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Abstract. Necessary conditions and sufficient conditions are given for Cp(X) to be
a (σ-) m1- or m3-space. (A space is an m1-space if each of its points has a closure-
preserving local base.) A compact uncountable space K is given with Cp(K) an m1-
space, which answers questions raised by Dow, Ramı́rez Mart́ınez and Tkachuk (2010)
and Tkachuk (2011).

1. Introduction. The purpose of this note is to investigate local prop-
erties of the function space Cp(X) of all continuous real-valued functions
on a Tychonoff space X with the topology of pointwise convergence. Every
Cp(X) is a dense locally convex topological vector subspace of the Tychonoff
power RX , and hence if Cp(X) is first countable then it is metrizable, and
so X is countable. A space is an m1-space if every point of the space has a
closure-preserving local base. Clearly, first countable spaces are m1-spaces,
and so Dow et al. [3] and Tkachuk [11] were led to ask:

(1) if Cp(X) is an m1-space then must X be countable? and
(2) what about the special case when X is compact?

The above questions have positive answers in various restricted cases.
These hold for some properties a little weaker than the m1-property. A col-
lection P of pairs of subsets of a space is said to be cushioned if for every
subcollection P ′ of P we have⋃

{P1 : (P1, P2) ∈ P ′} ⊆
⋃
{P2 : (P1, P2) ∈ P ′}.

Observe that a collection of subsets C of a space is closure-preserving if and
only if the collection of pairs {(C,C) : C ∈ C} is cushioned. Then a space X
is an m3-space if every point x of X has a cushioned local pairbase, Px (so
Px is a cushioned family of pairs and for every open U containing x there
is a (P1, P2) in Px such that x is in the interior of P1 and P1 ⊆ P2 ⊆ U).
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Further, let us call a space a σ-m1-space if each point of the space has
a σ-closure-preserving local base, and a σ-m3-space if each of its points
has a σ-cushioned local pairbase. See [2] for basic information on the (σ-)
mi-properties. Evidently m1-spaces are m3-spaces, σ-m1-spaces are σ-m3-
spaces, and mi-spaces are σ-mi-spaces for i = 1, 3.

An important source of m3-spaces are those that are monotonically nor-
mal. A space X is monotonically normal if for every point z of X and every
open set U containing z, we can find an open set V (z, U) containing z and
contained in U , such that if V (z, U) ∩ V (z′, U ′) 6= ∅ then either z ∈ U ′ or
z′ ∈ U . Given a space X, an operator V (·, ·) as in the definition of monotone
normality, and a point x in X, it is easy to see that

Px = {(V (x, U), U) : x ∈ U and U is open in X}
is a cushioned pairbase at x. Thus monotonically normal spaces are m3-
spaces. It is unknown if every monotonically normal space is an m1-space.
Gartside [5] showed that if Cp(X) is monotonically normal then X is count-
able (see also [12] and [9]), and his proof used the fact that monotonically
normal spaces are m3-spaces. However his proof also uses the observation
that Cp(X) always has countable cellularity (disjoint families of opens sets
are countable) and the fact that in monotonically normal spaces countable
cellularity implies calibre (ω1, ω, ω) (point-finite families of non-empty open
sets are countable) (see [4]), and in general Cp(X) need not have calibre
(ω1, ω, ω).

To summarize the above: if Cp(X) is an m1-space or an m3-space for
standard reasons (it is first countable or monotonically normal) then X is
countable. Further, X is countable if Cp(X) is separable and a σ-m3-space.
The latter is due to the fact [6] that separable subspaces of topological
groups which are σ-m3-spaces are stratifiable, and hence monotonically nor-
mal.

In Sections 2 and 3 below we give strong restrictions on those spaces, X,
whose function space, Cp(X), is a (σ-) m3-space. In particular, for compact
spaces K, if Cp(K) is an m3-space then K must be separable and scattered.

However, in Sections 4 and 5 we show that there are compact spaces
K with Cp(K) a σ-m1-space but not an m3-space and other uncountable
compact spaces K with Cp(K) an m1-space. This answers both questions
(1) and (2) above in the negative.

The example of a compact K with Cp(K) an m1-space of Section 4 is
such that the locally convex topological vector space Cp(K) is not paracom-
pact (or even normal). For contrast recall that first countable topological
groups are metrizable, and so hereditarily paracompact. In Section 5 we
show that monotonically normal topological groups are also always hered-
itarily paracompact, again distinguishing the cases when the m3-property
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arises in the ‘standard’ ways (first countability and monotone normality)
from the general case.

We conclude this introduction by recording two useful lemmas and some
convenient notation. The first lemma points to a key difference between
the (σ-) m1-property and the (σ-) m3-property: for an m3-space the local
pairbases can be ‘tidied’ to consist of pairs of open sets coming from a
specified basis, but it is not true in general that a closure-preserving base
for a point in an m1-space can be ‘tidied’ to only contain basic open sets.
This difference means that the m3-property is considerably easier to reason
about than the m1-property.

Lemma 1. If P is a (σ-) cushioned local pairbase at a point y in a
space Y , and B is a local base at y, then there is an operator H : B → B
such that the collection P̂ = {(H(B), B) : B ∈ B} is a (σ-) cushioned local
pairbase at y.

Proof. Fix the space Y and point y of Y . Suppose P is a cushioned pair-
base at y (the σ-cushioned case is similar). For each B in B pick (PB1 , P

B
2 ) ∈

P such that PB1 ⊆ PB2 ⊆ B and pick H(B) in B such that H(B) ⊆ PB1 .

Let P̂ = {(H(B), B) : B ∈ B}. Then P̂ is clearly a local pairbase at y,

and it is cushioned: if {(H(Bλ), Bλ) : λ ∈ Λ} ⊆ P̂ then⋃
{H(Bλ) : λ ∈ Λ} ⊆

⋃
{PBλ1 : λ ∈ Λ} ⊆

⋃
{PBλ2 : λ ∈ Λ}

⊆
⋃
{Bλ : λ ∈ Λ}.

