Ui that
have a nonempty intersection with B. Then q−1(B) is the union of the sets
Aj = {U ∈ U0 : U ⊂ Uj}, which have diam(Aj) ≤ ai ≤ cr.

Definition 6.2. Any sequence of uniformly bounded covers satisfy-
ing (1)–(2) of Theorem 6.1 is called an n-precode structure for asymptotic
Assouad–Nagata dimension.

The following is an analogue of Theorem 5.1 for asymptotic Assouad–
Nagata dimension.

Theorem 6.3. Let X be a metric space. If asdimANX ≤ n then X ad-
mits an (n+1)-precode structure for asymptotic Assouad–Nagata dimension.

Proof. We inductively construct covers Ui which satisfy all the required
conditions in Theorem 6.1. Their construction follows the steps used for
Theorem 5.1.

Fix x0 ∈ X and let U0 = {{x}}x∈X be the cover by singletones.
Proposition 2.4 implies that there exist c, d > 0 such that for all s, t <∞

there exists a cover Us,t of X with mesh(Us,t) ≤ c(s+4t)+ d, s-mult(Us,t) ≤
n+1, and Leb(Us,t) ≥ t. Without loss of generality, we can assume c ≥ d ≥ 2.

Let k ∈ N and suppose we have constructed covers U0, . . . ,Uk with the
following properties:

(1) mesh(Ui) ≤ (14c)i for i = 0, . . . , k;
(2) ((3i − 1)/3)-mult(Ui) ≤ n+ 1 for i = 0, . . . , k;
(3) elements of Ui are disjoint for i = 0, . . . , k;
(4) given i < k and U ∈ Ui there exists a unique V ∈ Ui+1 containing U ;
(5) given i < k there exists a unique Uαi ∈ Ui containing B(x0, (3i−1)/3).

To define Uk+1, let Vk+1 = {Vβ}β∈Σ be the cover Us,t, where s = 3k +
2 · (14c)k and t = 2 · 3k. Then Vk satisfies the following conditions:

mesh(Vk+1) ≤ c(3k+2 + 2 · (14c)k) + d,(6.1)
(3k + 2 · (14c)k)-mult(Vk+1) ≤ n+ 1,(6.2)
Leb(Vk+1) ≥ 2 · 3k.(6.3)

Note that (6.1) holds since s+ 4t = 3k+2 + 2 · (14c)k.
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Let Vαk+1
∈ Vk+1 be a set containing B(x0, (3

k+1 − 1)/3). For every
U ∈ Uk define τ(U) ∈ Σ in the following way:

• if U ∩ Vαk+1
6= ∅ then τ(U) = αk+1;

• else τ(U) is any index in Σ such that U ∩ Vτ(U) 6= ∅.
Define Uk+1 = {Uβ}β∈Σ , where

Uβ =
⋃

W∈Uk, τ(W )=β

W.

We claim that Uk+1 satisfies the following conditions:

(1) mesh(Uk+1) ≤ (14c)k+1;
(2) ((3k+1 − 1)/3)-mult(Uk+1) ≤ n+ 1;
(3) elements of Uk+1 are disjoint;
(4) U ⊂ Uτ(U) for every U ∈ Uk;
(5) Uαk+1

∈ Uk+1 contains B(x0, (3k+1 − 1)/3).

To see (1), observe that

mesh(Uk+1) ≤ 2mesh(Uk) + mesh(Vk+1)

≤ 2 · (14c)k + c · (3k+2 + 2 · (14c)k) + d

= (2 · (14c)k + 3k+2 · c+ d) + 2 · 14k · ck+1

≤ 14k · (2ck + 32 · c+ c) + 2 · 14k · ck+1

≤ 14k · 12ck+1 + 2 · 14k · ck+1 = (14c)k+1.

Condition (2) follows from (6.2) and (3k+1− 1)/3 < 3k. All the other condi-
tions follow by construction.

Corollary 6.4. For every metric space X, asdimANX ≤ n if and only
if there exist a metric space Y of asdimAN Y = 0 and an asymptotically
Lipschitz map q : Y → X with property (C)n+1.

Corollary 6.5. For every n ∈ N and m ≥ n there exist metric spaces
X and Y with asdimAN Y = m and asdimANX = n +m, respectively, and
an asymptotically Lipschitz map q : Y → X with property (C)n+1.

Corollary 6.6. If a metric space X admits a 1-precode structure for
asymptotic Assouad–Nagata dimension then there exists an ultrametric space
Z and a quasi-isometric map f : Z → X.

Proof. Let U0,U1, . . . be a 1-precode structure, and let f : Z → X be the
asymptotic Lipschitz map defined as in Theorem 6.1. It suffices to show that
f is a quasi-isometry. Let U, V ∈ U0, U 6= V . Let n ∈ N be such that an−1 ≤
d(f(U), f(V )) ≤ an. Let c, r0 > 0 be as in condition (2) of Theorem 6.1.
Then there exists i ∈ N such that ai ≤ c(an + r0) and an-mult(Ui) ≤ 1.
Let U ′ and V ′ be the unique elements of Ui such that U ⊂ U ′ and V ⊂ V ′,
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respectively. Then U = U ′ and V = V ′. This implies that dC(U, V ) ≤ ai ≤
can + cr0 ≤ (ca)d(f(U), f(V )) + cr0. This shows that f is quasi-isometric
since the image of f is apparently coarsely dense.

Corollary 6.7. For every metric space (X, d), asdimAN(X, d) = 0 if
and only if there exists an ultrametric ρ on X such that id : (X, d)→ (X, ρ)
is a quasi-isometric map.

Proof. This easily follows from Theorem 6.3 and Corollary 6.6.
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