The second lemma simplifies the task of showing that a function space
is an mi-space or a σ-mi-space, for i = 1 or 3.

Lemma 2. Let ∗ be a point in a space X. Let Cp(X; {∗}) = {f ∈ C(X) :
f(∗) = 0}. Then, for i = 1 or 3, the function space Cp(X) is an mi-space
if and only if Cp(X; {∗}) is an mi-space, and is a σ-mi-space if and only if
Cp(X; {∗}) is a σ-mi-space.

To see this recall that Cp(X) is naturally homeomorphic to
Cp(X; {∗})× R, and observe that each of the (σ-) mi-properties, for i = 1
or 3, is finitely productive.

Some additional notation will be helpful below. For any set Y , let [Y ]<ω

be the set of all non-empty finite subsets of Y ; and for any family F of
finite subsets of Y , let us call an operator G : F → [Y ]<ω an expander on F
provided G(F ) ⊇ F for all F in F . For any function space Cp(X), let 0 be
the function which maps X constantly to 0, and B(f, F, ε) = {g : g ∈ C(X)
and |f(x)−g(x)| < ε for all x ∈ F} for any f ∈ C(X), any finite set F ⊂ X
and ε > 0.
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2. Restrictions on X when Cp(X) is a σ-m3-space. The following
concepts are related to the σ-m3 property by Gartside’s theorem from [5]
(Theorem 3 below). As mentioned in the introduction, a space has calibre
(ω1, ω, ω) if every point-finite family of open sets is countable. A subspace A
of a space X is said to be K1-embedded if there is a map k from the subspace
topology τA on A to the topology τX on X such that k(U) ∩ A = U and
k(U)∩k(U ′) 6= ∅ implies that U ∩U ′ 6= ∅ for all U,U ′ in τA. Note that dense
subspaces are always K1-embedded. We omit the definition of κ-metrizable
spaces (as we will not need it again), but observe that all Tychonoff cubes
are κ-metrizable.

Theorem 3. Let Y be a compact κ-metrizable space, and let X be a
K1-embedded subspace of Y which has calibre (ω1, ω, ω). Then every point
of X with a σ-cushioned local pairbase is a point of first countability.

Since Cp(X) is a dense subspace of RX , which is homeomorphic to
(0, 1)X , and (0, 1)X is dense in the κ-metrizable space IX , we immediately
deduce:

Corollary 4. If Cp(X) is a σ-m3-space and has calibre (ω1, ω, ω) then
X is countable.

A space X is said to be functionally countable if every continuous real-
valued function on X has countable image.

Proposition 5. If Cp(X) is a σ-m3-space then X is functionally count-
able.

Proof. Suppose, for a contradiction, Cp(X) is a σ-m3-space and f :
X → R is continuous with uncountable image M = f(X). Then f# :
Cp(M)→ Cp(X) is an embedding where f#(g) = g ◦ f . But Cp(M) is now
a σ-m3-space (inherited from Cp(X)) and has calibre (ω1, ω, ω) (Cp(M) is
cosmic, as M is separable metric, hence separable). This contradicts Corol-
lary 4.

We now show that if a Cp(X) is a σ-m3-space and X is uncountable, then
X contains many ‘supersequences’, homeomorphs of A(κ), the one-point
compactification of an uncountable discrete space of size κ.

Proposition 6. If Cp(X) is a σ-m3-space then for every uncountable
subset S of X, there is an uncountable T ⊆ S and an x ∈ X such that for
every open U containing x, the set T \ U is finite.

Proof. Let P =
⋃
n Pn be a σ-cushioned local pairbase at 0 of basic open

sets. Let S be an uncountable subset of X. For each s in S pick P s ∈ P
such that P s2 ⊆ B(0, {s}, 1/2). Write P s1 = B(0, F s, 1/ms), and note that
without loss of generality we can assume s ∈ F s. Tidying, and applying
the ∆-system lemma, we can find an uncountable subset T0 of S, a finite
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subset R of X, and natural numbers m and n such that: the map t 7→ F t is
injective on T0; for all t in T0 the element of the pairbase P t is in Pn and
P t1 = B(0, F s, 1/m); and the collection {F t : t ∈ T0} forms a ∆-system with
root R.

Take any open set U containing R. We show that for all but finitely many
t in T0 the point t is in U . If not, then there would be an infinite family
{F tr : r ∈ N} such that tr is not in U for every r in N. Pick a continuous
function g on X such that g is 1 outside U and zero on R. Then g(tr) = 1
for every r, and so

g /∈ B(0, {tr}, 1/2) ⊃ P 2tr for all r.

As Pn is cushioned it follows that g is not in the closure of
⋃
r B(0, F tr , 1/m).

But this last statement is false, giving our desired contradiction. Indeed,
take any basic neighborhood B(g,E, ε) of g. Because the sets F tr \ R are
pairwise disjoint, there is an r0 such that E∩F tr0 ⊆ R, and hence B(g,E, ε)∩
B(0, F tr0 , 1/m) 6= ∅.

If R were empty, then we could take U = ∅ and get an immediate con-
tradiction. Hence we can write R = {x1, . . . , xk}. Now pick disjoint open
sets U1, . . . , Uk with xi ∈ Ui for 1 ≤ i ≤ k. Then there is a fixed i and an
uncountable subset T of T0 such that T ⊆ Ui. Now x = xi and T are as
required.

It follows that for many spaces X the function space Cp(X) is not a
σ-m3-space. As a specific example, let L(ω1) be the space with underlying
set ω1 ∪ {∗}, with topology in which all points in ω1 are isolated, and basic
open neighborhoods of ∗ have the form {∗}∪ (ω1 \C) where C is countable.
Then Cp(L(ω1)) is not a σ-m3-space.

More generally, if Cp(X) is a σ-m3-space andX has any closed-hereditary
property P not possessed by A(ω1), then X is countable. For example, for
P we can take ‘countable pseudocharacter’.

It is well known that a compact space is functionally countable if and
only if it is scattered. Thus from Proposition 5, we deduce:

Corollary 7. If K is compact and Cp(K) is a σ-m3-space, then K is
scattered.

Next is a necessary condition for a space X to have Cp(X) a σ-m1-space
via certain standard basic open sets. We prove later (Proposition 12) that
this condition is also sufficient. Recall that a subset C of a space X is said
to be functionally closed if there is a continuous function f : X → R such
that C = f−1([a, b]) for some a, b ∈ R. Further, if C is functionally closed,
then for any a < b in R there is an f as in the definition.

Proposition 8. Let X be a space containing a point ∗. If Cp(X) is a
σ-m1-space with a σ-closure-preserving local base B at 0, where, for a fixed
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countable subset Q of (0,∞), the elements of B all have the form B(0, F, r)
for some finite subset F of X and r from Q, then there is a family F =⋃
s∈NFs cofinal in ([X]<ω,⊆) such that for every n and every functionally

closed neighborhood, C, of ∗ there is a set E, which is finite and disjoint
from C, such that for all F ∈ Fn either F ⊆ C or F ∩ E 6= ∅.

Proof. We can suppose that we have B =
⋃
n∈N Bn a local base of 0 such

that for each n there is a fixed r = rn in Q and m = mn, the family Bn is
closure-preserving, and each element B in B has the form B = B(0, FB, r)
where |FB| = m.

For each n in N, let Fn = {FB : B ∈ Bn}. Let F =
⋃
n∈NFn. Since B is

a local base at 0, the collection F is cofinal in the collection of finite subsets
of X.

Further, take any Fn, recall that we have a fixed r = rn from Q, and pick
any functionally closed neighborhood C of ∗, say C = f−1([−r, r]) where f

is in C(X). Then for any B ∈ Bn, the function f is not in B if and only if
FB \C 6= ∅. Hence there is an open neighborhood of f , say B(f,E′, ε), such
that B(f,E′, ε) is disjoint from

⋃
{B : B ∈ Bn and FB \C 6= ∅}. It is easy to

verify that if B(f,E′, ε) ∩B(0, F, r) = ∅ then there exists x ∈ (E′ ∩ F ) \C.
Setting E = E′\C, we see that E∩F 6= ∅ for all F ∈ Fn such that F \C 6= ∅.
Thus E and Fn are as required.

A similar proof to that of Proposition 8 yields a necessary condition for
a space X to have Cp(X) a σ-m3-space. The given necessary condition is
technical, but we will see later (Proposition 13) that it is also sufficient.

Proposition 9. Let X be a space containing a point ∗. If Cp(X) is a
σ-m3-space, then [X]<ω can be written as a union of families Fs,i,j where
s, i, j ∈ N and every F in Fs,i,j has size no more than j, and there is
an expander G on [X]<ω with the property that for any s, i, j from N and
functionally closed neighborhood C = f−1[−1/j, 1/j] of ∗, there is a set E,
finite and disjoint from the closed neighborhood C ′ = f−1[−1/i, 1/i] of ∗,
such that, for all F ∈ Fs,i,j, either F ⊆ C or G(F ) ∩ E 6= ∅.

Proof. Suppose that Cp(X) has a local σ-cushioned pairbase at 0. Ap-
plying Lemma 1 to the local base {B(0, F, 1/|F |) : F ∈ [K]<ω}, we can find
an expander G on [X]<ω such that

P = {(B(0, G(F ), 1/|G(F )|), B(0, F, 1/|F |)) : F ∈ [X]<ω}
is a σ-cushioned pairbase; fix a sequence {Qs : s ∈ N} of cushioned families
such that P =

⋃
s∈NQs. Fix s, i and j in N. Let

Ps,i,j = {P = (B(0, G(F ), 1/i), B(0, F, 1/j)) : P ∈ Qs}
and

Fs,i,j = {F : (B(0, G(F ), 1/i), B(0, F, 1/j)) ∈ Ps,i,j}.
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Note that every member F of Fs,i,j has size no more than j. Evidently the
union of the families Fs,i,j is [X]<ω. Since Ps,i,j is empty when i < j, we
suppose i ≥ j.

Pick any functionally closed neighborhood C = f−1[−1/j, 1/j] of ∗. Let
C ′ = f−1[−1/i, 1/i]. Then for any (P1, P2) = (B(0, G(F ), 1/i), B(0, F, 1/j))

in Ps,i,j , the function f is outside P 2 if and only if F \ C 6= ∅. Since Ps,i,j
is cushioned, there is an open neighborhood of f , say B(f,E′, ε), such that
B(f,E′, ε) is disjoint from

⋃
{P1 : (P1, P2) = (B(0, G(F ), 1/i), B(0, F, 1/j))

∈ Ps,i,j and F \ C 6= ∅}. It is easy to see that the set E = E′ \ C ′ is such
that E ∩G(F ) 6= ∅ provided F \ C 6= ∅. Thus the expander G and families
Fs,i,j satisfy the condition in the proposition.

3. Restrictions on X when Cp(X) is an m3-space. We turn now
to the properties a space X must possess if the function space Cp(X) is an
m3-space. The key result limits the number of isolated points.

Proposition 10. If Cp(X) is an m3-space, then X does not contain an
uncountable set of isolated points.

Proof. Suppose S ⊆ X with |S| = ω1 is a set of isolated points. Suppose,
for a contradiction, Cp(X) is an m3-space and P is a cushioned pairbase at 0.
Without loss of generality

P = {(B(0, G(F ), 1/|G(F )|), B(0, F, 1/|F |)) : F is finite and non-empty},
where G is an expander on [X]<ω. Below we will find sets Fn contained in
S such that |Fn| = n, G(Fn) is disjoint from Fr, and Fn disjoint from G(Fr)
for all r < n.

For each n define a continuous fn : X → [0, 2/|Fn|] such that fn = 0
outside Fn, and fn equals 2/|Fn| on Fn. Let f =

∑
n fn. Then:

(1) f is well defined (the sets Fn are disjoint),
(2) f is continuous,

(3) f is not in B(0, Fn, 1/|Fn|) for any n (indeed

B(f, Fn, 1/|Fn|) ∩B(0, Fn, 1/|Fn|) = ∅,
since f(x) = fn(x) = 2/|Fn| for every x in Fn), but

(4) f is in
⋃
nB(0, G(Fn), 1/|G(Fn)|).

To verify (4), take any basic neighborhood B(f, F, ε) of f . Then, as the
family {Fn : n ∈ N} is disjoint, there is an N such that F ∩ FN = ∅.
Pick a continuous g such that g = f on F \ G(FN ) and zero on G(FN ).
Then g ∈ Cp(X), g ∈ B(0, G(FN ), 1/|G(FN )|) (since g = 0 on G(FN )),
g ∈ B(f, F \G(FN ), ε) (as g = f on F \G(FN )), and g ∈ B(f,G(FN )∩F, ε)
(since both g and f are zero on G(FN )∩F , which is a subset of X \

⋃
n Fn).
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Hence

g ∈ B(f, F, ε) ∩B(0, G(FN ), 1/|G(FN )|).
Thus we have found a subfamily {(Pn1 , Pn2 ) : n ∈ N} of P and f in Cp(X)

such that f ∈
⋃
n P

n
1 but not in any P 2n , contradicting the assumption that

P is cushioned.
Call a sequence (F1, . . . , Fn) of finite subsets of S good if |Fi| = i, and

G(Fi) is disjoint from Fj for all distinct i, j ≤ n. Inductively construct a
‘candidate Fn’ family CFn, sets Sn, Tn, and ‘failed Fr’ families FFnr for
r ≤ n such that:

(a) S1, . . . , Sn and Tn are uncountable, pairwise disjoint subsets of S,
(b) CFn is an uncountable collection of pairwise disjoint n-element sub-

sets of Sn,
(c) FFnr is a finite subfamily of CFr, and

(d) if Fi ∈ CF i\
⋃n
j=1FF

j
i for i = 1, . . . , k < n are such that (F1, . . . , Fk)

is good, then for all but finitely many Fk+1 in CFk+1 \
⋃n
j=1FF

j
k+1

the sequence (F1, . . . , Fk, Fk+1) is also good.

If this is true, it is easy to find an infinite good sequence as desired.
To start the induction (n = 1), split S into two uncountable and disjoint

subsets S1 and T1. Take a ∆-system S1 in the family {G({s}) : s ∈ S1}, say
with root R1, and let CF1 = {{s} : G({s}) ∈ S1}. Let FF1

1 = {F ∈ CF1 :
R1 ∩ F 6= ∅}.

Assume we have constructed the promised sets for some n in N. Split
Tn into disjoint uncountable subsets Sn+1 and Tn+1. Choose an uncountable
disjoint family CFn+1 of subsets of cardinality n+1 in Sn+1. We can assume,
without loss of generality, that {G(B) : B ∈ CFn+1} is a ∆-system with
root Rn+1. Let FFn+1

r = {F ∈ CFr : F ∩ Rn+1 6= ∅}. Then everything
works—(a), (b), (c) and (d) hold for n+ 1.

Corollary 11. If K is compact and Cp(K) is an m3-space, then K is
separable.

To see this, recall that compact scattered spaces have a dense set of
isolated points, and apply Corollary 7 and Proposition 10. For example,
Cp(A(ω1)) is not an m3-space, although it is a σ-m1-space (see Example 15).

4. Spaces X for which Cp(X) is a σ-m1-space. In this section we
give sufficient conditions for spaces X to have Cp(X) a σ-m1-space, and
derive concrete examples.

Proposition 12. Let X be a space. Then Cp(K) is a σ-m1-space, pro-
vided there is a point ∗ in X and a family F =

⋃
s∈NFs cofinal in ([X]<ω,⊆)

such that for all s in N and functionally closed neighborhoods C of ∗, there
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is a set E, finite and disjoint from C, such that, for every F ∈ Fs, either
F ⊆ C or F ∩ E 6= ∅.

Proof. According to Lemma 2 it suffices to show Cp(X; {∗}) is a σ-m1-
space.

Let Br,s = {B(0, F, 1/r) : F ∈ Fs} for r ∈ N. Then B =
⋃
r,s Br,s is a

local base at 0. We need to show each Br,s is closure-preserving.

Suppose f /∈ B(0, Fλ, 1/r) where B(0, Fλ, 1/r) is from Br,s for all λ in Λ.
As f ∈ Cp(X; {∗}), the set C = {x : |f(x)| ≤ 1/r} is a functionally closed
neighborhood of ∗. So for every Fλ, we have Fλ 6⊆ C. Then the finite set E
disjoint from C given by the hypothesis is such that E ∩ Fλ 6= ∅ for all λ.
For each x ∈ E, let εx = |f(x)| − 1/r > 0. Let ε = min{εx : x ∈ E}.

Then B(f,E, ε) ∩B(0, Fλ, 1/r) = ∅ for all λ (because if x ∈ E ∩ Fλ 6= ∅
then (−1/r, 1/r) ∩ (f(x) − εx, f(x) + εx) = ∅). Thus the elements of Br,s
indeed form a closure-preserving family.

Proposition 13. Let X be a space. Then Cp(X) is a σ-m3-space, pro-
vided there exists a point ∗ of X and a family F =

⋃
s,i,j∈NFs,i,j cofinal

in ([X]<ω,⊆) where every F in Fs,i,j has size no more than j, and an ex-
pander G on F such that for every s, i and j in N and functionally closed
neighborhood C = f−1[−1/j, 1/j] of ∗, there is a finite set E disjoint from
C ′ = f−1[−1/i, 1/i] such that for all F ∈ Fs either F ⊆ C or G(F )∩E 6= ∅.

Proof. Again, by Lemma 2 it suffices to show Cp(X; {∗}) is a σ-m3-space.
Let Ps,i,j = {(B(0, G(F ), 1/i), B(0, F, 1/j)) : F ∈ Fs,i,j}. Then P =⋃

s,i,j Ps,i,j is a local pairbase at 0 (here we use the fact that every F in
Fs,i,j has size at most j). We need to show that a fixed Ps,i,j is cushioned.

Suppose that a continuous function f is not in B(0, Fλ, 1/j) for each λ
in Λ. Let C = f−1[−1/j, 1/j] and C ′ = f−1[−1/i, 1/i]. Since f is continuous
and f(∗) = 0, the sets C and C ′ are functionally closed neighborhoods of ∗.
Note that for every λ in Λ we have Fλ 6⊆ C.

Then the finite E disjoint from C ′ given by the hypothesis is such that
E ∩ G(Fλ) 6= ∅ for all λ. For each x ∈ E, let εx = |f(x)| − 1/i > 0. Let
ε = min{εx : x ∈ E}.

Then B(f,E, ε) ∩ B(0, G(Fλ), 1/i) = ∅ for all λ (because if x ∈ E ∩
G(Fλ) 6= ∅ then (−1/i, 1/i) ∩ (f(x) − εx, f(x) + εx) = ∅). Thus Ps,i,j is
indeed cushioned.

Now we present some examples of spaces X with Cp(X) a σ-m1-space.
For any free filter p on a set X, write X(p) for the space with underlying

set X ∪ {∗}, and topology where the points of X are isolated and neigh-
borhoods of ∗ are {∗} ∪ U for U in p. The supersequences A(κ) and L(ω1)
are both of this form. For the space A(κ), take X = κ and p to be the
filter generated by the family {(κ \ F ) : F is a finite subset of κ}. For the
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space L(ω1), take X = ω1 and p to be the filter generated by the family
{(ω1 \ C) : C is a countable subset of ω1}.

From Proposition 12 we deduce:

Corollary 14. If X is a set and p is a filter on X, then Cp(X(p)) is
a σ-m1-space if there is a family F =

⋃
s∈NFs cofinal in ([X]<ω,⊆) such

that for all s in N and U ∈ p there is a finite set E disjoint from U such
that, for every F ∈ Fs, either F ⊆ U or F ∩ E 6= ∅.

Example 15. Cp(A(ω1)) and Cp(A(ω1)⊕ ω) are σ-m1-spaces.

Proof. It is immediate that A(ω1) satisfies the conditions of Proposi-
tion 12.

We know that Cp(A(ω1) ⊕ ω) is homeomorphic to Cp(A(ω1)) × Cp(ω).
Also, Cp(ω) has a countable base, hence it is a σ-m1-space. Since the σ-m1-
property is finitely productive, Cp(A(ω1)⊕ ω) is a σ-m1-space.

Example 16. For the set X = ω1 × ω, denote by p the filter generated
by the family {(ω1 \ F ) × ω : F is a finite subset of ω1}. Then Cp(X(p)) is
a σ-m1-space.

Proof. To see this, for each s in N let Fs = {F × [0, s] : F ⊆ ω1 is a
finite set}. Then the family F =

⋃
s{Fs : s ∈ N} is easily seen to be cofinal

in [X]<ω. Further, given any s ∈ N and a basic element (ω1 \G)× ω of the
filter p, let E = G×{0}. It is straightforward to check that this satisfies the
conditions of Proposition 12.

The following theorem presents a condition on a compact space K which
implies that Cp(K) is a σ-m1-space. Let K be a compact scattered space.
Recall the Cantor–Bendixson process: let K(0) be the set of isolated ele-
ments in K, and inductively let K(β) be the set of isolated elements in
K \

⋃
γ<βK

(γ). Also write K(≤β) for
⋃
γ≤βK

(γ) and K(≥β) for
⋃
γ≥βK

(γ).

This process terminates for some minimal ordinal α+ 1, called the scattered
height of K, when K(α+1) = ∅.

Note that, since K is compact, the scattered height is not a limit and
the ‘top level’, K(α), is finite. If K(α) = {x1, . . . , xn}, then there are clopen
sets U1, . . . , Un partitioning K so that xi is in Ui. Thus Cp(K) factors into
Cp(U1) × · · · × Cp(Un), which is a σ-m3-space if and only if each Cp(Ui) is
a σ-m3-space. Thus, for compact spaces K, to determine if Cp(K) is, or is
not, a σ-m3-space it is sufficient to only consider compact scattered spaces
with exactly one point in the top level.

Observe that the hypothesis about K in Theorem 17 below is the same as
saying thatK is a compact hereditarily paracompact space of finite scattered
height, or equivalently, that K is a compact monotonically normal space of
finite scattered height (see [7]).
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Theorem 17. Given a compact space K of finite scattered height a+ 1,

assume that for every b < a, in the subspace K(≤b), there exists a point-finite
family Ub = {Ux : x ∈ K(b)} of open subsets of K such that x ∈ Ux ⊆ K(≤b)

for all b < a and x ∈ K(b). Then Cp(K) is a σ-m1-space.

Proof. As discussed above we can assume, without loss of generality,
that K(a) = {∗}, and then it is sufficient to prove that Cp(K; {∗}) is a
σ-m1-space.

Let F be the collection of all finite subsets F of K such that for any
x ∈ K(b) and y ∈ K(b′) where b < b′, if x ∈ Uy ∈ Ub′ , then x ∈ F implies
that y ∈ F . Since a is finite and each family Ub, for b < a, is point-finite, the
family F is cofinal in the collection of all finite subsets of K. For each
n ∈ N, choose a map φn : {0, 1, . . . , a} → [1/(n+ 1), 1/n] such that φn(a) =
1/(n + 1), φn(0) = 1/n and φn(b) > φn(b′) when b < b′. Then let Bn =
{A(0, F, φn) : F ∈ F}, where A(0, F, φn) =

⋂
0≤b≤aB(0, F∩K(b), φn(b)). By

cofinality of F it is easy to see that B =
⋃
{Bn : n ∈ N} is a local base at 0.

To complete the proof, we will show Bn is closure-preserving for a fixed n.
Let f /∈ A(0, Fλ, φn) for each λ ∈ Λ. For b = 1, . . . , a set Va−b =

{x : |f(x)| < φn(a−b)} and V̂a−b = {x : |f(x)| ≤ φn(a−b)}. For b = 1, . . . , a
we will define certain finite subsets Ea−b of K(a−b). Then we have open
sets Wa−b =

⋃
{Ux : x ∈ Ea−b and Ux ∈ Ua−b} and W≥a−b =

⋃
{Wa−j :

j = 1, . . . , b}, a real number εa−b = min{|f(x)| − φn(a− b) : for x ∈ Ea−b}
and a set Ca−b = B(f,Ea−b, εa−b). These sets will satisfy, for b = 1, . . . , a:

(1) K(≥a−b) ⊆ Va−(b+1) ∪W≥a−b,
(2) εa−b is strictly positive (so Ca−b is an open neighborhood of f), and
(3) for each λ ∈ Λ, if

f /∈ B(0, Fλ ∩K(a−b), φn(a− b)) and

f ∈
⋂

1≤j≤b−1
B(0, Fλ ∩K(a−j), φn(a− j)),

then Ca−b ∩B(0, Fλ ∩K(a−b), φn(a− b)) = ∅.
Assuming the above sets exist and have the claimed properties we fin-

ish the proof that Bn is closure-preserving as follows. Let C =
⋂a
b=1Ca−b.

Then C is an open neighborhood of f . Since f /∈ A(0, Fλ, φn), there is a

minimal b0 such that f ∈
⋂

1≤j<b0 B(0, Fλ ∩K(a−j), φn(a− j)) but f /∈
B(0, Fλ ∩K(a−b0), φn(a− b0)) for each λ ∈ Λ. Then Ca−b0 ∩ B(0, Fλ ∩
K(a−b0), φn(a − b0)) = ∅ implies that C ∩ A(0, Fλ, φn) = ∅ for each λ ∈ Λ,
as required.

It remains to show that, for b = 1, . . . , a, the sets Ea−b exist and have
the required characteristics. We do so first when b = 1, and then explain
how to get from a given b to b+ 1.
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To start suppose b = 1. Let

Ea−1 = {x ∈ K(a−1) : |f(x)| > φn(a− 1)}.

Since f is continuous at ∗, the subset Ea−1 of K(a−1) is finite and εa−1 > 0.
By definition of Ca−1, it follows that for each λ ∈ Λ, we have Ca−1∩B(0, Fλ∩
K(a−1), φn(a−1)) = ∅ if f /∈ B(0, Fλ ∩K(a−1), φn(a− 1)). Since φn(a−2) >

φn(a− 1), we see that V̂a−1 ⊂ Va−2. Therefore, K(≥a−1) ⊆ Va−2 ∪Wa−1.

Suppose now that we have constructed Ea−j (and hence Wa−j , W≥a−j ,
εa−j and Ca−j) for all j = 1, . . . , b, where b < a, satisfying the given con-
ditions. We construct Ea−(b+1) = Ea−b−1 and verify that the conditions

continue to hold. Since K is compact and K(≥a−b) ⊆ Va−(b+1) ∪W≥a−b, the

set K(a−b−1) \ (Va−b−1 ∪W≥a−b) is finite. Then

Ea−b−1 = {x ∈ K(a−b−1) \ (Va−b−1 ∪W≥a−b) : |f(x)| > φn(a− b− 1)}

is a finite subset of K(a−b−1) and εa−b−1 > 0. Since f is continuous and
φn(a− b− 2) > φn(a− b− 1), the set Va−b−2 is open and contains V̂a−b−1.

Therefore K(≥a−b) ⊆ Va−b−2 ∪W≥a−b. By the definition of Ea−b−1, we can

see that K(a−b−1) ⊆ V̂a−b−1 ∪W≥a−b ∪Wa−b−1 ⊆ Va−b−2 ∪W≥a−b−1. Hence
K(≥a−b−1) ⊆ Va−b−2 ∪W≥a−b−1.

Take λ ∈ Λ. Suppose that f /∈ B(0, Fλ ∩K(a−b−1), φn(a− b− 1)) and

(†) f ∈
⋂

1≤j≤b
B(0, Fλ ∩K(a−j), φn(a− j)).

Then there exists x0 ∈ Fλ ∩ K(a−b−1) such that |f(x0)| > φn(a − b − 1).
Next we will show x0 is in Ea−b−1, which will guarantee that Ca−b−1 ∩
B(0, Fλ ∩K(a−b−1), φn(a − b − 1)) = ∅. Let Ga−j = {x : x ∈ K(a−j), x0 ∈
Ux and Ux ∈ Ua−j} for j = 1, . . . , b. By the definition of Fλ, Ga−j ⊆ Fλ for

j = 1, . . . , b. Because of (†) we have Ga−j ⊆ V̂a−j , hence Ga−j ∩ Ea−j = ∅
for j = 1, . . . , b. Therefore, x0 /∈ (

⋃
{Wa−j : j = 1, . . . , b}). By the definition

of Ea−b−1 clearly x0 ∈ Ea−b−1.

Thus, for example, Cp(K) is a σ-m1-space where K is the one-point
compactification of an uncountable disjoint sum of A(ω1)’s.

Theorem 17 applies to compacta of finite scattered height, but finite
height is not a necessary condition.

Example 18. There is a compact space, K, of scattered height ω1, such
that Cp(K) is a σ-m1-space (but not an m3-space).

Proof. Let X =
⊕

ω≤α<ω1
(α + 1) × {α} (here α + 1 has its ordinal

topology). Let K = X ∪ {∗} be the one-point compactification of X. Note
that K is compact and has scattered height ω1. By Proposition 10, we can
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conclude that Cp(K) is not an m3-space because K has uncountably many
isolated points. Next, we show Cp(K; {∗}) is a σ-m1-space. Since Cp(K) =
Cp(K; {∗})× R, we are then done.

Fix, for each countably infinite α, a bijection φα : N→ (α+1)×{α}. Let
B =

⋃
{Bn : n ∈ N}, where Bn = {B(0, F, 1/n) : F =

⋃
α∈G φα([1, n])× {α}

where G ⊆ ω1 \ ω and |G| = n}.
It is easy to see that B is a local base at 0. We check that each Bn is

closure-preserving.

Suppose f /∈ B(0, Fλ, 1/n) where B(0, Fλ, 1/n) is in Bn for all λ ∈ Λ.
There is an xλ ∈ Fλ =

⋃
α∈Gλ φα([1, n]) × {α} such that |f(xλ)| > 1/n. As

f is continuous at ∗, and f(∗) = 0, there is a finite set G contained in ω1 \ω
such that {x : |f(x)| > 1/n} ⊆

⋃
α∈G(α+ 1)× {α}.

Let E =
⋃
α∈G φα([1, n])×{α}, and let ε = min{|f(x)|−1/n : x ∈ E and

|f(x)| > 1/n}. Then for every λ, we see that B(f,E, ε) ∩B(0, Fλ, 1/n) = ∅
(because xλ ∈ E ∩ Fλ, and by choice of ε), as required.

5. Spaces X for which Cp(X) has the m1-property. We give suf-
ficient conditions on a space X to ensure that Cp(X) has the m1-property,
and give concrete compact examples.

Proposition 19. Suppose that X is a space with a countable dense set
D of isolated points. Assume that there exists a point ∗ in X \ D and a
family F cofinal in ([X]<ω,⊆) such that for any closed neighborhood C of
the point ∗, we can find a finite E ⊆ X \ C such that E ∩ F 6= ∅ for every
F ∈ F which is not contained in C. Then Cp(X) is an m1-space.

Proof. By Lemma 2 it is sufficient to show that Cp(X; {∗}) is an m1-
space. Let φ be a bijection between N and the countable dense set of isolated
points D. Let B = {B(0, {φ(i) : 1 ≤ i ≤ |F |}∪F, 1/(2|F |)) : F ∈ F}. Clearly
B is a local base at 0. To complete the argument, we will show that B is
closure-preserving.

To this end, suppose that

f /∈ B(0, {φ(i) : 1 ≤ i ≤ |Fλ|} ∪ Fλ, 1/(2|Fλ|)),
where Fλ is in F for every λ in Λ. Since f is continuous, there exist natural
numbers N1 and N2 such that f(φ(N1)) > 1/(2N2). Let N = max{N1, N2},
εN = f(φ(N1)) − 1/(2N2) and UN = B(f, {φ(N1)}, εN ). Then we have
BN ∩B(0, {φ(i) : 1 ≤ i ≤ |Fλ|}∪Fλ, 1/(2|Fλ|)) = ∅ for any λ with |Fλ| ≥ N .

Fix any 1 ≤ i < N . Then Ci = {x : |f(x)| ≤ 1/(2i)} is a closed neighbor-
hood of ∗. By hypothesis, there is a finite Ei ⊆ K \Ci such that for any F ∈
F , we have Ei∩F 6= ∅ or F ⊆ Ci. Let εi = min{|f(x)−1/(2i)| : x ∈ Ei} and
Ui = B(f,Ei, εi). Then Ui ∩ B(0, {φ(i) : 1 ≤ i ≤ |Fλ|} ∪ Fλ, 1/(2|Fλ|)) = ∅
for any λ with |Fλ| = i.
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Let U =
⋂N
i=1 Ui, which is an open neighborhood of f . We have

U ∩B(0, {φ(i) : 1 ≤ i ≤ |Fλ|} ∪Fλ, 1/(2|Fλ|)) = ∅ for any λ ∈ Λ. Therefore,
B is closure-preserving.

The following example of an uncountable compact space K such that
Cp(K) is an m1-space answers negatively the questions raised by Dow,
Ramı́rez Mart́ınez and Tkachuk [3], and by Tkachuk [11]. It is based on
Mrowka’s space Ψ constructed as follows. Let A be a maximal almost dis-
joint family on N = {1, 2, . . .}. Then Ψ = Ψ(A) is a space with underlying
set N ∪ A, in which the points in N are isolated, and a basic neighborhood
of A in A is {A} ∪ (A \ F ) where F is a finite subset of N.

Example 20. Let K be the one-point compactification of Ψ . Then Cp(K)
is an m1-space.

Proof. Let ∗ be the ‘point at infinity’ of the one-point compactification
of Ψ . Let F = {F : F = G∪[1, |G|] for some finite G ⊆ A}. Let C be a closed
neighborhood of ∗. If K = C then there is nothing to prove. Otherwise, we
can pick a point N ∈ N \C because N is dense in K. Then the set A \C is
easily seen to be finite so the set E = (A∪ [1, N ]) \C is finite as well. Given
any F ∈ F with F \C 6= ∅, if |F | ≥ 2N then [1, N ] ⊂ F so that N ∈ F ∩E.
If |F | < 2N and F ∩ (A\C) = ∅ then the non-empty set F \C is contained
in [1, N ] \ C ⊂ E so E ∩ F 6= ∅. Therefore E ∩ F 6= ∅ for any F ∈ F which
is not contained in C, i.e., we can apply Proposition 19 to see that Cp(K)
is an m1-space.

The space in Example 20 has finite scattered height; the following exam-
ple shows that this is not necessary for compact spaces K such that Cp(K)
is an m1-space.

Example 21. There exists a compact space K of scattered height ω1

such that Cp(K) is an m1-space.

Proof. Let X =
⊕

ω≤α<ω1
(α + 1) × {α} (here α + 1 has its ordinal

topology). Let K ′ = X ∪ {∗} be the one-point compactification of X. By
the theory of compactifications of N (see [8]), since K ′ is compact and has
weight ≤ ℵ1, there is a compact space K such that K = N ∪ K ′, and the
points of N are isolated and N is dense in K. It suffices to show Cp(K; {∗})
is an m1-space.

Fix, for each countably infinite ordinal α, a bijection φα : N → (α + 1).
Let

B =
{
B(0, F, 1/|F |) : F = [1, |G|] ∪

⋃
α∈G

φα([1, |G|])× {α}
}
,

where G is a finite subset of ω1 \ ω. Clearly B is a local base at 0. We will
show that B is closure-preserving.
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Suppose that f /∈ B(0, Fλ, 1/|Fλ|), where B(0, Fλ, 1/|Fλ|) is in B for all
λ ∈ Λ. For each λ in Λ, there is an xλ ∈ Fλ = [1, |Gλ|]∪

⋃
α∈Gλ φα([1, |Gλ|])

× {α} such that |f(xλ)| > 1/|Fλ|.
Pick λ0 such that |Fλ0 | is minimal. By continuity of f at xλ0 , and density

of N, there is a k ∈ N such that |f(k)| > 1/|Fλ0 |. Let ε0 = |f(k)| − 1/|Fλ0 |
and E0 = {k}. Take any λ with |Gλ| ≥ k. Then k ∈ [1, |Gλ|] ⊆ Fλ. So
B(f,E0, ε0) ∩B(0, Fλ, 1/|Fλ|) = ∅ (because k ∈ E0 ∩ Fλ, and |Fλ| ≥ |Fλ0 |).

Fix 1 ≤ i < k. Let E′i = {α ∈ ω1 : |f(β, α)| > 1/(i + i2) for some (β, α)
in (α+ 1)× {α}}. Observe that E′i is finite and let

Ei =
( ⋃
α∈E′

i

φα([1, i])× {α}
)
∪ [1, i].

Note that {xλ : |Gλ| = i} ⊆ Ei. Define εi = min{|f(x)| − 1/(i + i2) :
x ∈ Ei and |f(x)| > 1/(i + i2)}. Take any λ such that |Gλ| = i. Then
B(f,Ei, εi) ∩B(0, Fλ, 1/|Fλ|) = ∅ because xλ ∈ Ei ∩ Fλ.

Finally let B =
⋂

0≤i<k B(f,Ei, εi). Then B is an open neighborhood of

f disjoint from B(0, Fλ, 1/|Fλ|) for every λ in Λ, as required.

6. Impact of the m1-property in topological groups. First count-
able topological groups are metrizable, and hence hereditarily paracompact.
Further, separable subspaces of groups with the σ-m3-property are strati-
fiable, and hence hereditarily paracompact. We prove below (Theorem 23)
that monotonically normal topological groups are hereditarily paracompact.
In contrast, although ‘first countable’ and ‘monotonically normal’ both nat-
urally imply the m3-property, Example 20 shows that a locally convex topo-
logical vector space can be an m1-space but not even normal (see [11, S.390]
for a proof of non-normality).

A space X is Maltsev if there is a continuous map M : X3 → X such
that M(x, y, y) = x = M(y, y, x); such a map M is called a Maltsev operator
for X. Observe that if there is a retraction, r, say, of a topological group G
onto a space X, then the map M(x, y, z) = r(xy−1z) is a Maltsev operator.
In particular, topological groups are Maltsev spaces.

Lemma 22. A stationary subset of an uncountable regular cardinal can-
not be K1-embedded in a Maltsev space.

Proof. Let S be a stationary subset of an uncountable regular cardinal κ.
For α in S, let α+ = min{α′ ∈ S : α < α′}. Write L for the limit points
in S, and I for the isolated points. Note that L is stationary.

Let S be a subspace of a Maltsev space X, and let M : X3 → X be a
Maltsev operator for X. We suppose, for a contradiction, that k : τS → τX
is a K1-operator. Define m : S3 → X to be M |(S3). For α in I, let Uα =
m−1(k({α})). Then for every α in I:
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(1) the set Uα is an open subset of S3 (because {α} is open in S, k is a
K1-operator, and m is continuous),

(2) {(α, β, β) : β ∈ S} ∪ {(β, β, α) : β ∈ S} ⊆ Uα (because m is the
restriction of the Maltsev operator M), and

(3) {Uα : α ∈ I} is a family of pairwise disjoint sets (since {{α} : α ∈ I}
is a pairwise disjoint family, and k is a K1-operator).

From (1), (2), the definition of the topology on S3, and the Pressing
Down Lemma, for each α in I, there is a βα > α such that {α}× (βα, κ)2 ⊆
Uα. For each λ in L its successor λ+ in the set S is isolated and (λ, λ, λ+)
is in Uλ+ . So there is a λ− in S, with λ− < λ, such that (λ−, λ]2 × {λ+}
is contained in Uλ+ . By stationarity of L, and the Pressing Down Lemma,
there is a cofinal L′ ⊆ L and λ0 in S such that, for all λ in L′, λ− = λ0.

Fix any α ∈ I ∩ (λ0, κ), and λ1 in L′ such that λ1 > βα. Set α′ = (λ1)+.
Then

∅ 6= {α}× (βα, λ1]×{α′} ⊆ ({α}× (βα, κ)2)∩ ((λ0, λ1]
2×{α′}) ⊆ Uα ∩Uα′ .

This contradicts (3) above.

Theorem 23. Monotonically normal Maltsev spaces are hereditarily
paracompact.

Proof. Every subspace of a monotonically normal Maltsev space X is
K1-embedded (because X is monotonically normal), and so (because X is
Maltsev, by Lemma 22) contains no stationary subset of an uncountable
regular cardinal. Therefore the claim follows from the Rudin and Balogh
theorem [1] characterizing paracompact spaces in the class of monotonically
normal ones as those not containing a closed subspace homeomorphic to a
stationary subset of an uncountable regular cardinal.

Corollary 24. Every locally compact subspace of a monotonically nor-
mal Maltsev space is metrizable.

Proof. Let A be a subspace of X which is a monotonically normal
Maltsev space. First suppose A is compact. Then as X is monotonically
normal, the subspace A is K1-embedded in X, and hence—as a compact
K1-embedded subspace of a Maltsev space—is κ-metrizable (see [10]). But
hereditarily normal κ-metrizable spaces are metrizable. Now suppose A
is locally compact. We have just seen that A is locally metrizable, while
from the preceding result we know A is paracompact. Hence A is metriz-
able.
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